

(19) DANMARK

(10) DK/EP 2540213 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **A 61 B 1/00 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2019-12-09**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2019-09-04**

(86) Europæisk ansøgning nr.: **12165236.6**

(86) Europæisk indleveringsdag: **2004-04-29**

(87) Den europæiske ansøgnings publiceringsdag: **2013-01-02**

(30) Prioritet: **2003-04-29 GB 0309754**

(62) Stamansøgningsnr: **04730297.1**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR**

(73) Patenthaver: **Aircraft Medical Limited, 10 St. Andrews Square, Edinburgh EH2 2AF, Storbritannien**

(72) Opfinder: **McGrath, Matthew J R, Aircraft Medical Limited, 10 St. Andrews Square, Edinburgh EH2 2AF, Storbritannien**

(74) Fuldmægtig i Danmark: **Marks & Clerk (Luxembourg) LLP, 44 rue de la Vallée, B.P. 1775, L-1017 Luxembourg, Luxembourg**

(54) Benævnelse: **LARYNGOSKOP MED KAMERAFASTGØRELSE**

(56) Fremdragne publikationer:

WO-A1-98/46121

WO-A2-02/056756

USA- 3 766 909

DK/EP 2540213 T3

DESCRIPTION

[0001] The present invention relates to medical devices for carrying out internal examination and relates particularly to laryngoscopes that incorporate image capturing means such as a camera to assist intubation of a tracheal tube.

[0002] Insertion of a tracheal tube is an important procedure in providing an airway to an anaesthetist prior to a surgical operation. Tracheal tubes also often need to be inserted in an emergency situation into the airway of an unconscious patient by paramedics or doctors. Insertion of a tracheal tube requires significant skill, and laryngoscopes are generally used to assist the insertion of the tube by restraining the patient's tongue and allowing a clear view of the larynx and the entrance to the trachea. Considerable skill and care is required in carrying out this procedure in order to avoid damage to the patient's teeth and soft tissue of the throat.

[0003] Often problems occur when a practitioner is attempting to intubate a patient using a laryngoscope as it can be difficult for the practitioner to see what is going on.

[0004] Figures show that in approximately 12% of cases trauma occurs during intubation (which affects a large number of people when you consider there are over 40 million intubations carried out annually). Also, during the 1980s and 1990s, 2500 deaths (or approximately 3 per week) occurred in Europe due to an inability to intubate and these figures have not changed substantially in recent years. Airway problems remain the most frequent cause of death or permanent brain damage associated with anaesthesia.

[0005] Certain devices have been developed which incorporate a camera element attached to the blade. However, this has led to issues relating to the cleaning of the laryngoscope before re-use. Obviously in order to use a laryngoscope on a patient, it is important to know that the laryngoscope is cleaned sufficiently and there is no risk of cross contamination between patients. There is evidence to show that standard cleaning procedures are not always fully effective at removing contaminants such as bacteria from the laryngoscope (JR Hall. 'Blood contamination of equipment...' *Anaesthesia and Analgesia*. 1994; 78:1136-9 MD Ester, LC Baines, DJ Wilkinson & RM Langford. 'Decontamination of Laryngoscopes: a survey of national practice.' *Anaesthesia*, 1999, 54).

[0006] Typically, to clean a laryngoscope, the blade is soaked and autoclaved. The handle can undergo a similar procedure or can simply be wiped down as it does not make contact with the patient as the blade does. The cleaning takes a significant amount of time, which means that it is necessary to have a number of handles and blades in rotation to ensure that there are always clean laryngoscopes available if required. This results in a time consuming and costly procedure needing to be put in place. Obviously the cleaning procedure is significantly more difficult when there is also a camera element that requires cleaning and this can cause significant delays and a cost implication. This means that laryngoscopes incorporating camera elements are rarely used in practice.

[0007] In order to try and overcome the issues associated with the use of laryngoscopes and similar medical devices, a number of alternative device products have been suggested or developed. For example, disposable blades are available for use, however, these can be lacking in strength and only allow the most basic airway opening to be achieved due to their relative simplicity of design. Protective sheaths can also be used which slip over a standard laryngoscope blade to act as a guard. While useful, it is optional to a user whether the sheath is used or not. For the user, existing blades perform better without the sheath, which distorts light output and, as a result, existing sheaths are rarely used.

[0008] Preferred embodiments of the present invention seek to improve upon the products described in the prior art as e.g. disclosed in WO2002/056756 or US3766909 or WO 98/46121.

