EUROPEAN PATENT SPECIFICATION

Bag utilizing fastener tape material and method of manufacture thereof

Designated Contracting States:

Priority:
24.07.1996 US 22353 P
18.01.1997 US 36186 P
22.01.1997 US 35051 P

Date of publication and mention of the grant of the patent:

Application number: 97394293.8

Date of filing: 24.07.1997

Date of publication of application:

Proprietor: Illinois Tool Works Inc.
Glenview, IL 60026-1215 (US)

Inventor: Johnson, James R.
Atlanta, GA 30340 (US)

Representative: Haslam, Simon David et al
Abel & Imray,
20, Red Lion Street
London WC1R 4PQ (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

Description

[0001] This application claims priority from Patent Cooperation Treaty Application Serial No. 97/US713028 filed July 24, 1997, which in turn claims priority from United States Provisional Patent Application Serial No. 60/036,186 filed January 18, 1997, and United States Provisional Patents Application Serial No. 60/035,051 filed January 22, 1997, all invented by the present inventor, James R. Johnson. This invention relates generally to reclosable plastic bags and in particular to fastener assemblies for such bags, tape having reclosable fasteners thereon used in the manufacture of reclosable plastic bags, the web that the bags are made from, methods related to their manufacture, and an apparatus for manufacturing reclosable bags that is more efficient and economical than conventional methods and devices.

[0002] While most packaging is done with polyethylene sheeting, or multilayer sheeting that includes a polyethylene layer, there are problems in sealing reclosable profiles to the such sheeting due to the thickness of the profiles, or the thickness of flange material that may be integral with the profile. Sealing is even more difficult when the sealant layer of the bag walls is something other than polyethylene, such as oriented polypropylene, for example, used in potato chip bags. An additional problem is to manufacture reclosable bags which would remain closed until opened by the user. The present invention provides apparatus, methods and materials for sealing profiles to sheeting, and for making bags in an efficient and practical manner.

[0003] Prior art such as U.S. Patent No. 4,909,017, McMahon disclose the delivery of a pair of interlocked, profiled fasteners transversely across a web of film, to be used in forming a plurality of bags. However, the McMahon disclosure is non-enabling in that fastener strips cannot be delivered as described therein. Also, the strip material shown, if sealed in the center, would be unstable due to the rib and groove design, which would rock. Similarly, the strip material is naturally curled from extrusion and distorted from being wound onto a spool.

[0004] There are at least two other major shortcomings of the McMahon '017 patent. The first shortcoming involves the impossibility of making commercially acceptable seals of the bag walls to the backside of each fastener in the bagger sealing jaws. The second shortcoming involves the window of registration required to seal the backside of the fastener to a finished bag wall during bagger cross sealing; known form fill seal and equipment cannot repeat the film draw down with the required accuracy.

[0005] Specifically, the McMahon '017 patent describes a pressure bar seal in the bagger sealing jaws that seals the outer bag material precisely to the backside of the fastener profile. Yet, it has been discovered, as indicated in Applicant’s specification, that a pressure bar seal requires a stable and flat surface to properly seal. The irregular shape of the McMahon fastener profile makes this impossible. One requires heat, dwell time, and pressure to effect a commercially acceptable seal. Due to the irregular shape of the profile, it is impossible to get enough stable pressure to accomplish a commercially acceptable seal. The surface moves and given unpredictably. If enough heat and pressure are applied for a sufficient dwell time to mash the base of the profile flat enough to seal, the profile hooks are softened and deformed, making it impossible to repeatedly use the completed bag for opening and reclosing. In addition, no bagger can draw with the accuracy the McMahon '017 patent requires, to place the second seal, in register, on the back side of the fastener profiles.

[0006] In U.S. Patent No. 4,528,224, it has been known to manufacture reclosable fastener assembly in which a pair or even several pairs of male and female profiles interlock. In U.S Patent No. 4,528,224 by inventor Steven Ausnit, such a pair fastener has shown. In Figure two of Osnet, a pair of such profiles have flanges which extend between them. However, the flanges are the same thickness as the entire based of the profiles. Similarly, in U.S. Patent No. 4,264,288, Sandborn, a pair of fastener has shown. In Figure two of Osnet, a pair of such profiles have flanges which extend between them. However, in both cases the fastener profiles are not sufficiently separate so that the flanges extending between them are not relatively ragged but are flexible and are not supportive by the fastener profiles themselves. In U.S. Patent No. 5,509,734 again, pairs of fastener profiles are shown. However, in the '734 patent, a wedge is located between the fastener profiles.

[0007] U.S. Patent No. 4,993,844 discloses a complementary interlock strip extruded with and mounted on strips of plastic material. Similarly, U.S. Patent No. 5,071,689 discloses strips of extruded plastic zipper sections. However, none of the foresaid patents discloses sealing of reclosable fastener assembly to tape strips of tape are in return are sealed to or webs of bag making materials.

[0008] PCT application number 97/06062, published February 20, 1997 discloses a zipper film and bag in which a reclosable bag has a reclosable refastener assembly connected to a single wall of the bag in which the film of the bag has a reclosable fastener connected to one side thereof which does not require attachment to any other portion of the film when making the bag. This differs from the present invention in which the fasteners attached to both wall of the bag, either directly of intermediate tape material.
SUMMARY OF THE INVENTION

[0009] Accordingly, it is an object of the present invention to overcome the shortcomings of the prior art by providing a fastener assembly which is easier to seal to flexible film than prior art fasteners. It is an additional object of the invention to provide a fastener assembly in which thickened sealing bridges are positioned between a pair of profiles, as to facilitate sealing. It is a further object of the invention to provide a fastener assembly having opposing dual profile closure elements in which one of the male profiles has a layer head or barb, the other male profile, thereby making that side of the fastener assembly (the consumer side) harder to open so as to prevent product from inadvertently forcing the bag open. It is an additional object of the invention to utilize fastener profile mounted on tape in the bag forming process, thus sealing two flat, substantially parallel surfaces together. As a result, there is no irregular surface that is sealed to attach the fastener to the front panel, or to carry the fastener through the bagger and down the form, fill and seal tube or to seal the back-seamed side of the package.

[0010] It is an additional, object of the invention to solve the shortcomings of the art through the use of fastener tape to which the fastener assembly is attached as to provide a thin substantially flat surface which is sealed to the bag wall(s).

[0011] US4617683 and US4709398, upon which the preamble of claim 1 is based, disclose a method of sealing sections of tape across a portion of a web of thermoplastic material, the method comprising: dispensing the tape a desired distance; cutting said tape to a desired length of section of tape; grasping the end of the section of tape and advancing said section of tape over the web; pressing said section of tape to said web and heat-sealing said section of tape to the web. US4844759 discloses the use of a belt to move the section of tape over the web.

Summary of the invention

[0012] The present invention provides an apparatus for dispensing, applying and sealing individual sections of thermoplastic tape (100) across a portion of a web (110) of thermoplastic material, said apparatus comprising: means for dispensing said tape (2108); a tape applicator apparatus (420); means for delivering tensioned tape from said tape dispensing means to said tape applicator apparatus comprising a tape drive assembly for advancing said tape (2107); a tape cutter assembly for cutting said tape into individual sections of a preselected length; a tape sealing mechanism (2159) for applying pressure and heat to said tape section on said web for a specified dwell time; and means for sequentially advancing said web characterised in that the apparatus comprises a vacuum belt means (2132) for advancing said section of tape into a desired position across said web of thermoplastic material and

[0013] Said means for dispensing said tape may comprise: a roll of said tape pivotally mounted on a powered unwind reel; a tension arm having said tape wound thereon, said tension arm being slidably mounted so as to rise or descend in response to tension on said tape; and means for controlling rotation speed and tension of said unwind reel in response to said rise or descent of said tension arm.

[0014] Said means for delivering said tape may comprise: a plurality of dancer rollers thereon, the position of said dancer rollers indicating tension on said tape; film synchronizer means for synchronizing said tape with said tape applicator, said film synchronizer means having one or more vertically adjustable rollers therein, said rollers being vertically adjustable in response to tension on said tape disposed through said rollers; a tape registration assembly for adjusting the registration of said tape, and a nip drive assembly for feeding said tape in response to the position of said rollers in said film synchronizer means and the position of said dancer rollers.

[0015] Said means for advancing said web of thermoplastic may include a motorized drive roll for dispensing said web; one or more dancer rollers having said web threaded therethrough, a dancer arm supporting at least one of said dancer rollers; a pair of motorized nip rollers for advancing said web through said apparatus; means for detecting the position of said dancer arm and actuating said motorized drive roll and said motorized nip rolls at the speed required to maintain a selected tension on said web; means for detecting the position of said tape and for signalling said web drive roll and said nip rollers to speed up or slow down in response thereto; and control means for co-ordinating the signals from said means for detecting the position of said tension arm and said means for detecting the position of said tape and for controlling the speed of said web and said tape.

