20047034259 A2 | I A0 D0 0N O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

22 April 2004 (22.04.2004)

AT Y0 00 R

(10) International Publication Number

WO 2004/034259 A2

GOG6F 9/46

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2003/032254

(22) International Filing Date: 10 October 2003 (10.10.2003)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/417,706
Not furnished

Us
Us

10 October 2002 (10.10.2002)
9 October 2003 (09.10.2003)

(71) Applicant (for all designated States except US): CON-
VERGYS INFORMATION MANAGEMENT GROUP,
INC. [US/US]; 600 Vine Street, Cincinnati, OH 45202
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CLUBB, Ian,
James [GB/GB]; 38 Station Road, Histon, Cambridge
9LQ (GB). CLARIDGE, Philip, Geoffrey [GB/GBI;
3 Clare Drive, Highfields Caldecote, Cambridge, CB3
70Y (GB). SHUSTA, Thomas, Joseph [US/US]; 830
Riverbend Blvd., Longwood, FL 32779 (US). MILLER,
Jeffrey, M. [US/US]; 1021 Turtle Creek Drive, Oviedo,
FL 32765 (US).

(74) Agents: SCHALNAT, Ria, Farrell et al.; Frost Brown
Todd LLC, 201 East Fifth Street, 2200 PNC Center, Cincin-
nati, OH 45202 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: A SYSTEM AND METHOD FOR WORK MANAGEMENT

O (57) Abstract: A system is disclosed for facilitating relationship-centric authorization of transactions in a manner which provides
optimum scalability and availability by logically partitioning key servers in conjunction with partitioning a resource associated with
a group of consumers across the set of logical servers associated therewith.

=

WO 2004/034259

[001)

[002]

[003]

PCT/US2003/032254

A SYSTEM AND METHOD FOR WORK MANAGEMENT

Ian James Clubb
Cambridge - UK

Philip Geoffrey Claridge
Cambridge - UK

Thomas Joseph Shusta
Longwood FL

Jeffrey M. Miller
Oviedo, FL.

BACKGROUND OF THE INVENTION

This non-provisional patent application claims priority from U.S.
Provisional Patent Application Serial No. 60/417,706, which was filed
on October 10, 2002.

Field of the Invention.

The field of-invention relates generally to a computerized architecture

for facilitating work management.

Description of the Related Art..

Large carriers are making a significant push to reduce the number of

customer systems. Furthermore, carrier consolidation often leads to

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[004]

[005]

[006]

PCT/US2003/032254

consolidation of infrastructures and system selection is frequently

based on the ability to host all customers on a single system

A solution is required that offers a number of significant benefits over
today’s solutions such as ability to address the high-value authorization
space regardless of who owns it; improved integration with CRM
systems; improved rating flexibility; improved adaptability for vertical
markets; cost-effective continuous availability; simplified load-
balancing and capacity planning; and multiple deployment options
including the use of commodity hardware. A strategy for site-level

disaster resilience is also required.

Authorization takes place before and during the event. Its purpose is
to ensure that the paying party has sufficient credit to cover the cost of
the event. At this stage, settlement is not important. Since the
authorization must be completed before the transaction can proceed,
latency is critical, as is the availability of the system. Authorization
may involve a reservation element. An example of an authorization
without reservation would be ‘has the customer bought unlimited
access to music downloads for this month’, and |
authorization/reservation examples include credit card style
authorization and requests such as ‘confirm and reserve that the

customer has the funds for a 100MByte content download’.

It has often béen said that once a wireless account can be used to pay
for things other than communication services, it starts to look more like
a debit card (pre-pay) or credit card (post-pay). There are a number of
issues that need to be addressed to make this vision a reality such as
creating an infrastructure to allow the device to communicate with the
merchant’s terminal. An authorization model is desirable because it
limits the credit exposure of the card issuer; guarantees payment to the

merchant; and limits fraudulent use.

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[007]

[008]

[009]

PCT/US2003/032254

The best revenue management systems do a good job of being
available when they are planned to be. There are various hardware and
software fail-over techniques that improve the availability of the
system. For example most billing systems are supported by a number

of HA technologies including:

Cold database standby products such as Veritas Cluster Server.

Hot database standby as provided within Oracle 9i real application

clusters.

Log shipping / delayed log application techniques to protect against

database corruption.

Mirrored SAN or NFS attached storage with integral duplicated
battery backed cache and controllers supported by replicated storage

interconnect infrastructure.
Replicated application servers.

Reliable messaging technologies and/or application messaging that

does not lose traffic (e.g. events).

Replicated network infrastructure.

Systems using such technologies typically achieve.99.9 % availability
and can approach 99.99% availability excluding planned maintenance.
Availability of 99.99% equates to around 1 hour of unplanned

downtime each year.

It should be noted, however, that the cost of providing this improved
availability is significant given the large standby machines used to

provide backup database support. The incremental software license:

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[010]

[011]

[012]

[013]

PCT/US2003/032254

costs are also very significant, and may be of the similar order to the

hardware costs.

Where today's solutions fail to deliver the availability required is when
patches or upgrades are taken into account. In a typical year, it may be
assumed that one upgrade and a number of maintenance patches (say
10) to the system may occur. If we assume 1 hour of downtime for
each patch and 8 hours for the upgrade, we have a total planned
downtime of 18 hours. In practice, however, these figures may be very
optimistic - upgrades requiring database schema updates to database
centric billing systems can take 24 hours or more. When combined
with the unplanned downtime, we have a combined availability of
99.8%, some way from the "five 9s" of networks which allows for 5
minutes of downtime per year. Capacity upgrades may introduce
significant additional downtime. And, the cost for fail-over machines
is expensive. Traditional approaches may increase the cost by factor of

four to ten times for each ‘nine’ added to the availability figure.

Additionally most monolithic systems do not fail gracefully - in many
critical failures the whole system is unavailable. Therefore the
effective downtime as perceived by the business and the associated
costs will be much higher for a system with an 'all-or-nothing’
availability profile rather than a system that under failure may degrade
gracefully making only some functions or part of the consumer base

available.

Raw throughput is only one measure of capacity. Telecoms require a
latency of less than 100ms for pre-event authorization to ensure that
call set-up can be completed in a timely fashion. While the best
revenue management systems have now reached sub 200ms for

significant volumes, there is still work to do.

Network-based solutions have come from the pre-pay world and
correspondingly have their strengths in'pre- and mid- event

4

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[014]

[015]

[016]

PCT/US2003/032254

authorization, rather than post-event accounting. They are strong on
availability and latency, but weak on functionality. The functionality
provided by network-based solutions is rudimentary when compared
with that of a revenue management system. A network-based solution
assumes that all services go through a single network (at least in the

authorization path).

Hybrid solutions involve an integration of a revenue management
system with a network-based solution. In some respects these solutions
offer the best of both worlds, especially when the services are limited
to telecom services. However, when higher value services are offered,
the operator is exposed to increased credit risk or inability to offer

service when the revenue management system is unavailable.

None of the existing solutions successfully meet all of the requirements
of relationship-centric authorization. While incremental development
could evolve prior art solutions to address their limitations, it will be a
costly and time-consuming exercise. Furthermo;'e, none of today’s
solutions deliver the anticipated functionality, availability and

throughput for these applications.

SUMMARY OF THE INVENTION

A system for meeting the requirements of relationship-centric
authorization is detailed herein. Features of the various embodiments
of the system promote functionality, availability, and throughiput for
authorization processing by logically partitidning key servers and/or
independently partitioning a balance associated with a group of
consumers across the set of logical servers associated therewith, and/or
independently logically partitioning the data storage (data storage may
include but is not limited to merely relational databases). It should also

be noted that the functionality of the system may be easily applied to

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[017]

[018]

[019]

. [020]

PCT/US2003/032254

more than just authorization processing but should also include pure
transactions, usage based transactions, reservations, permission
checking ... virtually any application with a high volume of throughput
and may be applied to a number of industries including, but not limited

to telecommunications, transport, retail and banking,

A computerizeq authorization system comprises one or more
computers in communication with one another thiat are programmed to
ensure that the paying party has sufficient credit to cover the cost of
the event. This may be particularly relevant to telecommunications
events but may be used in an ASP model or for use of functionality at
kiosks. Some non-limiting definitions of terms used in this document

follow.

A computer readable medium includes the gamut from disks, CDs,

memory, or any storage that a computer may be capable of

.assimilating. Computer executable instructions include programs,

routines, modules, and scripts.

A router may be a device or, in some cases, software in a computer,
that determines the next point (i.e., on a network) to which a unit of
data (i.e., a packet) should be forwarded toward its destination. A
router may be often included as part of a network switch, however a
router may also have application specific functionality if it may be
unable to detérmine the destination of the request from the network

address alone (unlike a conventional IP router appliance).

A consumer identifier comprises any type of identification (name,
customer number, social security number, teléphone number, credit
card number, employer ideritification number, group ID, etc.) that may
be encoded in a record or request for further processing (including
routing where such router depends on the identity of the owner of the

request).

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[021]

[022]

[023]

PCT/US2003/032254

A request may include authorization requests wherein a consumer may
be requesting permission to use or perform a certain task (i.e., make a
phone call, play a video game, access a file, utilize a machine such as a
dorm washing machine with this functionality built into its interface,
etc.). Often authorization will revolve around the credit-worthiness of
the consumer, the amount of money available in a particular account,
or a specific level of permission granted to that consumer. Requests
may also include processing transactions and other customer service
functions.

An authorization request may also involve a reservation element. A
request may also comprise an event (which may be referred to as a
termination event, accounting event, or charge capture in different

industries) that may be a historical record of a transaction that may

'have incurred a charge and has to be recorded. Examples of such

events would be phone calls, toll usage, downloads. Events do not have
to be chargeable and may be recorded for informational purposes (e.g.
1-800 calls, 911 calls).

Hashing may include the transformation of a string of characters into a
usually shorter fixed-length value or key that represents the origiﬁal
string. Hashing may be used to index and retrieve items in a database
because it may be faster to find the item using the shorter hashed key
than to find it using the original value. Other means for determining a
mapping scheme for routing purposes may also be devised according
to the ordinary skill of the art. In an example of its use, hashing may be
undertaken from the distributor to determine the directory server. That
is, the Distributor may receive event, extract consumer ID, hash to
determine logical directory server, send the request to logical and
therefore physical directory server. Directory server may reply to
distributor with the logical consumer server (and some reference cache
version information) the distributor then routes the request to the

correct logical and therefore physical consumer server. The consumer

7

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[024]

[025]

[026]

[027]

PCT/US2003/032254

server may then access logical wallet servers and databases/datastores
using the logical data store that has been looked up corresponding to

the consumer identifier.

Programming means include any computer techniques/tools/languages/

methodologies that are available to those of skill in the art.

A plurality may be taken to mean two or more in a preferred
embodiment, however, embodiments which describe a plurality may

also be understood to function with only one of said component.

A server may be a computer program or even a thread that provides
services to other computer programs in the same or other computers.
The computer that a server program runs in may be also frequently
referred to as a server (though it may contain a number of server and '

client programs).

A logical partition, as used in this application (not to be confused with
traditional partitioning that first studied by IBM in 1976 and later
introduced by Amdahl and then IBM wherein a partition is a logical

.division of a hard disk created so that you can have different operating

systems on the same hard disk or to create the appearance of having
separate hard drives for file management, multiple users, or other
purposes) may be the division of any of a computer systems work,
processes, and storage into multiple sets of resources so that each set of
resources can be operated independently. Requests for a number of
logical pértitions may be processed by an application (with one or
more child threads or processes, with a number of associated
application caches) that may be responsible for undertaking the
processing on behalf of a number of logical partitions where the logical
partitioning per application can be changed at runtime. While it is
anticipated that each logical partition may have a dedicated process, by
allowing multiple logical processing partitions to be dynamically
assigned to a process allows consolidation of the number of network,

8

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[028]

[029]

[030]

PCT/US2003/032254

cache, and I/O resources needed to allow the system to be divided into
a large number of logical partitions to give fine grained control of the
system processing. Each partition can communicate with the other

partitions as if the other partition may be in a separate machine.

Exemplary Embodiments

An embodiment comprises a computerized authorization system
further comprising at least one server comprising at least one master
wallet (master wallet server); and at least one shadow wallet. It should
be noted that the functionality of the master wallet may be
programmed into other components of the overall system. Greater
efficiency may be achieved if the shadow wallets do not have to
correspond in real-time with a back-end server or processor to obtain
data needed to process the pending request. By creating a master wallet
which comprises a resource that may be subdivided into one or more
shadow wallets, each wallet will have everything it needs to process an

authorization request — it may act ds an island in real-time.

The master wallet comprises at least one usage allowance (resource)
corresponding to a set of consumer identifiers. Usage allowance refers
to either the amount 6f credit (pre-paid; extended or otherwise) or the
maximum debt for post-pay account that may be assigned to either a
group of consumers or to a particular consumer. This has particular
application to a corporate account comprising, for example, fifty (50)
employees wherein the company may be granted a certain level of
credit which may be subdivided among;t individuals or subgroups of
the employees depending on the preferencé of the ultimate consumer
(i.e., the entity responsible for paying the bill). Usage allowance may
further comprise any unit of consumption including dollars, time,
bytes, quality of service, messages, or some common non-currency

unit etc.

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[031]

[032]

[033]

[034]

PCT/US2003/032254

The master wallet server may be programmed to create a shadow
wallet corresponding to at least one of said set of consumer identifiers.
The at least one shadow wallet may be programmed to comprise a
portion of said usage allowance from said master wallet; and the
shadow wallets are stored on said logical server corresponding to said

consumer identifier associated with said shadow wallet.

In another embodiment, a computerized authorization system may
further comprise a flag that may be set in said logical wallet to indicate
whether an additional usage allowance may be permitted for
distribution to said logical wallet. A flag may be a Boolean value or
range of _values which indicates whether and how much additional
usage allowance may be requested for that particular logical wallet.
This flag may be typically set when the master wallet and all other
associated shadow wallets do not have any free resource to prevent the
shadow wallet from repeatedly requesting additional resource from the

master wallets when the resource may be exhausted.

In another embodiment, the master wallet server of the computerized
authorization system may be programmed to redistribute said usage
allowances allocated to each of said at least one shadow wallets upon a
programmed trigger. A programmed trigger may include the unused
portion of a loan on a shadow wallet dipping below a programmed
threshold or zeroing out. Another trigger may include a warning when
the monitoring the various usage allocations indicates that a certain
level of imbalance exists among the shadow wallets. Tﬁ'ggers may also

be programmed to go off upon certain predetermined times.

In another embodiment, each shadow wallet may be programmed to
request a loan from a second shadow wallet which will grant such
request if a set of predetermined criteria are fulfilled. Because the
individual shadow wallets may be consumed prior to a synchronization

and redistribution by the master wallet server, loan requests provide a

10

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[035]

[036]

PCT/US2003/032254

method to allow those shadow wallets to continue processing requests
by “borrowing” the usage allowance from another shadow wallet.
Various predetermined criteria may need to be fulfilled including
inquiries regarding continued credit-worthiness, history of borrowing,
whether the wallet being borrowed from will need to borrow itself if it

makes the loan, and more.

In another embodiment, a computerized processing system further
comprises a set of computer executable instructions that are
implemented to redistribute said subdivided resources across said
logical servers according to a predefined formula after a request has
been processed. Such a predefined formula may distribute usage
allowances equally or may take into account the relative consumption
of various wallets and intelligently allocate funds accordingly. Other

schemes may also be implemented according to the factual scenario at

“hand.

In another embodiment, a computerized method for processing
authorization requests comprises the steps of receiving an authorization
request and hashing (or otherwise determining) a consumer identifier |
associated with said authorization request to determine a logical |
processing server preconfigured (preconfigured logical processing
server) to process said anthorization request based on said consumer
identifier, sending said authorization request to said preconfigured
logical processing server; determining a usage allowance associated
with said preconfigured logical processing server; updating a master
wallet comprising a master usage allowance that has been allocated to
a plurality of said preconfigured logical processing servers after an
event has been processed; and re-allocating said master usage
allowance across said preconfigured logical processing servers
according to a programmed formula. Hashing may include the
transformation of a string of characters into a usually shorter fixed-

length value or key that represents the original string. Hashing may be
11

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[037]

[038]

PCT/US2003/032254

used to index and retrieve items in a database because it may be faster
to find the item using the shorter hashed key than to find it using the
original value. Other means for determining a mapping scheme for
routing purposes may also be devised according to the ordinary skill of
the art.

Journal files may be used while the system may be operational. The
consumer servers may write journals of all of the processed
transactions. The event manager may read these journal files and
consolidate requests from multiple consumer servers, and sort the
transactions t6 be written into a separate set of files to update the
wallet servers and event stores. However most of the recovery modes,
do not require that one consumer server reads data from another
consumer server. Rather, the shadow wallet mechanism alléws anew
consumer server to become operational alongside the failing consumer
server with a ‘new’ set of shadow wallet allowance/resource. Wallets
may also be pre-allocated to speed failover at the expense of additional

hardware.

In an embodiment, there may be provided a base system comprised of
one or more computer-oriented nodes. The term node may be meant to
generically refer to any type of computer node in a system as the
invention may be applied at multiple levels of tlie overall system
including datastores and processors. The inventive aspects of
partitioning used in this system are not the same thing as multi-
processing. In multi-processing, each logical unit of work might have a
process/thread and corresponding memory and the processes get
moved. Here, logical processing may be moved from physical node to
physical node, the system does not require the creation of additional
processes at the operating system level. Work may be moved but not

processes.

12

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

[039] An embodiment may comprise a distributed computer system further
comprising at least one physical node and at least one logical node.
Each of one or more of said at least one logical node may be mapped
to one of said at least one physical node. Each node pair
(logical/physical) may exist as an island unto itself or the mapping
scheme may be mimicked throughout nodes depending on the desired
configuration of the system. The system comprises computer
executable instructions for performing a method comprising the steps
of receiving a request for work, examining said request for work;
determining which of said at least one logical nodes corresponds with
said fequest (at least one corresponding logical node); determining
which of said at least one physical nodes said corresponding logical
node may be associated with (at least one corresponding physical

node); and interacting with said corresponding physical node.

[040] An embodiment may comprise at least two sets of partitioned nodes
with no requirement that the partitioning be the same with a processing
pattern which includes receiving a request, using the information in the
request to determine the logical node (within the first node set) to
interact with, obtaining additional information about the request using
a combination of local processing and data gleaned from interaction
with the first logical node; and using all the information in the request

to determine the logical node (within node set 2) to interact with.

[041] In an embodiment, the logical/physical nodes of the entire system or
perhaps of one set of nodes with the system may comprise datastores.
'This may include relational databases, object-oriented databases,
XML-tagged data and other method of data storage. Thus, the physical
node comprises a corresponding physical datastore and the logical

node comprises a corresponding logical datastore.

[042] In an embodiment, a determining step may be conducted to assess

which logical datastore the system may wish to access in order to

13

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[043]

[044]

[045]

[046]

PCT/US2003/032254

supplement the data contained in the work request. Determining
correct logical datastore may be based on a datavalue. Consumer
identifiers comprise one, but not the only, datavalue which may be

used to determine the correct logical datastore.

The models discussed herein represent embodiment that may work for
various stages within the overall system including distributor to
consumer server, distributor to directory server, consumer server to
wallet server — look up data (logical to physical). - There need not be a
relation between the logical partitions used by the data and the next

stages.

In an embodiment, at least one corresponding physical node comprises
a corresponding physical server and at least one corresponding logical

node comprises a corresponding logical server.

In an embodiment comprising at least two nodes wherein one node
may be a datastore and the other may be a server, the datastore may be
associated with a first predetermined set of data values. The server
may be associated with a second predetermined set of data values. The
interactions in the system may comprise opening said corresponding
logical datastore; obtaining a set of additional information about said
request from said database; determining which of said at least one
corresponding physical server and correspc;nding logical server may be
associated with a combination of said request and said set of additional
information; routing said request to said corresponding logical server;
allowing said corresponding logical server to access and modify said
corresponding logical daiastore; and processing said request on said

corresponding logical datastore.

In an embodiment, the functionality presented may be used to
efficiently upgrade a datastore. The system may recognize at least one
additional physical datastore in said system wherein said additional
physical datastore may be different from said corresponding physical

14

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[047]

(048]

[049]

PCT/US2003/032254

datastore (pre-existing physical datastore). This may comprise the
upgraded datastore. The system may migrate at least one logical
datastore of said set of logical datastores from said pre-existing
physical datastore to said additional datastore. The system may remap
said logical datastore from said pre-existing physical datastore to said

additional datastore.

In an embodiment, there may be no datastores so the at least one
corresponding physical node may comprise a physical server and the
logical node may comprise a corresponding logical server. The
interacting step then comprises routing said request to said

corresponding logical server.

In an embodiment, work may be reallocated across servers particularly
when a new server may be added to the overall system. This may be
referred to in the shorthand of N+M. Computer executable instructions
may cause-the system to monitor a workload allocated to each of said
at least one physical server. If said workload, on any of said at least
one physical servers, exceeds a predetermined maximum, the system
may add at least one additional physical server to said system. Then
the system may remap at4least one of said logical servers across said at
least one physical server including said additional physical server so as
to redistribute said workload according to a predefined formula or to
prioritize certain logical servers, for example to meet service level

agreements.

Any of the herein described reallocation methods may further comprise
an application programming interface configured to allow a user to
monitor a workload allocated to each of said at least one physical
server; recognize at least one additional physical server; and remap
said at least one logical server across said at least one physical server
including said additional physical server so as to redistribute said

workload.

15

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[050]

[051])

[052]

PCT/US2003/032254

In an embodiment, at least two physical servers may be present in the
system and configured via computer-executable instructions to
monitoring a workload allocated to each of said corresponding
physical servers and if said workload, on any of said physical servers,
exceeds a predetermined maximum, remapping at least one said logical
servers so as to redistribute said workload according to a predefined

formula.

In an embodiment, there may be a N-M reallocation of work across
multiple (or even ultimately down to 1) servers. In this embodiment,
the system may be configured to monitor a workload allocated to each
of said corresponding physical servers. If said workload, on any of said
physical servers, individually or in combination, falls below a
predetermined minimum, remap at least one of said logical servers so
as to redistribute said workload according to a predefined formula.
This is not the (;nly condition which may result in an N-M reallocation.
For instance, a physical machine may be decommissioned due to
overall load on the server pool falling or the need to do machine

maintenance.

In an embodiment, similar work requests may be co-located on the
same logical server. The system allows the management of allocation
to build multiple independent partitions such that inter-partition
communication (and therefore processing overhead) may be
minimized. This may be done by analyzing the relationships between
new entities, which are added to the system, and those which are
alrgady present. A request may comprise a data value. At least one
corresponding logical server may be associatea with a predetermined
group of data values. A system may then be configured to obtaining a
data value from said request and match said data value associated with
said request with one of said at least one corresponding logical server

wherein said correspondihg logical server may be associated with said

16

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[053]

[054]

[055]

[056]

PCT/US2003/032254

predetermined group of data values which includes said request’s data

value.

In an embodiment, upgrades may be very efficiently transacted
because it is not necessary to migrate the entire datastore/processor
load at once. By migrating the logical server, the system may be

upgraded partition by partition.

In an embodiment, a system comprises computer executable
instructions for upgrading said system by performing the steps of
recognizing at least one additional physical server in said system
wherein said additional server comprises at least some programming
that may be different from said pre-existing physical servers; migrating
at least one logical server of said set of logical servers from said
corresponding physical server to said additional server; remapping said
logical server from said corresponding physical server to said

additional server.

When a physical node, such as a server, fails, the system may robustly.
react. If one of said physical servers fails, the system may remap said
corresponding logical servers across said remaining physical servers
according to a predetermined formula (i.e., pro-rdta across remaining
physical servers). The reallocation may also be accomplished
intelligently analyzing both workload and capacity and executing the
most efficient allocation within those parameters. Workload refers to
existing state and capacity refers to how many processors are actually
allocated to a particular machine and its actual ability to support
further workload. |

In an embodiment, requests may be assigned to logical servers based
on data values or relationships. One particular way of determining this
may be by grouping together certain consumer IDs. The request may
comprise at least one consumer identifier. The logical server may be
programmed to process a plurality of requests corresponding to a

17

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[057)

[058]

PCT/US2003/032254

plurality of consumer identifiers. The determining step may be based
on matching a request with a specific consumer identifier to its

corresponding logical server.

