发明名称
一种自密实纤维增强活性粉末混凝土及其制备方法

摘要
本发明属于建筑材料技术领域，具体涉及一种自密实纤维增强活性混凝土 (RPC) 及其制备方法。由水泥、硅灰、石英粉、石英砂、减水剂以及钢纤维或聚丙烯纤维或两者混杂纤维按一定配比组合而成。本发明通过采用新型减水剂，使得混凝土成型时无需任何振动，可以依靠自重，填充建筑模具的每个角落，并且可以依靠自重达到密实。通过采用合适的纤维，无论是抗压强度还是抗折强度都有明显的提高，特别是抗折强度的提高尤其明显，并且大大提高了 RPC 的韧性。该自密实纤维增强 RPC 大大简化生产工艺，并对生产薄壁制品、细长构件和其它新颖结构形式的构件，提供广阔的应用前景。
权利要求书

1. 一种自密实纤维增强活性粉末混凝土，其特征在于由水泥、硅灰、石英砂、石英粉、减水剂、钢纤维或聚丙烯纤维之一种或两种混合物、水组成，其组份配比如下：
   组分                质量份
   水泥                100
   硅灰                20~30
   石英粉              27~42
   石英砂              100~120

按混凝土总体积计算：钢纤维为 1~2.5%，聚丙烯纤维为 0.05~0.3%，
按照水泥和硅灰的总和为 100 质量份计，减水剂为 2~3 质量份，水为 22~27 质量份，
其中，减水剂的固体含量为 40%。

2. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述水泥为
   普通硅酸盐水泥。

3. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述硅灰为
   非凝聚硅粉，SiO₂ 含量为 92.25 %。

4. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述石英粉
   细度为 300 目以上。

5. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述石英砂
   细度为 40~70 目。

6. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述减水剂
   为聚羧酸盐减水剂。

7. 根据权利要求 1 所述的自密实纤维增强活性粉末混凝土，其特征在于所述钢纤维
   为混凝土用钢纤维。

8. 根据权利要求 1 所述的纤维增强自密实活性粉末混凝土，其特征在于所述聚丙烯
   纤维为混凝土用聚丙烯纤维。

9. 一种如权利要求 1 所述的自密实纤维增强活性粉末混凝土的制备方法，其特征在
   于具体步骤如下：
   (1) 按原料配比称量各组分，将水泥、石英砂、硅灰及石英粉倒入搅拌锅中，干拌
   0.5~2min；
   (2) 向步骤(1)所得产物中加入一半减水剂以及一半用水量的混合物，搅拌 2~4min；
（3）向步骤⑵所得产物中加入剩余部分减水剂及用水量的混合物，搅拌2-4min；

（4）若加入聚丙烯纤维，则步骤⑴中干拌过程中加入聚丙烯纤维；若加入钢纤维，则在步骤⑶所得产物中先加入一半钢纤维用量，搅拌2-4min，再加入剩下部分钢纤维，搅拌2-4min，即得所需产物。
一种自密实纤维增强活性粉末混凝土及其制备方法

技术领域

本发明属于建筑材料技术领域，具体涉及一种自密实纤维增强活性粉末混凝土及其制备方法。

背景技术

活性粉末混凝土（Reactive Powder Concrete，简称RPC）是一种超高强、超高性能、低孔隙率的新型水泥基复合材料，在20世纪末由一个法国研究小组率先研制成功。它是根据最大密实性原理，剔除粗骨料，采用最大粒径为630 μm的细砂为骨料，由水泥、磨细石英粉、硅灰和高效减水剂并辅以适当的养护制度而制成的。由于增加了组分的细度和反应活性，因此被称为活性粉末混凝土。

由于活性粉末混凝土的超高强度，优异的耐久性以及抗渗性，使得其在工程中得到了广泛的应用。未掺纤维的RPC脆性很大，易产生裂缝，而且随着高性能混凝土强度的提高，其破坏形式往往呈无征兆的爆炸性破坏，因而它的应用范围还是受到了一定的限制。

限制RPC的发展的另一原因是由RPC水胶比很低，且为提高其强度和韧性，需要掺入纤维，所以搅拌和成型往往较普通混凝土困难，在制备时仍需借助振动，加压，手动辅助等成型方式来达到密实要求。这不仅消耗大量的人力和物力，而且材料易产生缺陷，最终导致混凝土构筑物性能严重下降。