[0016] The apparatus may further comprise a form fill seal machine having a set of dancer rollers on the front portion thereof for carrying said web having said sections of tape thereon; a sensor for determining the position of at least one of said dancer rollers so as to determine the tension on said web; and means for signalling said control means for controlling the speed of said web and said tape.

[0017] Said control means may comprise: a computer electronically connected to said tension arm, said motorized drive roll, said means for detecting the position of said dancer arm, said motorized nip rollers, said means for detecting...
the position of said tape, said tape drive roll, and said tape nip rollers.

Alternatively, said control means may comprise fluid logic controls to said tension arm, said motorized drive roll, said means for detecting the position of said dancer arm, said motorized nip rolls, said means for detecting the position of said tape, said tape drive roll and said tape nip rollers.

The apparatus may further comprise means for ultrasonic sealing the ends of said sections of said tape prior to cutting of said tape, positioned between said means for dispensing said tape and said tape applicator.

Said vacuum belt means, said tape registration assembly and said tape cutter assembly may be interconnected by a belt drive constructed and arranged for maintaining the relative speed of operation of said vacuum belt means, said tape cutter assembly and said nip rollers, and for retaining the relative position of said tape and said tape segments during operation of said apparatus.

Said belt drive may be powered by a single motor so as to provide constant speed and tension.

Said tape drive assembly may comprise a double hub having a first hub and a second hub, said first hub being connected by a toothed belt to a third hub on said drive motor, said third hub being mounted on a first shaft powered by said drive motor so as to rotate said third hub thereby causing said double hub to rotate; said double hub being mounted on an end of one of said nip rollers so as to cause rotation of said nip roller when said double hub is rotated; said vacuum belt having a drive shaft extending through one end thereof and a fourth hub extending from said drive shaft, said fourth hub having a toothed drive belt disposed thereon; said toothed drive belt being connected to first said hub so as to cause said fourth hub and said drive shaft to rotate when said first hub rotates, thereby driving said vacuum belt in synchronization with said cutter assembly and said nip rollers.

Said cutter assembly may comprise: an air piston mechanism having a shaft extending downwardly therethrough, said air piston being constructed and arranged to selectively raise and lower said shaft; a cutter blade and clamp affixed to the distal end of said shaft for clamping and cutting of said tape; a slidable die plate for selectively being positioned under said tape, said die plate having a slot extending therethrough and a spring loaded stripper block proximate said slot; said clamp being constructed and arranged for pushing down said stripper block when said shaft is extended so as to facilitate cutting of said tape; said stripper block being constructed and arranged to press upwardly when said clamp is pulled upwardly by said shaft, said stripper block being constructed and arranged to push the distal end of said tape towards said vacuum belt.

Said vacuum belt means may comprise a vacuum belt having a plurality of holes extending therethrough; said vacuum belt being rotatably mounted on a pair of rollers; at least one of said rollers being powered so as to selectively cause rotation of said belt and incremental advancement of said belt a desired distance; a ledge extending below said belt constructed of a slick thermoplastic elastomer and sized and positioned so as to serve as a barrier to air from said web moving thereunder, and as an eliminator of static electricity.

Said vacuum belt may be approximately one inch (about 25mm) wide and said holes may be centred 5/8" (about 16mm) from the edge of said belt.

Said tape may comprise a folded loop having a pair of interlocked fastener profilers attached thereto on the inside surface thereof, said interlocked fastener profilers being constructed and arranged for selectivity opening and resealing, whereby when said tape is positioned and sealed on said web, said web is suitable for conversion into a plurality of resealable bags.

The apparatus may further comprise computer means for co-ordinating said means for dispensing said tape, said tape applicator, said tape cutter, said tape drive, said vacuum belt and said means for sequentially advancing said web. The apparatus may further comprise: keyboard means for adjusting the length of said tape sections, the space between said tape sections, the space between said tape sections sealed on said web, and the speed of operation of said apparatus for dispensing, applying and sealing said individual sections of tape to said web.

The invention further provides a method of sealing individual sections of thermoplastic tape across a portion of a web of thermoplastic material, the method comprising: dispensing said tape a desired distance; cutting said tape to a desired length of the individual sections of said tape; grasping the end of said individual section through the use of a vacuum; sequentially applying vacuum to the length of said individual section of tape and simultaneously advancing said individual section of tape over said web; pressing said individual section of tape to said web; and heat sealing said individual section of tape to said web.

The method may further comprise the step of co-ordinating the advancement of said web with the advancement of said tape and said section of tape.

The method may further comprise the steps of: running said web from an unwind roll through a series of dancer rollers; reading the position of said dancer rollers; signalling a drive motor to advance or retard said web based on the position of said dancer rollers; signalling a tape drive the position of said roller; running said tape through a series of tape dancer rollers; signalling said tape drive the position of said tape dancer rollers, thereby causing said tape drive to advance or retard said tape; and signalling said drive motor to advance or retard said web. The method may further comprise: feeding said web with sections of tape sealed thereon into a form fill seal machine and through a set of form fill seal dancer rollers at the back thereof; signalling the position of said form fill seal dancer rollers to said tape drive
and said web drive motor so as to control movement of said tape and said web.

[0031] The method may comprise dispensing, applying, and sealing individual sections of thermoplastic tape across a portion of a web of thermoplastic material, the method comprising dispensing tensioned tape from a tape dispensing means to a tape applicator apparatus comprising a tape registration assembly for adjusting the position of said tape and a tape drive assembly for advancing said tape; cutting said tape into individual sections of a preselected length; advancing said section of tape by vacuum advancing means into a desired position across said web of thermoplastic material and applying pressure and heat to said tape section on said web for a specified dwell time to seal said tape to said web, and sequentially advancing said web.

[0032] Accordingly, it is an object of the invention to overcome the shortcomings of the prior art by providing a large skirt (tape) area which a second seal can be easily registered. The skirt (tape) height of the area could be changed, depending upon the bagger design, condition, and the variation in draw height of the bagger.

[0033] It is another object of this invention to overcome the shortcomings of the art by using fastener profile mounted on tape in the bag forming process, and requiring that the operations involved sealing two flat, substantially parallel thin surfaces. Thus, there is no irregular surface that is sealed to attach the fastener to the front panel, or to carry the fastener through the bagger and down the form, fill and seal tube or to seal the back-seamed side of the package. It is also an object of the present invention to allow the customer/user of the package to open the package from the top, as he or she is accustomed.

[0034] It is an additional object of the invention to treat the inside of the skirt (tape) area to prevent area from being sealed together in the process described below, to allow zipper and bag opening from this area.

[0035] It is an additional object of the invention to solve the shortcomings of the art through the use of fastener tape as described below, to provide a thin substantially flat, fastener appendage which is sealed to the bag wall(s) and to treat the inside layers of the fastener opening tabs, above the fastener.

[0036] It is a further object of the invention to provide improved control of web dispensing by using driven, dancered unwinding of the base web and indexing of the base web for zipper application positioning. The zipper application includes a servo motor and computerised motor controls.

[0037] It is an additional object of the invention to provide unwinding, tensioning, guiding and indexing of the fastener tape materials in the attachment thereof to a web, linked to the indexing of web but independent thereof.

[0038] It is a further object of the invention to provide a balance of tensions between the fastener strip and tape material by providing a driven, dancered web for feeding folded and lightly-tensioned tape material to a fastener sealing device.