To recap in a summary embodiment, a computerized system may
comprise a computer readable medium having computer executable

instructions for transacting requéSts over,a network comprising at least

. one physical server wherein said physical server may be subdivided

into a plurality of logical servers wherein each of said plurality of
logical servers may be associated with a group of consumer identifiers
and wherein said computer executable instructions are configured to
route a request, further comprising a consumer identifier, to a logical
server whose range of consumer identifiers include said consumer

identifier associated with said request.

Inan embod)iment, the system may be able to group requests on other

data than consumer identifier. A computerized system may comprise a
computer readable medium having computer executable instructions
for transacting requests over a network comprising at least one
physical server wherein said physical server may be subdivided into a
plurality of logical servers wherein each of said plurality of logical
servers may be associated with at least one entity and wherein said
computer executable instructions are configured to route a request,
wherein said request may be also associated with a particular entity, to
a logical server whose fénge of entities includes said entity associated
with said re'quest. The entity at issue may be a family or a company or
a department within a company or any other definable group of
persons. Where the entities are defined in terms of company
affiliation, in a large company, a second set of employees may be
associated with a second entity and wherein said second entity may be
allocated to a different logical server. Alternatively, the entity ma'y.be
a type of work, which must be given priority for the purpose of
meeting service level agreements.

18

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[059]

[060]

[061]

[062]

[063]

[064]

PCT/US2003/032254

In an embodiment, a method for distributing a workload, which utilizes
a plurality of physical and logical servers, comprising the steps of
receiving a request for work at a processing node; examining said
request for an identifier; determining a logical server out of said
plurality of logical servers which has been configured to accept
requests associated with said identifier (selected logical server);
determining a physical server associated with said selected logical
server (associated physical server); routing said request to said
associated physical server; monitoring said plurality of physical servers
for said workload to exceed a predetermined maximum on any of said
plurality of physical servers; redistributing a mapping of said logical
éervers to said physical servers to achieve a workload balanced

according to a predetermined formula.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming part of the
specification illustrate several aspects of the present invention. Figute
9 comprises a representative diagram of one embodiment of the

system. In the drawings:

Figure 1 demonstrates the use of data accessors to enhance event
information. These may also be configured process requests for

different vertical markets.

Figure 2 demonstrates the relationship between a wallet and a product
as well as particular features (allbwance, type, consumption rate,

viability) of the wallet.

Figure 3 demonstrates a preferred embodiment, which utilizes shadow

wallets to partition a resource across multiple servers.

Figure 4 demonstrates a follow-up to Figure 3 after a number of events

have been processed by the system.

19

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[065]

[066]

[067]

[068]

[069]

[070]

[071]

[072]

PCT/US2003/032254

Figure 5 represents the use of partitioning the consumer database,
wallet database, and event store into a plurality of virtual/logical
entities that may be mapped back to a smaller number of physical
entities, and demonstrates that a single system has multiple different

partitioning dimensions.

Figure 6 demonstrates the reallocation of a particular consumer from
one logical consumer server to another due to a CRM modification
which specifies that the two, heretofore unrelated consumers, now

share a single wallet.

Figure 7 illustrates the concept of a server ~[communicating with a large
number of logical servers that reduce to a small number of processing

tasks] pool comprisfng a plurality of logical pool elements.

Figure 8 illustrates the logical partitioning of the control plane of the
system where there may be a centralized naming service and associated
with each server pool a work manager that may be responsible for re-
partitioning logical work across the physical server pool and
communicating the logical to physical partitioning information to
interested adjacent servers. Physical implementations may collapse all
of the logical control entities into a smaller number of processes with

an associated persistence data store (not shown).
Figure 9 illustrates one representative embodiment of the system.

Figure 10 illustrates a high-level functional diagram of the relationship

between the distributors, director servers, and consumer servers.
Figure 11 diagrams the responsibilities of the Event Manager.

Figure 12 diagrams the assignment of products to consumers and the
associated relationships between product/wallet definition, events and

chargeable transactions, and event enhancement and access.

20

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[073]

[074]

[075]

[076]

[077]

[078]

[079]

[080]

[081]

[082]

[083]

[084)

PCT/US2003/032254
Figure 13 is a more detailed view of the interactions between the
components illustrated in Figure 8.
Figure 14 illustrates the invoicing process.

Figure 15 illustrates the revenue assurance mechanism for the ingress
of Network and API Requests.

Figure 16 - Skip.

Figures 17-33 diagram a process flow of the embodiment of the system

displayed in Figure 9.

Figure 36-39 diagram the relationship between two logical data centers

in a roaming environment.

Figures 40-43 demonstrate how wallets may be shared across logical

data centers in a roaming environment.

Figure 44 illustrates another embodiment of the logical data center
model in which a common network and distributor may be shared by

the system.

Figure 45A-45B illustrates an embodiment of the relationship between
the Wallet Server and Wallet Fragments.

Figure 46 illustrates an embodiment of the allocation of fragments |
between Master Wallets and Shadow Wallets.

Figure 47A-D illustrates an embodiment of a wallet infrastructure

including consumer server processes and wallet server processes.

Fiéure 48 A-C illustrates an embodiment of the interactions which may
occur when external requests are made to the Consumer Server Wallet
Library from the Consumer Server-Rater or the Consumer Server
Wallet Monitor.

21

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[085]

[086]

[087]

[088]

[089]

[090]

[091]

[092]

[093]

[094)
[095]

[096)

PCT/US2003/032254

Figure 49 illustrates an embodiment of the interactions which may
occur when either the Wallet Server Monitor Client or the Wallet

Server receive a message from a different Consumer Server.

Figure 50A-M illustrates various interactions between a Consumer

Server and a Wallet Server.

Figure 51 illustrates an embodiment of real-time interactions between a
plurality of Consumer Servers and the Wallet Server in which 'loan

amounts are redistributed.

Figure 52 illustrates an embodiment another embodiment of loan

redistribution between the Consumer Server and the Wallet Server.

Figure 53 illustrates an embodiment in which a Consumer Server may
be refused additional loans if the Master Wallet has reached a pre-

defined limit.

Figure 54 illustrates an embodiment in which the Wallet Server

updates the Wallet Fragment on the Consumer Server.

Figure 55 illustrates an embodiment of the interaction between the
Wallet Server and the Consumer Server in which the Wallet Server

polls the Consumer Server for certain data.

Figure 56 illustrates an embodiment in which the Wallet Server closes

and/or destroys a Wallet on the Consumer Server.

Figure 57 illustrates an embodiment in which the Wallet Server creates

and pushes Wallet Fragments to a Consumer Server.
Figure 58 illustrates an embodiment of a wallet schema.
Figure 59-75 illustrates a real-time embodiment of Figure 17-33.

For the purpose of promoting an understanding of the principles of the
invention, reference will now be made in detail to the present preferred
embodiment to the invention, examples of which are illustrated in the

22

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

PCT/US2003/032254

accompanying drawings and specific language will be used to describe
the same. It will nevertheless be understood that no limitation of the
scope of the invention is thereby intended toward such alterations and
further modifications in the illustrated device and such‘ further
applications of the principles of the invention as illustrated therein as
would normally occur to one skilled in the art to which the invention

relates. -

23

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS OF THE
INVENTION

[097] The system (900) (computerized system) employing the method may
be implemented over a variety of computer systems, using a variety of
computer readable mediums (including, but not limited to, hardware,
software, Mwwe) which contain computer executable instructions
(routines, programming, modules, coding, etc.), and over a variety of
networked arrangements (comprising one or more computer systems in
communication with one another) including but not limited to the
Internet. The computer systems may comprise end devices and servers.
Servers may be considered as a computer program that provides
services to other computer programs in the same or other computers. It
may also be the computer that a server program runs in (thougix it may
contain a number of server and client programs). In the client/server
programming model, a server may be‘a program that awaits and fulfills
requests from client programs in the same or other computers. A given
application in a computer may function as a client with requests for
services from other programs and also as a server of requests.from

other programs.

[098] Various security measures may be employed to protect the integrity of
the files transferred. The term modules, as used in this application,
may be directed toward’a discrete set of programming instructions, a
routine, a program or a set of programs. Modules defined by this
invention may be combihed or fufther délineated as necessary to
achieve optimurﬁ performance. For ease of reading, entities in the
system (900) may be referred to in the singular or plural; it is to be
understood, however, that such entities may exist in the singular and/or

plural within the system (900).

24

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[099]

[0100]

[0101]

[0102]

[0103]

[0104]

PCT/US2003/032254

The embodiments presented here offer a relationship-centric system
which may be applied to various customer service applications. It
facilitates the distribution of rights across the individual users within a
single entity to achieve optimal throughput and availability through the
use of logical partitioning and mapping to physical resources.
Embodiments of the current invention may be designed to support
authorization for telecommunications, digital rights management,

banking/credit card, and equivalent markets.

Walkthrough

Referring to Figure 9, the elements of one embodiment of the
architecture may shown. These may include the following or a subset
thereof: Distributor (910); Consumer Directory (915); Consumer
Server (925); Reference Database/Proxy (950); Wallet Server (940);
Wallet Database/Proxy (960); Reference Database/Proxy (950); Event
Manager (945); Event Store (955); System and Audit Database (970);
API Server (920); Resubmitter (995); Server Work Managers (965).
This exemplary architecture will demonstrate the variety of inventive

concepts embodied in the invention.

Referring to Figures 9 and 17-32, consider the path of a Request
received from the external network (902).

Network Requests (e.g. authorizations, events, e-commerce
transactions) (902) may be received by the Distributor (910) and the
Distributor (910) may journal requests for revenue assurance and SLA

(service level agreement).control.

Referring t6 Figure 17, the Distributor (910) extracts a value — the
external consumer identifier (IMS], mail address; account number)
from the Request and, using directory information from the Consumer
Directories (915), passes requests to the correct logical Consumer

Server (925). The value may be hashed to find the correct logical

25

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0105]

[0106]

PCT/US2003/032254

Consumer Directory. The logical to physical server mapping
information for the Consumer Directory held in the Distributor may be
then used to route the request to the correct physical Consumer
Directory (925), and Figure 7 (720).

Referring to Figure 18, the Consumer Directory (925) may perform a
directory lookup using the external key value (external consumer
identifier) to determine the identity of the logical Consumer server
(LCS) to process the request and identify the associated logical data
store (LDS) that contains data associated with the consumer identifier.
Additionally the directory server will provide a translation of external
consumer identifier to internal consumer identifier. The internal
consumer identifier may be fixed, but the external consumer.identifier
can vary to allow for telecom features such as number portability.
Additionally, the directory server may provide a version number for
dependent data within the Consumer Databases (the LDC and LDS and
version number for dependent data being added to the request passeci
to downstream servers). These directories may be preloaded from the
Consumer Database (930) to facilitate faster processing. Referring to
Figure 19, the Consumer Database (930) stores product instances and
associated consumer identifiers as well as “wallet allowances” (see,
infra). “Wallet values,” however, may be stored elsewhere (see, infra).
The Consumer Database (930) also stores the consumer/wallet
mapping. Referring to Figure 20, the Consumer Database (930) may be
implemented as a large number of logical databases partitioned onto a
smaller number of physical databases. These may be accessed via a

database proxy which may be integrated into the calling server.

The logical Consumer Server (925) can process the Request
undertalﬁng both generic and network/market specific plug-in
processing. Referring to Figure 21, the Consumer Servers (925) are
organized such that Requests are routed to specific Consumer Servers

(925) such that all of the reference data, consumer data, and sufficient

26

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0107]

[0108]

PCT/US2003/032254

resource data (a.k.a., wallet consumption) may be normally pre-loaded
memory within the Consumer Server (925) to complete the Request.
Referring to Figure 22, to support this operation the Consumer Server
(925) will both pre-load and demand-load information from the
Reference Database (950) and Consumer Databases (930) that may not
already preloaded into the Consumer Server cache (925). This
preloading may be either directly from the database or, for speed, from
some indexed flat file extracts from the database. The Consumer server
will use the version number for dependent data recovered from the
Directory Server to determine if it has the latest version of the
customer data. If the latest version is not i)resentvthen it may be loaded
from the flat file database extract. If this version is not recent enough,
it may be loaded from the Consumer Database [therefore when
consumer data is updated it may be first written to the Consumer
Database with an updated version number and the Directory servers are
then updated so that subsequent requests will be tagged with this
updated version number allowing the Consumer Server to detect it has
the latest copy of the data). While the Consumer server could always
go to the database for the updated customer data the extracts are
searched first as this minimizes the database load. These extracts allow
Consumer Servers to be quickly loaded through file sequential reads
and are periodically refreshed from the database (eit.her by replacing
the extract file, or.by appending updated data to the end of the extract
file).

Referring to Figure 23, the Consumer Server (925) may also
com‘municaté With the Reference Database/Proxy (950) which stores
products, tariffs, wallet details, etc. This reference data may be
nomially preloaded into the Consumer Server (925); however, demarnd

loading is also supported.

Referring to Figure 24, the Wallet Server (940) maintains a master

copy of a wallet for a given period. The Wallet Server (940) also
27

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0109]

[0110]

[0111]

PCT/US2003/032254

creates “shadow” wallets (and/or loans) for each Consumer Server
(925). This may be preferably accomplished prior to arrival of an
Event/Request but may occur anytime during the cycle. Wallets are
initially created on the Wallet Server (940) using information in

Consumer Databases and Reference Database.

Within the Consumer Server, a wallet may only have a charge
registered against it if it has a resource/loan greater than or equal to the
charge. If the Consumer Server (925) determines that it does not have
the necessary resource/loan to complete a Request then, based on
assigned wallets determined from the Consumer Databases (930), the
Consumer Server fnay communicate with the Wallet Server (940) to
obtain additional ‘loans’ of Wallets containing usage resource. If the
Wallet Server has sufficient resource to satisfy this increased request,
this resource may be returned directly, otherwise free resource may be
recovered from any other Consumer Servers with a sister shadow

wallet in a peer-to-peer embodiment.

Referring to Figure 25, the Wallet Server (940) may interact with a
Wallet Database/Proxy (960). The Wallet Database/Proxy (960) may

serve as persistent storage for Wallets across system restart and Wallet

Server (940) failure. They (960) may be implelﬁented as a number of

légical databases spread across a smaller number of physical databases.

Referring to Figures 26-28, when Requests are
processed/rated/authorized, .any usage details, charges and additional
network or market information are journalized by the Consumer Server
(925). The Event Manager (945) may read the journal :ﬁleé from
multiple Consumer Servers and consolidaté the resulfs and write
multiple outpuit files for each of the Event Stores (955). The Wallet
Server (940) may be updated in “near real time.” The journalizing of
the event details, event charges, etc. (including the changes made to

logical wallets and current wallet values) may assist failure recovery,

28

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0112]

[0113]

[0114]

PCT/US2003/032254

and may be a centralized point that information may be archived or
passed offsite for disaster recovery. The journal write by the
Consumer Server may be considered a commit point, i.e., the updated
state of the consumer server for that event may be written to an
external persistent store, before requests are acknowledged to the
Distributor'(910). The Event Manager (945) may filter the information
from the Consumer Server (925) determining the information that may
be passed to the Event Store (955), Wallet Server and to external
systems. The Event Manager (945) may then update the balance
information in the Wallet Server (940). The communication between
the Consumer Server, Event Manager and Event store may be file
based using overlapping writes and reads to allow the Event Manager
to start reading a log file before the Consumer Server has cl‘osed the
file.

To facilitate fast recovery of a failed Consumer Server'(925) (or, in an -
alternative scenario, during repartitioning of the logical Consumer
Server (925)), the Wallet Server (940) may maintain historical
information allowing it to identify frequently accessed wallets. This
information may be used to allow the Wallet Server .(94b) to
proactively load new, frequently-accessed wallets into a Consumer
Server (925), or to allow the Wallet Servpr to push a set of wallets into

a standby Consumer Server in anticipation of a failure.

Referring to Figure 29, low value authorizations completed by the
Consumer Server (925), including all reference data, consumer data,

and Shadow wallets, may be cached in the Consumer Server (925).

-Referring to Figure 30, preferably, the Wallet Server (940) will

proactively manage the sharing of any Wallet usage allowances across
multiple Consumer Servers (925) for complex account structures (i.e.,

corporate accounts) by reorganizing loans (i.e., including free minutes)

shared between Consumer Servers (925). The logical server and

29

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0115]

[0116]

PCT/US2003/032254

database allocation algorithms in the system (900) .consider wallet
consumption patterns and in most cases do not require distribution of a
wallet resource across multiple Consumer Servers (925). To manage
the consumption of the last remaining part of a Wallet shared across
Consumer Servers (925), the Wallet Server (940) may be in the
request-processing path. This will happen for a very small percentage
of requests. For example, the last few requests which exhaust a wallet
shared across thousands of consumers may result in the Wallet Server

only handing out sufficient resource to satisfy each request.

Referring to Figure 31, the Distributor may receive a response from the
Consumer Server for every request processed. This response may
comprise a reply to be sent back to the network, including internal

control information to allow the Distributor to determine if the request

. succeeded, or failed, and may need to be resubmitted. The Resubmit

Server (995) (a.k.a. the Resubmitter) may resubmit Requests that
timeout due to any server failure so long as the Request has been
marked for resubmission. The Distributor will locally generate failure
replies to the network if the Consumer Server does not respond within
a timeout. The Distributor can therefore pro-actively revenue assure

every request, and police latency SLA requests.

Referring to Figures 32-33, note that API Requests received from
external systems such as CRM (901) follow a similar path, entering the
system (900) at the Distributor (910) via an API Server (920). The
API Server (920) may also update the Consumer Databases (930) as a
result of API change Requests via a database proxy. The API Server
(920) may read information from the Ev_'ent Store (945) (i.e., unbilled
usage queries) and the Wallet Server (940) (i.e., distributed resource
queries). The API server may be alternately deployed where requests

are not routed through the distributor.

30

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0117]

[0118]

[0119]

[0120]

[0121]

PCT/US2003/032254

Referring to Figure 34, Server Work Managers (965) are represented.
Logically a dedicated Server Work Manager (965) exists for each pool
of servers (Consumer Server — 925, Wallet Server — 940, etc, though
these control functions are typically collapsed into a smaller number of
processes backed by a persistent data store. These entities (965)
manage the individual servers within their pool and undertake

monitoring and workload management.

Referring to Figure 35, all information related to SLA, performance
and revenue assurance may be written to the System and Audit
Database (970). The System and Audit Database (970) may be
responsible for support processes including auditing record processing,
naming server for server location, and managing new server

introduction and rolling software upgrades.

Further referring to Figure 35, in a preferred embodiment, certain
elements of the system may be preloaded with databases and/or
information necessary for processing requests. In one embodiment, the
speed of the real-time processing may be increased up by pre-loading
components in an abbreviated path of the entire system such as
External Event/API --> Distributor --> Consumer Directory/Consumer

Server.
Partitioning

In an embodiment, the system (900), through partitioning, can both
optimize simple residential and small business billing while allowing
complex consumer relationships to be modeled. Not all of the
complexity described below may be necessary to support only simple
residential consumers but this system will allow simple residential
accounts to be easily linked into large corporate environments where
bundling and sharing may be at the highest level of the

consumer/account hierarchy.

31

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0122]

[0123]

PCT/US2003/032254

The data held within the system (900) may be vertically paftitioned
into four maj or storage entities, three of which may be partitioned into
a large number of logical data stores that are in turn mapped onto a

small number of physical data stores.

Referring to Figure 5, the processing may be partitioned using logical

servers. The storage entities are:

o Consumer Data Store (Database) (930): Storage of all of the

key per-product instance and consumer instance information.
The logical partitioning key may be the ‘Logical Data Store’
(LDS) value. The LDS may be assigned and manipulated on
pr&luct instance and account and creation/modification by the
API server (920) to localise related references (e.g. all
members of a family may be on the same LDS). Under normal
circumstances the LDS of a particular product instance will
not change, though data from a number of LDS might get
moved to a separate physical database to relieve overloaded

databases.

Wallet Data Store (Database) (960): Storage of the wallet
values (e.g. cash resources, bundles etc). Again partitioned by
‘Logical Data Store’, (LDS) value in common with the
Consume;' Data Store. However due to the higher update rate
there may be more physical databases to serve the required

number of shadow wallet Data Store.

Event Store (955): Events are stored into ‘partitioned storage

according to the Logical Event Store value.

Un-partitioned: reference, audit and management information

= may remain un-partitioned.

32

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0124]

[0125]

[0126]

PCT/US2003/032254

The partitioning used by one aspect of the system (i.e., databases) does
not necessarily track partitioning used in other parts of the system
(900) (i.e., processors). For example, the Consumer Servers (925, 926)
are partitioned by ‘Logical Consumer Server’ (LCS). The partitioning

keys in an embodiment of the system (900) may include:

e LDS - Logical Data Store: Logical storage partitioning used for all

consumer and wallet related data. However the consumer and wallet
database may use different logical to physical partitioning. Related

products will optionally, but not necessarily, be in the same LDS.

LES-Lo gical Event Store: Logical partitioning used for event

storage.

LCS — Logical Consumer Server: Logical partitioning used to drive
the consumer server to process requests for a particular consumer ID.
There may be normally a simple structural relationship between LCS
and LDS for new products and accounts (i.e., it may be preferable to
minimize the number of data stores that a particular Consumer Server
(925) will access). However LCS may be seen as far more dynamic
than LDS and LES. For example if two individuals establish a
relationship they may remain in their individual LDS store, but may
be placed 'onto the same LCS to be processed on the same Consumer‘
Server (925). Note that unlike the LDS and LES, the LCS may be

used to partition processing, not storage.

Additional (different) partitioning exists. For example the Directory

Servers (915) are separately partitioned to support the hashing of
external ID hashing used by the Distributors (910).

Partitioning optimizes data access and localization of cached
information. The system (900) should be able to probess requests
where data may not be optimally partitioned. For example, within a
simple residential account all of the family members will normally be

33

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0127]

[0128]

[0129]

PCT/US2003/032254

assigned to be within one LDS, LES, LCS (though not necessarily each
with the same numeric value). The system (900) will, however, operate

correctly even if this requirement is not met.

Referring to Figure 6, to support complex Consumer hierarchies not all
the information associated with one product/consumer/account needs
to be contained within one LDS. There are very controlled cross
linkage points between LDS to allow large and complex entities to be
mapped. Figure 6 illustrates consideration of wallet consumption in
determination of the Logical Consumer Server (LCS) (926, 927). Two
consumers (12345, 78998) allocated to different Logical Consumer
Servers (926, 927') are provisioned to the same Logical Consumer
Server (927) if a CRM modification causes them to share a common
wallet (C). Under normal operating conditions, this capability to
manage resources across multiple Consumer Servers may be only
required when the consumers allocated to share wallets cannot be
managed within a single logical consumer server, for example, a very
large account with many consumers sharing a single resource. The .

mechanism may be also used when Consumer Server fail-over occurs

The system (900) extends both the process and the database model
concept of partitioning by transforming the system (900) into a large
number of logical servers and databases with a common framework
code to map both the large number of logical process and databases
onto a smaller number of physical processes and databases. Referring
to Figure 7, a processing element (710) may write to a downstream
logical process that may be mapped to a physical process using

common middleware (720).

The logical to physical server mapping (and vice vetsa) (730) may be
hidden from application code, as may be the structure of any

downstream process (e.g. thread or processes based). An application

34

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0130]

[0131]

[0132]

PCT/US2003/032254

only sends to a logical server within a server pool (750) via an

interface common to all of the system’s (900) applications.

‘Work’ that should execute together may be ‘marked’ to execute on the
same logical server and use the same logical database. For example the
external IDs (IMSI, phone number, e-mail addresses) for a family
would be marked with the same Logical Consumer Server number so
that all requests are routed to be processed on the same Logical
Consumer Server (i.e., 927), and, typically, all the product and wallet
instances associated with a family would be stored in the same Logical
Data Store and all of the events in the same Logical Event Store. A
large corporate entity, however, may have one or more dedicated
logical servers and databases, that may for example cross a number of

physical databases.

By fepartitioning the logical to physical mapping, associated units of
work can be ‘moved” between servers. Each set of partitioned servers
has logical to physical server mappings that may be maintained by the
respective Server’s Work Manager (965). Other servers will, via the
common communication infrastructure, register for fhis logical to
physical mapping, and be able to dispatch messages to a logical server
within the server pool using common messaging primitives. The
application programmer therefore only sees logical servers. Databases
can then be incrementally upgraded or repartitioned by operating on
each logical database in tumn, rather than the complete phyéical

database.