[0009] Throughout this Application the term blade should be read in a broad sense to cover not only laryngoscope blades but also to cover speculums or elements that are inserted into body cavities.

[0010] The invention is as defined in the appended claims.

[0011] According to a first aspect of the present invention, there is provided a medical device for carrying out internal examination, comprising a body portion and a blade portion, characterised in that the blade portion comprises an at least partially rigid probe means which is at least partially transparent and through which a channel partially runs and wherein an image capture means is provided within the channel. In an alternative embodiment there may be a light source provided in the channel. This may be associated with the camera element if desired.

[0012] In this instance, rigid should be construed as providing sufficient structural integrity to hold its own form under normal conditions. For example, as well as materials such as plastics and metals, rubber materials that are able to hold their own shape, but have some resistance if compressed, i.e., dropped or stood on.

[0013] Optionally, the entire rigid probe means is transparent.

[0014] Preferably, at least part of the transparent section of the rigid probe means forms a lens for use with the image capture means.

[0015] Optionally, lenses can be used to transfer image and/or light through a curved or angled portion of the blade.

[0016] Optionally, reflecting means can be used to transfer image and/or light through a curved or angled portion of the blade.

[0017] Preferably the rigid probe means has a spatulate shape.

[0018] Preferably the image capture means is a camera.

[0019] Optionally the image capture means is a fibre optic cable that is able to transmit an image.

[0020] Preferably, the medical device for carrying out internal examination is a laryngoscope.

[0021] Preferably a light source is provided in the channel.

[0022] Optionally, a strengthening element is provided in the channel.

[0023] Preferably the strengthening element is in the form of a steel rod which could have any appropriate cross-section.

[0024] Preferably the body section is provided with a screen for showing the images captured by the image capturing means and any other information.

[0025] Preferably data and power is transferred between the body element and the blade element wirelessly.

[0026] Preferably data and power is transferred between the body element and the blade element via contact points present on both the body element and the blade element.

[0027] Alternatively data is transferred between the body element and the blade element by optical transfer means.

[0028] Alternatively data is transferred between the body element and the blade element by radio frequency transfer means.

[0029] According to a second aspect of the present invention, there is provided a rigid probe means for use with medical devices for internal examination, characterised in that the rigid probe means is at least partially transparent and has a channel running partially through it.

[0030] Preferably the channel runs in a longitudinal direction.

[0031] Optionally, the entire rigid probe means is transparent.

[0032] Preferably, at least part of the rigid probe means forms a lens.

[0033] Preferably the rigid probe means has a spatulate shape.

[0034] In order to provide a better understanding of the present invention, embodiments will now be described by way of example only, and with reference to the following Figures, in which:

Figure 1 shows a drawing of a laryngoscope according to one embodiment of the present invention; and

Figure 2 shows a drawing of a laryngoscope according to another embodiment of the present invention; and

Figure 3 shows a drawing of the contact strips according to an embodiment of the present invention.

[0035] In the preferred embodiment of the present invention, the medical device is a laryngoscope which can be used for intubation of a tracheal tube.

[0036] There is provided a laryngoscope 1 which has a body 2 and a disposable blade 3. In the preferred embodiment, as shown in figure 1, the blade 3 is made up from a rigid probe means 3a that has a spatulate shape. The rigid probe means 3a has an internal channel 6 which has a camera element inserted into it, such that the camera element 7 does not come into contact with the patient. The camera element 7 is elongate in form, and has any appropriate cross-section. The end of the camera element 7 that is not inserted into the channel 6 attaches to the body section 2. As the rigid probe means 3a fits over the camera element 7 like a sleeve, the camera element 7 will not come into contact with the patient during examination. This means that the camera element 7 that has been inserted into the channel 6 can be re-used while the rigid probe means 3a, which forms the outer layer, can be discarded.

[0037] In an alternative embodiment, as shown in figure 2, the rigid probe means 3a covers more of the length of the camera element and attaches to the body section 2 of the laryngoscope 1 directly.

[0038] In the preferred embodiment, the rigid probe means 3a is made from a transparent material, such as plastic or perspex. If additional strength is required, a strengthening element 5 can be inserted into the channel 6 within the rigid probe means 3a, either as an integral element which can be discarded along with the rigid probe means 3a after use, or as a reusable element which can optionally be attached to the body 2 of the laryngoscope 1, such that it can be inserted into the next rigid probe means 3a that is to be used.

