DEMANDE DE BREVET D'INVENTION

<table>
<thead>
<tr>
<th>Date de dépôt :</th>
<th>23.06.08.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorité :</td>
<td></td>
</tr>
</tbody>
</table>

|Demandeur(s): | STORIONE JEAN MICHEL — FR.|

|Inventeur(s): | STORIONE JEAN MICHEL.|

|Titulaire(s): | STORIONE JEAN MICHEL.|

|Mandataire(s): | STORIONE JEAN MICHEL.|

TRAITEMENT ANTI-LESIONNELLOSE DES RESEAUX HYDRAULIQUES SANITAIRES SOUS CHLORATION AVEC TRACABILITE CONTINUE PAR AUTOMATE SUR SYSTEME INFORMATIQUE.

Cette invention a pour but d’assurer l’éradication de la légionnellose dans les réseaux d’eau chaude sanitaire par injection de mélange chloré continu. Toute la particularité du concept du système repose sur le fait que l’automate avant d’agir va contrôler les différents paramètres de l’installation hydraulique tels que le Potentiel Hydrogène de l’eau, et le comptage de son volume, les valeurs de Température, de Pression et de Redox du circuit départ ECS, ainsi que les valeurs de température et de Redox sur le circuit de bouclage ECS. La consigne indexée dans l’automate va lui permettre de piloter la pompe doseuse en se référant aux différentes informations provenant de l’ensemble des capteurs, afin de maintenir autant que possible la valeur de chlore libre demandée. La procédure de calcul de l’écart valeur mesurée et consigne indexée se gère à partir d’un comparatif établit sur la valeur la plus demandée entre le volume d’eau entrant dans l’installation ECS et la valeur de chlore libre mesurée sur le retour de boucle de l’installation ECS. Quelque soit la résultante une logique de limite haute est appliquée sur le départ ECS afin de ne pas surchlorer en cas d’excès momentané de la demande. Tous les paramètres contrôlés sont directement accessibles en temps réel sur le réseau informatique local sous formes de textes, tableaux et graphiques. De plus l’équipement bénéficie d’un programme d’auto surveillance par alarmes qui sont adressées en temps réel directement à l’utilisateur sur le réseau informatique local ou à distance par le biais du réseau téléphonique.
Indication du domaine technique de l'invention.

La présente invention concerne la désinfection et la lutte contre la légionellose dans les équipements de production, de stockage, pour les réseaux de distributions hydrauliques sanitaires, par chloration continue et contrôle de la température, avec traçabilité permanente par système informatique.

Indication de l'état de la technique antérieure faisant ressortir le problème posé

Les solutions actuelles de traitement par chloration de 1 à 3 ppm, font appels soit à des logiques volumétriques avec non fonctionnement dans les périodes de non soutirage (nuit et week-end), ou par mesure de la quantité réelle de chlore libre actif par analyseur avec sonde ampérométrique dans une chambre à écoulement libre montée sur le circuit de bouclage ECS, cet équipement combinant un retard issu d'une logique de régulation à boucle ouverte entre la mesure et l'injection, ainsi que d'une fuite continue à l'égout de la chambre à écoulement libre générant une perte en eau chaude sanitaire avoisinant les 263 m³ par an.

Un exposé de l'invention permettant la compréhension é la solution technique apporté au problème technique posé.

Le système installé sur le réseaux d'eau chaude sanitaire utilise une logique de régulation de type boucle fermée en faisant la synthèse du volume d'eau consommé par contrôle volumétrique de la distribution d'eau destinée à la production d'eau chaude sanitaire, ainsi que des valeurs réelles de chlore actif mesurées dans le réseau hydraulique sanitaire par la combinaison d'une sonde de mesure de pH située sur l'arrivée d'eau froide et de deux sondes de rédox positionnées respectivement en limite haute sur le départ d'eau chaude sanitaire, et en repère de consigne sur le circuit de bouclage ECS. Ce montage permet de maintenir précisément une valeur de 1 ppm de chlore actif dans toute l'installation ECS, qu'il y ait ou non soutirage d'eau.

L'équipement de traitement d'eau comprend un coffret contenant l'automate d'analyse et de régulation avec logique PID, avec affichage des valeurs de potentiel hydrogène, et de mesures redox, ainsi que les mesures des température et de pression des circuits départ et de retour de boucle ECS.

Une horloge interne permet la logique horodatée, tandis qu'un modem associé aux réseaux RTC ou GSM autorise le traitement des données à distance. L'automate dispose d'un protocole de communication ouvert (Mod/bus - J/bus) ainsi que d'un logiciel d'exploitation simple assurant le contrôle et la traçabilité de l'équipement par l'utilisateur et l'exploitant.