A preferred embodiment may be designed to be distributable, but does
not mandate that it is distributed. The use of the logical partitioning
and the mapping of those partitions onto physical machines allows the
consumer to decide on their preferred hardware strategy including:
single enterprise class server (or small number qf such machines);

multiple mid-range servers; enterprise class servers partitioned into

35

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0133]

[0134]

[0135]

[0136]

PCT/US2003/032254

multiple servers; blade servers; and many twin or quad CPU PC class
machines. Load-balancing between nodes using the logical to
physical mapping may be extremely straightforward. Capacity
planning and increase may also be simpler through the introduction of
additional nodes. Existing hardware does not have to be taken offline
and upgraded, new nodes can simply be introduced. Even if not
distributed on physical machines, the distribution strategy allows the
processing to be broken up into smaller units so that the impact of a

process failure within a single machine may be reduced.

Physical Server Partitioning [Missing here some discussion of the file

control and application control databases]

By partitioning work across multiple physical servers, the system (900)
may use partitioned cache / shared memory to cache data to speed
processing. In a preferred embodiment, however, any server can
process any external request, although throughput may be reduced as
additional data may have to be demand loaded from the supporting

databases.

Referring to Figure 7, each of the processing tasks within the system
(900) may be undertaken by a number of processing services or Pool
Elements (760, 770, 780) organized into a Server Pool (750). For
example each Consumer Server (925) would be considered a Pool
Element (760-780), and all of the Consumer Servers (925) a Server
Pool (750).

Referring to vF igure 8, there is shown an embodiment in which
associated with every Server Pool (750-752) undertaking a particular
task there may be a supervisory Work Manager (965) and the Serv;sr
Pools (750-752) share a common Name Server (810). The registration
(820) of Server Pool (i.e., 750) with the Name Server (810) defines a
system. All servers (supervisory and processing) register with the
Name Server (810). Two complete systems could conceptually be run

36

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

on a single machine but each system would have a number of distinct
Server Pools (750...) communicating with a Name Server (810).
Referring to Figure 13, Work Servers register with and are clients of
their associated Server Work Manager and the Server Work Managers
are clients of the System Reconfiguration Server. Each Machine may

have a Machine Monitor Server.

[0137] All servers share a common set of functionality which may be
implemented (and/or encapsulated) within a common set of classes
used by all the system tasks. These, in turn, make use of a common set
of inter-server messaging classes. These common services include:
server configuration; common control services to start, stop and load
control physical and logical servefs; and server status monitoring, and

statistics.

[0138] Individual servers also implement additional functions as described in
the following sections. Figure 8 comprises one possible functional
illustration — Figures 8 and 13 may also be collapsed onto a small
number of applications responsible for system control and
reconfiguration with an associated ‘application control database’ that
holds process configuration and state together with the associated

machine processing and state.

[0139] Referring to Figure 8, the Name Server (810) may be responsible for
maintaining the master repository server identities to Network
Addresses (and also allocating network ports if required). This server
may comprise the central server to which ALL other servers within a
system may connect and register as individual servers come online
(including the servers listed directly below). One Name Server (810)
may exist per instance, though, in larger systems, the Name Server

(810) may be federated across a number of machines.

[0140) Generic Work Manager(s) may be responsible for the oversight of the
load across a single server pool. The work manager may also be

37

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0141]

[0142]

[0143]

PCT/US2003/032254

responsible for partitioning work across the type of server pool,
monitoring for failed servers, controlled introduction of new servers,
controlled server shutdown, and replacement of failed servers. The
work managers may also be responsible for requesting additional
server resource from the Reconfiguration Manager. The work manager
may collect statistics to identify overloaded servers. The Work
Manager may maintain the Local Server Mapping information for
partitioned servers and distributes this mapping information to servers
that have registered an interest. Many Work Managers may store
‘configuration state’ to quickly allow server configurations to be

restored after a system dead start.

Machine Monitor Server may be a simple common process running on
each machine (per domain using that machine) and may be responsible
for basic machine management including machine health monitoring,
network connectivity monitoring, and server task launching. The
Machine Monitors all communicate with a common Machine Work

Manager that supervises all machines state.

The Reconfiguration Server may be responsible for high-level control
of the orchestrating system configuration and load balancing across
multiple Work Managers. It also uses the individual Machine Monitor
Server to start new server process. This server may also ensure that the

different server pools are upgraded in the correct order.

Operational monitoring may be file and report based. Real time
reporting may be by SNMP and/or proprietary poll and push statistics
reporting which may be file or message based. Within the Distributor,
high-level SLA information may be maintained. This information may
include number of records, distribution of records, latency and wall
clock measurements. In addition, more detailed performance numbers
may be captured and returned to the Distributor from the downstream

processes. This information may be used to identify and correct

38

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0144]

[0145]

[0146]

[0147]

[0148]

PCT/US2003/032254

performance bottlenecks. A GUI may be placed on the Distributor
infrastructure to provide a real-time view into the operations of the.

system (900) — perhaps via windows.

Invoicing comprises the production of output based on charges from

stored events relqted to the account being invoiced. Periodic invoice
charges may be generated prior to Invoice generation and are stored as
events. Re-rating of events, required by changes in the product
catalogue or consumer product configuration, may be performed prior

to the invoicing process.

Referring to Figure 14, the invoicing process comprises identification

of accounts to be billed; retrieval of events for accounts to be billed

~ (these events may contain rated charges that are not modified by the

invoicing process); generation of periodic discounts based on invoice
period aggregation of charges; generation of taxes for retrieved charges
includirig applicable discounts; enhancement of charge information
(internally or externally) required for output generation (including
invoice presentment information, financial reporting information,
commissions or settlement information; and audit information to
ensure that 1) all delivered outputs can be transactionally delivered to
external systems, and 2) all delivered events that should be invoiced

have been.

These Server Pools (750) may be managed by a common
infrastructure: Parallel Servers, Partitioned Servers, and Single

Servers.

Parallel Servers comprise a pool of parallel servers where work may be
shared across the servers, and where any server can undertake the work
(e.g. Distributor (910).

Partitioned Servers comprise a pool of partitioned servers where a

large number of logical servers exist (typically a few thousand), that

39

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0149]

[0150]

[0151]

[0152)

PCT/US2003/032254

are mapped down to a small number of physical processes running on

one or more machines.

Single servers may exist (typically undertaking supervisory functions)
where, under normél operating conditions one server exists, but they
stili participate in the high availability infrastructure for fail-over
support and to locate other servers. From the system (900) design
perspective a single server may still be modeled as a Server Pool (750

...) containing one server.

To support the logical server and database model, and to provide
resilience from database technology changes and database structure,
processes may access the databases that surround the system (900) via
database proxies via neutral interfaces (preferably based on XML

unless the overhead of XML is unacceptable for a particular access),

_ and the proxies will hide most physical database partitioning, and

physical database access. The proxy functions may also be absorbed

into the calling processes.

Additionally, the proxies can be used to hide tecﬁnology changes
between test and production implementation. For example, most
storage may be functionally prototyped in a relational database, but
high volume storage (e.g. the Event (955) and Wallet (960) database)

can be moved to lower cost non-relational storage by changing the

proxy.

The interface to the Wallet Database :;nd Proxy (960) may be
persistent. Therefore, if all or part of the Wallet Database/Proxy (960)
becomes unavailable, the system (900) may continue to operate.
However, thq transactions from CRM (901), via configuration, can be
marked as Resubmit. If marked as resubmit, the Resubmitter (995)

shall continue to process the transactions until completion.

40

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0153]

[0154]
[0155]

[0156]

PCT/US2003/032254

The system (900) may service requests of two types (including
equivalents thereof) Network Requests from external service delivery
platforms (902) and API requests from external OSS systems such as
CRM, IVR and Self-care (901).

Breakdown of Components and Processes

Network Requests

To support different market applications, the system (900) may support
a request interface that can be mapped to many different external

business transactions. These may include:

Simple post-event accounting (with optional charge, and per use

remaining resource reporting).

Conditional event processing (process event if sufficient credit or

refuse to process event).

Interface to real time metering systems, e.g., telephone call metering,
with a call set-up request, continuation request and termination

request.

Support for point of sale credit card style transactions supporting both
monetary and unit-based transactions. Basic primitives include:
-Authorization (potentially long rﬁnning or high value); Authorization
adjustment and authorization reversal (i.e. multiple authorizations are
allowed per purchase); Capture (complete transaction/sale); capture
reversal (cancel previously completed transaction optional}y with no
record on consumer bill); Credit (partial or complete credit of
previously captured transaction); reversal of previous credit. Note that
unlike a credit card system the system (900) could authorize 10Mbyte

as well as $15.

41

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0157]

[0158]

(0159]

PCT/US2003/032254

Cross transaction authorization (also known as inter-event
authorization). This allows external systems to reserve credit to be
used against a number of subsequent events (e.g. multiple purchases
per authorization). Required for loose integration with many systems

with limited billing functionality.

Digital rights primitives. These will include requesting or extending a
specific ‘permission to use’ (many of these primitives will be similar

to a lease).

Many of these requests may not generate a billable event, and those
events that are directly billable may be accumulated rather than treated

as a conventional CDR.

Distributor

- The Distributor (910) may be responsible for:

a. Journaling Requests for revenue assurance so that they can be

resubmitted as required.

b. Routing all Requests to the corresponding Consumer Server
(925) or API Server (920) processing elements with support
from the Consumer Directory (915).

¢. Routing replies from the processing elements back to the

requesting network.

d. Policing the latency and revenue assurance SLA ensuring that
(a) replies are generated to network elements and time
sensi:cive API requestors, even if the downstream servers have
not responded in the required time interval; and (b) any
requests that are not acknowledged by the processing element
are subsequently resubmitted for re-processing by the
Resubmitter (995).

42

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0160]

[0161]

[0162]

PCT/US2003/032254

€. Passing key information recovered from the Consumer
Directory (915) to optimize the Consumer Server (925)
operation (for example the Logical Database Store of the
associated Consumer Database (930) together with versioning
information to allow the Consumer Server (925) to determine

if it has cached out of date information).
f. Audit and statistics collection for all external requests.

g. Providing a pluggable sofiware infrastructure to allow a
number of different protocols supporting different request
types and encodings to be supported in parallel. This may
allow direct connection of the System to request sources. This

' may eliminate the need for a separate mediation system found

in conventional transaction systems.

These services are available to both conventional network
authorizations and events as well as to requests generated from CSR,

self-care and EAI systems.

Input to the Distributor (910) may be via a common plug-in interface
that terminates the external network/API message transport. One
Distributor (910) can simultaneously silpport more than one plug in
(from different network elements), decoding and encoding different

protocols.

The routing plug-in may decode the minimum of information to allow
the routing process to complete, and may decode additional
information to prevent the downstream server from having to re-parse
the raw input data (the message format between the Distributor (910)
and the Consumer Server (925) allows for a mixture of parsed data in a

common format, and unparsed data to be exchanged). In one

43

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

embodiment, the minimum information to be decoded by the plug-in

may include:

a. External ID to route the request (an external account number,

IMSI, e-mail address).
b. Numbering space for the external ID.
c. Request date/time (may be null for some API requests).

d. External correlator information that may be simply preserved
by the system (900) and returned in any external reply to
allow the external system to associate responses and replies in

a system dependent fashion.

[0163] The plug-in may also pass additional information to the Distributor
(910). These include flags indicating if a particular request should be
resubmitted if failed and the priority of the request (typically to allow
the Consumer Server (925) to prioritize the processing of telephony
authorization events). The plug-in will also pass in information

indicating the type of the request.

[0164] As part of the routing and revenue assurance process each request may
be assigned a unique ID by the Distributor (910). This may be used
both to allow duplicates through resubmission to be detected, and to

support updates into external data warehouses.

[o1 65] Referring to Figure 10, one high level functional design for the
Distributor (910) is illustrated. It depicts three (3) batches of records
being offered to the Distributor (910). These messages are correlated
to the appropriate Directory Server (915). In this example, records
from various batches are combined and transmitted to the Directory

Server (915). Likewise, the information transmitted to the Consumer

44

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0166]

[0167]

[0168]

[0169]

PCT/US2003/032254

Servers (925) comes from a variety of batches and Directory Servers
(915).

API Server

The API Server (920) processes API calls received from CRM (901)
(and other external systems) via the Distributor (910). Its key roles are
to hide the complexity of the machine topology and work-/data-
partitioning from those systems and manage the allocation of entities
such as accounts, product instances and consumer IDs to logical

servers and data stores.

The API Server (920) may result in updates to data held in a number of
locations in the architecture including the Directory Server (915)
cache; Consumer Server (925') cache; Wallet Server (940) cache; and
the Data (930) store.

Transaction integrity may be maintained without incurring significant

' processing overheads (multi-phase commit on transactions and/or

registration of interest on the database). In one embodiment, updates,
which affect the rating path, are written through the Distributor (910)
and Diréctory Server (915) cache to the database. Examples of such an
update may be the creation of a new consumer ID, allowing a
consumer ID to consume from a new wallet, etc. Updates may
increment a version number in the Directory Server (915) cache (and
in the database) which may be passed back to the Distributor (910) and
on to the Consumer Server (925) when an event may be routed. The
version number which accompanfes the event may be used by the
Consumer Server (925) to check the validity of its cache and if
necessary it will be refreshed (for that consumer ID). A registration
event may be sent through the system (900) to prompt the cache
refresh before an event arrivés. This will ensure that latency does not

degrade for the event which follows'a consumer information change.

45

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0170]

0171]

[0172]

[0173]

[0174]

PCT/US2003/032254

The API Server (920) may load-balance across the logical consumer
servers and data stores. [Note that load-balancing across physical
servers may be the responsibility of the Work Managers (965).] The
APT Server (920) may also implement locality of processing via wallet
domain closure. This ensures that, where possible, all ‘related’
consumer IDs are hosted on the same logical consumer server. The
API Server (920) may be responsible for routing the API call to the
correct node. Finally the API Server (920) may respond with success
or failure to the Distributor (910).

For each API call, the server will determine the logical server
manipulation required [For example, allowing a consumer ID to
consume from a Wallet Allowance may result in the migration of that
consumer ID from one logical consumer server to another.] The server

may also determine where the resulting API calls should be routed.

The API Server may also be designed to bypass the Distributor and

Director Server.

API Requests

The system (900) may handle a range of ‘get’ and ‘set” API Requests

required by CRM and other external systems. For example:

Add account .
Add product instance

Add consumer ID to product instance

. Allow consumer ID to consume from wallet

Change consumer ID from C1 to C2

Change liable account for a product instance

46

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0175]

[0176]

[0177]

[0178]

[0179]

[0180]

PCT/US2003/032254

Return all events given a specified set of criteria e.g. consumer ID,

event attributes
Return the current resource for an account

Return the wallet resources for a particular consumer ID

The system (900) may also handle ‘boxed” API calls where multiple
calls are grouped into a single transaction. Such a group of calls will
be routed to the same API Setver (920) where any dependencies can be
managed and there may be the possibility to optimize integrity
checking. The API Requests may be vertical market independent and

the integration may occur in the external application’s middle tier.

Wallet Server (940)

The Wallet Server (940) may provide lifetime control, consolidation
and backup (in conjunction with the Wallet Database and associated
Proxy (960)) over the distributed loans and resources on the Consumer
Servers (925) through the distribution and management' of Shadow
wallets (320...).

Thq ‘Wallet Server can be broken into a number of related functions:

(1) Distributed Loan Manager: Management of internal loans
within Shadow wallets (320....) across multiple Consumer
Servers (925...) enabling distributed use of ‘bundled’ usage.
The Loan Manager can operate in both a proactive mode
balancing loans in anticipation of future usage and in a reactive

mode to satisfy an outstanding loan request.
(2) High Value External Authorization Manager: Central storage of

high value authorization requests (e.g. credit card style

47

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0181]

[0182]

[0183]

[0184]

[0185]

PCT/US2003/032254

authorizations) allowing high value external authorizations to

be consumed or amended from any Consumer Server (925).

(3) Distributed Resource Manager: Resource consolidation for near
real-time resource management by processing delta changes
from the Consumer Server (925). A background process also
ensures that the absolute values within the Consumer Server
(925) remain synchronized with this process. Generation of |
action requests based on wallet resource thresholds. Persistence
and archival of resource information in the Wallet Database
(960). The Distributed Resource Manager also notifies the
Consumer Server (925) of the update periods of any Shadow
wallet (320...) (e.g. periodically, on trigger or every change).

(4) Reactive Wallet Generator: Wallet generation control logic
(policy) invoked to determine if a loan or new wallet request
can be satisfied in response to a request from a Consumer

Server.

(5) Proactive Wallet Generator: Background process to try and
create wallets in advance where associated with active product .

instances prior to usage being processed against those wallets.

(6) Complex Threshold Management: Threshold management
across multiple consumer servers, and delegation of simple

threshold management to the Consumer Server.

The Wallet Server may implement the ‘Partitioned Server’ model
where the Logical Data Store determines the Shadow wallet Server that
any Wallet should be served by. Supporting the Wallet Server (940)
may be a Work Manager (965) that partitions and ' manages shadow
wallet Servers (940) across multiple physical Wallet Servers (940).

48

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0186]

[0187]

[0188]

[0189]

[0190]

[0191]

PCT/US2003/032254

The Wallet Database (960) provides the long-term persistence for the
Wallet Server (940) supported by any local journalizing required to

support the overall system revenue assurance.

Distributor

The Distributors (9105 may serve as the ingress point into system
(900). They may also provide the revenue and SLA assurance of
events, authorizations, and CRM/middleware integration to the core
system (called ‘Requests’). All of the Distributors (910) can handle
any Request and are implemented as a number of servers in a pool for
capacity and resilience, though it may be anticipated that different
large external networks and CRM/EALI systems will have one or more
dedicated Distributors (910) (including backups). The Distributor (910)
may be designed to undertake a fast common fragment of Request
processing; therefore, most systems will not commonly have to
frequently upgrade the Distributors (910), and there will be more
Consumer Servers (925) and API Servers (920) than Distributors
(910).

The communication between the servers may make use of priority with
the distributor classifying the requests with different priorities, and the
servers may also use the priority in their processing and queuing, and

support independent traffic flow control mechanisms per priority.

Directory Servers

The Directory Servers (915) access a number of Consumer Databases
(930) that are used to resolve Logical Consumer Server and Logical

Database Server information for every External ID.

49

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0192]

[0193]

[0194]

[0195]

[0196]

PCT/US2003/032254

Additionally the Consumer Directory (915) will also hold a very
limited number of key values for some External ID. These are used to
version information associated with a given ID to identify out of date

information cached by the Consumer Server (925).

The Consumer Server (925) processing element has a highly extensible
structure for charge determination and output attribute generation,
while other processes (e.g. the Distributor (910) and Wallet Server
(940)) are designed to be market agnostic. For example, within the
Consumer Server (925), data accessors (101, 102) encapsulate access
to vertical market specific database entities and the code that provides
access to these entities. Referring to Figure 1, one embodiment shows
an example of two data accessors (Consumer Data Accessor (101) and
Wireless Network Data Accessor (102)) configured to provide output

information (120) for event enhancement (140).

The Consumer Directories (915) are implemented as logical server
pools as described above to split the memory cache requirement and

processing load across multiple machines.

There may be normally no duplication between information held in the
separate Directory Servers (915) — all Distributors (910) will access all
the Consumer Directory (915). A hash of the External ID may be used
to determine the logical Consumer Directory (915) that can service
each request. The External ID may represent a phone number, login
name, device address or any piece of information that can be used to

identify the consumer associated with this event.

Each Consumer Directory (915) may be loaded on system start-up by
query of all of the Consumer Databases via their associated Database
proxy. Any information not loaded when a request for directory

information is received may be demand loaded.

50

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0197]

[0198]

[0199]

[0200]

PCT/US2003/032254

In a preferred embodiment, the Consumer Servers (925) and API
Servers (920) are the key processing elements in the real time path.
The Consumer Servers (925) process requests where significant use
can be made of da}a cached for an individual external ID. This may be
typically authorization and usage processing, and some information
requests. Requests processed by the consumer server include: post
event usage rating; pre-pay call authorization/continuation/termination;
e-commerce primitives (including longer term higher value
authorizations and credit card support primitives); and evolving
support for Digital Rights Management primitives that are anticipated

to be required by the software and entertainment industries.

The Consumer Servers (925) complete their work supported by the
Wallet Server (940), Event Manager (945), Reference and Consumer
Databases (930). As outlined earlier, the Consumer Servers (925) are
designed so that most requests can be completed with information
previously loaded into Consumer Server (925) memory without
reference to other corhponents such as the Wallet Server (940). Logical
server informartion setup by the API server (920) and read from the
Consumer Directories (915) may be used to ensure that requests for the
same External ID (and in many cases for the same account) will be
passed to the same Consumer Server (925) to take advantage of cached

information in the Consumer Server (925).

Further in that preferred embodiment, however, any request will be
cqrrectly processed if routed to any Consumer Server (925), though
information required might be demand loaded. Additionally, large
accounts can be efficiently split across Consumer Servers (925) with
shared usage bundles, and personal accounts can draw effectively on

usage allowances from other family members or corporate accounts.

To comialete each request the Consumer Server (925) may perform one

or more of the following functions:

51

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0201]

[0202]

[0203]

[0204]

[0205]

[0206]

[0207]

[0208]

PCT/US2003/032254

1. Complete any parsing/processing not undertaken by the Distributor

(910) to recover information from the incoming request.

2. Use the appropriate market/network specific plug-in to determine
any service specific enhancement information. This may result in
access and optional cache of information from external service-specific
databases. Note that this plug-in, in common with the other system
(900) plug-ins, does not allow direct external database access. The
plug-in provides a common external resource access service that
provides a framework for caching, and rescheduling of event

processing while awaiting the response.

3. Determine the chargeable transactions associated with the request (if

any).

4. Recover and update of any reference or Consumer data not already

cached by the Consumer Server (925) to complete this request.

5. Determine the billing period into which any charge-generating

request will normally be processed.

6. Provision Wallets (310) and any internal loans for bundled usage
allowances needed to complete the rating process, together with any
interaction with the Wallet Server to increase any usage allowances

and to persist high value and/or longer term authorizations.

7. Determine the charge taken from each Wallet to satisfy each
chargeable transaction (i.e. one request from the Consumer Server may
generate one or more chargeable transactions, and each chargeable
transaction will be satisfied by a number of charges, with each charge
taken from orie Wallet).

8. Journal request details, charges, updated resources, and
market/operator specific information (for example but not limited to .

tax summary, commission and settlement information) for subsequent

52

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

processing by the Event Manager and the Wallet Manager, and
providing sufficient information for the Event Manager to determine
the correct logical event store for this event. Additionally the
Consumer Server may tag any information (for example the
market/operator information) so that the Event Manger may correctly

route and consolidate such information.

[0209] 9. Generate any response information to the external network to be
returned via the Distributor and acknowledge all requests to the

Distributor for revenue assurance.

[0210] 10. Undertake any simple threshold processing delegated to the

Consumer Server by the Wallet Server (see Wallet Server discussion).

[0211] Noté that the above processes do not have to be implemented in a
strictly sequential manner, Where practical, lazy evaluation may be
used within the Consumer Server (925). This prevents lookup and
calculation of unnecessary derived data. To support this, the Consumer
Server (925) may implement some sophisticated data driven
scheduling to allov'y the processing of one request to be paused and
another request continued while waiting for data from a Database
Proxy, external database or the Wallet Server. This same scheduling
system enforces a batching / ticketing process to both support revenue
assurance and to batch journal file and network access, and to also

allow request priority to be honored for high priority requests received

from the Distributor (910).
[0212] Event Manager
[0213] The Event Manager (945) provides for the long-term persistence of the

real time rating products delivered by the Consumer Server (925)
(independent mechanisms to journal Consumer Server (925) results to
recover from Consumer Server (925) failure may also be incorporated).

The Event Manager and the Event Store may also be separated. The

53

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0214]

[0215]

[0216]

[0217]

PCT/US2003/032254

Event Manager (945) therefore relieves the Consumer Server (925)
from responsibility for persisting the products of rating. This
separation of the Consumer Server (925) and event storage
responsibilities allows independent partitioning of the event stores;
independent optimization of event storage configuration; removal of
the event storage delay from the processing path for external requests;
and implementation of more advanced event storage strategies making
use of event accumulation, or consolidation, _without changing the
Consumer Server (925). As part of the storage of such rating products
the Event Store may save all of the change information that may be
sent to the Wallet Server. This provides both an independent storage of
charges for audit and recovery, and allows parts or all of the Wallet
Server to be eliminated if real-time resource (loan) control and/or

balance reporting may.not be required.

The Event Manager (945) and associated event storage may be built in

" the same logical server and database model as used elsewhere in the

system (900). The events are partitioned using a Logical Event Store
(LES) that allows events to be steered to a particular event store. For
simple residential accounts there may be a simple relationship between

LCS, LDS and LES. The separate LES partitioning value recognizes

- that some very simple account structures may be associated with very

high event volumes. We cannot therefore assume that the events for

all consumer IDs served by a single LCS can be stored in a single LES.