[0039] It is yet a further object of the invention to obtain a flatter, straighter, curl-less fastener tape from the fastener tape operation by more accurately controlling the relative tensions of the webless fastener and the tape material during the application of the fastener material to the tape.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] The present application includes at least one drawing and/or photograph executed in colour. Copies of this patent with color drawing(s)/photograph(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

FIG. 1 is a schematic representation of the system for performing the processes of the present invention;
FIG. 2 is a schematic representation of a sub-assembly of an apparatus used in the system of FIG. 1;
FIG. 3 is a flow chart of a routine of the present invention;
FIG. 4 is a perspective view of the tape of FIG. 6 being ultrasonically staked to the web;
FIG. 5 is a perspective view of a web of the present invention;
FIG. 31 is a side perspective view of the forming collar of FIG. 30;
FIG. 32 is a front view of a form fill seal machine;
FIG. 33 is a close up view of sealing bars and a cutting knife of FIG. 32;
FIG. 34 is a top plan view of laminate material used in the manufacture of fastener tape;
FIG. 35 is a side cross-sectional view of an interior cap sealed to a base web of a partially processed fastener tape assembly;
FIG. 36 is a side cross-sectional view of the partially processed fastener tape assembly of FIG. 35 after a folding operation;
FIG. 37 is a side cross sectional view of the partially processed fastener tape assembly of FIG. 36 having a fastener sealed to the sealant layer of the base web;
FIG. 38 is a side cross sectional view of the partially processed fastener tape assembly of FIG. 36 having a fastener sealed to the interior cap at ends thereof;
FIG. 39 is a side cross sectional view of a variant of FIG. 37 having a sealed header portion thereof;
FIG. 39a is a top plan view of a reclosable bag utilizing the web of FIG. 35;
FIG. 40 shows a variant of the top of the bag of FIG. 19 in which gripping flanges are provided above an adhesive seal sealing the bag wall together;
FIG. 41 is a diagram of an apparatus for forming the fastener tape illustrated in FIG. 20, 21 and 23;
FIG. 42 is a side cross sectional view of a variant of the fastener tape described herein having a non-sealing nitrocellulose coating thereon; and,
FIG. 43 illustrates a top plan view of a variant of a top portion of a reclosable bag of the invention.
FIG. 44 is a front elevational view of the improved reclosable plastic bag of the present invention;
FIG. 45 illustrates a perspective sectional view of an improved reclosable plastic bag of the present invention of FIG. 44;
FIG. 46 is a perspective view of a vertical bag forming, filling and sealing apparatus for manufacturing bags of the present invention;
FIG. 47 is a perspective view of a roll of web of the present invention;
FIG. 48 is a side cross-sectional view of an optional reclosable flange of the present invention;
FIG. 49 is a partial side cross-sectional view of the recloseable flange of FIG. 48 connected to a web wall;
FIG. 50 is a partial side cross-sectional view of an optional recloseable tape of FIG. 51 in an assembled bag of the present invention;
FIG. 51 is a side cross-sectional view of an optional recloseable tape of the present invention;
FIG. 52 is a partial side cross-sectional view of the recloseable tape of FIG. 51 connected to a web wall;
FIG. 53 is a partial side cross-sectional view of the recloseable flange of FIG. 48 in an assembled bag of the present invention;
FIG. 54 is a side view of a variant of the flange of FIG. 48;
FIG. 55 is a side cross sectional view of the flange of FIG. 54 in an assembled bag of the invention;
FIG. 56 is a perspective view of an apparatus to manufacture web material that is used with the vertical bag forming, filling and sealing apparatus of FIG. 46; and,
FIG. 57 is a side cross sectional view of the bag of FIG. 53 upon severance of the top portion thereof.

DETAILED DESCRIPTION OF THE INVENTION

[0041] FIG. 1 is a schematic representation of a system 120 for practicing the present invention, which relates generally to reclosable plastic bags, and more particularly to the sealing of reclosable fastener mounted on tape to a web, used in making reclosable bags on a form/fill/seal machine. System 120 is capable of repeatedly performing the steps required for the manufacture of such bags with high throughput and with low cycle times.

[0042] The proper feeding, locating and sealing of tape 100 at predetermined locations on base web 110 are important aspects of system 120. The manner in which tape 100 is fed, and positioned for sealing onto base web 110 is critical to achieving accurate secure sealing of tape 100 to web 110. To this end, base web 110 is indexed at indexing station 130, via servo motor 140. Servo motor 140 has control over acceleration, speed and deceleration of web 110.

[0043] As shown in FIG. 4, in an alternative embodiment, the movement of web 110 in the direction of the arrow 112 in FIG. 1 creates air movement over web 110 affecting anything that is attempted to be passed over it, such as tape 100. The tendency is to pull the leading edge of tape 100 in the direction of the movement of base web 110. Tape 100, which is generally about 1” to 2-3/4” wide, effectively floats on current of air 180 (not shown). At the end of the tape delivery 190, tape 100 is in a stretched position 320 across web 110, assuring squareness for positioning onto base web 110. By “pinning” or staking tape 100 at a stretched corner, then pinning or staking it at a corner at the opposite end of tape 100, sealing can be accomplished with tape 100 square and in register with base web 110. Seal 114 is transverse to web 110 and parallel to the fastener that is attached to tape 110.

[0044] It has been determined that the following sequence of steps rapidly and accurately feeds, locates, cuts and seals tape 100 onto web 110.

1. A signal to index base web 110 and index tape 100 is given, controlled by the level of take up dancer 520.
2. A servomotor 469 drives the tape 100 forward via the nip drive 470 of Tape Drive Assembly 2107.
3. The leading edge 110A of the tape 100 is driven into the vacuum belt 2132 in Vacuum Drive Assembly 2167. Vacuum openings 2049A in the belt 2132 attach to the skirt area 100A of Tape 100, above the zipper 980. The Vacuum belt 2132 is driven slightly faster than nip drive roller surfaces 2113-17 and carries the leading edge 110A of the tape 100 to its farthestmost position in a stretched manner.
4. After driving the tape 100 the distance desired, the Tape Cutter Assembly 2109 is activated to clamp and cut tape 100.
5. As the cutter 2109 clears to return to its uppermost position, the leading edge 110A of the next piece of tape 110 is lifted clear of the cutting slot 2109A to avoid a potential jam on the next feed cycle, and so as to be aimed properly for transference to the vacuum belt 2132. Concurrently the cutting ledge 2109B moves clear to allow the trailing
edge of the tape piece just cut to lay flat for sealing.

6. The tape 100 is sealed to the base web 100 via the sealing bar 2159 which is part of vacuum drive assembly 2167. The sealing bar 2159 clears, (is raised), and the cycle is ready to be repeated. The trailing edge 110B of the piece of tape 100 just attached to the base web 110 does not interfere with the lifted leading edge 110A of the tape 100 on next feed cycle, due to the leading edge 110A feeding over the trailing edge 110B, and being pulled away in a transverse direction.

7. The vacuum belt 2132 remains constantly on, rather than cycling on and off, thereby preventing delays in building up vacuum strength after being shut down. This occurs because the seal strength of the bond between the tape 100 and base web 110 is strong enough to allow separation of the tape 100 from the vacuum belt 2132 when the base web 110 indexes.

[0045] In an alternative embodiment, it has been determined that the following sequence of steps rapidly and accurately feeds, positions and seals tape 100 onto web 110:

1. Tape 100 is driven forward using a set of grooved rubber nip rollers 150 connected to stepping motor 160 at stepping station 170.
2. Tape 100 is carried transversely across web 110 with a curtain or stream 180 of air directed above and below tape 100 from air supply 105, so as to eliminate the influence of base web 110, which is moving concurrently beneath tape 100 and at a right angle thereto.
3. Air curtain 180 is stopped at delivery end station 190, and concurrently loop side corner 200 of tape 100 is pinned to base web 110 (FIG. 1A) before the tape 100 is cut off at cutting station 210 (FIG. 4).
4. Tape 100 is pinned at opposite end 230 (FIG. 4) as cut 220 is being made and tape 100 is held in position to be sealed at positioning station 240 by pinning devices 260.
5. Single lip 250 is sealed to base web 110 with a sealing device, namely fastener segment attachment assembly 2101, while pinning device 260 continues to hold severed tape piece 270 (FIGS. 4) in position, substantially square with base web 110.
6. Tape 100 is continuously held by pinning devices 260 while the seal bar 2159 (FIG. 33) lifts away from the sealing position, effectively allowing the sealing bar 2159 (FIG. 33) to strip away from the seal.
7. Pinning devices 260 (FIG. 4) is released. Pinning devices 260 includes pneumatically operated rubber boots 310, which are generally about 1" square.

[0046] Another aspect of the invention, as seen in Figure 1, provides for an attachment of tape applicator 420 to a winder 600 (not shown). This allows bagger 410 to function with pre-applied tape. There exists substantial demand for zippered roll stock 630 with tape 100 already sealed onto base web 2154 to be run on separate baggers. This approach to zippered packaging is not a replacement for in-line capability, but can be used as another option.

[0047] As seen in Figure 4, the invention also provides an apparatus 1140 and method for forming and driving web 340 (web 110 having tape 100 sealed thereto) downwardly along the outside of tube 350 (which is part of a vertical form, fill and seal machine), making back seal 360 and making cross seals 370, 380. Each end 230, 235 of the severed tape piece 270 (FIG. 5) must be sealed in some manner, or the severed tape piece 270 will, simply, separate at its first opening and realignment will be very difficult. To solve this problem, the ends 230, 235 of our zipper tape piece are “staked” ultrasonically.

[0048] As seen in Figure 1, the invention further provides a device 400 for coordinating bagger 410 and tape applicator 420. It is important to coordinate the operations of bagger 410 and the operations of tape applicator 420, because uniform web tension must be maintained between these operations, or web tracking will be lost.