发明内容

本发明的目的在于提出一种自密实纤维增强活性粉末混凝土及其制备方法。

本发明提出的自密实纤维增强活性粉末混凝土，由水泥、硅灰、石英粉、石英砂、减水剂、钢纤维或聚丙烯纤维之一种或两种混合物、水组成，其组成配比如下：

<table>
<thead>
<tr>
<th>组分</th>
<th>质量份</th>
</tr>
</thead>
<tbody>
<tr>
<td>水泥（C）</td>
<td>100</td>
</tr>
<tr>
<td>硅灰（SF）</td>
<td>20~30</td>
</tr>
<tr>
<td>石英粉（Qu）</td>
<td>27~42</td>
</tr>
<tr>
<td>石英砂（S）</td>
<td>100~120</td>
</tr>
</tbody>
</table>

按混凝土总体积计算：钢纤维为1~2.5%，聚丙烯纤维为0.05~0.3%。

按照水泥和硅灰的总和为100质量份计，减水剂（固体含量为40%）为2~3质量份，
水为 22~27 质量份。

本发明中，所述水泥为普通硅酸盐水泥。

本发明中，所述硅灰为非凝聚硅粉，SiO₂ 含量大于 92 %。

本发明中，所述石英粉细度为 300 目以上。

本发明中，所述砂为石英砂细度为 40~70 目或通过 0.63 mm 孔径筛的黄砂。

本发明中，所述减水剂为聚羧酸盐减水剂。

本发明中，所述钢纤维为满足标准 JG/T3064-1999 要求的混凝土用钢纤维，如可以采用断面 0.25×0.25mm，长 13mm 的钢纤维等。

本发明中，所述聚丙烯纤维为混凝土用聚丙烯纤维，如采用直径 31μm，长 3mm 束状单丝纤维等。

本发明中，所述胶凝材料是指水泥和硅灰。

本发明提出的自密实纤维增强活性粉末混凝土的制备方法，具体步骤如下：

(1) 按原料配比称量各组分，将水泥、石英砂、硅灰及石英粉倒入搅拌锅中，干拌 0.5~2min;

(2) 向步骤(1)所得产物中加入一半减水剂以及一半用水量的混合物，搅拌 2~4min;

(3) 向步骤(2)所得产物中加入剩余部分减水剂和用水量的混合物，搅拌 2~4min;

(4) 若加入聚丙烯纤维，则步骤(1)中干拌过程中加入聚丙烯纤维；若加入钢纤维，则在步骤(3)所得产物中先加入一半钢纤维用量，搅拌 2~4min，再加入剩下部分钢纤维，搅拌 2~4min，即得所需产物。

本发明具有如下的优点：

1. 由于本发明的自密实砂浆具有较高的流动性，无需振捣，可直接浇筑成型，大大简化了生产工艺，并对生产薄壁制品、细长构件和其它新颖结构形式的构件，提供广阔的应用前景。

2. 本产品加入了钢纤维和聚丙烯纤维，不仅对 RPC 的强度有大大的提高，抗折强度最高能提高到原来的 1 倍，并且韧性也有显著提高。

3. 由于本发明的原材料全部采用大量生产的市售成品，所以原材料易得，适合于广泛应用。

具体实施方式

以下结合实施例对本发明的技术方案作进一步描述。所有试样成型都没有插试或振捣。
实施例 1—实施例 4：钢纤维增强自密实 RPC。原材料及规格见表 1，材料配比及性能见表 2 和表 3。