Referring to Figure 11, the Event Manager may be responsible for one

or more of the following:

1. Storage of rated event data in partitioned data stores as required for
invoicing. This stored event includes charges determined by the rating

Pprocess.

2. Delivery of near-real-time resource updates to the Wallet Server.

54

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

[0218] 3. Registering the safe storage of the Consumer Server output with the
Audit Database proxy.
[0219] 4. Detection of duplicate events and correction / removal of

- downstream data delivered for these events.

[0220] 5. Generation of output delivered to external systems. This output may
include settlement or reporting information that may be required in

near real time and can be based on the real time rating of events.

[0221] 6. Delivery of events back to the Distributor when required for multi-
stage rating. This provides support for multi-party billing where the
wholesale or settlement rate may be dependent on the retail rate
charged to the consumer. In this case the retail rated event may be
stored for the retail account and the rated event may be routed back to

the Distributor to guide and rate for the wholesale account.

[0222] 7. Audit information for output delivered for external systems. This
allows reconciliation of data generated for external consumption with
the actual receipt of this data. This audit point may be essential for
revenue assurance since output information may include financial
reporting information, settlement data, or rated event records for

invoicing by another invoicing application.

[0223] Data Model and Architecture
[0224] A preferred embodiment for the architectural strategy may be to

provide an extensible architecture which allows the curiosities of
particular vertical markets to be accommodated by extensions, rather
than customization of the core code because transaction classification
varies enormously from one vertical market to another. For instance,
in wireless, network reference data may be used to determine if the call
was in a home zone. In wireline, a distance classification may be
assigned, again based on network reference data. For other

transactions such as credit cards, no such classification may be

55

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0225]

[0226]

[0227]

[0228]

PCT/US2003/032254

required. Therefore, in a preferred embodiment, the rating architecture
may assume that the transaction classification is not provided as part of
the core code. This ensures that no unnecessary processing may be

undertaken and no redundant configuration may be required.

In a preferred embodiment there may be no customer data model.
Instead, a consumption data model may be used to hold the
relationships between consumers, products and wallets (scalar usage
and cash values). A customer data model may be assumed to be within
external CRM entities and linked to the system (900). When data may
be changed in CRM these 'changes will be propagated to the system
(900).

Customer care or CRM changes that assign products to customer are

. relatively infrequent and it may be planned that these changes produce

replicated information in the data model to simplify\the relationship
between a network access device and the way that charges for that
device are computed — consumption relationships. This separation of
customer data structure from consumption re]ationsflips delivers
significant efﬁciency gains when charges associated are calculated and

consumed from wallets.

When customer product assignments are made, the resulting producf
instances are assigned to one or more product instance groups. These
product instance group assignments allow automatic creation or

modification of the orthogonal consumption relationships held within

.the system when customer structure changes are made externally in

CRM and propagated to the systeni. There may be no requirement that
the consumption relationships be structurally similar to the customer
structure. This provides complete freedom of wallet resource sharing,

independent of the customer data structure.

Referring to Figures 2 and 12, the principal concepts of the Data
Model are:

56

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

PCT/US2003/032254

. Wallets: Represent time bound resources with an arbitrary

unit. For free minutes / units / money / widgets.

. Products: Specifies the periodic replenishment of a wallet

and the consumption rate from a wallet. Consumption rate

designates conversion between event units to wallet units.

. External / Internal Consumer ID: The external consumer ID

may be the network identity and may be related to an internal

consumer ID (one external to internal at any time).

. Consumer ID has Product Instance: The internal consumer

may be assigned products that define consumption from

wallets.

Consumer ID has Wallet Instance: Separate relationship to
a wallet so that multiple products may share a single wallet.
Wallet instance does relate to a product that defines the

replenishment for it.

Product Instance Group Relates to CRM Entities: Product
instance group may be flexible means for mapping the CRM
definition of consumer structure to the system (900).
Grouping may be related to product instance, which carries
external identifiers to connect to CRM. Can represent person,

organization, region, place, equipment or however the CRM

structures information.

- Event/ Chargeable Transaction / Chargeable Transaction

Type: Event may be an envelope for repeating group of
chargeable transactions. Chargeable transaction type defines

attributes for a chargeable transaction.

57

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0229]

PCT/US2003/032254

h. Event Translation / Enhancement: Raw input records are
turned to event envelopes with skeletal chargeable
transactions based on plug in. Chargeable transaction type
defines standard enhancements done based on data accessors.
Rate factors and Output Records connect to aata accessors
with input map context determined by the chargeable

transaction type.

1. Configurable Outputs: All vertical market data delivered
through Data accessors. Context for the input maps for a data
accessor may be the chargeable transaction type. Simple
cascade model allows use of Data Accessor based on é)utput
from another Data Accessor (and not based on context).
Content of output may be defined in "Cutput Record" and this

may be generated from real time rating and billing.

j- "Logical" application and database partitions: The
"logical server" tags the affinity for a segment of the system
(900) processing. This logical identity may be associated with
parts of the consumer data model in order to drive distribution
of work for the application. For example may have a "logical

consumer server” and a "shadow wallet server".

Products define how consumers are charged for services (events)

‘through valid chargeable transaction types. These charges are tracked

to wallets. Wallets may represent monetary resources but also may-
track “free” units of use that are periodically allocated (or allocated on
a one time basis). The wallet may be the identity of a “charge bucket”
for tracking charges of an arbitrarily defined currency. Products define
charges for events through the identification of chargeable transactions

on the event. Product charges also specify wallet consumption for

58

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0230]

[0231]

[0232]

PCT/US2003/032254

non-event based charges. Filters specify the criteria for applying
charges, wallet replenishment, and consumption. Wallet Allowance
defines periodic or event triggered replenishment of a wallet. Wallet
Consumption Rate defines the use of Wallet Units by chargeable
transactions (e.g., it defines an exchange rate between event and wallet
units, filters for conditional application of a consumption rate,
prioritized to allow priority consumption from wallets, and allow

"cascaded” application of consumption to wallets.

Events provide the envelope for delivery of charges / chargeable
information from external systems. Events are related to different
external sources through the event type. External Consumer ID may be
stored on the Event and mapped to the active Internal Consumer ID for
the Event. Raw event informatiqn may be transformed into ratable
transactions (Chargeable Transactions) through plug-in code associated

with the Event Type. Event analysis (tied to an Event Type) creates

‘Chargeable Transactions on-an Event. Chargeable Transactions are

tagged with a Chargeable Transaction Type. Content of a Chargeable
Transaction may be defined for each Chargeable Transaction Type.
Additional reference or consumer data may be added to chargeable
transactions through event enhancement. Rating filter criteria, invoice
presentation, external outputs require information that rﬁay not be
directly available on an Event / Chargeai)le transaction but which may
be easily derivable from information on the event. Event
enhancements are implemented through a combination of configured

plug-ins and Data Accessories.

Assignment of Products to Consumets

The external consumer identifier may be delivered on event records
and may be associated to an internal consumer identifier through the
External-to-Internal Consumer Identity Entity (mapping process)

59

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0233]

[0234]

[0235]

[0236]

PCT/US2003/032254

Product Instances are assigned to the Internal Consumer Identifier
through the Internal-Consumer-ID-Has-Product Instance. A separate
independent path from an Internal Consumer ID to Wallet Allowance
supports independence between the assignment of wallets that can be
drawn from and the products that define consumption from those
wallets. The current resource / allocation of a wallet may be tracked

with the Wallet entity.

There may be an adaptive partitioning of Internal Consumer Identifiers
to balance the load of consumer identifiers served by consumer servers
and may be stored as the Logical Consumer Server. The Logical
Database Server maps an Internal Consumer Identifier to a database
partition. Internal Consumer Identifier may be assigned Wallet
Allowance Instances through Internal—Consumer-]D-Has-Wallet—

Allowance Instance.

The wallet may represent the periodically replenished Wallet
Allowance such as monthly free minute wallet contains the initial
quantity of minutes, the resource of available minutes, and the

effective / expiration dates for the minutes.

Auditing and Revenue Assurance

Figure 15 illustrates the revenue assurance mechanism for the ingress
of Network and API Requests. Under normal circumstances, the
Resubmitter may not be involved. The Distributor initially journals'its
input to a file (see #1). Then, an audit trail may be created and the
status xhay be set to ‘In Progress’ (see #2 and #3). Once all records in
the audit have been processed, the audit trail may be updated to a
‘Complete’ status (see #4 and #5). An alternate embodiment may
merge the resubmit functionality into the Event Manager. The
Distributor then writes a file of events that must be reprocessed and
this may bé submitted to the event manager in a log file (in a similar
manner to the log file written by the Consumer Server). The common

60

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0237]

[0238]

[0239]

[0240]

PCT/US2003/032254

file tracking and control system within the Event Manager can then
filter and export those events that can not be reprocessed (were subject
to fatal errors), and queue events for reprocessing back to the
Distributor (the Event Manager already having such a path to allow the
processing of events which are derivative of the original event — e. g

settlement).

In a preferred embodiment, the system (900) may be designed to be
continuously available and fault tolerant. This includes automatic fail-
over of work from one processing node to another. If a processing
node fails, its work may be immediately distributed between the
remaining nodes or re-allocated in its entirety to a stand-by node.
Assuming the operator has not chosen for a fully redundant
deployment, the effect on overall 'system performance (and impact to
SLAs) will be limited to the partition of the workspace being processed
by the failed node therefore authorization latency will only increase for

a small percentage of the consumer base.

The Resubmitter may be involved in failure scenarios. Ifan individual
record fails, the Resubmitter may be notified and the audit may be

updated when complete (see #A and #B).

If the system (900) Distributor fails, the Resubmitter queries the
database for all audit records ‘In Progress’ for the failed Distributor.
All of the information may be extracted from the Journal Data File and
may be resubmi&ed to an alternate Distributor (See #C and #D). The
system (900) relies on its duplicate checking facilities to correct the

péutial completion of records.

There may be a need to audit the flow of data into and out of the
system (900) for revenue assurance. Input audits should support re-
request of information and output audits should indicate the delivery of
information to external systems and provide some tractability of
outputs to.real time rating / invoicing activities in the system (900).

61

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0241)

[0242]

PCT/US2003/032254

Audits for internally invoiced events must prove that all received
billable events were, in fact, invoiced. To achieve this, an audit record
may be maintained, the audit record may be a set of at least one work
ticket that may be created on the receipt of an auditable batch of events
by the system (900). As events are routed to unbilled pools an audit of
the distribution of these records may be created. This audit must
balance with the total'of received records that are recorded in work
tickets. Events allocated to an unbilled event pool are guided to
accounts. When this is done an audit recording the number of unbilled
events may be stored — indicating the number of unbilled events in the
event pool for the account. The majority of output from the system
(900) may be delivered in output files, These outputs could include
data delivered to commissions systems, resellers, settlement systems,
outcollect records, etc. The flexible output audit provides a
mechanism for recording outputs intended for delivery to an external

system and acknowledgement of receipt from the external system.
Wallets

Providing a reliable high performance recoverable mechanism for
shared resource management may be one of the central challenges in
the implementation of any real time rating / authorization system. Ina -
preferred embodiment, Wallets (250 ...) generalize this resource:
tracking on one simple concept. Wallets (250...) are usable for real
time/ near real-time free minute tracking, unit based rating, any
arbitrary currency (such as reward points or arbitrary internal units),

real time/ near real-time monetary resource limit management, event

- pre-authorization, free unit / monetary resource notifications and real

time promotion delivery. These capabilities are implemented so that a
large number of consumers (as needed for corporate / reseller /
settlement accounts) can share a single resource and have this resource

tracked in real time.

62

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0243]

[0244]

[0245]

PCT/US2003/032254

Referring to Figure 2, Wallets (250) may be created when a
consumer buys a Product (210) which entitles them to a Wallet
Allowance (220). This figure illustrates a Product (210) with a Wallet
Allowance (220) and Wallet Consumption Rates (230) for a Free
Minute Wallet (230). This diagram also illustrates the validity period
for the Wallets (250....) associated with the Allowance (220). Each
Wallet (250...) may be valid for two months, so during February both
the January (250) and February (251) Wallets can be used.

Consumer IDs are used within the system (900) to model the identifier
of the service user. Examples of Consumer IDs include the following
.és well as equivalent identifiers: phone number, e-mail address, social
security number and credit card number. The system (900) models the
relationship between Consumers and Wallets explicitly. Thus a Wallet
(250...) will have a list of Consumer IDs which can consume from it,
and similarly, a Consumer ID will have a list of Wallets (250...) which

it can consume from.

In alternate configurations we may have different classes of consumer
drawing from the same Wallets (e. g. account) but where we want to
guarantee the response time of a subset of those consumers. In this

case we nominate some number of the logical partitions as requiring a

. better service level agreement. The key consumers (or a subset of

produc‘fs associated with the consumers) are then assigned to these
logical partitions, and the remaining customers/products to other
logical partitions. The partitions requiring the higher SLA can assigned
priority compute and/or communication resource and the Wallets then
allow the standard and priority to share resource. Typically this would
then result in a physical configuration with 'high' and "low’' priority
Consumer Servers each having Wallet fragments from the same

wallets.

63

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0246]

[0247]

PCT/US2003/032254

Event rating applies charges to wallets using the following high-level
algorithm:

a. Wallets (250....) assigned to this Consumer ID are retrieved.

b. Consumption Rates (240) assigned to this Consumer ID are

retrieved.

¢. Chargeable transactions from the Event are considered in turn,
the Consumption Rates (240) are filtered based on the

chargeable transaction type.

d. Wallet Consumption Rates (240) are evaluated in priority

order.

e. Applicable Wallet Consumption Rates (240) deduct from the
appropriate Wallet (230) based on the Wallet Type (230) of
the Wallet Consumption Rate (240). Such deduction may only
proceed when wallets are distributed - where there may be

sufficient loan in the wallet to cover the usage.

For example, consider a simple post-paid price plan of 100 minutes /
month and 30 text messages / month. Overage minutes are $0.30 and
overage text messages are $0.10. This may produce three Wallets (250
....) for that consumer; two of which have monthly allowances: Voice
Wallet (230) with 100 minutes allocated monthly, Text Message
Wallet (230) with 30 SMS allocated monthly, Cash Wallet (230) with
no monthly allowance. Four different Wallet Consﬁmption Rates
(240) may apply: Voice Chargeable Transaction Types against Minute
Wallet, SMS Chargeable Transaction Types against SMS, Voice
Chargeable Transaction Types that consuming $0.30 / 60 seconds
against the Cash Wallet, SMS Chargeable Transaction Types that
consuming $0.10 / SMS against the Cash Wallet.

64

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0248]

[0249]

[0250]

[0251]

PCT/US2003/032254

A separation in the system (900) is the partitioning of the rating
process within the Consumer Server (925), and the management of
Wallets (250...) within the Wallet Server (940).

Again this partitioning is intended to deliver ‘best of both worlds’
flexibility: for simple residential consumers all processing for a
particular account may be delegated to a single Consumer Server (925)
with occasional interaction with a single corresponding Wallet Server
(940). For large accounts and complex consumer relationships,
multiple servers can interact with distributed sharing of bundled usage
and distributed resource management without any of the significant
cross rating engine interaction seen with current generation billing

systems.,

Wallets (250...) niay be managed (e.g. created, stored and accessed)
by the Wallet Server (940). Alternate embodiments may permit this
functionality by the Consumer Server. The Wallet Server (940) holds
the values associated with individual wallet instances (250 ...), though
attributes of a particular wallet are held as common reference data. A
number of Consumer Servers (925) may access a single wallet in a
wallet server (e.g. large resources and bundled allowances) through the
creation of Shadow Wallqts on each Consumer Server (925), preventing

contention for single resource values.

Where a Wallet (250...) has a limited resource value shared across
Consumer Servers (925) then there may be an internal loan mechanism
that partitions the bundles across the servers. There are then both
Aproactive and reactive mechanisms to redistribute the ‘imused’ part of
the wallet. The proactive mechanisms will anticipate subsequent
requests and try and ensure that the loan management mechanism may
be rarely in the latency path. The reactive mechanisms handle

exceptional requests and where the final fragments of a wallet

65

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0252]

[0253]

[0254]

[0255]

PCT/US2003/032254

allowance have been recovered to the Wallet Server (940) in

anticipation of the final request that will exhaust a Wallet (250...).

Referring to Figure 3, in an embodiment, a Consumer Server (925)
may access a Shadow wallet (320) created by the Wallet Server
(940) in the Consumer Server (925). If a Consumer Server (925) fails,
the Wallet Server (940) may recover any resource from that failed

Consumer Server (925).

In this examl‘)le, the Mastgr Wallet (310) may have an initial value that
can be consumed of 1000 min. The Master Wallet (310) has a ‘used’
value of 100 minutes that is not associated with any Consumer Server
(925). This may be the usage that was associated with the failed
Consumer Server (925). On failure of a Consumer Server (925) the
journalized usage in any Shadow wallet (320...) may be ‘emptied’ into
the master wallet, and any unused loan value may be recycled. There
may be 900 minutes that can be loaned and consumed by Shadow
wallets (320 ...) within the Consumer Servers (925-6). In this case 450
minutes has been allocated to each of the Shadow wallets (320...). The

Consumer Servers (925-6) can therefore consume locally up to 450

.minutes without reference to the Wallet Server (940).

A ‘more loan available’ flag may indicate to the Consumer Server
(925) that there may be more loan available. For example the
Consumer Server (925) could receive a request for 100 minutes and
then reactively ask the Wallet Server (940) for a larger loan. If this flag

is cleared then the request for additional loan to the Wallet Server may

be suppressed.

Thresholds (alerts) may also use the loan strategy, by setting a ‘false’

~ lower loan limit. For example, if a user has 1000 minutes across a

number of Consumer Servers (925), the Wallet Server (940) may act as
if the wallet limit was only 900 minutes and, when that limit may be
consumed or substantially consumed (including any inter-consumer

66

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0256]

[0257]

[0258]

[0259]

PCT/US2003/032254

reallocation that may occur), the Wallet Server (940) may generate an
alert and then release the final 100 minutes. Where only one shadow
wallet exists, the wallet server will delegate threshold detection to the
consumer server, and the consumer server will alert the wallet server

once a limit may be exceeded.

As the Wallet Server (940) receives near real-time copies of the
shadow usage, the Wallet Server (940) can also proactively redistribute

the loans between Consumer Servers (925) prior to event arrival.
Each Wallet in the Wallet Server may exist in at least two states:
i. Open: Wallet fragments are or may be activated for this wallet.

il Closed: All wallet fragments have been consolidated into the

wallet, and no further wallet fragments may be generated.

Referring to Figure 4, an illustration of one embodiment shows the
state of the wallets after.a number of events. In this case as only 10
minutes of the wallet was left (1000 minutes — 100 minutes in master
wallet — 890 minutes in Shadow wallets), the Wallet Server (940) has
proactively reduced the loans on each Shadow wallet to match their
usage. The 10 minutes remaining may be held centrally and requests
for any more usage (loan) must be referred to the Wallet Server (940).
The Wallet Server is also up-to-date on usage in case of a logical

server failure.

Then if the final call to consume the wallet of 10 minutes arrives, the
Consumer Server (925) will req_uesf an additional loan to cover the 10
min, and then the “more loan’ flags in the Shadow wallets are both set
to false by the Wallet Server (450) — the Consumer Server (925) then
knows that the wallet may be exhausted even though the Consumer
Server (925) never knev'v the total that could be consumed from the
wallet (310).

67

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0260]

[0261]

[0262]

[0263]

[0264]

[0265]

[0266]

[0267]

PCT/US2003/032254

Fragmented Wallets

Wallet Server (940) provides lifetime control over the distributed loans
and resources on the Consumer Servers (925, 926), through the control
and backup of the shadow wallets (320, 321) on the Consumer Server
(925, 926).

Key Schema Entities

Referring to Figure 45A and 451§, embodiments of the Wallet System
(900) may include:

WalletAllowancelInstances (WAI): These may be created when a
customer buys a Product (210) (and therefore gets a ProductInstance).
The customer may receive a WalletAllowanceInstance for each
WalletAllowance (220) which the Product (210) entitles them to.

Wallet: A WalletAllowancelnstance may result in rhany Wallets
(250...) over time. For example a WalletAllowanceInstance of 100
minutes per month, each valid for 3 months would result in one wallet

of 100 minutes each month. E.g.
January wallet - 100 minutes, valid for Jan, Feb, Mar.
February wallet - 100 minutes valid for Feb, Mar, Apr

Wallet Fragment (4510). When a loan méy be made against a
particular Wallet (250 ...) (from the Wallet Server (940) to a
Consumer Server (925)) a Wallet Fragment (Shadow Wallet on the
Consumer Server) record may be created. A single wallet fragment
(4510) may be used by a single Consumer Server (925) to accumulate
rated usage on behalf of a single Wallet (250).

Wallet validity (the ability to consume from a wallet) may be aligned

with event date and time.

68

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0268]

[0269]

[0270]

(0271]

[0272]

[0273]

[0274]

PCT/US2003/032254

New Wallet Fragments (4510) may be generated by the Wallet Server

(940) and sent to the Consumer Server (925) with zero resource.

More than one Wallet Fragment (4510) for the same Wallet (250...)
can co-exist in a Consumer Server (925) at any one time, but, in a
preferred embodiment, only one Wallet Fragment (4510) will be open
for usage (and therefore will be passed to the Consumer Server rating

code at a time).

The “loans’ in a Wallet Fragment (4510) may be greater than the

!
usage. That is, the spend may be covered by a loan, however, there
may also be a scenario where a charge has been forced onto the

Wallets (250...) in excess of the loan by the rater.

The Wallet Fragment (4510) may be linked to the Consumer Server

pool element ID, rather than the Consumer Server.

New wallet fragments may be generated by the Wallét Setver sent to
the Consumer Server with zero balance (in an alternative embodiment,
wallet fragments may also be parked from the Consumer Server onto
the Wallet Server - when wallets are unparked' they are returned to the
Consumer Server with their parked value 'usage' value). Wallet parking

may be used in place of closing a wallet.
Wallet fragments may be destroyed in the Wallet Server at least when
(1) The associated wallet may be closed.

(2) The associated Consumer Server has terminated, and all
of the wallet fragment updates written by the Consumer
Server to log file have'been processed by the Event

Manager and Wallet Server.

Wallet fragment state may be stored on:

69

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0275]

[0276]

[0277]

[0278]

PCT/US2003/032254

1. Local view of the Wallet Fragment state within the Consumer

Server.

2. Local view of the Wallet Fragment state within the Wallet

Server.

3. Last reported Consumer Server wallet state as passed in the most
recent real time request from the Consumer Server to the Wallet

Server.

The ‘master’ copy of the Wallet Fragment state may be held by the
Wallet Server. Under normal conditions, the Wallet Fragment state in
the Consumer Server may mirror the Wallet Server (there may also be
a transient state when parking a wallet where the Consumer Server

state may lead the Wallet Server state).
Processes

Referring to Figures 47 A-D, an embodiment is illustrated of the
interactions occurring in a wallet infrastructure distributed between a
Consumer Server (925) and a Wallet Server (940).

In Figure 47A, the Wallet Database (4710) may be a conventional
relational database that may be used to hold Wallets (250...), together
with near-real time copies of the associated Wallet Fragment (4510),
and any copies of wallet fragment audit resources from the Consumer

Server log files. The Wallet Database (4710) may also keép transaction

‘ 'watermarks for the e{fenfs that have béen loaded into the Wallet Server

(940) for each Consumer Server (925). The Wallet Database (4710)
design may anticipate migration to a lower cost transactional, non-
relational database. The Wallet Database (4710) may be on the same
physical machine as .the other Wallet Server (940) components or be a

separate machine in a conventional database HA configuration.

70

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0279]

[0280]

[0281]

[0282]

PCT/US2003/032254

The High Value Reservation Database (4720) may comprise a high
value reservation database. This may be initially physically part of or
separate from the Wallet Database (4710).

Wallet Server Processes

The Wallet Server PEM controls the Wallet Server. The WS-Wallet

Database Update Server may read wallet updates from the Consumer
Server (directly, or via an Event Manager) and apply these updates to
the Wallet Database. The Wallet Database Update Server may create

and update the fragment record portions containing the committed

spend. Additionally, the WS-Wallet Database Update Server may write
to a wallet update exception queue (persistent store or database table)
where updates have failed, events lost, out of sequence, or where
Consumer Servers have closed. The server may be robust enough that
it may be stopped at any time and be re-started keeping transactional
watermarks in the Wallet Database. Code upgrade may be via stopping
and restarting the current process. While not latency critical, the server
may be, preferably, high-performance as, in a worst case, each event
may result in a number of wallet updates. Given the high update rates
and the narrow API to the Wallet Database it may be anticipated that
the WS-Wallet Database Update Server will update the Wallet
Database via a very simple database access library that will be

developed and linked on a per database vendor basis.