[0049] As partially illustrated in FIG. 1 and 2, assembly 430 is responsive to device 400 and delivers uniformly tensioned web 440 to bagger 410, takes up the material being fed by the tape applicator 420, and simultaneously maintains proper tension. The three sections of assembly 430 are: 1. a spring loaded three loop dancer 490 with a photo sensor 460 which reads the position of the dancer 490 and, when ready, starts the cycle of tape 100 application; 2. a nip drive 470, for feeding the tape 100 (FIG. 29) and; 3. a second three loop dancer 2136 (as shown in FIG. 29) between the nip drive 470 and the bagger 410 (FIG. 1) which controls the nip drive 470.

[0050] Indexing of the bagger 410 and indexing of the tape applicator 420 are independent. Bagger 410 indexes, causing the three loop dancer 490 to rise. A proximity switch (not shown) and a cam cause nip drive 470 (FIG. 2) to pull material 440, thereby lowering arm 520 on the dancer 490. When additional material 440 is pulled through the nip 470, the upstream dancer arm 520 rises causing coils 510 in springs 521 to stretch under tension. Photo sensor 460 then sees flag 570 on arm 550 of the dancer 490, which causes tape applicator 420 to index. The coils 521, which are under tension, pull arm 520 down to receive material 340 being indexed into three loop assembly 490. The process is then continually repeated. As light a tension as possible is used on the spring 521 so that little resistance to the movement of the tape 100 is applied, thereby reducing the tension on the tape 110 and resistance to the inertia of the tape 100
moving forward. As a result positioning of the tape 100 is more accurate throughout the system.

[0051] FIG. 3 illustrates a tape applicator program 580 that executes the following steps of the routine: 1. -- Base web 110 indexes to eye spot 590, via servo motor 140; 2. -- Tape 100 is fed, via stepping motor 160; 3. -- Vacuum belt 2132 carries tape 100 for positioning. 4. -- Tape 100 is cut, and sealed to base web 110. 5. -- Seal 280 is actuated to seal tape 100 to base web 110.

[0052] System 120 described above optionally feeds a winder 600 (not shown), as well as bagger 410 with, practically, no modifications. In these cases, the equipment may be used by a company packing product or a film converter. This approach allows any converter to provide a customer-packer with preapplied zippered roll stock 630, enabling the converter to obtain base web business he would not ordinarily get. Similarly the packer can run preapplied zippered roll stock 630 on multiple bagging machines without having to provide tape applicator machine 420.

[0053] The invention also provides for methods of treating the internal loop or flap area 1060 of tape 100 to create a non-sealing characteristic thereon as illustrated in FIGS. 6 and 7. The inside surface of the loop or flap area 1060 of the tape 100 material is treated to make it not seal in bagger 410 (FIG. 1) during the jaw sealing process 1260.

[0054] There are several ways in which this is accomplished, including electronic surface (corona-style) treatment, application of non-sealable printing materials, lamination or sealing of a barrier (non-sealable) strip application onto tape 100 material between zipper halves 720 and 730, or insertion of a barrier (non-sealable) strip 740 into loop (flap) area 710, as seen in (FIG. 8).

[0055] In one variant, as seen in FIG. 9, the invention includes francible opening 750, used when the product packaged does not require hermetic seals, such as IQF (instant quick freeze) vegetables and/or fruits. For items not requiring hermetic seals, such as IQF vegetables, where holes are punched to get air out of the bag and release CO2, francible opening 750 is desirable as opposed to cutting a top seal 830 (FIGS. 10, 11 and 12) off with scissors.

[0056] As illustrated in FIGS. 9-11, opening is created during tape 100 manufacturing. Top end 760 is slit open during manufacturing. The tape material 100 is constructed from a single-layer of polyethylene with additives such as ethylene vinyl acetate to facilitate sealing. The application of tape 100 results in a finished package 1 as depicted in FIG. 10. The perforating operation to create francible opening 750 (FIG. 9) is incorporated into the sealing jaws 1260 (FIG. 12) of the bagger 410 (FIG. 1), which also seals the cross web tape loop 880 (FIG. 13) the top seal 830 (FIG 10) and bottom sealer 832 (FIG. 11) of the bag 1.

[0057] As illustrated in FIGS. 9-13, flanges 770 and 780 having fastener profiles 720 and 730 thereon are sealed to the inside walls 810 and 820. Flanges 770 and 780 are sealed to walls 930 and 940 below top seal 830 at seals 790 and 800. Francible opening 750 (FIG. 9) is disposed below top seal 830 and above flange 780 (FIG. 10).

[0058] The invention further includes a process to make pre-applied zippered tape roll stock 630 (FIG. 5). The tape 100 material is optionally applied in-line with the customer’s product bagging machines. Preapplied zippered roll stock 630 may also be provided by adding a winder 600 to the tape applicator 420 system 120.

[0059] The invention also includes variants for “chip” industry applications. The invention includes an “easy opening” feature for plastic bags. As shown in FIG. 12, chip bag 840 carries very thin sealant layer 850, commonly about 2/10 of a millimeter in thickness. Chip bag 840 includes a reclosable strip 860 just below separable opening portion 870. Separation of the walls of opening portion 870 exposes reclosable opening flanges 770 and 780 to the environment if the tape loop 760 (FIG. 9) is slit apart during its manufacture. FIG. 12 also illustrates the location of sealing bars 2159. Sealing bars 2159 seal at least a flat, unprofiled portion of flanges 770 and 780 to the bag 840 walls.

[0060] In a preferred embodiment, tape loop 880 is slit open during manufacturing. Inside surfaces 890 and 900 on flanges 770 and 780 (FIG. 13) are treated to be unsealable.

[0061] Chip bag 840 is manufactured using the following steps: As depicted in FIG. 10, outside surfaces 910 and 920 of tape assembly 950 are sealed to chip bag inside wall surfaces 930 and 940, respectively. Outside surfaces 910 and 920 on flanges 770 and 780 (FIG. 12) include a laminate surface sealant compatible with inside bag surfaces 930 and 940 (FIG. 12).

[0062] Profiled reclosable strip 860 is provided, (FIG. 12), having zipper halves 720 and 730 between flanges 770 and 780 in an interlocked arrangement. Top seal 830 FIG. 10 is formed from the same material used to make the easy open chip bag 840 (FIG. 12). Bottom seal 832 (not shown) is formed concurrently.

[0063] In the case where packaging material 960, e.g. web stock, has a “different” sealant layer 970 from zipper 980, a coextruded or laminate, tape material 1010 is applied to material 960 (FIGS. 14-15). The fastener side 1005 contains a compatible LDPE (low density polyethylene) surface 1000 and the opposite side 1020 is layered with material 1030 that is compatible with the sealant layer 970 of the packaging material 960, such as a potato chip bag 840. Opposite side 1020 is compatible with sealant layer 970 of packaging material 960. Inside surface 1000 is constructed for easy sealing to zipper 980. The inside loop area 1060 is treated after zipper 980 is sealed in so that loop area 1060 cannot be sealed to itself. The outside surface 1030 remains sealable and compatible with the inside surface of packages, to effect the desired seal to the package. “Cut here” instructions or other indicia are provided so that the user can expose fastener 980 upon severance along the indicated lines (FIG. 15).

[0064] In yet another aspect, the invention provides an apparatus 1140 to make reclosable tape 1010 (FIG. 14) or
flange zipper material 950 (FIG. 13) and wind it into rolls. In one variant, tape 1010 has a tape portion 1090 of about 3/4" of an inch in length and a tape portion 1100 about 1-1/4" in length which is treated to be non-sealable. Tape 1010 is formed from about 3 millimeter stock. In another variant, flange 1110 is manufactured (FIG. 9). Flange 1110 has flange portion 1120 which is about 3/4" in length, and a second flange portion 1125 that is about 1-1/4" in length. The inside high flange area portion 1130 is treated to be non-sealable. Either tape 1010 is affixed to the fastener profiles and processed as described herein.

[0065] As shown in FIG. 1, apparatus 420 is provided, for indexing sealing tape 100 or flange 1110 to web 110. Apparatus 420 is located behind (or upstream) of form, fill, seal bagger 410. Apparatus 420 unwinds reclosable tape 100 or flange material 1070, indexes, punch holes, and indexes tape 100 again to a location centered above the backside 1160 of the intended front panel 1170 of base web material 2154 (cross web) and cuts tape 100 or flange 1110 to a length that is just shy of the width W of front panel 1170 of the intended bag 1 (FIG. 1).