Le contrôle et la traçabilité s'effectuent par le biais du réseau informatique local, ou à distance par le modem de l'automate.

Tous les paramètres contrôlés (débit, pression, température, chloration) sont archivés dans la mémoire de l'automate pour être traités sous forme de journaux ou d'alarmes.
L’équipement permet notamment de visualiser et de quantifier les valeurs suivantes avec un principe calendaire.

- Consommation d’eau chaude sanitaire (jour, nuit, semaine, mois etc.)
- Valeur de chlore libre actif calculée (moyenne, haute et basse)
- Température départ et retour de boucle ECS
- Pression du réseau hydraulique ECS
- Alarme niveau bas de chloration réseau
- Alarme niveau haut de chloration réseau
- Alarme niveau moyen bac de mélange chloré
- Alarme niveau bas bac de mélange chloré
- Alarme températures haute et basse départ ECS
- Alarme températures haute et basse bouclage ECS
- Alarme ΔT départ/retour ECS
- Alarme manque d’eau
- Alarme mauvais réapprovisionnement bac mélange chloré

L’équipement nécessite une ligne téléphonique analogique.

Les alarmes peuvent être envoyées vers 5 directions téléphoniques différentes suivant un ordre déterminé avec obligation d’acquit pour toutes les destinations, et ce sur les réseaux RTC/GSM, ou par SMS ou MAIL, et sont signalées au fil de l’eau sur une imprimante locale.

L’équipement nécessite une alimentation électrique traditionnelle de 230v monophasée.

En cas de suppression accidentelle de la fourniture d’électricité, une batterie de sauvegarde permet de conserver toutes les valeurs contrôlées en mémoire, avec envoi d’une alarme jusqu’au retour du courant.
Cette invention sera mieux explicative, et son concept apparaîtra plus clairement avec le descriptif suivant associé à l'exemple ci-annexé en référence figure 1.

La figure 1 montre le schéma général de principe de l'application sur une installation hydraulique d'eau chaude sanitaire conventionnelle. L'eau froide générale arrive dans un ballon de stockage (12) ou elle se retrouve réchauffée par un procédé thermique traditionnel (électrique, chaudière fuel, chaudière gaz, capteur solaire, autres procédés) et est mise à disposition de l'utilisation (14). En complément de cette logique de distribution, la pompe de bouclage (13) assure un maintient permanent dans tout le circuit d'une température constante.

L'automate de traitement anti-légionellose (1) assure le contrôle des paramètres suivants :
- Mesure du débit volumétrique (2) entrant dans une plage de 1l/h à 70 m³/h.
- Mesure de la valeur de potentiel hydrogène (3)
- Mesure de la valeur redox sur la boucle retour ECS (4)
- Calcul du nombre de ppm de chlore libre résiduel dans le circuit retour ECS suivant la formule : \[C = 10 \left(\frac{E-715-50(7-pH)}{300+50(7-pH)} \right) \]
- Mesure de la limite haute de valeur redox sur le départ ECS (5)
- Calcul du nombre de ppm de chlore libre dans le circuit départ ECS suivant la formule : \[C = \left(\frac{E-715-50(7-pH)}{300+50(7-pH)} \right) \]
- Mesure de la température de départ d'eau chaude sanitaire (6)
- Mesure de la température de retour d'eau chaude sanitaire (7)
- Calcul du ΔT entre le départ (6) et le retour (7)
- Mesure de la pression (8) du circuit ECS

Par rapport à la consigne de 1 ppm de chlore actif, l'automate (1) analyse les différents paramètres précédents et pilote la pompe doseuse (9) d'une capacité de débit de 1 à 50 litres à l'heure sous une plage de contre pression de 3 à 20 bar de manière à envoyer dans le circuit d'eau chaude sanitaire la quantité nécessaire de mélange chloré contenu dans le bac (10) d'une capacité variant de 50 à 250 litres et ce par le biais de la canne d'injection (11).

Le calcul de l'automate (1) est effectué par rapport à tous les paramètres énoncés précédemment, de ce fait, qu'il y ait ou non soutirage par l'utilisation (14), la quantité de chlore actif injectée et mesurée dans le réseau de bouclage véhiculée par la pompe (13) reste constante et identique à la consigne.
Un exposé détaillé d'au moins un mode de réalisation.

5 L'équipement comprend un coffret principal assurant l'automatisme et la traçabilité sur site ou à distance par modem, ainsi que tous les différents capteurs de mesures hydraulique d'eau sanitaire.

10 Susceptible d'application industrielle

Le dispositif selon l'invention est particulièrement destiné au traitement des problèmes de légionelles dans les réseaux hydrauliques sanitaires par chloration, et justification de la bonne exécution par traçabilité et alarme si nécessaire au travers du réseau informatique local, ou à distance par le biais du modem de l'automate.