The WS Wallet Control Servers comprises a subset of the loan
manager. Multiple copies of this server process requests from the
Consumer Servers via the PEM to create and return wallets and to

change loans on wallets (and other functions). The server may also

process requests from the Wallet Server Wallet Monitor running w1thm)

the Wallet Server. Some requests from a Consumer Server may tngger

on-demand wallet generation and wallet fragment generation as well as

71

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0283]

[0284]

[0285]

PCT/US2003/032254

requests being sent to other Consumer Servers. Each consumer request

received may cause one of the following actions:

1. Simply update tables within the Wallet Server.

2. Generate a direct reply (acknowledgement) to the caller
(typically a Consumer Server) if the request can be
immediately completed (e.g. create a new wallet, or change a

loan where sufficient loan is available in the wallet).

3. 'Send ‘dependent’ requests to other consumer servers, and then
on completion of these requests, return a message to the

Consumer Server.

WS-High Value Reservation Server may Comprise a Server process
that persists (and on request deletes) high value reservations on request

from Consumer Servers.

WS Wallet Monitor may undertake the pro-active control of wallets,
acting as clients to control other wallet control server processes. The
WS Wallet Monitor processes may not be driven by external message
queues but they may read and process the wallets database, and other
In-memory control tables (e.g. Wallet Server reply pending table, and
wallet update exception queue) driven off timers. None of these pro-
active processes are in a low latency path. They may invoke server
functionality in other parts of the Wallet Server, or Consumer Server to
control and modify wallets. The Consumer Server .may also have

wallet monitor functionality.

Finally some control process may register with (at least) the Consumer
Server work manager to be able to detect Consumer Server failures,

and to be able to be able to detect changes in the LDS ranges for a

' particular Wallet Server. The functions undertaken may include:

72

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

Ii.

iii.

iv.

Vi.

Vil.

Viii.

1X.

xi.

xi,i.

Xiii,

PCT/US2003/032254

Proactive creation of WAL, wallets, and wallet fragments;

Pro-active cache of per WAI information needed by the Wallet

Server;

Pro-active creation of wallets in the Wallet Database (and Wallet

Server cache);

Pro-active creation of wallet fragments on Consumer Server
(typically where an existing fragment in a high run rate wallet

will shortly expire);
Pro-active creation of wallet fragments on a backup Consumer.

Old wallet recovery/deletion (wallets where no additional usage
is anticipated). [Set a rule that if date now > x days past end

valid date of wallet];

I
Low run-rate wallet retrieval from the Consumer Server. [Wallet

not used for X daya, only 1 event this months];
Corrupt wallet detection and recovery.

Pro-active balance of loans between CS where fragments exist on

multiple CS.
Background wallet consistency checking
High value reservation timeout.

Collapse of closed wallet fragments (where all log file fragments
have been received) into the core wallet. Move fragments into

old wallet fragment table.

Wallet and Wallet Fragment Cache in-memory cache purging to
Wallet Database (LRU). .

73

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

xiv. Complex loan request monitoring. The process monitors the
Wallet Server reply pending table to ensure that all comﬁlex
Consumer Server requests are processed in a timely fashion; so
that all open requests can be closed (the Consumer Server will

run independent timers to timeout a request).
xv. INC-WAI valid date in CS in all earlier wallets exhausted.

xvi. Send balance value to allow CS to cache balance.

[0286] There méy also be a WS Threshold Server, WS Balance Query, and
WS Wallet Memory Cache. The WS Balance Query processes all
external balance requests received by the Wallet Server. Some of these
requests may be passed to Consumer Servers for processing. The WS

Wallet Memory Cache may provide in-memory cache for wallets, and

wallet fragments.
[0287] Consumer Server Processes
{0288] The Consumer Server PEM coqtrols the Consumer Server.
[0289] " The CS Wallet Library may be bound into the rating process, (and all

other tasks invoked from Consumer Server needing access to wallets or
to process messages from the Wallet Server). The library may |
encapsulate all of the Consumer Server wallet and wallet fragment
cache, low value reservation cache, while providing all the locking to
protect these caches. The LVR cache may be memory based oﬁly a‘n'd
may not be persisted in the case of a Consumer Server failure. The
library may send requests to Wallet Server. The rater may then
normally push the event or request being processed into a ‘pending’
list until the reply may be received by the CS Cache Updater. Each
request will contain an ID generated by the rater process to allow any

replies to be correlated with the requesting event.

74

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

[0290] The CS Cache Updater may process requests and replies generated by
the Wallet Server updating the Cache. The updater process may also
receive any correlations allowing the Consumer Server to ‘unlock’ the
pending event for reprocessing. It may also generate replies to requests
from the Wallet Server.

[0291] The CS Wallet Monitor may perform those functions not processed by
the Wallet Server Wallet Monitor such as:

1. Generation of requests to return wallet fragments to the Wallet

Servér for a controlled Consumer Server shutdown.

1i. Freeirig of cache memory where the corresponding fragments
have been acknowledged as ‘destroyed’ by the Wallet Server

can be freed in the Consumer Server memory.

iil. Request updates to wallets and WAI that have their cached ,

values marked as invalid.

iv. | Corrupt wallet detection (e.g. CRC/checksum error on cache
entry) and recovery (return of wallet to Wallet Server, with a
‘probably corrupt’ flag set).

v. - LVR timeout. This may be exception processinig. LVR timeouts
should be logged, with the reservation value or other measure

to estimate lost revenue.

vi. Leastrecently used return of wallet to make space in cache for

new wallets.

[0292] ° The CS Balance Query may process all external balance requests

received by the Consumer Server.
[0293] WS Support Libraries

75

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0294]

[0295)

[0296]

[0297]

[0298]

[0299]

[0300]

[0301]

[0302]

PCT/US2003/032254

The Wallet Generation Library may be invoked by reactive and
proactive parts of the Wallet Server to generate both new wallets and

new wallet fragments.
Consumer Server Failure Recovery

The Consumer Server & Wallet Servers may be deployed in a number

of configurations allowing different price performance tradeoffs.

Most recovery scenarios may follow this principle: Work may moved
from one Consumer Server to another. Dependent on the deployment
options below, the varying amounts of data (reference data, customer
data, and wallet fragments) may have been preloaded into the ‘new’

Consumer Server minimizing the failover time.

Additional protection can be implemented in the system during
failover to reduce the overall load on the Consumer Server. For
instance, the Distributor may be programmed to only propagate
requests requiring a real time résponse to the Consumer Server during
failover. Those requests which can be filtered and delayed may be
passed by the Distributor directly to resubmission storage to be

processed.

A number of different configurations (not intended to be an exhaustive

" list) are presented in the following sections.

Recovery Operation Overview

When a Consumer Server fails the Wallet Server may execute a
recovery process (supported by the File Control Database and
Application Control Database — collectively, fhe system) as follows
(Consumer server ‘A’ may be the failing consumer server. -Consumer

server ‘B’ will take over the work):

The Wallet Server may continue to read any committed wallet changes

written to the Consumer Server ‘A’ log file (passed to the Wallet

76

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0303]

[0304]

[0305]

PCT/US2003/032254

Server via the Event Manager). If the Consumer Server suffered a fatal
error the Consumer Server ‘A’ log file may not contain any *failed’ or

‘reset’ marker.

Once the Work Manager / ACD detects that the Consumer Server has
failed, it may re-route requests to the replacement Consumer Server
(‘B’) and publish that Consumer Server A’s failure to the Wallet
Server (The Wallet Server may have a list of all of the active and
recently active Consumer Server Pool IDs. This may be published to
the Wallet Server from the Work Manager / Application Control
Database complex). The Wallet Server can then change its wallet loan
allocation strategy to include an ‘emergency’ overdraft for Wallet
Fragments created on replacement Consumer Servers. At this point in
time the loans -pl:eviously made to the failed Consumer Server ‘A’ may

not be released.

Consumer Server ‘B’ may demand request new wallet fragments to
support the new event stream (though in many cases the Wallet
Fragments will have been preloaded into the replacement Consumer
S.erver — see below). The loan allocations given to Consumer Server
‘B’ at this point may be pessimistic, however the ‘emergency
overdraft’ may be set on certain wallets to allow an overdraft while the

usage on Consumer Server ‘A’ may be unclear.

In an embodiment, the Application Control Database / File Control
Database notifies the Wallet Server that Consumér Server ‘A’ has
terminated. The log ﬁlés for Consumer Server ‘A’ pass through the
Event Manger. The ldg files froﬁi Consﬁn;er Séfvér V‘A’ may be
consumed by the Wallet Database Update Server. Finally, the Wallet
Server will have recorded the closing usage for all of the Wallet
Fragments, The Wallet Server can release the loans associated with the
failed Consumer Server wallet fragments. The returned loan value

being the loan that was on Consumer Server ‘B’ less the closing spend

77

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0306]

[0307]

[0308]

[0309]

[0310]

PCT/US2003/032254

on Consumer Server ‘B’. The returned loan operation may also release
any ‘no more flag’ that has been propagated to Consumer Server ‘B’ so
that Consumer Server may be aware that more loan may be available.

At this time any overdrafis may also be removed.
Repartition Work Across Existing Servers

In this embodiment, the work on the failed Consumer Server may be
re-partitioned across existing servers and each Consumer Server will
demand load the additional customer data and wallet fragments. On

failure this may be a simple and effective strategy as the overhead of
loading customer data may be spread across the existing Consumer

Servers. A GUI may also allow the load to be directly manipulated.

Note that exactly the same mechanism can be used to take a Consumer

- Server out of operation for software or hardware upgrade. However for

controlled switchover it is not necessary to switch all of the traffic
from one Consumer Server to another — the failover can be undertaken
over a number of seconds or minutes switching one or more logical
partitions (L.CS partitions) at a time and optionally providing the

destination Consumer Server additional messaging that it can pre-load

any data for a number of LCS before the event traffic may be re-routed

by the Distributor.

Basic N+1 Standby

.. Anidle machine may be kept and a partition may be moved onto the

idle machine. This is not the same as traditional failover as wallets are
not copied between the server, rather, new wallets are created. In this
mode there may be a spare Consumer Server machine in a ready-to-run
state (operating system loaded, Consumer Server tasks running but
idle, and common reference data preloaded). The failure recovery may

follow the two stage process where the wallet server will reactively

78

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0311]

[0312]

[0313]

[0314]

[0315]

PCT/US2003/032254

create Wallet Fragments initially making use of any ‘emergency
overdraft’, and will then release any loans from the failed Consumer

Server once the failed Consumer Server log files have been read.

In this mode the recovery time may be dominated by the time to load
the customer data, and new wallet fragments into the new Consumer
Server. If the relationship, between the Consumer Servers and Wallet
Servers, is correctly configured then multiple wallet servers can serve
as new Wallet Fragmenfs to a replacement Consumer Server. Again
exactly the same ‘mechanism can be used to take a Consumer Server
out of operation for software or hardware upgrade, and the switchover

can be undertaken on a logical partition by logicél partition basis.
Optimised N+1 Standby

The following accelerations can be implemented to speed up N+1
faiiover. Multiple Wallet Fragments may be reactively generated
within a single database transaction within the Wallet Server. This
may be accomplished by bulking requests onto a single database
transaction or by delaying ‘database insertion/update via an explicit
joumal file. The Consumer Server may also be designed to generate
the Wallet Fragments. On notification of the Consumer Server failure,
the Wallet Server may enter a pro-active mode to i)ush new Wallet
Fragments onto the replacement Consumer Server. The system may
also be configured to detect high transaction rate wallets an& pre-create
Wallet Fragments stored within the Wallet Server ready to distribute to

a replacement Wallet Server.
M:N Standby

In thié embodiment, Wallet Fragments for the top percéntage of active
wallets (say 20%) are pre-generated by the Wallet Server and are
pushed onto a standby Consumer Server. This would result in a pool of

standby Consumer Servers (of the order of, for example, one standby

79

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0316]

[0317]

[0318]

[0319]

[0320]

[0321]

PCT/US2003/032254

for every five active Consumer Servers). When the Consumer Server
takes over an LCS range the high run rate wallets are pre-loaded for
the LCS range of interest and the other Wallet Fragments are

‘discarded’.
One-to-one Hot Standby

In this mode there may be a dedicated hot-standby Consumer Server
for every active Consumer Server. Whenever the Wallet Server creates
anew Wallet Fragment on the active Consumer Server, it may push an
addiéional new Wallet Fragment onto the standby Consumer Server.
Each Wallet Fragment has an independent loain and the two loans may
be of different values (the loan on the standby server only being big
eﬁough to cover any anticipated usage while data may be recovered
from the server that was active, now failed). The exisﬁng pro-active
and reactive loan mechanisms may be used to try and ensure that there
may be always loan available on a standby Consumer Server. The '

standby machine does not process any load until failure.

This wallef push to the standby server can be undertaken when wallets
are created, or when a second Consumer Server may be paired with an
operational server (a demon process in the Wallet Server creating
y\}allet fragments on a second Consumer Server to match wallet
ffaéfnents on the first server, but with optionai filtering so that wallet
fragments with a low probability of receiving traffic may not be pro-
éqtively created (but can still be requested be the Consumer Server and

reactively created by the Wallet Server if required).

This'is not the same as a traditional standby system as information is

not copied from one Consumer Server to another on failure.
Active-Active Load Sharing

A variation on ‘one-to-one’ standby. A range of logical pattitions that

would normally be served by one Consumer Server may be split

80

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0322]

[0323]

[0324]

PCT/US2003/032254

across, at least, a pair of Consumer Servers. Each Consumer Server
may be loaded with all of the customer and wallet data for the whole
LCS range, but each server handles half of the LCS event processing
load. The proactive/reactive wallet mechanism maintains loan for each
wallet on both Consumer Servers. Processing can be instantly switched
so that one Consumer Server takes the whole load, however some
events may be pessimistically rated while loans have not been
recovered from the failed Consumer Server. Because no balances are
ever transferred from the failed to the operational Consumer Server,
any memory corruption in one Consumer Server is not propagated to

the replacement Consumer Server.

This processing can even be extended to allow events from very high
volume sources to be delivered to either server due to the loan sharing
mechanism. Customer Data and Wallet Fragments may also be loaded
into a number of Consumer Servers, a subset of which receive events

from a given event source,

One-to-one S}zadow

- In this embodiment, each Consumer Server has a ‘shadow’ Consumer

Server. While in standby mode the Consumer Server keeps its cached

reference data and customer data current, and reads the log file written

by the Consumer Server so that it can keep in memory a copy of the
Wallet Fragment values (the log file being enhanced so that any Wallet
Fragment updates received from the Wallet Server by the operational

Consumer Server are passed to the shadow Consumer Server. On

 failure the shadow Consumer éérver may be notified of the failure —

reads any remaining log file, and starts processing events, and starts
writing its own log file stream. The linkage between the two Consumer
Servers could be via a direct cross machine inter-process link, hoWever
additional locking and control mechanisms may be required to ensure

that there may be consistency between information passed over the

81

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0325]

[0326]

[0327]

[0328]

[0329]

PCT/US2003/032254

network between the two machines and written to disk for downstream

processing.

Real Time Path Between Consumer Server and Wallet Seiver for Loan

Control/Wallet Usage Updates

Referring to Figure 47B, there may be demonstrated the interactions
between the Consumer Server and the Wallet Server for Wallet Change
Request/Wallet Create/Loan Change; High Value Reservation (HVR),

* Balance Query; and CS Log.

A set of asynchronous messages (Wallet change request / wallet create
/ loan change) between Wallet Server and Consumer Server may
provide the real time interactions to create wallets and to control the
associated wallet loans. Some requests, such as loan changes, may be
originated from either server and the other server will reply. The
‘master’ copy of thé loans may be held in the Wallet Server and

propagated to the Consumer Server. While Consumer Server may

» request changes to loans, the loan change may be mastered from the

Wallet Server. Note that while this path may provide informational
balance information for loan reallocation between multiple Consumer
Servers, balance information received via this path may not be

definitive.

HVR (High Value Reservation) requests may be generated by the

‘Consumer Server. Replies may be generated by the Wallet Server. The .

Consumer Server may act as a synchronous client to the Wallet Server

- for high value reservations:. - - -

Balance Query requests that are éxternally submitted to the Wallet
Server may be converted into real time balance queries to support
external requests. The Wallet Server may act as a synchronous client to

the Consumer Server. The API or other server may poll the Wallet

82

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0330]

[0331]

[0332]

[0333]

[0334]

PCT/US2003/032254

Server, determine the wallet ﬁagmeﬁts and then the API server may

poll the consumer servers directly.

Completed rated events may be persisted to the ES and Wallet Server
via the Consumer Server log (CS Log) file and the Event Manager.
This path may be file-based and near-real-time. The ‘master’ copy of
this usage information may be the value persisted to disk by the
Consumer Server. The Event Manger may consolidate updates from a
number of Consumer Servers and partition the updates for the correct
Wallet Server based on LDS information. The LDS information may
be embedded in each event written by the Consumer Server. The Event
Store méy be used in systems with more than one Consumer Server
and Wallet Server. The Event Manager does not modify the values of
usage information passed from the Consumer Server to the Wallet

Server.

There are at least two paths by which usage information may get

passed from the Consumer Server to the Wallet Server:

M A direct informational real time path where the current usage

may be used as part of the loan rebalance mechanism.
W A near real-time path via the Consumer Server log file and
Event Manager for a definitive record of processed usage.

Wallet Control and Loan Processes
Referring to Figure 47C, there is shown an embodiment which
includes all of the paths for wallet and loan control but which does not

include the paths used for internal balance queries that are sent to the

Wallet Server.

The Consumer Server may provide near real-time balance information
for a wallet and all fragments without the need fot a round trip to the

Wallet Server. This may support features such as Informative balance

83

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0335]

[0336] -

PCT/US2003/032254

repbﬂing on every request processed by the Consumer Server; and
reverse rating where the balance may be translated into an allowable

number of usage units (e.g. call minutes or MByte of download).

‘The Wallet Server receives usage updates from all of the wallet
fragments in the Consumer Servers (either via the real-time path or via
the Event Manager), The Wallet Server may be aware of any
changes made to the overall resource or other key values in the master
Wallet within the Wallet Server. The Wallet Server can then push back
to each Consumer Server the consolidated value of the wallet (across
the Wallet Server and all of the Consumer Servers) excluding the last

known value for that Consumer Server. This can be undertaken either

_periodically or in response to a certain level of change seen by the

Wallet Server. Additionally if the update is only periodic the Wallet
Server can publish a time indicator so that the Consumer Server can
report the aggregate balance as of a given time. The combination of
this value reported by the Wallet Server and the latest values in the
Consumer Server gives a near real-time value of the whole wallet.
(There nllay be an alternate mode where the Wallet Sewer pushes same
the last known aggregate value of a Wallet to all of the Consumer
Server with the éame Wallet and any recent changes in the local
Consumer Server wallets are ignored for balances reported by the

Consumer Server.

Additionally the Wallet Server may publish an 'invalid' value to the
Consumer Server for the aggregated wallet values. The Consumer
Server may then indicate that it can not locally report a balance. It m'ay
be aﬁticipated that a most deployments will wish to severely control
the update traffic and a common degenerate mode ofloperation

will to only report the aggregated balance to the Consumer Server
where only one wallet fragment exists (e.g. the update rate may be very
low since the Wallet Server only needs to publish any balance in the

Wallet Server if the Wallet itself may be changed - the Consumer
84

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0337]

[0338]

[0339]

[0340]

[0341]

PCT/US2003/032254

Server may be locally aware of all balance changes). In this case if a
second wallet fragment may be created then the wallet server with send
an 'invalid' value to the Consumer Server and Consumer Server wallet

balance reporting may be disabled.
Internal Balance Query Processes

Referring to Figure 47D, there is shown an embodiment for an internal
balance query from the Wallet Server. This path may not result in
changes to wallets. Where requests are made for multiple
WATI/wallets, these wallets may be read while locking the wallet

fragment information in the Consumer Server to ensure that all of the

‘wallets/WALI are read at the same point in time. Simpler query

processes may also be implem'ented as part of the rating process if the

wallet fragments are not distributed across multiple Consumer Servers.
Consumer Server as Client and Wallet Server as Server

Referring to Figures 48-49., an embodiment is shown which illustrates
the méssages that may be generated due to external requests to the
Consumer 'Server Wallet Library (4752) from the Consumer Server
Rater (4795) or the Consumer Server Wallet Monitor (4781). An
embodiment is shown which illustrates the messages that may be
geﬁerated by the Wallet Server Monitor Client (4780), or by the Wallet
Server (940) triggered by a message received from a different

Consumer Server (925).

Interaction between the CS and the Wallet Server may be via two

async messagmg paths presentcd in three forms:

a. A functional overview of the different flows (that does not
correspond to the messaging on the wire), but focuses on the

business operations.

85

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0342]

[0343]

[0344]

[0345]

[0346]

[0347]

[0348]

[0349]

[0350]

PCT/US2003/032254

b. A summary of the actual messages that can be transferred

between the Wallet Server and Consumer Server.

¢. Appendix [ref] that contains a detailed commentary on the
interactions together with a failure analysis if messages are

lost together with a discussion of race conditions.
CS Initiated
Referring to Figure 48A, messages may be generated by the Consumer’

Server Wallet Library from the Consumer Server Rater or the

Consumer Server Wallet Monitor.
Wallet Server Initiated

Referring to Figure 48B, asynchronous messages may be generated by
the Wallet Server processes. These may be queued at the Consumer
Server and will normally trigger a message from the Consumer Server

to Wallet Server.

Internal Balance Query

Referring to Figure 48C, the Wallet Server may relay internal balance

requests to the Consumer Servers.

Message Encoding and Processing

‘Referring again to Figure 49, a common message may be used with

simple wallet state. indicators, in combinatiqn with a state machine, per -
Wallet Fragment (4510) at the Wallet Server (940) and Consumer
Server (925) to control the Wallets (250...). Also, the Wallet (250. .'.)
may be locked for the Wallet Server (940) or Consumer Server (925)

to perform wallet processing.

In one embodiment:.

86

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0351]

[0352]

[0353]

[0354]

[0355]

[0356]

[0357] |
[0358]

[0359]

[0360]

PCT/US2003/032254

1. Requests may be sent from the Consumer Server (925) as a client to
the Wallet Server (940) as a server refer to one WAI/wallet fragment
(except ‘Request Wallet’) where the fragment may be unknown.

2. Replies back to the Consumer Server (925) as a client may contain
details for more than one wallet fragment for the same WAI (for
example an event can draw from two new wallet fragments on a given
date), and may additionally update WAI information (e. g. date range

for which the WS can serve wallets).

3. Requests sent from the Wallet Server (940) as a server may refer to

- only one WAU/fragment, as do the corresponding replies from the

server function in the Consumer Server (925).

Client requests and server responses generated by the Consumer Server

(925) may include:

1. The latest values of the Consumer Server wallet fragment (with

associated sequénce numbers, and wallet fragment state from the
Consumer Server perspective) to ensure that the Wallet Server (940)
alway's has the latest real time view of the wallet resource (that may be

stored separately in the Wallet Server (940) from any wallet updates

‘received via the Consumer Server log file).

2. Details of any threshold that may be still exceeded (level threshold

indication).
3. Debug information. The ‘state’ of the CS wallet fragment.
Common Interactions

The following sections describe functional opérations of the Wallet

Server / Consumer Server interactions.

WAI & Wallet Fragment Creation / Update — CS Initiated

87

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0361]

[0362]

[0363]

[0364]

[0365]

PCT/US2003/032254

Referring to Figure 50A, the CS Wallet Library may receive a request
for a wallet not in its local cache and issues a request to the Wallet
Server. The Wallet Server will create one or more fragments and the
send these to the Consumer Server. The async reply will then ‘release’

the correct event to be reprocessed (via the CSWaitingEventId).

The request to the Wallet Server by the Consumer Server may be
generated when there may be no WAI information cached in the
Consumer Server for this WAI (i.e. the dates for which the WS can
generate wallets can not be validated) and the Consumer Server has
determined that it may not have all of the wallets for a given date
range. There are two typical cases when this may occur. First, where
there are no wallets for a date. Second, when the
"StaﬁDateNextWallet’ or ‘EndDatePreviousWallet’ or
‘allowancePeriodEnd’ of an exiting wallet indicates that more wallet(s)

are required.