[0066] Concurrent with the steps described above, the apparatus 1140 feeds (indexes) base web 110 to a position that allows registration of the tape 100 or flange 1110 to just below the intended top portion 1090 FIG. 14 of the finished bag 1. The next step of the method involves sealing as much of the lower flange area 1200 (FIGS. 6 and 7) and the side of the loop 1202 adjacent to the inside surface of the front panel area 1170 to the inside surface 1220 of web 110 as is practical. Step three of the method is to provide web 110, now called web 340 to bagger 410. In bagger 410, in addition to making the normal cross sealing and cutting operations, the sealing bars 2159 are modified to seal the opposite side of the loop (or flange) areas 770, (optionally 780), to bag wall 2004 and 2028 having longitudinal seal 1267 thereon (FIG. 1). It is appreciated that the width of tape 1010 or flange 770 permits wall sections 775 and 785 to be sealed to front panel 1170 and back panel 1265 of bag 1 relatively effortlessly, since substantially smooth, parallel, and unprofiled wall sections 775 and 785, and front panel 1170 and back panel 1265 are sealed together as illustrated in FIG. 16, utilizing sealing mechanism 1260.

[0067] As illustrated in FIGS. 14 and 15, the invention includes a tape 1010 for attachment to a web. The tape 1010 includes a zipper compatible inside portion 1000 for connection of zipper 980 to the zipper compatible, inside portion 1000, and an outside portion 1030 compatible with sealant layer 970 of packaging material 960 for connection of outside portion 1030 to sealant layer 970. In one variant the zipper compatible inside portion 1000 and the outside portion 1030 are incompatible. The compatible inside portion 1000 is compatible with low density polyethylene compatible. The inside loop surface 1060 is treated so as to be incompatible, i.e. virtually non-sealable during the sealing process.

[0068] In a variant, a simplified method of manufacturing the tape 1010 described above is provided that includes the step of coextruding a first base tape 2210 material to obtain zipper compatible inside surface portion 1000 and a second base tape 2210 material to obtain outside surface portion 1030. Optionally, the method includes the step of fusing the zipper compatible inside portion 1000 to the outside portion 1030 to obtain a laminate structure (FIG. 14). As shown in Fig. 5, the invention includes a web 440 for making reclosable bags 2001 comprising the tape 1010 on flange described hereto.

[0069] FIG. 16 illustrates an exploded cross section of a portion of reclosable bag 2001 of FIG. 19. Reclosable bag 2001 has a bag body 2003 with bag top end 2000 (FIGS. 16 and 19) and bottom end 2059. Bag 2001 has bottom seal 2060 and back seal 2062, and confronting bag walls 2004 and 2028. Reclosable bag 2001 includes fastener tape segment 2047 (FIGS. 16-19) sealed to confronting bag walls 2004 and 2028 at seals 2002, 2008, 2010, 2016, 2018, 2024, and 2030 in the finished bag 2001. Reclosable bag 2001 optionally includes indicia 2054 indicating where bag 2001 should be cut to provide a user access to interlocked fastener strip assembly 2048. It is appreciated that bag 2001 can be used in many applications including, but not limited to, snack bag applications.

[0070] Fastener tape segment (2047) has an interlocked fastener strip assembly 2048 including fastener profile strips 2012 and 2022. Strips 2012 and 2022 are not sealed to confronting bag walls 2004 and 2028. Fastener strip 2012 is sealed to film strip 2006 at continuous seal 2010, and complimentary strip 2022 is sealed to film strip 2026 at continuous seal 2024. Film strip 2006 is sealed to bag wall 2004 at continuous seal 2002, and film strip 2026 is sealed to bag wall 2028 at seals continuous seals 2008, and 2030. Barrier material strips 2014 and 2020 are interposed between film strips 2006 and 2026. It is appreciated that, as shown in FIG. 16, fastener 2012 is sealed to wall 2004 only at seal 2002 and sealed to strip 2026 at seals 2038 and 2044. Thus, a portion of strip 2004 and fastener 2012 are free to move relative to wall 2004. Barrier material strip 2014 is sealed to film strip 2006 at seals 2016 and 2050. Barrier material strip 2020 is sealed to film strip 2026 at continuous seals 2018 and 2052. Barrier material strips 2014 and 2020 are made from material that is not capable of sealing to itself at temperatures at which film strips 2006 and 2026 would seal to bag walls 2004 and 2028. It is appreciated that seals 2002, 2008, 2010, 2016, 2018, 2024, 2030 can be made by conventional methods known in the art.

[0071] It is understood that reclosable bag 2001 is generally formed in a form, fill and seal machine (as shown in FIG. 1), in which (as seen in FIGS. 16-19) walls 2004, and 2028 are formed from a base web 2032 having a longitudinal direction of flow in the bag formation process as indicated by arrow 2045 (FIG. 17). Base web 2032 is joined to itself at back seal 2062 (FIG. 19) that extends between bag top end 2058 and bottom end 2059 along one side of bag body 2003.

[0072] As shown in FIG. 18, fastener strips 2012 and 2022 are formed from continuous one-piece extruded resiliently
flexible plastic profiled reclosable fastener strip material. Fastener strips 2012 and 2022 are also sealed one to another at seals 2038, and 2044 (FIG. 17) so that the strips are in alignment with one another and interlocked together. It is appreciated that provision of seals 2038, 2044, in combination with the other seals herein, provide a hermetic seal so that the only access to the interior of bag 2001 is provided upon releaseably disengaging fasteners 2012 and 2022. FIG. 17 illustrates base web 2032 for making a plurality of reclosable bags 2001. Base web 2032 is formed from conventional materials used in the snack bag and plastic bag industries such as polyethylene, paper/poly/foil/poly laminates, propylene, and other laminated and coated material. The base web 2032, is utilized in the method and apparatus 1140 described herein, and in FIGS. 20-33. Base web 2032 is an elongated roll of film having a longitudinal direction of formation indicated by arrow 2045. Base web 2032 has secured thereto a fastener tape segment 2047 at transverse fastener tape segment seal 2036. In a preferred embodiment, seal 2036 extends continuously from fastener tape segment end 2043 to fastener tape segment end 2045. In an alternate embodiment, seal 2036 includes a plurality of spot seals for securing strip portion 2046 of fastener tape segment 2047 to base web 2032. It is appreciated that securing strip portion 2046 is sized and dimensioned to provide a large vertical sealing area in which transverse fastener tape segment seal 2036 can be disposed. Seal 2036 can be placed at any location in portion 2046. Seal 2036 can also include spot seals at any location in the sealing area. Hence, optional film lip 2034 (FIGS. 16-18) located below transverse fastener tape segment seal 2036 can be of varying height, but is preferably about an eight of an inch in height. In another variant, optional film lip 2034 is omitted.

As shown in FIG. 17, secured to web material 2032 at bag length intervals L are a plurality of fastener tape segments 2047, sealed along the length of web 2032 and extending lengthwise across about less than half the width of web 2032. The fastener tape segments 2047 are oriented substantially perpendicular to the direction of formation of the bag 2001, and are located near the ends 2063 and 2065 of the bags into which web material 2032 is formed.

It is appreciated that fastener tape segment 2047 and the securing thereof to web 2032 prior to the formation of bag body 2003 in a form fill seal machine 2138 has a number of benefits. First, it is not necessary to directly seal the narrow individual fasteners 2012 and 2022 to the web. Sealing bars 2159 of sealing bar assembly 2167 (FIG. 20) seal the fastener strip portion 2046 to web material 2032 at seal 2036 FIG. 18. Further, as the web material 2032 (having fastener tape segment 2047 (thereon), travels in the direction of arrow 2045 onto the forming collar 2140 of a form fill seal machine 2138 (FIGS. 30-31), there is a minimal risk that fasteners 2012 and 2022 (FIG. 18) will come apart when the web material is being processed. Further, seals 2038 and 2044 FIG. 17 secure fasteners 2012 and 2022 to each other, to prevent undesirable movement of one fastener in relation to another. Seals 2038 and 2044 also improve overall rigidity of segment 2047 and maintain fasteners 2012 and 2022 in alignment with one another during the bag formation process. It is appreciated that fastener tape segment 2047 may also function as an air foil as the current of air flows over the tape segment 100A in a direction opposite that indicated by arrow 2045. Various types of barrier material can be used herein. However, the barrier material strips 2018 and 2020 do not seal one to another during the bag formation process, but readily seal to film strips 2006 and 2026 (FIG. 16).