表 1 原材料及规格

<table>
<thead>
<tr>
<th>材料</th>
<th>规格或牌号</th>
<th>来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>水泥</td>
<td>PO 42.5 普硅硅酸盐水泥</td>
<td>上海海豹水泥集团</td>
</tr>
<tr>
<td>硅灰</td>
<td>EM920U</td>
<td>埃克国际贸易上海有限公司</td>
</tr>
<tr>
<td>石英粉</td>
<td>300 目</td>
<td>安徽凤阳凤城粉体材料有限公司</td>
</tr>
<tr>
<td>石英砂</td>
<td>40～70 目</td>
<td>安徽凤阳凤城粉体材料有限公司</td>
</tr>
<tr>
<td>减水剂</td>
<td>PC 新型混凝土高效减水剂；pH 值中性；固含量 40%；粘度（涂-4 杯）40s</td>
<td>上海澳申建筑化学科技有限公司</td>
</tr>
<tr>
<td>钢纤维</td>
<td>混凝土用钢纤维，断面 0.25×0.25mm，长 13mm</td>
<td>上海青浦商榻金属纤维厂</td>
</tr>
<tr>
<td>聚丙烯纤维</td>
<td>MP-I 博宁工程纤维</td>
<td>上海博宁工程纤维材料有限公司</td>
</tr>
</tbody>
</table>

表 2 本发明的钢纤维增强自密实 RPC 及比较例配比

<table>
<thead>
<tr>
<th>编号</th>
<th>配合比</th>
<th>水胶比</th>
<th>减水剂用量%</th>
<th>纤维掺量%/</th>
<th>钢纤维</th>
<th>聚丙烯纤维</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C: SF: Qu: S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比较例</td>
<td>1:0.25:0.37:1.1</td>
<td>0.24</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>实施例1</td>
<td>1:0.25:0.37:1.1</td>
<td>0.24</td>
<td>2.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>实施例2</td>
<td>1:0.25:0.37:1.1</td>
<td>0.24</td>
<td>2.5</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>实施例3</td>
<td>1:0.25:0.37:1.1</td>
<td>0.24</td>
<td>2.5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>实施例4</td>
<td>1:0.25:0.37:1.1</td>
<td>0.24</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

注：减水剂用量为胶凝材料的质量分数，这里胶凝材料为水泥和硅灰之和；钢纤维掺量为体积掺量。
表 3 本发明钢纤维增强自密实 RPC 主要性能及与普通 RPC 的比较

<table>
<thead>
<tr>
<th>钢纤维掺量（%）</th>
<th>7 天抗压（MPa）</th>
<th>7 天抗折（MPa）</th>
<th>压折比</th>
<th>28 天抗压（MPa）</th>
<th>28 抗折（MPa）</th>
<th>压折比</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例</td>
<td>70.5</td>
<td>11.0</td>
<td>6.4</td>
<td>102.3</td>
<td>14.7</td>
<td>7.0</td>
</tr>
<tr>
<td>实施例 1</td>
<td>75.8</td>
<td>12.3</td>
<td>6.2</td>
<td>110.4</td>
<td>16.1</td>
<td>6.9</td>
</tr>
<tr>
<td>实施例 2</td>
<td>76.0</td>
<td>16.5</td>
<td>4.6</td>
<td>111.6</td>
<td>21.7</td>
<td>5.1</td>
</tr>
<tr>
<td>实施例 3</td>
<td>77.8</td>
<td>19.3</td>
<td>4.0</td>
<td>117.5</td>
<td>23.5</td>
<td>5.0</td>
</tr>
<tr>
<td>实施例 4</td>
<td>83.4</td>
<td>21.4</td>
<td>3.9</td>
<td>121.2</td>
<td>25.4</td>
<td>4.8</td>
</tr>
</tbody>
</table>

从上可以看出，随钢纤维掺量提高，混凝土的强度提高，压折比降低，即韧性提高。

实施例 5—实施例 8：聚丙烯纤维增强自密实 RPC。原材料及规格见表 1，材料配比及性能见表 4。

表 4 本发明的聚丙烯纤维增强自密实 RPC 及比较例实施例

<table>
<thead>
<tr>
<th>编号</th>
<th>配合比</th>
<th>水胶比</th>
<th>减水剂用量/%</th>
<th>纤维掺量/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C: SF: Qu: S</td>
<td></td>
<td></td>
<td>钢纤维</td>
</tr>
<tr>
<td>比较例</td>
<td>1:0.20:0.42:1</td>
<td>0.22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>实施例 5</td>
<td>1:0.20:0.42:1</td>
<td>0.22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>实施例 6</td>
<td>1:0.20:0.42:1</td>
<td>0.22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>实施例 7</td>
<td>1:0.20:0.42:1</td>
<td>0.22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>实施例 8</td>
<td>1:0.20:0.42:1</td>
<td>0.22</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