The Consumer Server may pass the Wallet Server an effective date
range extracted from the requesting event (as the reqEventDateRange

request message element) and the WAL for the wallet(s) it requires.

Optionally the CS may pass over the minimum absolute loan value it
requires from one or more wallets with the same WAI (in the
‘reqLoanIncrease’ absolute value — the CS may not pass a
‘requestLoanDecrease’ value). This values may be used by the Wallet
Server as a hint only — it will not trigger a loan rebalance between .
consumer servers. The Wallet Server may return a loan less than may
berequested. S

If the required wallets and possibly wallet fragments exist on the WS
then they will be returned to the CS (the _reqLoanIncrease value being
ignored). New wallet fragments will only be generated by the WS if no
wallet fragment exists on the WS for this WAI/Consumer server.

88

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0366]

[0367]

[0368]

[0369]

[0370)

[0371]

PCT/US2003/032254

Note that if no wallet can be generated by the WS (e.g. error in
customer or reference data or the corresponding wallet may be closed)
then an ‘error’ may be returned from the Wallet Server to the
Consumer Server that may be cached to prevent further requests. The
Consumer Server may clear an error to force a retry to a Consumer

Server.

If a wallet fragment must be returned to the CS for wallet that may be
already exhausted then it will be returned with zero
_loanGrantedValue and in a state of ‘OPEN/NO MORE”.

‘Simple’ Loan Increase — CS Initiated

Referring to Figure 50B, the following diagram shows a simple loan
increase from a CS where the Wallet Server can immediately satisfy
the loan request. The request (containing the reqLoanIncrease value)

gives the absolute value of the loan now required from the Wallet

Server, and the identity of the WAI and wallet fragment. The async
reply updates the wallet fragment, and may optionally trigger the
delivery of other fragments. For loan increases the Wallet Server may
either respond with the requested loan (or larger loan), or may reply
with a loan equal to the existing loan and an ‘OPEN/NO MORE’ state
in the reply ¢_walletFragmentState’.

In the WS reply, the WS may be allowed to send updates for other
wallet fragments. For example if the current fragment was closed in the
WS, the WS could return another open fragment for the same period.
The WS may also-update any other values in the wallet (e. g. date
ranges). The CS may also process this message and may echo the
change if the message from the Wallet Server has the _requestReply
flag may be set.

Wallet Fragment Update — WS Initiated

89

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0372]

[0373]

[0374].

[0375]

[0376]

[0377]

PCT/US2003/032254

Referring to Figure 50E, loans and other Wallet F ragment parameters
may be changed by a message containing new values from the Wallet
Server. Loan increases may be simply sent as updates to the
loanGrantedValue to the Consumer Server (the reqLoanIncrease is not
used as it is master of the loan value). This exchange may be used as
part of the loan redistribution exchange to update loans on the
Consumer Servers then the loans have been recalled. Loan decreases
are rather more complex due to race conditions with events arriving at
the Consumer Server and do not use this simple mechanism. The CS
will process this message and may echo the change if the message

from the Wallet Server has the _requestReply flag may be set.

The protocol allows the Wallet Server to proactively generate and push
wallet fragments to a Consumer Server. This would typically be used
to allow the Wallet Server to generate wallet fragment for high run rate
accounts to eliminate a ‘peak’ of wallet generation at midnight as a
number of customers switch over to new wallets. This may be
undertaken by the Wallet Server scanning the high run rate wallet
fragments that expire (say) within the next 24 hours, and proactively
generate wallet fragments to the Consumer Server(s) that are hosting

the high run rate wallets.
Wallet Fragment Query — WS Initiated

If the Wallet Server wishes to simply determine the current Consumer
Server values it uses the same ‘Wallet Fragment Update’ mechanism

described above with the _requestReply flag set.
Wallet Fragment Report — CS Initiated

Referring to Figure 50F, a CS may report the value of a fragment to the
WS at any time (a message with no ‘request’ element). The WS may
be not required to return any message unless the message to the WS

contained _requestReply flag. However the WS may generate a reply

90

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

to update values on the CS (for example if the loan value on the CS

may not be as expected due to a previous communication failure).
[0378] Park Wallet — WS Iitiated

[0379] Referring to Figure 50G, the Wallet Server may determine that it wants

to park a wallet fragment on the Consumer Server because:

* Very low usage.

" No anticipated usage on this wallet fragment (end date
of wallet may be a configurable number of days less

than the current date/time).

* Wallet Server has determined that the Consumer
Server wallet fragment may be corrupt (typically by
there being a sequence error, or mismatch of sums and
deltas).

" Wallet server wishes to close the corresponding wallet.

[0380] To park the Wallet Fragment:

BThe Wallet Server sends an update to the Wallet Fragment with a
state of ‘parking’ containing the _requestReply flag.

WThe Consumer Server then changes the fragment state to be
‘parking’ and will then lock the wallet fragment and prevent
further usage from being taken from the wallet fragment.

MThe Consumer Server then responds that the wallet may be
parking (with the last values consumed from the wallet prior to
closure). However the Consumer Server may NOT yet delete

the wallet fragment.

o1

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0381]

[0382]

[0383]

[0384]

[0385]

PCT/US2003/032254

WThe Wallet Server will then acknowledge the parking request a
new status (parked) indicating that the wallet should be deleted.

Park Wallet — CS Initiated

Referring to Figure 50H, this is simply a truncated version of the same
exchange that is used by the Wallet Server to close a wallet. This
mechanism will initially be used to close the wallets, one by one, as
part of a controlled CS shutdown. Later enhancements will add bulk
return/close operations — e.g. close all wallets for WAL Loan
Reduction & Redistribution. The WS Wallet Monitor may pro-actively
redistribute the loan across multiple Consumer Servers, and the
Consumer Server may reactively trigger a loan distribution. Different
strategies for this which may be implemented are discussed in [ref].
Note that the redistribution strategy complexity may be encapsulated
within the Wallet Server — the strategy can be enhanced with no

messaging or CS changes.
Wallet Loan ‘Return’

Referring to Figure 501, a special case of loan increase/decreasé may
be when the CS determines that loan can be ‘returned’ to the WS,
when the WS may consider that all of the loan on the CS has
previously been consumed. For example, the Wallet Server may have
set the Wallet Fragment State to be ‘OPEN/NOMORE’. When a
change has been committed to a wallet (or a reservation
adjustment/termination may be processed) at the CS then the CS wallet
fragment status may be checked. If the wallet fragment is in the
‘OPEN/NOMORE"’ state but the used/authorized value is less than the
loan then the WS thinks that this wallet may be fully used, but the CS
now has ‘free’ loan that has to be notified to the WS.

After the charge/loan may be committed the CSWL, for any wallet
fragments in the above state (i.e. the wallet fragment may be in the

92

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0386]

[0387]

[0388]

[0389]

[0390]

[0391]

PCT/US2003/032254

‘OPEN/NOMORE’ state but the used/authorized value may be less
than the loan), the CSWL sends the current wallet values to the WS,
and sets the ‘_requestloanIncrease’ to the current loan value, but also

passes the CS status unchanged .

Referring to Figure 50J, the WS will then rep}y by changing the loan
value and/or setting the wallet fragment state to be ‘OPEN/NOMORE?.
The presence of the ¢_requestLoanIncrease’ value (even if the value
may be unchanged) will trigger the WS to review the loan values and

validate the wallet fragment state.

The Credit Event in this case is typically the release of a Low Value
Reservation. The wallet update in this case may then trigger new wallet
status to then be driven down to other Consumer Servers (by the WS
sending alerts to other Consumer Servers, not shown in above
diagram). The Wallet Server may be notified that loan can be returned.
This update may then cause updates to cascade to all of the other
Consumer Server Wallet fragments informing them that more loan

may be available.
HVR

Referring to Figure 50K, an embodiment for High Value Reservations

may be disclosed.
Wallet Loan Re-Balance Operation

The Wallet rebalance operation can be reactive or proactive. Reactive

_ operation would be to move loan from one or more Consumer Servers .

to another as a result of a loan increase being received from one
Consumer Server. Referring to Figure 51, reactive rebalance operations
follow the illustrated message flows. Where the process may be
triggered from the Consumer'Server, proactive operation may be

initiated from the Wallet Server and may orily use steps 2, 3, and 5.

93

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0392]

[0393]

[0394]

[0395] -

PCT/US2003/032254

The Consumer Server ‘A’ attempts to process an event and requires
additional loan to commit a charge or process and
authorization/reservation request, and requests additional loan from the
Consumer Server. The Wallet Server determines it does not have
sufficient unallocated loan to satisfy the request, determines that other
Consumer Servers have wallet fragments for the same wallet, and
sends requests to reduce (recall) loans from those other Consumer
Servers (‘B, ‘C’, ...). In a simple implementation the Wallet Server
will request that all of the outstanding loan may be returned from each
of the other Consumer Servers (i.e. the Consumer Server reduces the
loan to cover the existing usage commitment (and any
authorization/reservation). More sophisticated recall schemes are

anticipated.

The Consumer Server responds with the value to which it can reduce
it’s loan (and does reduce Consumer Server’s local copy of the loan to
ensure that there may be no race condition with additional arriving
events — this may be an exception where the loan value in the
Consumer Server does not slave to the loan value in the Wallet

Server).

The Wallet Server calculates if there may be sufficient loan to cover
the request from Consumer Server ‘A’ If there is insufficient loan,
then the accumulated available loan may be passed to Consumer
Server “A’. If an excess loan remains then this can be either retained by
the Wallet Server or distributed across the Consumer Servers. If the
Wallet Server determines that it will re-distribute the loan; then the

remaining Consumer Servers are updated.

A number of strategies exist to determine if recovered excess loan may
be returned to the Consumer Servers. If the available loan is less than
a configured ‘noise’ threshold then the loan may not be redistributed

and may be retained by the Wallet Server. This assumes that the next

94

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0396]
[0397]

[0398]

[0399]

PCT/US2003/032254

transaction from any of the Consumer Servers will probably consume
all of the remaining loan. Otherwise divide the remaining loan in two,
and retain half on the Wallet Server, and distribute the other half across
all of the active Consumer Servers. The Wallet Server retains part of

the loan to allow for failover support.

Further Variations

Logical Data Centers

On a higher level, a complete system may be contained within a

' physical data center and be mapped as a Logical Data Center on a one-

to-one basis or according to other variations. These Logical Data
Centers may be considered as domains or high-level partitions for the
system. Logical Data Centers provide a key advantage for global
providers because many have separate systems for each country or
have centralized deployment which makes scaling up more difficult.
Finally, applying this model to the data center, enables more cost
effective disaster resilience, i.e., n+1 resilience at the data center level.
This may be somewhat axialogous to the concept of server clustering.
In a computer system, a cluster is a group of servers and other
resources that act like a single system and enable high availability and,
in some cases, load balancing and parallel processing. Here, the
logical data center concept may principally allow fail-over from one
physical data center to another. The implementation of logical data
centers may minimize the impact of total data center loss. Current DR
strategles for single data center installations require a second (equally
large) data center to be on standby. By carving the problem up, you
can have significantly less redundant hardware and still provide fail-

over in the event that you lose one of the data centers,

A Logical Data Center may be implemented in the following manner:
product instances and consumer IDs may be assigned to a particular
logical data center (i.e., US data center and UK data center). This

95

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0400]

[0401]

PCT/US2003/032254

assignment may be entered via CRM/self-care or via a plug-in.
Because a Logical Data Center may be mapped to a physical data
center, multiple logical data centers may be co-located. The
partitioning of Logical Data Centers (LDC) operates in a similar
manner to Logical Consumer Servers (LCS) and Logical Data Storage
(LDS), however the LDC may be an externally exposed entity while
the LCS and LDS may be entirely internal entities.

The Logical Data Center concept may be particularly amenable to the

international scene especially for an operator that may provide service

- in multiple countries wherein each country offers local price plans and

 local operational management of systems. There may be a strong

connection between network traffic generated in a particular country
and the nationality of the particular consumer but these systems must
also be able to handle roaming consumers (i.e., a US consumer visits

Britain and wishes to have an authorization processed).

Referring to Figures 36-39, two Logical Data Centers are depicted. So,
a new account would be allocated to a Logical Data Center, e. g. based
on a rule which says UK consumers go to LDC 1, and then within that

Logical Data Center, they would be allocated to a Logical Data Store,

A UK consumer may roam onto a US network and request an

authorization which may be picked up by a Distributor in the US Data
Center. The request will be generated with an identifier that tags the
request as originating from a foreign consumer (i.e., integrating a

foreign consumer ID into the request record). The US Distributor may

- route requests tagged with a foreign consumer ID to the UK

Distributor (e.g., IMSIs starting with ‘44’ go to the UK).
Alternatively, the US Distributor may initiate a lookup. Lookup
routing requires registration event to build directory. Then the US
Distributor may forward the request to the correct UK Consumer

Server. Each logicél-data center will have LCS/LDS 1-10000, so to

96

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0402]

[0403]

[0404]

[0405]
[0406]

[0407]

[0408]

[0409]

PCT/US2003/032254

identify a logical store or server globally, one would need both the
LDC and the LDS or LCS.

Referring to Figures 40-43, an embodiment is illustrated which
demonstrates a scenario in which an international entity comprising
multiple consumers spread across multiple countries may need to share

the same master wallet across data center boundaries.

Referring to Figure 44, another embodiment is shown in which the

network and Distributor may be common to each Logical Data Center.

A variant on the DRM model allows the license key to be delivered
“over-the-air” to any wireless enabled device. The key may be used to
unlock the content which may be already resident on the device,
having been distributed as a free CD with a magazine and loaded via
sync cradle. Such a model could readily be deployed using 2G
technologies such as SMS since the bandwidth required for the key

may be small.
Further Embodiments

Wallet Server Initiated Messages

The following section describes examples of the real time interactions
between the Consumer Server and the Wallet Server, with the WS
Wallet Control Server acting as client with interactions initiated by the
WS Wallet Monitor. The following examples are specific business
cases of the same message to update the WAT and Wallet Fragment

information cached on the Consumer Server.
Loan Redistribution

Referring to Figure 52, the WS Wallet Monitor may pro-actively
redistribute the loan across multiple Consumer Servers. Different

strategies for this may be implemented. Note that the redistribution

97

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0410]

[0411]

[0412]

[0413]

[0414]

[0415]

[0416]

[0417]

PCT/US2003/032254

strategy complexity may be encapsulated within the Wallet Server —

the strategy can be enhanced with no messaging or CS changes.

During a loan reduction, if the spend in the Consumer Server is greater
than then loan value to which the Wallet Server would like to reduce
the loan, then the loan may only be reduced to the current spend level.
The actual updated loan (allowing for spend > requested loan value)

may be returned in the acknowledgement.'

Additional Loan For Wallet Fragment

Referring to Figure 53, a Consumer Server may be refused additional
loan (if the master wallet has hit a credit or usage limit (stages 1 & 2

below, with the Consumer Server acting as client to the Wallet Server).

The Consumer Server in this example does not receive any new loan,
and remembers that the Wallet Server has indicated ‘no more loan
available’. As part of this transaction the Wallet Server also notes to
the Consumer Server that no additional loan may be available at the

Wallet Server (or that can be recovered from other Consumer Servers).

Subsequently an adjustment may be made at the Wallet Server (either
directly, or via another Wallet Server, see previous example) that

results in additional loan becoming available at the Wallet Server.

The Wallet Server then must update ALL of the Consumer Server
shadow wallets to indicate that more loan may be now available (the

Wallet Server may also grant additional loan). For message exchange

_ 1 &2, the Consumer Server may be acting as.a client, and for. .

exchange 5 & 6 as a server.

Early Product Termination / Product Change

Referring to Figure 54, once the Wallet Sever had determined that the
WAI should be changed a number of changes are possible to the

information stored in the Consumer Server:

8

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

*The dates for which charges can be applied to this WAI (a
union of all of the product and customer dates that will

control usage).

*The validity date for a Wallet Fragment, and the dates of
adjacent Wallet Fragments.

*The loan value for a wallet fragment.
*Availability of additional loan on the Wallet Server.

*Closure of the wallet for additional spend.

[0418] Any combination of the above can be undertaken for one Wallet
Fragment for a given WAI in one round trip.

[0419] If the spend has already exceeded the revised wallet value then re-
rating may address this problem together with any other problems

associated with wallet validity or allowable spend.

[0420] A wallet (and therefore a WAI and account) could be flagged for re-
rating if the spend in a wallet (following a wallet change) exceeds the
allowable loan on a wallet (w1th some possible exceptions for

exceeding credit limits on cash wallets).

[0421] Status & Value Recovery / Audit Poll
[0422] Referring to Figure 55, the WS Wallet Monitor may poll the Consumer
Server for the value of pro-actively read the instantaneous wallet
~ resources.
[0423) Wallet Fragment Close From WS
[0424] Referring to Figure 56, the Wallet Server may determine that it wants

to close a wallet fragment on the Consumer Server, reasons include:

eVery low usage.

99

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

eHigh resource.

*No anticipated usage on this wallet fragment (end date of
wallet may be a configurable number of days less than the

current date/time).

eWallet Server has determined that the Consumer Server wallet
fragment may be corrupt (typically by there being a sequence

error, or mismatch of sums and deltas).

[0425] To close the Wallet Server generates a request to close the wallet. The
Consumer Server responds that the wallet may be closed (with the last
values consumed from the wallet prior to closure). The Wallet Server

may then generate a request to destroy the wallet.

[0426] Even if the Consumer Server receives a request to close or destroy a
non-existent wallet, it may still reply that the wallet may be closed or

destroyed as appropriate.

[0427] Once the Wallet Server has received acknowledgement that the wallet
is destroyed, and all of the corresponding charges have been received

via the Consumer Server log file then the fragment can be destroyed in

the Wallet Server.
[0428] Pro-active Wallet & Wallet Fragment Generation
[0429] Referring to Figure 57, once a WAI exists on a Wallet Server the

protocol may allow the Wallet Server to proactively generate and push - -
wallet fragments to a Consumer Server. This would typically be used
to allow the Wallet Server to generate wallet fragment for high run rate
accounts to eliminate a ‘peak’ of wallet generation when WAI switch

over to new wallets.

100

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0430]

[0431]
[0432]

[0433]

[0434]

[0435]
[0436]

[0437)

[0438]

1.

PCT/US2003/032254

This may be undertaken by the Wallet Server scanning the high run
rate wallet fragments that expire, for example, within the next 24
hours, and proactively generate wallet fragments to the Consumer

Server(s) that are hosting the high run rate wallets.

Component Detail - Wallet Server

Wallet Database Update Demon Process

The demon may have x logical processing stages:

1.File reader
2.Consolidator

3.Database Writer

The Wallet Database Update Demon may assume that the following

information may be stamped on each event:

1. Consumer Server Pool Element ID

2. Overall sequence number for this event for as processed by

this Consumer Server.

3. Consumer Server process date time.

File Reader

The file reader may read Consumer Server log files directly, or

abridged Consumer Server log files created by a separate process.

Two forms of abridged files are anticipated:

Consumer Server log files simply with data not required by the

Wallet Server removed.

101

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0439]

[0440]

[0441]

PCT/US2003/032254

2. Consumer Server log files where events have been consolidated

together. The file may comprise a (large) number of wallet updates,
associated with a range of event sequence numbers. Each wallet
update may include the total wallet value at the end of the update, the

number of the updates, and the total delta value.

Depending on the final configuration of the ES/EM the file reader may

have a number of different input control options including:

1. A managed database of files to process where the file reader ‘tails’

the file based on a file offset written to the file control database.
(Preferred solution if EM/ES present).

- A managed database of files to process where the file reader “tails’

the file based on the file size and only committing events up to a
‘commit marker’ in each file. (Preferred solution for debugging if no
EMJ/ES where the Consumer Server log file has been registered with
a file control database, but the reader tails the Consumer Server

reading committed sets of events).

. The file reader searches the Consumer Server directory for the next

log file with a low sequence and ‘tails’ it. (Initial debugging).

The file reader may maintain a watermark of the highest sequence
number event seen from each Consumer Server for transactional
integrity, for restart and to detect missing updates. The same
watermark may be committed PER Consumer Server by the database

writer for recovery purposes.

Events received, per Consumer Server, with lower event sequence
numbers than the watermark may be discarded, events with sequence
gaps or Consumer Server processing timestamp inconsistencies may be

recorded in the Wallet Update Exception Queue.

102

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0442]

[0443]

[0444]

[0445]

[0446]

[0447]

[0448]

[0449]

PCT/US2003/032254

. Charges for other Wallet Servers in other LConsumer Server may be

discarded.

The File Reader may be responsible for detecting that a Consumer
Server has terminated (either under control of the work manager or on
a process / machine failure), and passing a message to the Wallet
Update Exception Queue so that any associated loans for those wallet

fragments can be freed.
Consolidator

The consolidator may undertake two functions:

1. Merging together updates to the same wallet fragment, checking the

individual fragment sequences, sums and deltas.

. Batching and partitioning the database updates into parallel blocks of

wallet updates that can be written with parallel database writers to the
database. Some databases may require that separate threads/processes
updating the same database have separate database connections, and

can not commit across threads or processes in parallel.

Database Writer

The Database Write may update the partitioned data into the Wallet
Database, updating any Consumer Server sequence watermarks and/or

input files in progress data at the same time in a single transaction.

It may then update in a separate transaction a file control database
when an input file has been fully consumed so that the file-can be
audited/archived/deleted.

Partitioning by Consumer Server may be good for fragment updates
and recovery. Partitioning by WAL may allow per wallet overall
resource updates. It may also allow for physical update of fragments

in co-located parts of database cache memory.

103

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0450]

[0451]

[0452]

[0453]

[0454]

[0455]

[0456]

[0457]

[0458]

PCT/US2003/032254

Consumer Server - Component Detail

The following will provide one embodiment for the design detail for

the Consumer Server components.

Consumer Sérver Wallet Library (4752)

The Consumer Server wallet library may be used by the Consumer
Server wallet related processes. The library encapsulates all of the fast
moving Consumer Server caches, including the wallet and wallet
fragment cache, low value reservation cache, while providing all the

locking to protect these caches.

Detailed Schema Description

Referring to Figure 58, an example for the WAI, Wallet, and Wallet
Fragment is illustrated.

Wallet number: Allocated by Wallet Server. This may be a wallet
sequence number and may be the same for all wallets that cover the
same period. Used to tie together wallets of different Consumer Server
that cover the same period as the wallet number will be the same. (So
for periodic wallets stating in March, we can get March 2003=1, April
2003=2 ... March 2004=13. For long duration cash wallets there may

be only one wallet of sequence 1).

Total loan value may be set at wallet creation and may be the

maximum value that can be charged against the wallet. (Typically 100

min, or some cash limit for authorizations, for cash wallets this limit

may be typically only used to control authorizations).

Wallet Server Start may be the first day wallet can be consumed from.
For free minutes, this may be typically the date of the free period from
which the wallet can be consumed. For cash wallets this may be

typically the account creation date.
104

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

[0459]

[0460]

[0461]

[0462]

[0463]

[0464]

[0465]

[0466]

[0467)

PCT/US2003/032254

Wallet Server End may be the last day wallet can be consumed from.
Typically set to forever for cash wallets and end of period for limited

consumption wallet.

Next Wallet Start may be the date of next wallet. Never/invalid for
cash wallets. Use for free minute wallets to find if there may be a gap
before the next wallet, or if there may be another wallet that overlaps

this period.

Last Wallet End may be the date of previous wallets. If invalid then no

earlier wallet exists.

Values controlled by the Wallet Server may be changed by the Wallet

Server over time.

Wallet server local usage: Usage saved in the Wallet Server from
wallets that have been recalled from Consumer Server and destroyed,
or usage recovered from a Consumer Server log following a Consumer
Server failure. That is, usage for which no real time resource exists in a

Consumer Server anymore.

Wallet server duplicate adjustments: Adjustments made to the wallets
by the Wallet Server (e.g. negative adjustments due to duplicate
removal). The changes may be recorded as events generated by the
Wallet Server.

Wallet server other adjustments: Adjustments made to the wallets by
the Wallet Server (e.g. payments). The changes may be recorded as

~ events generated by the Wallet Server.

Values stored by billing extract, to determine what part of this wallet
fragment has been reflected on the bill:

Billed value snapshots: Values of this wallet that have been billed -

lined to some bill/extract number.

105

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254
[0468] Numeric Consumer Server pool element ID: The ID of the Consumer
Server on which this wallet fragment exists.

[0469] Fragment number: Used to identify a wallet fragment within a WAI

across all Consumer Server (and wallet numbers).

[0470] Local wallet fragment state: Master state of the wallet as determined
by the Wallet Server (open, closed, return requested etc).