FIGS. 20-33 show an apparatus 1140 for manufacturing and sealing tape segments 2047 to base web 2179 and then using a form fill seal machine 2138 for making bag 2001 of the present invention. The form fill seal machine 2138 includes a zipper tape feed 2199 portion as shown in FIGS. 20-24. The zipper tape feed portion 2199 includes tension arm 2121 attached to the distal end 2127 thereof. After full extension of shaft 2125, cutter blade 2121 is retracted, as is die plate 2119. A stripper 2129 helps strip tape 100 from blade 2121 and in fact urges tape segment 100A into tape sealer assembly 2131. Thus, fastener tape 2240 is cut into predetermined sections the length of segment 2047. It is preferred that segments 2047 be about less than half of the width of base web 2179. The control synchronizer 2110 (FIG. 23) synchronizes the feeding of fastener tape 2240 with the feeding of base web 2179 (FIG. 25) so that segments...
2047 can be properly processed as described and sealed to base web 2179. The various operations are actuated by air pressure controls 2104 (FIGS. 20, 21, and 22).

Segment 2047 is next fed into fastener segment attachment assembly 2101 (FIG. 28). Fastener segment attachment assembly 2101 secures segment 2047 to base web 2179 and forms seal 2036. Base web 2179 advances into machine 2138 under the control of film speed quantity control 2116 (FIGS. 25 and 26). Base web 2179 is mounted on web spool drive 2118 (FIG. 25) that includes positioning shaft 2120 (FIG. 26). Base web 2179 travels through dancer rollers 2126 (FIG. 26) prior to arrival at fastener segment attachment assembly 2101 at the rear 2122 thereof.

Segment 2047 is properly positioned and sealed on base web 2179 with a vacuum belt and sealing bar assembly 2131 (FIGS. 20-B, 26 and 27) having a front portion 2-124 and rear portion 2122. The assembly 430 forms seal 2036 and positions segment 2047 on base web 2179 at an appropriate location. FIG. 26 illustrates the rear portion 2122 of vacuum belt 2132 and sealing bar assembly 2131. FIG. 27 illustrates that front portion 2124 of vacuum belt 2132 and sealing bar assembly. FIG. 28 illustrates vacuum belt 2132 and sealing bar assembly front portion 2124 including a belt drive 2169 for vacuum belt 2132 (FIG. 28) and vacuum belt 2132 (FIG. 28) which advances segment 2047 and properly positions segment 2047 on base web 2179. Four vacuum zones 2049 - 2051, 2053 and 2055 in vacuum manifold 2056 maintain tight control of segment 2047, and then in turn reverse air pressure and force segment 2047 fixedly against web 2179. Vacuum belt 2132 and sealing bar assembly 2131 include a horizontal sealing bar 2059, a tape support shelf 2161 and a sealing bed 2162. Sealing bar 2059 includes a heating element 2165, and is mounted on a sealing bar press assembly 2167 which forces sealing bar 2059 downward against tape segment 100A for sealing to base web 2047. Vacuum belt assembly 2131 also includes a belt drive 2169 which advances tape segment 100A (2047) into the desired position over base web 2179. Prior to sealing, tight control of positioning of tape segment 100A is maintained by manifolds 2049, 2051, 2053 and 2055, as is the vacuum belt 2132 is advanced, controlled by tape registration assembly 2105 and tape drive assembly 2117.

As shown in FIG. 20-A, a roller drive 2130 for vacuum belts 2132 is shown. Roller drive 2130 comprises a servo motor 469 contained in container 2130A having a drive shaft 2130B. Shaft 2130B has a sprocket at 2130C on the distal end thereof. A rubber belt 2130D is disposed around sprocket 2130C and extends to a hub 2115A on nip roller 2115. Hub 2115A has a similar sprocket 2115B so that as shaft 2130B rotates it causes rotation of shaft 2130B. When rubber belt 2130D is driven it causes rotation of nip roller 2115. At the same time nip roller 2115 has a double hub 2115C so that a second belt 2130E extends therefrom over idle roller 2130F and drive roller 2130G on vacuum belt assembly 2130. It should be noted in this regard that idle roller 2130F could be a drive roller for use in a mechanically powered cutter assembly (not shown), replacing air piston 2123 (FIG 20-A), if desired. Belts 2130E are again driven by hub 2115A, which drives belt 2130E which is mounted on sprocket 2130H, thereby causing rotation of drive shaft 2130G. Thus, tape 100 is incrementally advanced by nip rollers 2113 and 2115, under cutter blades 2121, then stopped at the appropriate distance. Cutter blade 2121 then is pushed downwardly by air piston 2123 as is clamp 2121A. Clamp 2121A also forces spring loaded stripper 2109A downwardly and out of the way of cutting blade 2121. After cutting blade 2121 has cut tape segment 100A, air piston 2123 is reversed so that shaft 2125 is pulled upwardly, thereby releasing clamp 2121A and spring loaded stripper 2109A. Servo motor 469 than is actuated causing rotation of hubs 2130G, 2115A and 2130B so as to cause advancement of nip roller 2115 and vacuum belt 2132. Vacuum belt 2132 then picks up the leading edge 110A of cut tape segment 100A and advances it over web 110 (FIG 1) where heat sealing is applied as shown in figure 20A. It should be noted that the spring loaded stripper 2109, when it moves upwardly causes the leading edge 110A of tape segment 100A to spring upward against vacuum belt 2132 so as to facilitate advancement of tape segment 100A and prevent jamming of the segment 100A in the slot 2109B in retractable die plate 2119 (FIG 20A). Further shown in (FIG 20A) is a ledge 2171, which prevents the movement of web 110 below vacuum belt 2132 from causing displacement of tape segment 100A on vacuum belt 2132, as advancing tape segment 100A into position over web 110. The ledge 2171 is constructed of Delrin brand thermoplastic elastomer so as to provide a slick surface and to eliminate static electricity created by the movement of web 110 approximate thereto. Alternatively, other materials such as teflon (polyethylene-terephthalate) could be used.

After the segment 2047 is sealed to base web 2179, rubber nip roller 2128 (FIGS. 27 and 28) advances the base web 2179 having segment 2047 forward. The base web 2179 having segment 2047 is then fed through form fill seal machine 2138 dancer rolls 2136 (FIG. 29) into the form fill seal portion of machine 2138 (FIG. 32). The base web 2179 having segment 2047 sealed thereon is fed over forming collar 2140 (FIG. 32) and filling tube 2142 (FIGS. 30-31) by the belts 2181 and 2183 shown in FIGS. 32. Back seal 2062 is then formed. Sealing bar 2159 and cutting knife assembly 2144 (FIG. 33) form seals 2056, 2058, and 2060 simultaneously and sever the finished bag. Although it cannot be seen in FIG. 33, sealing bar 2159 includes two sets of sealing bars 2056’ and 2058’. Seal bars 2056 forms seal 2056. Seal bars 2058’ forms seal 2058. Seal bar 2060’ forms seal 2060. Knife 2144 cuts the partially formed bag between seal bars 2056’ and 2060’. It is appreciated that this method of forming seals 2058 and 2060 with sealing jaws 2058’ and 2060’ provides a benefit. Seal 2058 having a width W at top portion 2000 is generally narrower than seal 2060 having a width W’. This facilitates opening of the top end of bag 2001 by providing a weaker seal at the top end of bag 2001 than at the bottom end of the bag while simultaneously providing a hermetic seal of the top end of the bag and a stronger seal.
lower seal at the lower end of the bag. Hence, it is appreciated that the invention provides for a bag 2001 that requires a differential opening force to open the top end of the bag versus the bottom end of the bag.

[0081] FIGS. 35-38 illustrate a bag and method of forming a bag in a horizontal form fill seal machine 2138. A web of thermoplastic material which is preferably about 1 mil thick and is a laminate material is formed and wound on standard 3 or 6 inch cores to be used as interior end cap 2146. Interior end cap 2146 goes through an operation in which perforations 2150 are formed thereon as indicated in FIG. 34. The laminate material from which interior end cap 2146 is formed is a non-stretchy base thermoplastic material such as polypropylene with a thin sealant layer 2562 on one side thereof, or on each side thereof. The preferred width of the finished roll of interior end cap 2146 is about three and one half inches or less. The web material is perforated in the web direction as shown in FIG. 34.

[0082] A modified applicator system 120 for connecting interior cap/web assembly 2148, (preferably an AMI-RD machine manufactured by AMI REC-PRO), is used for the application of interior cap 2146 and webless fastener 2152 (FIGS. 37-39) to base web 2154 (FIGS. 36-38) for the manufacture of bags. The method of making the bags includes the steps of sealing interior cap 2146 onto base web 2154 to obtain interior cap/web assembly 2148, center folding the interior cap/web assembly 2148 to obtain folded base web 2156 (FIGS. 36-38), introducing webless fastener 2226, 2152 between the opposing walls 2567 of the folded base web 2156 (FIGS. 36-38), and sealing fastener 2152 to opposing walls 2567. Fastener 2152 and header 3014 (FIG. 39) are sealed at the same station. Alternatively, instead of opening the web, the folded base web 2156 may be turned and delivered in line to a horizontal "shred" machine (not shown), at the height desired. As shown in FIGS. 37 and 38, fastener 2152 can be sealed at the ends of interior cap 2158 (FIG. 37) or to a sealant layer of base web 2156 (FIGS. 35 and 37) at fastener seals 2162 and 2164 (FIG. 39). Header seals 2166 (FIG. 39) and fastener seals 2162 and 2164 can be formed simultaneously or at different stations. The web is delivered, in-line and upright, to a horizontal machine.