注：减水剂用量为胶凝材料的质量分数，这里胶凝材料为水泥和硅灰之和；纤维掺量为体积掺量。

表 5 本发明聚丙烯纤维增强自密实 RPC 主要性能及与普通 RPC 的比较

<table>
<thead>
<tr>
<th>钢纤维掺量（%）</th>
<th>7 天抗压（MPa）</th>
<th>7 天抗折（MPa）</th>
<th>压折比</th>
<th>28 天抗压（MPa）</th>
<th>28 抗折（MPa）</th>
<th>压折比</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例</td>
<td>70.5</td>
<td>11.0</td>
<td>6.4</td>
<td>102.3</td>
<td>14.7</td>
<td>7.0</td>
</tr>
<tr>
<td>实施例 5</td>
<td>65.8</td>
<td>11.6</td>
<td>5.7</td>
<td>83.7</td>
<td>13.2</td>
<td>6.3</td>
</tr>
<tr>
<td>实施例 6</td>
<td>67.2</td>
<td>12.4</td>
<td>5.4</td>
<td>90.8</td>
<td>13.6</td>
<td>6.7</td>
</tr>
</tbody>
</table>
从上可以看出，随聚丙烯纤维掺量增加，混凝土的 7 天抗折强度有所提高，7 天和 28 天的压折比都降低，韧性有所提高，但抗压强度有所损失。

实施例 9—实施例 12：钢纤维、聚丙烯纤维混杂增强自密实 RPC。原材料及规格见表 1，材料配比及性能见表 6，表 7。

表 6 本发明的混杂纤维增强自密实 RPC 及比较例实施例

<table>
<thead>
<tr>
<th>编号</th>
<th>配合比</th>
<th>水胶比</th>
<th>减水剂用量%</th>
<th>纤维掺量%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C: SF: Qu: S</td>
<td></td>
<td></td>
<td>钢纤维</td>
</tr>
<tr>
<td>比较例</td>
<td>1:0.30:0.27:1.2</td>
<td>0.27</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>实施例 9</td>
<td>1:0.30:0.27:1.2</td>
<td>0.27</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>实施例 10</td>
<td>1:0.30:0.27:1.2</td>
<td>0.27</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>实施例 11</td>
<td>1:0.30:0.27:1.2</td>
<td>0.27</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>实施例 12</td>
<td>1:0.30:0.27:1.2</td>
<td>0.27</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

注：减水剂用量为胶凝材料的质量分数，这里胶凝材料为水泥，硅灰；纤维掺量为体积掺量。

表 7 本发明混杂纤维增强自密实 RPC 主要性能及与普通 RPC 的比较

<table>
<thead>
<tr>
<th>钢纤维掺量（%）</th>
<th>7 天抗压（MPa）</th>
<th>7 天抗折（MPa）</th>
<th>压折比</th>
<th>28 天抗压（MPa）</th>
<th>28 抗折（MPa）</th>
<th>压折比</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例</td>
<td>70.5</td>
<td>11.0</td>
<td>6.4</td>
<td>102.3</td>
<td>14.7</td>
<td>7.0</td>
</tr>
<tr>
<td>实施例 9</td>
<td>76.0</td>
<td>16.5</td>
<td>4.6</td>
<td>111.6</td>
<td>21.7</td>
<td>5.1</td>
</tr>
<tr>
<td>实施例 10</td>
<td>74.5</td>
<td>16.0</td>
<td>4.7</td>
<td>106.6</td>
<td>18.7</td>
<td>5.7</td>
</tr>
<tr>
<td>实施例 11</td>
<td>77.9</td>
<td>17.3</td>
<td>4.5</td>
<td>109.1</td>
<td>21.0</td>
<td>5.2</td>
</tr>
<tr>
<td>实施例 12</td>
<td>65.9</td>
<td>18.0</td>
<td>3.7</td>
<td>104.7</td>
<td>17.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

从表 6 和表 7 可以看出，在固定钢纤维掺量为 1.5%时，随聚丙烯纤维掺量增加，混凝土的 7 天抗折强度提高；对 28 天性能，则聚丙烯掺量为 0.05~0.2%为最佳。