[0471] Loan granted value: Fragment of loan granted to this Consumer Server
by the Wallet Server.
[0472] Information values returned as part of the loan protocol, used to

support new loan requests and interactive changes to recall loans etc.:

[0473] Remote wallet fragment state: State of the wallet last reported by the
Consumer Server as part of the interactive Wallet Server/Consumer
Server loan protocol.

[0474] Last resource via loan request: Consumer Server resource left at last

loan request or other interactive Consumer Server/Wallet Server
message. Used to be the latest Consumer Server resource for loan
determination. (May not be persisted, and may never be committed to
the Consumer Server log file, but potentially the most recent resource

change seen by the Wallet Server).

[0475] Last sequence no via loan request: Sequence number of the last

Consumer Server change seen.

[0476] Number of charges processed: Number of charges that have been

processed for this wallet fragment from the Consumer Server log file.

[0477] Highest Consumer Server charge sequence number: Highest charge
sequence number we have seen to date. As a simple test if the charges
are processed in order then the number of charges should follow the

sequence highest sequence number.

. 106

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

[0478] Remote fragment resource from Consumer Server: The last fragment
resource as reported by the Consumer Server, corresponding with the

highest Consumer Server charge sequence number seen.

[0479] Local fragment resource: Local fragment resource constructed from the
deltas seen in the events. If all charges have been processed and no

math errors exist then the local and remote fragment resources should

match.
[0480] Wallet Fragment States
[0481] The wallet can be in the following states (this value may be

decomposed into a number of flags), and the Consumer Server and
Wallet Server track both their local state, and exchange their state with
the remote server. The states are as follows (not that the Wallet Server

and the Consumer Server may not use all of the states):

1. New request

2. Open/more. Open for use, more loan may be available. No loan

requests pending.

3. Open/more / request. Open for use, more loan may be available.

Loan change pending.

4. Open/no more. Open for use, no more loan available in Wallet

Server.

5. Closed (no more loan, and loan already used so no events /

authorizations can be set against this wallet).

6. Return requested (wallet may be in process of being passed back to
Wallet Server, so no events / authorizations can be set against this

wallet).

107

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

7. Purgable. Wallet can be purged from memory. Wallet server has

‘taken control’ of this resource.

[0482] The Consumer server may maintain two flags per shadow wallet:

1. ‘LOAN_EXHAUSTED’. This may be used to cache information that
the Wallet Server has no more loan to give to the Consumer Server.
This prevents a Consumer Server from repeatedly asking for a loan

that has been exhausted on the Wallet Server.

2. ‘LOAN_FULLY_SPENT’. This may be a flag indicating that the
Consumer Server has previously indicated that the internal loan may
be fully consumed. The Wallet Server will have then assumed that the
Consumer Server has no returnable loan for that shadow wallet, and
will not include this shadow wallet in any loan reallocation. If an
external loan is cancelled or a payment is made, a loan may be

returned and a new Wallet Status message can be triggered.]

[0483] Recovery
[0484] Replacement Consumer servers will create a new shadow wallet in the

Balance Server. The shadow wallet loans data in the Wallet Server
associated with the failed Consumer Server may be ‘released’ in a
timer or when the Consumer Server Work Manager reports that the
server has failed (typically as the machine has rebooted and re-
registered). On failure the shadow wallet resource as held in the Wallet
Server (including any journal changes in the Consumer Server) may be

merged onto the Master Wallet.

[0485] Upgrades

108

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254
[0486] The Wallet Server may be upgraded prior to any Consumer Server
upgrade, or any API server upgrade. The upgrade may be completed

by moving shadow wallet Servers from one physical Wallet Server to

another server.

108

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

CLAIMS:

1. A distributed computer system comprising:
a. atleast one physical node;

b. atleast one logical node;

wherein
. each of one or more of said at least one logical node may be
mapped to one of said at least one physical node;
. said system comprises computer executable instructions for

performing a method comprising the steps of:

receiving a request for work;
- examining said request for work;

- determining which of said at least one
logical node corresponds with said request

(corresponding logical node),

- determining which of said at least one
physical node said corresponding logical
node is associated with (corresponding

physical node);

- interacting with said corresponding logical

node.

2. A system as claimed in Claim 1 wherein:

a. at least one of said at least one corresponding physical node comprises a

corresponding physical datastore;

b. at least one of said at least one corresponding logical node comprises a

corresponding logical datastore.

110

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

PCT/US2003/032254

3. A system as claimed in Claim 2 wherein:

physical server;

server.

at least one corresponding physical node comprises a corresponding

at least one corresponding logical node comprises a corresponding logical

4. A system as claimed in Claim 3 wherein:

said corresponding logical datastore may be associated with a first

predetermined set of data values;

said corresponding logical server may be associated with a second

predetermined set of data values;

said step of interacting comprises:

opening said corresponding logical datastore;

obtaining a set of additional information about said

request from said database;

determining which of said at least one
corresponding physical server and corresponding
logical server is associated with a combination of

said request and said set of additional information; -

routing said request to said corresponding logical

server;

allowing said corresponding logical server to access

and modify said corresponding logical datastore;

111

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

PCT/US2003/032254

e processing said request on said corresponding

logical datastore.

5. A system as claimed in Claim 2 wherein said system further comprises computer

executable instructions for upgrading said system by performing the steps of:

recognizing at least one additional physical datastore in said system
wherein said additional physical datastore is different from said

corresponding physical datastore (pre-existing physical datastore);

migrating at least one logical datastore of said set of logical datastores

from said pre-existing physical datastore to said additional datastore;

remapping said logical datastore from said pre-existing physical datastore

to said additional datastore.

6. A system as claimed in Claim 1 wherein:

at least one of said at least one corresponding physical node comprises a

corresponding physical server;

at least one of said at least one corresponding logical node comprises a

corresponding logical server;

said interacting step comprises routing said request to said corresponding

logical server.

7. A system as claimed in Claim 6 wherein said system further comprises computer

executable instructions for performing the steps of:

a. monitoring a workload allocated to each of said at least one physical server;

b. if said workload, on any of said at least one physical servers, exceeds a

predetermined maximum:

adding at least one additional physical server to said system;

112

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254
- remapping at least one of said logical servers across said at least
one physical server including said additional physical server so as

to redistribute said workload according to a predefined formula.

8. A system as claimed in Claim 6 wherein said system further comprises an

application programming interface confi gured to allow a user to

- monitor a workload allocated to each of said at least one physical

server;
- recognizing at least one additional physical server;

- remapping said at least one logical server across said at least one
physical server including said additional physical server so as to

redistribute said workload.

9. A system as claimed in Claim 6 wherein said system comprises at least two
physical servers and further cémprises computér executable instructions for

performing the steps of:

- monitoring a workload allocated to each of said corresponding

physical servers;

- if said workload, on any of said physical servers, exceeds a
predetermined maximum, remapping at least one said logical
servers so as to redistribute said workload according to a

predefined formula.

10. A system as claimed in Claim 6 wherein said system comprises at least two
physical servers and further comprises. computer -executable instructions for

performing the steps of:

- monitoring a workload allocated to each of said corresponding

physical servers;

- if said workload, on any of said physical servers, individually or

in combination, falls below a predetermined minimum,
113

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

remapping at least one of said logical servers 50 as to redistribute

said workload according to a predefined formula.

11. A computerized system as claimed in Claim 6 wherein:
a. said request comprises a data value;

b. said at least one corresponding logical server is associated with a

predetermined group of data values;

c. said system comprises further computer executable instructions for

performing the steps of:
-obtaining said data value from said request;

- matching said data value associated with said request with one of said at
least one corresponding logical server wherein said corresponding
logical server is associated with said predetermined group of data values

which includes said request’s data value.
12. A system as claimed in Claim 6 wherein said system further comprises computer

executable instructions for upgrading said system by performing the steps of:

a. recognizing at least one additional physical server in said system wherein
said additional server comprises at least some programming that is

different from said pre-existing physical servers;

" b. migrating at least one logical server of said set of logical servers from said

corresponding physical server to said additional server;

c. remapping said logical server from said correspohding physical server to

said additional server.

13. A system as claimed in Claim 6 wherein said system comprises further computer

executable instructions for performing the step of:

114

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

14.

15.

16.

17.

18.

a. if one of said physical servers fails, remapping said corresponding logical
servers across said remaining physical servers according to a

predetermined formula.

A system as claimed in Claim 13 wherein said predetermined formula comprises
distributing said logical servers on a pro-rata basis across said remaining physical

SCrvers.

A system as claimed in Claim 13 wherein said predetermined formula comprises
analyzing a pre-existing workload and capacity on each of said remaining physical
servers and distributing said logical servers in such a manner as to balance, as

much as possible, said workload across said remaining physical servers.

A computerized system as claimed in Claim 6 wherein:
a) said request comprises at least one consumer identifier;
b) said at least one logical server is programmed to process a plurality of

requests corresponding to a plurality of consumer identifiers;

c) said determining step is based on matching a request with a specific

consumer identifier to its corresponding logical server.

A computerized system comprising a computer readable medium having computer
executable instructions for transacting requests over a network comprising at least
one physical server wherein said physical server is subdivided into a plurality of
logical servers wherein each of said plurality of logical servers is associated with a
group of consumer identifiers and wherein said computer executable instructions
are configured to route a request, further comprising a consumer identifier, to a
logical server whose range of consumer identifiers include said consumer

identifier associated with said request.

A computerized system comprising a computer readable medium having computer
executable instructions for transacting requests over a network comprising at least
one physical server wherein said physical server is subdivided into a plurality of

logical servers wherein each of said plurality of logical servers may be associated

115

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259

19.

20.

21.

22,

PCT/US2003/032254

with at least one entity and wherein said computer executable instructions are
configured to route a request, wherein said request is also associated with a
particular, entity, to a logical server whose range of entities includes said entity

associated with said request.

A computerized system as claimed in Claim 17 wherein said entity comprises a

family.

A computerized system as claimed in Claim 17 wherein said entity comprises a

set of employees from a company.

A computerized system as claimed in Claim 20 wherein a second set of employees
from said company may be associated with a second entity and wherein said

second entity may be allocated to a different logical server.

A method for distributing a workload, which utilizes a plurality of physical and

logical servers, comprising the steps of:
- receiving a request for work at a processing node;
- examining said request for an identifier;

- determining a logical server out of said plurality of logical servers which
has been configured to accept requests associated with said identifier

(selected logical server),

- determining a physical server associated with said selected logical server

(associated physical server);
- routing said request to said associated physical server;

- monitoring said plurality of physical servers for said workload to exceed a

predetermined maximum on any of said plurality of physical servers;
- redistributing a mapping of said logical servers to said physical servers to

achieve a workload balanced according to a predetermined formula.

116

SUBSTITUTE SHEET (RULE 26)

WO 2004/034259 PCT/US2003/032254

_— 120
[Roselorii)

uoner] 140

Event + Chargeable
Transaction

Enhanced Event +
Chargeable Transaction
A IRNEEE S

i Feos |
£y Field 4 :

Field 5
Field 6

: Fleld 7 _

Field
Field 7
Field 8
4 Field 9

SRRE

N e NS o

Figure 1

1/81

WO 2004/034259 PCT/US2003/032254

— 40

L wenelia G
121

Event + Chargeable
Transaction

Enhanced Event +
Chargeable Transaction

Field 3 j
I 7
I Field 4

Field 6

TR

i Field 5 ;f;pi"

: Field 6 :
Field 7 ;

ENGTTEN
Field 10

T gy

Figure 1

2/81

WO 2004/034259 PCT/US2003/032254

p Wallet Allowance

wallet 230f
Type:Minutes

“Walet 240]

Consumption Rate

Figure 2

3/81

WO 2004/034259 PCT/US2003/032254

10
oW Wallet Near real
321 > time
usage
update
940

925
Figure 3

4/81

WO 2004/034259 PCT/US2003/032254
926

320

Loans

Near rea

—_ time

940

Figure 4 925

5/81

WO 2004/034259 PCT/US2003/032254

930 960 955

Figure 5 950 & 960

6/81

WO 2004/034259 PCT/US2003/032254

S

RS E3L
-::ef:}»‘.‘ﬂ:z L EA SR Lt
RN e R AR

LR e e

PSR %

Bl G

M
R i

iy
W

Ci

o

i

et

¢ *
el

;L‘f |23
RS 12

4

Vel

e

it

RE: ' ih

NP

% ;
REARSLO R

Figure 6

7/81)

WO 2004/034259 PCT/US2003/032254

Figure 7 750

8/81

WO 2004/034259 PCT/US2003/032254

istrati 81
Registration })
]/ s \‘“ —

Process
Status & Load Process Inter-Server
Configuration Process Name
& Control Location resolution

Registration

AN

Server Pool Server Pool Server Pool

Figure 8 l
750 751 752

9/81

WO 2004/034259 PCT/US2003/032254

GRM.IVR Seff

are: ;
=t) R e
AP| Server % Server Work
920 Mana?ers
Consumer \ 970
Server 925 3 o]
' PR
Wallet Databases
+ Proxy

|

Consu ™~

Directorv ¥4,

911 5 g
Reference Event Storeé

902 Database & Proxy l
930
955
Figure 9 950

900

10/81

WO 2004/034259

915

PCT/US2003/032254

d

fa 23] “dalos
i o1 <Jalas S
te o «dals~
A o1 wdntas
1% o1

Hedvoth, Ansyer
Cerrelates
e AT
Racd A?
Ricd A
& A?
<7 A?

Directory / ! Directory
Server A Server
1 s 2
-
- N \ T T
3 3
Ext Dates Cerelator nt 158 Catrelatar
feesid Cone Id
1 22} wdats a1 <LCS1> «data>
1 [o2) ~datas lg» LB wdntgx
3b [o]] «<dala> <I3> <LCS3> <dsle>
3c 23] <dala> <> <LCS4> <dala>
ad ot NaH <dalas 4fG ALCSh e <gatan
e D1 HS6 «dalgs 16> LG <dat
3 D1 NS7 <data> <I7> <LCS7> <data> Ext i
r 151 <datos 3o LOBS>
12 D1 My dat <1 <LCB8> «dolar Consld Cons
?

Corretator Dala

<dale>

Correlator Answer

'} <data>

~dala>
<“datur
<data>

At
A2
A3
Ad
A5
A6

Consumer .
Server

Consumer

Consumer

Server —T'|
2 !

ST

Server .
A /

/

925

Figure 10

11/81

WO 2004/034259 PCT/US2003/032254

| Streamed Data Updates From Consumer Serve> [Wallet Balance Updates >
[Streamed Data Updates From Consumer Serve> Event Manager | Wallet Balance Updates >
[Streamed Data Updates From Consumer Serve> [Wailet Balance Updates [>

Rated Events For lnvoicing = Configured Outputs Configured Odtput‘Audits

Figure 11

12/81

WO 2004/034259

External To
Internal
Consumer

Internal
Consumer Id

Allowance
Instance

Wallet

i

External
Consumer Id

Product
Inslance

Product
Instance
Group

Account

PCT/US2003/032254

Valid CTT for Wallet po—OH - Standard Standard Data Accessor
Product Allowance Filter Criteria Enhancement |04 Enhancement Input Map
Output Map
Walilet
Product Consumption pO-—#- Wallet Type H Daia Accessor PO+ Data Accessor |*H04 Data Accessor
Output Input
Rate
+ E] E! P
X
Product Qutput Record
Charge BO——m——ree Altribute Output Record

Event Liod Chargealble Chargl‘ng
Transaction Detail
Chargeable
Chargeable Transaction
Transaction !
H T Attribute
ype Definition

3

Figure 12

13/81

WO 2004/034259 PCT/US2003/032254

High Level
High Level Machine &
Server Pool Process

Control

Control

Consolidated
Server Pool Status
& Load

Consolidated
Machine Status
& Load

Registration

Registration

]

Registration |

Process

Process Start

Status & Load _ PTOCeSS |nter sarver | & Control Machlne&
Configuration Process Process
& Control | J-ation Registration \ Status
) \

resolution

/

\ Registration Name /

Server Pools Per Machine

Figure 13

14/81

WO 2004/034259

PCT/US2003/032254

Figure 14

QRIS R e P

Invoice
\ Calculation
_Events (Taxation + Event F:harges
Discounting) :

Event
Enhancement

Additional
Invoice Data
from external
systems

15/81

J

invoice Data

Coliation

Configured Charge
Qutputs

Qutput and Event
Audit

WO 2004/034259 PCT/US2003/032254

Daiabase Proxy

Jourpal
Data
File

[a}
[]
0
=l
[x]

B8
00

08008000083

0000080890

a0ogoani

Audit
Database

)

Resubmitter

Figure 15

16/81

WO 2004/034259 PCT/US2003/032254

00 0

CPUs Needed gopg oog CPUs Needed 30
s [D bag Records Per Second | 100,000
5558 228 Batch Size 64
8568 Deo Batch Wall Time 4.8
m} 0 ooQ
1 0 Doog

CPU (ms/CDR)
Response Time (Wall)

Dire ctory Server

SLA (ms/CDR)
i | Om Calclanons-
]l o
[~}
5 Eg = mowme \iajor Flow. Majority of Events
s |BES ——>>Minor Flow. < 15% of Events
CPUs Needed 220
Records Per Second Ba8
Size of Record e
Batch Size E TS
Batch Wall Time Co SUrmer Server

o [: b
o
Ol
’"‘ ' : B gen
el SEerEsel) Beeeee
5859 %‘,SE : goon oog . CPUs Needed 1
Fuan Oog) b oano gog Records Per Second | . 5,000
CPUs Needed 75} | oAt Do 8688 ByB Size of Record 500
Records Per Second 15,000 =0oh —Ooo Batch Size- T
Wa Ile'{-‘S er Batch Wall Time 15

Figure 16

17/81

WO 2004/034259 PCT/US2003/032254

I Aitorizations N

® Convergys, 2002 Confidential)) CONVEiQGVS;

Figure 17

18/81

WO 2004/034259 PCT/US2003/032254

3 Convergys, 2002 Confidential

Figure 18

19/81

WO 2004/034259 PCT/US2003/032254

Consumer Databagzes +
Proxy (ConsumeriD,
Customeri Wallet Mapping,
Produd Instance)

. Oonergs, 2002 . Confidential . CONYERGYS

Figure 19

20/81

WO 2004/034259

Figure 20

PCT/US2003/032254

Consumer Databases +
Proxy (Consumer D,
Customer/ Whallet Mapping,
Produdt Instance)

Confidential

21/81

.....

WO 2004/034259

Figure 21

@ Conergys, 2002

T D (3 117

Consurner Databases +
Proxy (ConsumeriD,
Customer/Wallet Mapping,
Produd Ingtance)

Confidential

22/81

PCT/US2003/032254

CONVERGYS

WO 2004/034259 PCT/US2003/032254

Consuier Databases +
Proxy (ConsumeriD,
Customer/Wallet Mapping,
Product Instance)

OComerg. 2002 A . Confdentia _ : CONVERGYS -

Figure 22

23/81

WO 2004/034259 PCT/US2003/032254

X il
Consul Reference Database &
Proxy (Consumer 1D, Praxy
Customer!Wallet Mapping, (Products, T ariffs, etc)
Produd Instance)

@ Comergy, 2002 . Confdential - CONVERGYS

Figure 23

24/81

WO 2004/034259 PCT/US2003/032254

Consumer Databases + Reference Database &
Proxy (ConsumeriD,

roxy
CustomerfWallet Mapping, (Products, Tariffs, etc)
Product Instance)

3 Comergys, 2002 o Confidential

Figure 24

25/81

WO 2004/034259

Figure 25

PCT/US2003/032254

i

Wallet Databases +
Proxy
(Wallets, Balances &
Large Autharizetions)

] =
Consumer Databases Reference Detabase &
Proxy (ConsumeriD, Proxy
Customer/ Wallet Mapping, (Products, Tariffs, etc)
Produd Instance)

@ Comergys, 2002 ' * Confidentiel CONVERGYS

26/81

WO 2004/034259 PCT/US2003/032254

Wallet Databases +
Proxy
(Wallets, Balances &
Large Authorizations)

Ry

SRR

i

Event Stores
(Everts & Charges)

Consumer Databa Reference Database
Proxy (Consumer D, Proxy
Customer/ Wallet Mapping, (Products, Tariffs, etc)

Produd Instance)

© Contergys, 2002 : Confidential CONVERGYS

Figure 26

27/81

WO 2004/034259

Figure 27

® Comerqye, 2002

PCT/US2003/032254

!
Consumer Databases +
Proxy (Consumer 1D,
Customer/Waliet Mapping,
Produd Instance)

Confidentisl

28/81

!
4
i
i
/

Wallet Databases +
Proxy
(Wallets, Balances &
Large Authorizetions)

oz

(Events & Charges)

o

Reference Databage &
Proxy
{Products, Tariffs, etc)

CONVIRGYS

WO 2004/034259

Distrbutors

@ Convergys, 2002

Figure 28

PCT/US2003/032254

Consumer Databages +
Proxy (ConsumetiD,
Customer! Wallet Mapping,
Product Instance)

Conficential

29/81

Reference Dmbése &
Proxy
(Products, Tariffs, etc)

Wallet Databases +
Proxy
(Wallets, Balarces &
Large Authorizetions)

(Everts & Charges)

CONVERGHS

WO 2004/034259

Figure 29

PCT/US2003/032254

@ Conergys, 2002

Consumer Databases +
Proxy (ConsumeriD,
Customer/Wallet Mapping,
Produd Instance)

Conficlential

30/81

Wallet Databages +
Proxy
(Wallets, Balances &
Large Authorizstions)

Event Stores
(Events 8 Charges)

ER i
Reference Database &
Proxy
(Products, Tariffs, etc)

CONVERGYS

WO 2004/034259

Figure 30

@ Comergys, 2002

Consumer Databases +
Proxy (Consumer 1D,
Customer/Wallet Mapping,
Produd Instance)

Confidential

31/81

PCT/US2003/032254

Reference Databage &
Proxy
(Products, Tariffs, etc)

e
Wallet Databases +
Proxy
(Wallets, Balances &
Large Authorizations)

Event Stores
(Events & Charges)

CONVERGYS

WO 2004/034259 PCT/US2003/032254

. ;':|L__~_il'.',1!..'£

by 10 0y

I T

]

Wallet Databases +
Prosy

(Wallets, Balances &

Large Authorizetions)

(Events & Charges)

3 pr toeg] =
Consumer Databases + Reference Database &
Proxy (CansumeriD, Proxy
Customer! Wallet Mapping, (Products, Tariffs, etc)

Produd Instance)

. Glonwergys, 2002 Confidertial

Figure 31

32/81

WO 2004/034259

Figure 32

@ Comengys, 2002

PCT/US2003/032254

¥
Consumer Databases +
Proxy (ConsumeriD,
CustomerfwWallet Mapping,
Produdt Instance)

Reference Database &
Proxy
(Products, Tariffs, etc)

Confidential

33/81

Wallet Databases +
Proxy
(Wallets, Balances &
Large Authorizetions)

“lw 'l

Event Stnr;: "
(Events & Charges)

CONVERGYS

WO 2004/034259

Figure 33

@ Conwergys, 2002

PCT/US2003/032254

e}
Consumer Databases +
Proxy (ConsumeriD,
Customer/ Wallet Mapping,
Produd Instance)

Confiiential

34/81

Wallet ASES +
Proxy
(Wallets, Balances &
Large Authorizetions)

(Events & Charges)

Reference Database &
Proxy
(Products, Tariffs, etc)

CONVERGYS

WO 2004/034259 PCT/US2003/032254

Server Work
Mariagers
(Connections Omitied)

{CRMIVR Self Care !«
iedletpoer Trer)

Wallet Databases +
Proxy
(Wallets, Balarces &
Large Autharizations)

(Events & Charges)

Consurrer Databases + Reference Database &
Proxy (Consumer|D, Proxy
Customer/ Wallet Mapping, (Products, Taiiffs, etc)
Produdt Ingtance)

@ Convergyz, 2002 : Conidential CONME:RG‘VS'

Figure 34

35/81

WO 2004/034259

Figure 35

@ Comergys, 2002

PCT/US2003/032254

Server Work
Managers
(Connections Omitted)

j
fEeres)

Consumer Detabases +
Proxy (Consumer 1D,

Customer/ Wallet Mapping,
Product Ingtance)

Confidential

36/81

System& Audit
(Connections Omitted)

ecrerd
Wallet Databases +
Proxy
(Wallets, Balances &
Large Authorizetions)

Event Stores
(Everts & Charges)

CONVERGYS'

WO 2004/034259 PCT/US2003/032254

TS

Convergys- Proprietary

Figure 36

37/81

WO 2004/034259 PCT/US2003/032254

UK consumerroams
onto US network”

Convergys - Proprietary

Figure 37

38/81

WO 2004/034259 PCT/US2003/032254

Requests generated with-
‘foreign’ consumer ID

s US Dété L;‘enter,

! -5Dis§ri:butor Compléx-
IR g
' !::-.u!._g.'t ’

=]

S AT, R

Convergys- Proprietary CONVERGYS

Figure 38

39/81

WO 2004/034259

Figure 39

Convergys -

40/81

PCT/US2003/032254

US Router Complex routes requests from
UK consumerIDs to UK Router Complex.
Routing may be algorithmic (e.g. IMSIs
starting with 44’ go-to UK) or lockup.
Lodlgup routing requires registration-
event to build directory.