[0083] The finished package is substantially flat and neat, improving package appearance, and overall quality. The function of opening the package is also improved since the package is opened via a tear notch along the perforations 2150. Then, when header 3014 is completely torn off by the user, the opening tabs are completely intact and parallel. Since the package is more uniform, opening and reclosing the bag is made easier using the reclosable fastener 2152.

[0084] Optionally, base web 2154 includes perforations 2151 that are complementary to and aligned with perforations 2150 of interior cap 2146. It is appreciated that perforations 2150 and 2151 FIG. 39A allow a user to readily open the bag formed with these elements, and easily access the bag. Perforations 2150, 2151 are preferably located between centerfold 2269 and fastener assembly 2152. In an alternate embodiment, perforations 2150 may be omitted.

[0085] FIG. 39A is a top plan view of a reclosable bag 3060 made from the web of FIG. 35. Bag 3060 includes a header 3014, a bottom seal 3100, and side seals 3070, and 3080 forming bag body. Fastener assembly 2152 is positioned below perforations 2150 and 2151 so that when header 3014 is removed, a tear forms along perforations 2150 and 2151, providing access to reclosable fastener assembly 2152.

[0086] FIG. 40 illustrates a variant of the top portion of bag 2001 that includes means for easy access to fasteners 2012 and 2022. The top end of bag 2001 includes adhesive layer 2168, (FIG. 40), above fastener segment 2047 but below bag wall ends 3042 and 3044. This adhesive layer 2168 is applied using conventional adhesives that are readily separated by the mechanical opening force generated by a user's fingers. This adhesive layer 2168 hermetically holds together and seals walls 3004 and 2028 during shipment and storage of bag 2001. Adhesive layer 2168 can be applied to web 2032 before the web moves onto the forming collar 2140. Opening of the bag 2001 to access interlocked fasteners 2012 and 2022 is facilitated by provision of bag wall pull flanges 2170 and 2172 (FIG. 40) which are formed from bag walls, 2004 and 2028. It is also contemplated that the inside and/or outside surfaces 3046, 3048, 3050, and 3052 of bag wall pull flanges 2170 and 2172 can be textured, ribbed or grooved to improve gripping thereof by a user and opening of the bag top can be facilitated.

[0087] FIG. 41 illustrates an apparatus 2200 for forming fastener tape 2240. Apparatus 2200 is used to make fastener tape 2240 described herein using the methods described herein. Base tape 2206 is fed from roll of tape material 2202 onto dancer rollers 2208. Barrier material 2210 is fed from roll of barrier material 2204 onto dancer rollers 2212. Barrier material 2210 and base tape 2206 are aligned, and positioned with respect to each other. In one variant the center of barrier material 2210 is aligned with the center of base tape 2206. In another variant, the barrier material 2210 is positioned on base tape 2206 to provide for unsealed portion 2046. (not shown). Barrier material 2210 and base tape 2206 are sealed to each other and advanced by belts 2214 and 2216. Sealing bars 2218 and 2220 seal barrier material 2210 to base tape 2206 at seals 2016, 2050, 2018 and 2052 to obtain a sealed barrier/base material assembly 3017. The seals may be continuous or periodic. Sealed barrier/base material assembly 3017 is next folded at fold station 2222. The barrier material 2210 is directed to the inside of the assembly 3017 and the base tape 2210 material is directed to the outside of the assembly 3017. Webless fastener 2226 is fed from roll of webless fastener 2228 and aligned and positioned on base tape 2210 material as shown in the figures herein. Optionally base tape 2210 material 2206 may be fed by roller 2224. Belts 2230 and 2232 advance the materials and sealing bars 2234 and 2236 seal the webless fastener 2226.
(interlocked profiles 2012, 2022) to assembly 3017. The fold formed at fold station 2222 is slit at sitting station 2238 to provide the finished fastener tape 2240, which may then be rolled into a roll of finished fastener tape 2242, or used immediately. Preferably, the base tape material 2206 is about 3.5 inches wide while the barrier material strip 2210 is about 2 inches wide.

A method of making tape 2240 having reclosable fasteners 2226 thereon is provided. The method comprises the steps of supplying a continuous strip of tape 2206, a continuous strip of barrier material 2210, and a continuous strip of fastener 2226 having first and second interlocked fastener profile strips 2012 and 2022; positioning continuous strip of barrier material 2210 on continuous strip of tape 2206; securing continuous strip of barrier material 2210 to continuous strip of tape 2206 to obtain a continuous strip of barrier tape 3017; folding, (off-center, or center folding) barrier tape to obtain a fold and two opposing barrier tape fastener strip connecting portions; positioning fasteners 2226 having first and second interlocked fastener profile strips 2012 and 2022 between the two opposing barrier tape fastener strip connecting portions; securing the first interlocked fastener profile strip 2012 to one of said opposing barrier tape fastener strip connecting portions; securing the second interlocked fastener profile strip 2022 to the other barrier tape fastener strip connecting portion; and, slitting the fold to form two separate continuous strips of barrier material 2210 (strips 2014 and 2020), and slitting the base web 2032 and 2154 to separate the base web 2056 into strips of thermoplastic material.

The invention described herein which secures the segment 2047 to a base film is independent of the form fill seal apparatus 1140 ultimately used to form fill and seal bag 2001. Two sets of dancers 2134 and 2136 (FIG. 29) are used so that any bagapper apparatus 1140 can be retrofitted. Barrier material 2210 is polypropylene on the inside and polyethylene on the outside so that seals 2018, 2052, 2016, and 2050 can be formed, while the inside surfaces 3073 are non-sealable one to another. In a preferred embodiment, the sealing side of barrier material 2210 has blended therein metalasine. The materials described herein are commercially available from Curwood Co., 220 Badger Ave., Oshkosh, Wisconsin, Atlanta Film in the State of Atlanta, and Print Pak, Inc.

In this variant, the embodiment of fastener tape as processed in FIG. 41 is used such that the tape has the substantially pure, food grade, nitrocellulose coating 3990 illustrated in FIG. 42. Web 2206 is folded onto itself so that fasteners 2012 and 2022 interlock. Web 2206 is then slitted as described above to obtain tape 2240 but without the barrier material strips. Suitable inks can also be used to make the strips non-sealable to one another.

Seal 5000 is made with a biller sealing jaw (not shown) in the shape of the seal illustrated in FIG. 43. Seal 5000 is disposed approximately 3/4" below top seal 5002 in a preferred embodiment. Seal 5000 is similar to top seal 2058 and bottom seal 2060 in the other figures, but in this variant top seal 5002 and bottom seal 2060 (not shown) can be of the same size. The extra layers of strips 2006 and 2026 (FIG. 16) that are sealed to bag walls 2028 and 2004, while they do create some extra thickness, do not create a thickness of material that is beyond the capability of the sealing jaw to properly seal, even when the bagger sealing jaw is in the same plane as the sealing jaws that create the top and bottom seals 2060. Due to the lack of thickness of the strips 2006 and 2026, seal 5000 readily blends from four thicknesses to about two thicknesses. Hence, seal 5000 is continuous with no break in seal quality even though it comprises a step down from the four thicknesses to the two thicknesses.

In some application such as IQF that do not require the bag to be hermetically sealed, there is no need to seal off the ends of the fastener strip. Seal 5000 extends to and through the side fold of bag 5003, as top seal 5002 and bottom seal 2060 (not shown) do. This allows seal 5000 to be made with the same seal bars, regardless of bag width. The finished package 5003 can be filled with its contents above the zipper profile line 5004. The fastener strip is sealed to the front panel of bag 5003 and the product content of the package can be filled above and behind the profiles horizontal location, as the thin strip material will align itself with and be pushed against the front panel when being filled. The extra length of the package is the distance between the bottom of the top seal 5005 and the bottom of seal 5000. This distance is proportional to the accuracy of bagger registration.