D'autres caractéristiques intéressantes sont la présence des différents capteurs qui en liaison avec à l'automate le renseignent par le biais de signaux analogiques (4-20 ma, 2-10 v, Pt 1000) ou de signaux impulsionnels (T/R). L'ensemble de ces éléments permet à l'automate de piloter la pompe doseuse de chloration par rapport à la consigne paramétrée pour assurer le maintien de la valeur de chlore libre actif dans le réseau hydraulique sanitaire.
Recommandations

1) Dispositif de traitement continu anti-légionelle pour circuit hydraulique sanitaire, caractérisé en ce qu'il comporte un automate (1) de télésurveillance assurant la traçabilité et la régulation par le biais de la mesure de débit d'eau (2) du circuit hydraulique sanitaire, la mesure du potentiel hydrogène (3) du circuit hydraulique sanitaire, la mesure de la valeur rédox retour (4) du circuit hydraulique sanitaire, la mesure de la valeur rédox départ (5) du circuit hydraulique sanitaire, la mesure de la température départ (6) du circuit hydraulique sanitaire, la mesure de la température retour (7) du circuit hydraulique sanitaire, la mesure de la pression (8) du circuit hydraulique sanitaire, la commande de la pompe doseuse (9) qui puisse le mélange chloré dans le bac (10), et envoie le dit mélange dans le circuit hydraulique sanitaire par la canne d'injection (11).

2) Dispositif selon la revendication 1 dans lequel le dit automate gère l'ensemble des capteurs de paramètres de débit, pression, température, valeur de rédox et de potentiel hydrogène, ainsi que la gestion du système d'injection avec son bac de réactif, contenant le mélange chloré à base d'hypochlorite de sodium à 36 ° chlorométrique.

3) Dispositif selon la revendication 2 dans lequel les différents capteurs renseignent l'automate par le biais de signaux analogiques (4-20ma, 0-10v, pt1000) et de signaux impulsionnels.

4) Dispositifs selon la revendication 3 dans lequel l'analyse et la gestion des valeurs mesurées permettent à l'automate de réguler le système d'injection, et de justifier de son bon fonctionnement par le contrôle de la traçabilité.

5) Dispositif selon les revendications précédentes dans lequel la valeur injectée dans le circuit hydraulique sanitaire départ, et mesurée sur le circuit hydraulique sanitaire retour, n'excède pas les 1ppm de chlore libre actif.

6) Dispositif selon les revendications précédentes dans lequel les mesures et les fonctions sont mémorisées dans la mémoire de l'automate, et présentées sous formes de traces dans le journal du logiciel d'exploitation.

7) Procédé pour le traitement continu d'une eau caractérisé en ce que l'on met en œuvre le dispositif selon les revendications précédentes et dans lequel on paramètre une valeur de chlore libre actif à maintenir constante dans le réseau hydraulique sanitaire justifiée par l'autocontrôle de la traçabilité.
TRAITEMENT ANTI-LÉGIONELLOSE AVEC TRAÇABILITÉ

1 Automate contrôle chloration régulation et tracabilité

9 Pompe doseuse

10 Bac mélange chloré

2 Comptage arrivée eau

3 Sonde pH

3 Sonde température retour ECS

4 Sonde Redox bouclage

5 Sonde limite haute Redox

6 Sonde température départ ECS

7 Sonde température retour ECS

8 Capteur pression

11 Canne injection

2 m mini.

12 BALLON ECS

13 Pompe circuit bouclage ECS

14 Utilisation
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2007 319801 A (OHAYASHI CORP; TSUJI KENSETSU KK; FAINTEKU KK; TECHNO MAX HANBAI KK) 13 décembre 2007 (2007-12-13)</td>
<td>1-7</td>
<td>A61L2/24</td>
</tr>
<tr>
<td></td>
<td>* alinéas [0003], [0010], [0020], [0031], [0033], [0034] *</td>
<td></td>
<td>A61L2/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A61L101/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C02F1/68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C02F1/76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F24D17/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* alinéas [0028] - [0035] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 5 février 2009
Examinateur: Varga, Viktoria
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 05-02-2009.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2007319801 A</td>
<td>13-12-2007</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>JP 2006320899 A</td>
<td>30-11-2006</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2548827 A1</td>
<td>23-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1699663 A2</td>
<td>13-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007515005 T</td>
<td>07-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2618133 A1</td>
<td>22-02-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101257826 A</td>
<td>03-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080047354 A</td>
<td>28-05-2008</td>
</tr>
<tr>
<td>DE 102006031918 A1</td>
<td>17-01-2008</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82