R Pe—T Y
P T

Proprietary

WO 2004/034259 PCT/US2003/032254

UK Wallet Server serves .
wallet shared across:
~ UK & US consumers -

Bre g by

FPage B ~ Convergys - Proprietary CoNVEigG\'zg'

Figure 40

41/81

WO 2004/034259 PCT/US2003/032254

oo LS Diata’Genter

P

i
R
P

.US Consumer Server
receives request which
. ¢an draw on'a UK wallet

Convergys - Proprietary

Figure 41

42/81

WO 2004/034259

Figure 42

PCT/US2003/032254

i

Wallets from which a consumer ID can consume are.
‘tagged with both the L ogical Data Store {(which
identifies Logical Wallet Server) and Logical Data
Center. US Consumer Server can'therefore request
slave-wallet-from UK Wallet Server.

T

ys- Proprietary CONVERGYS

43/81

WO 2004/034259 PCT/US2003/032254

Traffic between data
centers is low and not in
the real-time path

™ Distributor .Cor%pif :

Convergys - Proprietary

Figure 43

44/81

WO 2004/034259 PCT/US2003/032254

Routers must be able to
deal with any request.
Common directory is
- therefore required

Distributor

Convergys - Proprietary CONVE%%G"('S"

Figure 44

45/81

WO 2004/034259

CONSUMER SERVERS

Consumer
Server ‘A’

CS WALLET FRAGMENT
Fixzd at crealion by wallet gerver:
oGS peol element 1D
e Fragment number
o Wallet version

Updated from WS as part of loan protocol
» Fragmentloan value

Changed by rating, passed to CS log, also
sent to WS directly as part of loan protocol

» This charge

» Fragment balance inc charge ~d
+ Fragment change seq. number
*

:Real-time N

* Fragment state (open/closed...). 'v\
V_g.

‘Real-time .
Loan N
- protocol

Audit values [TBD] \

Consumer
45 10 Server '‘B'

CS WALLET FRAGMENT
Fixed at crealtion by wallel server:

+ L8 peol elernent 1D

o Fragment number

s Wallet version

Updated from WS as part of loan protocol
« Fragment state (open/closed...).
« Fragmentloan value

Changed by rating, passed to CS log, also
sent to WS direclly as part of loan protocol
e This charge

s Fragment balance inc charge

¢ Fragment change seq. number

s Audit values [TBD]

From CS N
.. log via o
CS CS
w EMIES

PCT/US2003/032254

WALLET SERVER

WALLET IN WS
Fixed at creation:
s WAI & Wallet number
* Max wallet resource
Start/End dates (Jan, Feb, or
forever)

CS WALLET FRAGMENT
Fixed at creation by wallet seyver:
« T8 pool element D
s Fragmenl number
s Wallet version

LOAN PROTOCOL

L] Updated and sent to CS via loan protocol
Local fragment state {open/closed...).
Fragment loan granted value

Received from CS via loan protocol (used
for loan calculation only):

« Fragment balance

s Fragment change seq. number.

¢ Remote fragment state.

N FROM CS, VIA EM AND/OR WS
Fragment balance from CS
Last fragment sequence number from

fAUDIT FROM CS WITH LOCAL CHECKS
Fragment balance locally calculate by
summed deltas

e Number fragments accumulated

* Reported balance in current day

. Calculated balance in current day

Usage in WS not in any CS
+« WS local usage
« Adjustments (etc)

Wallet audit values
e Cyclic audits [TBD]
+ Audits based on event DTM

Billing values (may be stored elsewhere)

* Values accumulated as 1o part of
wallet. E.g. value of wallet based on
ES data at end of last hill.

T A ‘ e RS

G

Figure 45A

46/81

WO 2004/034259 PCT/US2003/032254

CONSUMER SERVERS WALLET SERVER
Consumer WALLET IN WS
Server ‘A’ Setup at creation (some values may be
amended):
o WAI & Wallet number
CS WALLET FRAGMENT :Real"ﬁme o Max wallet resource
Fixed al crealion by wallel server: ‘fragment » StarEnd dates (Jan, Feb, or
v CS podl glement 1D *..[Y creation forever) ! ’
Updated from WS as part of loan protocol
* Fragment state (open/closed...). WS WALLET FRAGMENT

ol

Fixad at creation by wallet server:
s+ C5 pool element 1D

¢ Fragmentloan value

Changed by rating, passed to CS log, also
sent to WS directly as part of loan protocol
* This charge

* Fragment balance inc charge

» Fragment change seq. number
s Audit values [TBD]

LOAN PROTOCOL.
Updated and sent to CS via loan protocol
¢ Local fragment state (open/closed...).
* Fragment loan granted value

N

Received from CS via loan protocol (used
s for loan calculation only):

s Fragment balance

» Fragment change seq. number.

+« Remote fragment state.

Consumer

Fizad at creation by wallet server:
s 08 pool glement 1D

Server ‘B’ FROM Consumer Server, VIA Event
From CS \\Manager
Fragment balance from CS
CS WALLET FRAGMENT « Charge (delta).
f Last fragment sequence number from

CS

Updated from WS as part of loan protocol
» Fragment state (open/closed...).
» Fragment loan value

Usage in WS, not in any CS:
« WS local usage
« Adjustments (etc)

Changed by rating, passed to CS log, also
sent to WS directly as part of loan protocol
e This charge

Fragment balance inc charge
Fragment change seq. number / 5
Audit values [TBD]

Wallet audit values
» Cyclic audits [TBD]
» Audits based on event DTM

> e o

|

Billing values (may be stored in different

database)

* Values accumulated as to part of
wallet. E.g. value of wallet based on
ES data at end of last bill.

o

£
5
i
it
(ot
ol
A
i

A

Eex

it

Figufe 45B

47/81

WO 2004/034259

Figure 46A

48/81

PCT/US2003/032254

WO 2004/034259 PCT/US2003/032254

Consumer i Wallet
Server Processes | Server Processes ||
f ' 4730
PEM | 4731 - PEM |
lave WA Master
L— 4736
& Wallet Wallet & 4735

Fragment

e REAL !
CS Wallet] s TIME I T 4720
Control ‘{‘ REQ | wswalet i |
Server N REPLY | Mo.nitor &
— — N“‘]’ {Client) \ﬁi\ HVR Database
CS Wallet | SO ?\
L‘bra‘\[> 4751 E 4780
: 4715
] 4710
CS Wallet ¥
Monitor Y4 i
(Client) o i
S Wallet u REPLY. (é(;:t;c;l \\~ Wallet Database
Library | 4T ST T s
{m. e] REAL HVR |
o T'ME\? e 4760
CS Rater : REQ Threshold |
(Client) A,’ | oo REPLY | Server ‘ 4790
BV ‘\ 4795 [T
l CSWaIIet o Excepuon 4725
{ Lbrary | S Queue
L
U 4
5 Wallet .
M/ES? \ Database :
Update 4740
Server X
Figure 47A

49/81

WO 2004/034259

PCT/US2003/032254

Consumer Wallet
\ Server Processes Server Processes $Y\,l
. WALLET <
‘%;1/ | CHANGE o_| \e‘.«’?ﬁc{t&
75 et ~T REQUEST T - o
| WALLET
-l CREATE/
T~ loAN =T
CHANGE ; ;
HVR . HVR Database
I REPLY
| BALANCE
‘/j" QUERY ™= f
~
[==~REPLY =" ‘f
‘ Wallet Database
™~
—3
Sy o
S84
£35
IR
-—'Q 3‘

Figure 47B

Event

Event

Consumer
Server Manager Manager
Log Storage
Storage

50/81

WO 2004/034259

e

/€

Consumer
Server Processes

lave WA
& Wallet
Fragment
Cache

CS Wallet
Monitor

T
CS Wallet

l
Library i
i

Wallet

Updater

CS Rater

—EVENTS

| CS Wallet !)
{ Library |
| I
t i

Figure 47C

51/81

PCT/US2003/032254

Wallet
Server Processes

Master
Weallet &

Fragment

WS Wallet
Monitor

WS Wallet
Control
Server

Threshold
Server

Exception \
Queue ¥

Wallet Database

WO 2004/034259

Consumer
Server Processes

T
m
=
/

QUERY/
L~ REPLY N

CS Balance
Query

CS Wallet
Library

lave WA\
& Wallet
Fragment
Cache

Figure 47D

Wallet
Server Processes

PEM

N
\ WS Balance !
Query

Master
Wallet &
Fragment
Cache

Optional

52/81

PCT/US2003/032254

WO 2004/034259 PCT/US2003/032254

REQUEST WAI & WALLET

FRAGMENT(S)
LOAN
REQUEST / CHANGE
SEND WALLET VALUE
(& AUDIT / THRESHOLD
INFO)
PARK / RETURNCL
WALLET
CLOSE CS OR
LCS CHANGE
/ -~ HVR‘\\
i CS Wallet REPLY { WS Wallet
Library Control
o i (Client) o ~ { Server
1= —— LS .

i Wallet Wallet
s\Fragments, ragments
Consumer Waliet
Server Server

Figure 48A

53/81

WO 2004/034259

| CS Wallet ‘
Consumer Control
Server

[
|
Server {

i

|

Monitor (or i Wallet
Server) |

% FRAGMENT Vi ‘} ;
&

3 *{h \L“w% i DATA "i)‘ g f'
LY P o £
(AN REQUEST LOAN Y

‘%ﬁ“ Mo CHANGE
T, ‘*"‘m., i 4
“._ 'UNPARK' WALLET
4, .
““REPORT WALLET **
STATUS & VALUE

g 2l o UPDATE WALLET .o
4
3

Figure 48B

BALANCE QUERY

'd

- e e
f CS Wallet | REPLY WS Wallet !
i Library -~ Control !
{__ (Client) ' - Server |

Slave
Wallet

GOag|

Doeonoonno)
a0005I0000

Gono:

Consumer Wallet
Server Server
Figure 48C

54/81

PCT/US2003/032254

WO 2004/034259

4751
4780
Master
H Wallet
gfragments/. ... s\ e
‘ Cswalet | LREPLY | W5 Wale
Consumer Control | ’ Monitor (or [
Server Server | | Server) {
w -
WAI CREATE/UPDATE
(WALLET DATES)
FRAGMENT CREATE/UPDATE
(DATES /LOAN/ MORE LOAN
AVAL)
CLOSE /RECALL
WALLET
GETWALLET
STATUS & VALUE
DESTROY
WALLET
UPDATE THRESHOLD
REPORT LEVEL
Figure 49

55/81

PCT/US2003/032254

WO 2004/034259 PCT/US2003/032254

REQUEST WALLET
- Q & INITIAL
2 LOAN REQUEST
I
CREATE WALLET
S & INITIAL LOAN
ave OR Master
Wallet RETURN EXISTING ——~~{ Wallet 2
WALLET
Consumer Wallet
Server Server
Figure 50A
- 47/ REQUEST ADDITIONAL LOAN
<
T /
ADDITIONAL LOAN
. Slave GRANTED
Wallet
| \ OPTIONAL
Consumer Wallet
Server ACK CHANGE Server
Figure 50B
- 6\2%\0 SEND WALLET VALUE
% /

UPDATE ACKNOWLAGE

|
anooBoanag
0oRa30an0n) |

Consumer Wallet
Server Server
Figure 50C

56/81

WO 2004/034259 PCT/US2003/032254

CLOSE WALLET,

WALLET CLOSED

DESTROY WALLET\

Consumer Wallet

Server Server
Figure 50D

. PUSH WALLET UPDATE
Slave
| Wallet ™~
[Fragment
\ OPTIONAL /
Consumer
Server ACK CHANGE
Figure 50E

REPORT FRAGMENT

KPT]ONAL UPDATED

Slave
1 Wallet

Consumer Wallet
Server Server
Figure 50F

57/81

WO 2004/034259

Wallet

PCT/US2003/032254

SET STATE TO PARKING
(. ACK STATE AS PARKING\
Slave / Master

/

‘ SET STATE AS PARKED -
Consumer CS DELETES FRAGMENT Wallet
Server Server
Figure 50G
SET STATE TO PARKING

Slave
Wallet

/SET STATE TO PARKED -

CS DELETES FRAGMENT D

Consumer Wallet

Server

Figure S0H

Server

58/81

WO 2004/034259 PCT/US2003/032254

Q
- 6%36‘0/ N SEND WALLET VALUE
I /
T UPDATE STATE TO ‘&)
L OPEN/MORE \ Mast
aster
Wallet
Consumer Wallet
Server Server
Figure 501
- Qp SEND WALLET VALUE
<
%50,
N
UPDATE STATE TO
OPEN/MORE

0
000000000

<
SR
Consumer ?1\‘3 \A\\Q\O Wallet
Server \3?00?@ Server

Consumer
Server

Figure 50J

59/81

WO 2004/034259 PCT/US2003/032254

CREATE / RELEASE HVR

00 0

05000000} —

Master
Wallet

Slave
Wallet

Gaanagpeal| |

00000000 66|
Bagaasoanai|s

Consumer Wallet
Server Server
Figure S0K

1. ALERT: WALLET CACHE
INVALID

Consumer 3. UPDATED WAI/WALLET VALUES Wallet
Server Server
Figure 50L

60/81

WO 2004/034259 PCT/US2003/032254

925 |

Consumer
Server ‘A’

926 __|

Consumer uT
Servers ‘B, 'C, ... 5. pISTRB

Figure 51

61/81

WO 2004/034259 PCT/US2003/032254

INCREASE/REDUCE LOAN

Master
Wallet

0008000000
[sIsIafe]s[afa]s]a]<]

Consumer Wallet
Server Server
Figure 52

1. REQUEST INCREASED a
LOAN SeN

/ 2. NOLOAN & NO

MORE AVAILABE

G T\ 4. WALLET UPDATE "

(MORE LOAN AVAIL)

Wallet
Server

Consumer
Server

Figure 53

FRAGMENT UPDATE
(DATES / LOAN / MORE LOAN AVAIL)

Master
Wallet

Consume_r Wallet
Server] Server
Figure 54

62/81

WO 2004/034259 PCT/US2003/032254

WAI/ WALLET FRAGMENT VALUE POLL

000a ooo)

Consumer Wallet

Server Server
Figure 55

1. CLOSE WALLET

2. WALLET CLOSED

b

_—
~—

3. DESTROY WALLET

Consumer
Server

Wallet
Server

4. WALLET DESTROYED

Figure 56

CREATE WALLET FRAGMENT

ﬁ/‘ ACK

” Slave
Wallet

Master '
Woallet

Consumer Wallet
Server” Server
Figure 57

63/81

WO 2

(A

004/034259

WalletAliowance *

T

ve_start oﬁsef units Varcharly

zllowancg ;. perjod, Integer. -,
allnwance _petiod_units - Vaichar(1) -
'validlty pefiod | ‘Integer

Varch at('l 5q
sInteger:

valldlty p!l|0d -unifs
mﬂx—altowaneu count
infinite_ailowance_boo
allowanca amnunt_

integer

Anteger!

consumpllon spoliey..

[IR ép;\)

wallet_allowance_sild | -Integér

o VarchanBO)NN
pricing_sheei_siid Integer - "MH IFI
from_: date - - Timestamp NN :
to_date ° “Timestamp 7 -
wallal_tpe. s Infeger .Y NN
alloviance :sta Integer ¢ :

4\/awhmﬁ) NR

pro_rate boo- ';. 'Vnc}m(ﬂ NN '
NN LY

by

+

WAl gives Wali'leiAllowance

WalietAllowance is of J particular WalletType

e e e

PCT/US2003/032254

Cutrencyt,

‘cu"engy id
'cunency_name

g
unenny cochzrehaszJ :

_i‘

WalletType is of }pidicular Cuirency

Wa)letType

fWAIonCensumuServel

~

WAL is on many Consumer Senvers

WalletAllowancelnstance
wai_hid Bigint NN iPK)
logical_data_center Integer NN
logical_data_store Integer NN N
wallet_allowance_stid Integer REEEGIIIN M
product_instanee _liid Bigint NH (FIQ
product_trem_date Timestamp NN (Fi)
product_to_date Timestamp
WAI has many Wallets over time
Wallet
wai_liid Bigint NN (PFIQ
waltet_num integer HN (PK)
petiod_from_date Timestamp NN
peried_to_date Timestamp
valid_from_date Timestamp
valid_to_date Timastamp
cutrent_waltet_version_num Integer NN
initial_wallet_resource Bigint NN
last_wallet_version_rerate_adj Bigint
tast_wallet_version_post_rerate Bigint
duplicate_usage_credlts Bigint NN
external_credits Bigint
tettieved_spend Bigint NN
consumer_server_spend Bigint NN
ourrent_wallet_resource Bigint
high_value_tes_amount Bigint NN
wallet_credit_limit Bigint NN
\anunt_avallable_tu__loan Bigint NN

R

Wallet has mlnyﬁagmenﬁs

Waliet has W:IletHIstory%ot each period closuie

WalletHistory ")
wai_Jiid Bigint NN (FFK)
wallet_num Integes N (PFIQ
wallel_watston_num IntegerN (FK)
inHtlal_wallet_resource Bigint NN

last_wallet_verslon_ratate_adj Bigint
last_wallet_version_post_rerate Bigint

duplicate_usage_credits Bigint NN
external_credits Bigint
spend Bigint NN
period_close_resource Bigint

Figure 58

64/81

wai_liid Bigint NN (PFR)
cs, pool_element_siid Integer RH (PKY
all_wallets_from_date Timestamp RN
all_wallets_to_date Timestamp NN
WalletFragment
wai_liid Bigint NN (PFK)
fragment_nurm Intager NH ({P¥)
wallet_num Integer HH (FK
wallet_version_num Integer NN
created_date_time Timestamp NN
cs_pool_element_sild integer NN
loan_amount Bigint NN
em_fragment_balance Bigint NN
em_frag_bal_sequence Integer
local_fragment_status integer NN
remote_fragment_status integer NN
e

PROJECT: Hydta
MODEL: Hydra
SUBMODEL: Wallets
AUTHOR: lan Clubb
COMPANY: Convergys
VERSION: Dratt 0.5
CREATED: 26/10/2002
UPDATED: 20/02/2003
‘—————————

WO 2004/034259 PCT/US2003/032254

—

) 4
ZEvent Manager) 307

Files % Files
(CS log) i o Event
. ¥ Charges

Wallet Databases
(Wallets, HYR)

EvalltManag

] 3o

Files [

(CS log) E 5

= | h

H L8157 e
._iq_-tlj o T \ Y ey Configurable Output
. d g (Export, Cansolidation)

F
(CS log)

- R : Desived Everts
EM File Control (Setllement)
Database €M FCD)

& Comerays, 2002 - Confidertral CONVERGYS'

Figure 59

65/81

WO 2004/034259 PCT/US2003/032254

atabases
(Wallets, HVR)

ey

Configurable (ﬁm;ui
(Export, Consolidation)

Desived Events
(Settlement)

EMFile Contral
Database (EMFCD)

& Comergyz, 2002 Confidential

Figure 60

66/81

WO 2004/034259 PCT/US2003/032254

Files
(CS 10g)

2] L i Filan Configurable Output
Event Mana s S (Export, Consolidetion)

)

F
(CS log}

EMFile Control (Settlement)

Database €MFCD)

O Conwergys, 2002 Conficlentiat

Figure 61

67/81

WO 2004/034259 PCT/US2003/032254

3
sEvent Manager

Wallet Databases
(Waliets, HVR)

E
{
g
!

Event Stores

—--% ! 1
o Configurable Qutput
(Export, Consolidation)

Derived Everts
(Settlemert)

Conficlential

Figure 62

68/81

PCT/US2003/032254

WO 2004/034259

Figure 63

Wallet Databases
(Wallets, HVR)

|

Configurable Output
(Export, Consolidation)

.M,’:H

Berived E verts
(Settlement)

EMFile Contral
Database £ MFCD)

Confidential CON\{ERGYS

@ Conergys, 2002

69/81

WO 2004/034259

[Sa—3)
Y TS T X
ger

Fi
{CS log)

EMFile Control
Database E MFCD)

@ Comergys, 2002

Figure 64

70/81

PCT/US2003/032254

Wallet Databases
(Wallets, HYR)

st

Configurable Output
(Export, Consolidation)

Derived Events.
(Settlement)

WO 2004/034259 PCT/US2003/032254

Evert
Charges

Wallet Databases
(Wallets, HVR)

- R = Or
e 1
N [

Configurable Output
(Export, Censolidation)

Derived E vents
(Settlement)

@ Comengys, 2002 Confidertial

Figure 65

71/81

WO 2004/034259 PCT/US2003/032254

JEvent Manager

g ,
? 7 Charges

e
Wiallet Databases
(Wallets, HVR)

s

=ik
i]
Y T U

Configurable Outp
(Export, Consolidation)

: ; bl DerivedE vents
EMFile Control Off o ; (Settlement)
Database EMFCD)

@ Conwergye, 2002 Confidential

Figure 66

72/81

WO 2004/034259

(CS log)

EMFile Control
Database € MFCD)

E
g
.
&

@ Comengyz, 2002 Confidential

Figure 67

73/81

PCT/US2003/032254

Evert
Charges

Wallet Databases
(Wallets, HVR)

T

Configurable Output
(Export, Consolidation)

1 () O s et
Desived Events
(Settiement)

{ued
0

WO 2004/034259

PCT/US2003/032254

iEwent Manager

Files
(CS log)

H

{CS log

!
EMFile Control
Database EMFCD)

Confidential

74/81

" Evert
Charges

Wallet Databases
(Wallets, HVR)

Configurable OUﬁ;ul
(Export, Consolidation)

Denved Events
{Settlement)

CONVERGYS'

WO 2004/034259 PCT/US2003/032254

\ SOy
5 3 . b B &3]
:Event Manager ; ET::EZ_;%

Wallet Databases
(Wallets, HVR)

Files
(CS log)

Configurable ompin
(Export, Consolidstion)

(CS log)

EMFile Contr:
Database E MFCD)

I Conergys, 2002 Confidential

Figure 69

75/81

WO 2004/034259 PCT/US2003/032254

Wallet Databases
(Wallets, HWR

Fiics
(CS log)

Configurable Output
(Export, Consolidation)

{CS log)

Desived E vents.

EMEile Control ; (Settlement)
Database E MFCD)

® Comergys, 2002 Confidential

Figure 70

76/81

WO 2004/034259 PCT/US2003/032254

FllesJ
(CS log)

] .
M4 | i — e g
!'ﬁ‘_ R G ‘ Configurable Output
. (Export, Consolidation)

(CS log)

Derived Evests

EMFile Control (Setllement)
Database E MFCD)

@ Comergys, 2002 . Confidentisl

Figure 71

77/81

WO 2004/034259 PCT/US2003/032254

Wallet Databases
(Wallets, HYR)

i

Database EMFCD)

G Comergye, 21 Confidential

Figure 72

78/81

WO 2004/034259 PCT/US2003/032254

Charges

Wallet Databages
(Wallets, HVR)

e cn

Fiies
(CS log)

Configurable O“tit.;ut
(Export, Consolidetion)

Derived Everts

EMFile Contral (Settiement)
Database (EMFCD)

@ Convergys, 2002 . Confidenhal

Figure 73

79/81

WO 2004/034259 PCT/US2003/032254

Figure 74

3
:Event Manager

Wallet Databases
(Wallets, HVR)

Configurable Output
(Export, Consolidation)

<f Desived Events
EMFile Control Settlem ent (Settlement)

Database EMFCD) Everts
@ Convergiz, 2002 Confidertial CON\{EkG\.S

80/81

WO 2004/034259 PCT/US2003/032254

-
A Event Manager

Wallet Databases
(Wallets, HVR)

Configurable (;ut];m
(Export, Consolidation)

Dexived Events

ezl
EMPFile Contral {(Settlement)
Databasze EMFCD)

O Conergye, 2002 Confidential : . Co N\{[RGYS

Figure 75

81/81

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