[0039] The channel 6 can also be used to house a light source, which can be inserted into the channel 6 in the centre of the rigid probe means 3a so that a practitioner can visualise a trachea to help in the positioning of a tracheal tube. The electrical components which run the camera or the light can be housed in the body 2 of the laryngoscope 1 or externally to the laryngoscope 1 and the relevant parts can simply be slipped in and out of the channel 6 and of the blade 3 when required. This again means that the blade 3 can be discarded with the expensive lighting or camera elements 7 being kept for further use, without them having ever been in contact with a patient.

[0040] In order to allow the blade 3 and body 2 to be easily separable, data is transferred wirelessly between the camera element 7 and the body 2, which contains electrical components that relate to the camera element 7. The wireless transfer is preferably via contact points in the form of contact strips 8 but can also be via optical data transfer methods or radio frequency data transfer methods. This use of wireless data transfer removes the need for a flying lead between the body 2 and blade 3 which make cleaning more difficult and can result in the laryngoscope 1 being clumsy to use.

[0041] The contact points are preferably in the form of conductive contact strips 8. In the preferred embodiment the strips 8 are formed partially on the camera element 7 and partially on the rigid probe means 3a such that when the camera element 7 is inserted into the rigid probe means 3a, the strips 8a and 8b are brought into contact to form continuous strips 8. In typical cases, there will be four contact strips 8, two for transferring data and two for transferring power (figure 3). The body 2 containing electrical components which run the camera element 7 is also provided with contact points and these will usually be in the form of retractable bearings 9 or retractable pins or other resiliently biased contact means.

[0042] These bearings or pins may also act as a gripping method to hold the blade in place. Corresponding ratchet type tracks (preferably conductive) enables the blade to be adjusted in length.

[0043] In order to miniaturise a camera element 7, at least part of the transparent section of the rigid probe means 3a forms a lens 4, such that the camera element 7 itself does not require a lens, but can simply be slipped into the channel 6 of the blade 3. The lens 4 on the blade 3 acts then acts as a lens 4 for the camera element 7. This inclusion of the lens 4 into the disposable rigid probe means 3a means that the camera element 7 can be smaller than is typically achievable, making it particularly suitable for use in a medical device, such as a laryngoscope 1.

[0044] One of the benefits of the disposability of the rigid probe means 3a part of the blade 3 is that there will be no cross-contamination to patients, and no lengthy cleaning procedures are required. However, to further ensure that a blade 3 is not reused, it is possible to include a spoiling mechanism between the blade 3 and the body 2 of the laryngoscope 1. The spoiling mechanism can take the form of a breaking of electrical connections when the blade 3 and body 2 are parted, such that if the same blade 3 and body 2 are reconnected, no power is provided to anything inserted into the channel 6 of the blade 3. Alternatively, the blade 3 may comprise protrusions which are able to fix into ingressions in the body 2 of the laryngoscope 1, such that the protrusions break off when the blade 3 is removed from the body 2, such that the blade 3 cannot then be reused.

[0045] The fact that the blade is fully disposable is also of great importance, as it means that practitioners are required to change blades and the product is both simple to use and cheap to manufacture.

[0046] The embodiments aspects and examples which do not fall within the scope of the claims are provided for illustrative purpose only and do not form part of the present invention. The invention is defined in the claims as follows.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO2002056756A [0008]
- US3766909A [0008]
- WO9846121A [0008]

Non-patent literature cited in the description

- JR HALLBlood contamination of equipmentAnaesthesia and Analgesia, 1994, vol. 78, 1136-9 [0005]
- MD ESTERLC BAINESDJ WILKINSONRM LANGFORDDecontamination of Laryngoscopes: a survey of national practiceAnaesthesia, 1999, 54- [0005]

LARYNGOSKOP MED KAMERAFASTGØRELSE

PATENTKRAV

1. Laryngoskop til udførelse af en indvendig undersøgelse af en patient og til hjælp ved intubation af et lufrør, hvilket laryngoskop omfatter en legemsdel (2) og en bladdel (3) til engangsbrug,
 - 5 hvor bladdelen omfatter et mindst delvist stift sondemiddel med en spartelform, det stive sondemiddel (3a) er mindst delvist transparent, og laryngoskopet endvidere omfatter et kamera og en lyskilde (6), kendtegnet ved, at:
 - det stive sondemiddel (3a) har en kanal (6), der løber delvist gennem det, og kameraet og lyskilden er tilvejebragt inde i kanalen; og
- 10 en del af den transparente sektion af det stive sondemiddel (3a) danner en linse (4) til anvendelse med kameraet (7), kanalen er således, at kameraet (7) i anvendelse ikke vil komme i kontakt med patienten, og hvor et forstærkningselement er tilvejebragt i kanalen (6).
2. Laryngoskop ifølge krav 1, hvor det mindst delvist stive sondemiddel strækker sig ud over forstærkningselementet og kameraet i kanalen.
- 15 3. Laryngoskop ifølge krav 1 eller krav 2, hvor kanalen har i det væsentlige den samme længde som forstærkningselementet.
4. Laryngoskop ifølge et hvilket som helst foregående krav, hvor det helt stive sondemiddel er transparent.
5. Laryngoskop ifølge et hvilket som helst foregående krav, hvor forstærkningselementet er fastgjort
 - 20 til legemsdelen.
6. Laryngoskop ifølge et hvilket som helst foregående krav, hvor forstærkningselementet og kameraet kan føres ind i og ud af kanalen.
7. Laryngoskop ifølge et hvilket som helst foregående krav, hvor forstærkningselementet er i form af en stålstang.
- 25 8. Laryngoskop ifølge et hvilket som helst foregående krav, hvor kameraet er fastgjort til legemet.
9. Laryngoskop ifølge et hvilket som helst foregående krav, hvor legemsdelen er udstyret med en skærm til visning af de billeder, der er opfanget af kameraet, og en hvilken som helst anden information.
10. Laryngoskop ifølge et hvilket som helst foregående krav, hvor det stive sondemiddel passer over kameraet som et hylster.
- 30 11. Laryngoskop ifølge et hvilket som helst foregående krav, hvor sondemidlet er til engangsbrug.
12. Laryngoskop ifølge et hvilket som helst foregående krav, hvor kanalen løber i en længderetning.

DRAWINGS

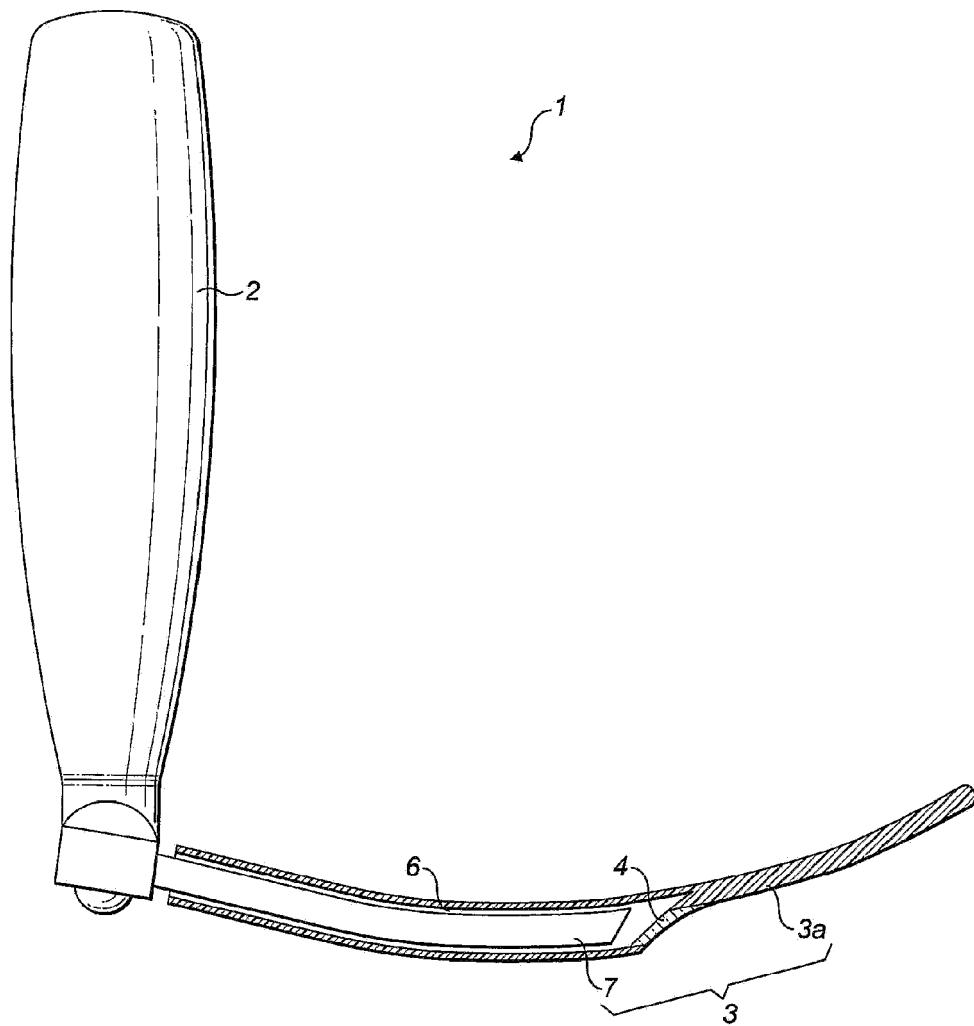


FIG. 1

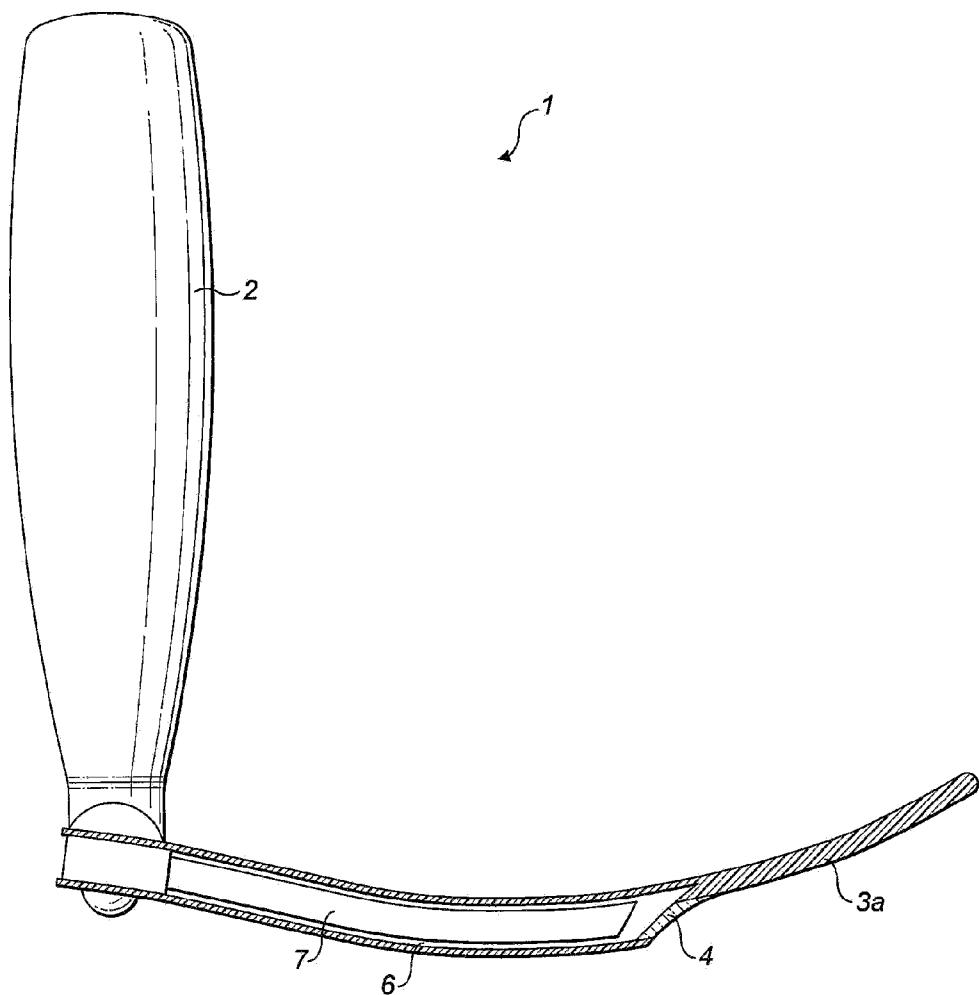


FIG. 2

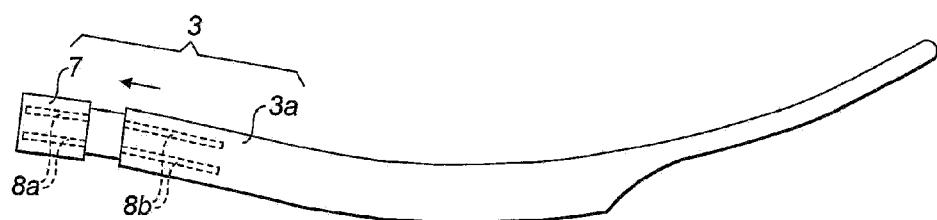


FIG. 3