Reclosable plastic bag 1 includes a top end generally indicated by numeral 2 and a bottom end indicated by numeral 16. Bag 1 has a front wall 3, a back wall 4, and a seal 5 at top end 2 at which interlocking fastener profile lip 6 is sealed to front wall 3 and sealed to back wall 4. The tri-laminate structure at top end 2 of walls 3, 4, and lip 6 increases the strength of top end 2, producing increased tear resistance at this portion of the bag during the manufacturing process and also when the bag is displayed at a retailer. Top end 2 optionally contains an aperture 14 that extends through walls 3, 4, and lip 6 that is used to hang reclosable plastic bag 1 on hooks in retail stores. Bag 1 also has seal 2' at bottom end 16 at which front wall 3 and back wall 4 is connected. Back wall 4 includes two vertical portions 52, 54 (FIG. 47) having ends 56, 58 thereof that are sealed
to create seal 24.

[0095] Interlocking fastener lip 6 is sealed to front wall 3, and back wall 4 at top end 2 as indicated by seal 5 at top end 2. Sealing of lip 6 is an important feature of the present invention since the size, shape and location of lip 6 allow for a single simultaneous sealing step to be used to seal front wall 3 to lip 6, and lip 6 to back wall 4. The seals of the present invention are preferably made by heat sealing as is well known in the art to prevent air or liquids from entering or leaving bag 1. However, other forms of sealing can also be utilized herein. It is appreciated that the lip 6 can, in one variant, be disposed on the sides or bottom of bag 1 as required.

[0096] Interlocking fastener lip 6 forms a portion of interlocking fastener strip assembly 18 that includes first engaging member 7 and a complimentary engaging member 8. As illustrated in FIG. 45, complimentary engaging member 8 is illustrated as having a male engaging prong that releasably interlocks with engaging member 8 which is shown as a female receptacle. Male and female portions of members 7 and 8 can be readily interchanged. Many types of fastener assemblies are known in the reclosable plastic bag art and can be used with the present invention. Optionally, ends 20 of interlocking fastener lip 6 are heat sealed to front wall 3.

[0097] Lip 6 both reinforces top end 2 to prevent top end 2 from tearing where walls 3 and 4 are sealed to lip 6. This serves to flexibly attach first engaging member 7 to bag 1, to support first engaging member 7, and to align first engaging member 7 with complimentary engaging member 8; and, serves as a fail-safe barrier to prevent or reduce the risk of contamination or release of the contents of bag 1 in the event of inadvertent or accidental separation of upper portion 9 from lower portion 10 of front wall 3 along optional rupture line 11. Preferably, score or rupture line 11 is frangible upon manual manipulation thereof by the user to separate upper portion 9 from lower portion 10, and is located above and substantially parallel to seal 12, at which complimentary engaging member 8 is joined to wall 3. Score line or rupture line 11 serves the dual purpose of protecting the contents of the container and providing a safety seal to show that bag 1 has not yet been opened. Lip 6 can be formed of any material, but is preferably formed of the same material as the rest of bag 1. Lip 6 can further contain advertising, nutritional or gaming indicia thereon.

[0098] It is appreciated that lip 6 and front wall 3 further provide a pouch into which coupons, product samples, and/or other advertising material (not shown) can be placed. As such a consumer first opens front wall 3 along rupture line 11 to expose the material in the pouch without opening up the contents of the larger storage volume in bag 1. It is further appreciated that this informational material is separated and protected from the contents of the remainder of bag 1 during the shipping and display process. The pouch of bag 1 can also contain material that is to be used in conjunction with the contents of the larger storage volume, but that needs to be separated from the larger storage volume material until it is needed.

[0099] Multiple bags 1 as illustrated in FIGS. 44-46 are manufactured by supplying web material 32, whether single ply or laminated to a form, fill and seal machine 28 as shown in FIG. 46. Such machines are known in the art and include a combination bag forming and filling nozzle cylinder 29 adapted to receive products to be filled into the formed bags from a hopper 30. Bag making web 31 has thereon complementary engaging members 8 sealed to portions of bag making web 31 that will become the front walls 3 of bags 1 in the manufacturing process. The complementary engaging member is releasably interlocked to engaging member 7 either before or after member 8 is sealed to wall 3 at appropriate intervals. At this juncture, end 27 of lip 6 is not joined to wall 3. Web 31 is guided by means of guide roller 32 to the cylinder outer surface of cylinder 29.

[0100] At cylinder 29, a folding or wrapping arm device 33 guides and wraps web 31 about the cylinder 29 with the longitudinal margins of web 31 brought together into a longitudinal assembly which is sealed to form closure seam 24. Closure seam 24 is formed by vertical sealing bars 35 which move inward as indicated by numeral 37. Bars 35 then separate to release the heat sealed seam 24 of the closed bag forming tube of web material 31. Closed bag forming tube of web material 31 is advanced by means of a pair of horizontal, parallel bag end sealing bars 39 that reciprocate to clamp the bag web tube below the end of the cylindrical forming and filling nozzle member 29 and simultaneously seal the top end 2 of a filled bag section and the bottom end of a succeeding bag section.

[0101] It is appreciated that sealing bars 39 simultaneously seal front wall 3 to end 27 of lip 6, and end 27 of lip 6 to back wall 4 in a single step. Then sealing bars 39 still gripping the bag web tube move downwardly a bag section length as indicated by directional arrow 40 to pull and advance the entire bag making tube one bag length. As this step occurs, the next succeeding bag is filled with product dropped down cylinder 29 from hopper 30. As bags are sealed and pulled down, a cut off bar 41 cuts midway across seals 2 and 5, thus releasing the previously filled bags 1. Having completed its downward stroke, cut off 41 returns to its starting position as indicated by arrow 43.

[0102] Bag 1 is airtight prior to the separation of upper portion 9 of front wall 3 from lower portion 10 of front wall 3 to gain access to reclosable fastener assembly 18. Generally, a user will manually separate upper portion 9 from lower portion 10 manually at score, rupture line or perforation 11. Separation of portions 9 and 10 will open up the first storage volume defined by upper portion 9 and lip 6, to the environment. Fastener assembly 18 is then manipulated to open the second storage volume of bag 1 to the environment. Optionally upper portion 9 of wall 3 is scored to form a flap that includes three score lines, e.g. score line 11 and two score lines perpendicular thereto that start at score line 11 and terminate at seal 5 (not shown). The flap includes upper portion 9 of wall 3 and is pivotally connected to bag 1 at seal
5. It is appreciated that provision of this flap allows for ease of access to fastener assembly 18.

[0103] The invention further provides a method of making reclosable bags that is more efficient and economical than conventional methods, and requires fewer steps. For example, lip 6 is joined to walls 3, 4 in a single sealing step rather than multiple sealing steps. As such the manufacturing process requires fewer sealing steps as only seals 5, 2', 12, and 24 are required to form the storage volume of bag 1 and also provide for the attachment of fastener assembly 18. It is further appreciated that two distinct storage volumes are formed using the same number of sealing steps.

[0104] Initially, interlocking fastener lip 6 forming a portion of engaging member 7 is not sealed to walls 3 or 4, but rather rests against the inside surface of front wall 3 and is attracted to front wall 3 by electrostatic forces. The fastener assembly (members 7 and 8) are suitably longitudinally spaced at intervals along web 31. Preferably, the width of fastener assembly is less than one half the width of web 31 so as to enable seal 24 to be formed. It is appreciated that the speed at which web 31 is fed into apparatus 28 is increased due to the performance of multiple sealing steps simultaneously, and the time required to form, fill and seal bag 1 is thereby decreased.

[0105] As illustrated in FIG. 47, web 50 includes a multiplicity of flexible interlocking fastener lips 6 which are free of connection to web 50. That is, lips 6 simply rest on each respective sheet 55 of web 50 at this juncture. Each lip 6 is permanently connected to a fastener assembly 18, is integral therewith, or optionally can be releasably attached thereto. Each fastener assembly 18 includes an engaging member releasably connected to a complimentary engaging member 8. Complimentary engaging member 8 is connected to front wall portion 3 of web 50. The web or bag film of the present invention is commonly referred to as plastic film and includes polymeric materials as are known in the art. It is appreciated that sealing or connecting only complimentary engaging member 8 to web 50 prior to formation of bag 1 or utilization of web 50 with apparatus 28 greatly simplifies and facilitates that manufacturing process. Sealing of lip 6 to front wall 3 during the formation of bag 1 provides numerous advantages in the manufacturing process including, by way of example, faster web feed times and the like.

[0106] FIG. 48 is a side cross-sectional view of optional reclosable tape 150 used in bag 1. Tape 150 has inside loop surface 152 that is treated to be non-sealable. Many compositions are known in the art that can make a surface non-sealable. As an example, one such composition is lacquer. In this embodiment, lip 6 has bend 154 and opposite wall 156 and lower flange area 158. Both lower flange portion 158 and opposite wall 156 are sealed to front wall 3 of web 50 (FIG. 49). In a preferred embodiment, distance D is about 3/4 inches long and distance D' is about 1 1/4 inches long. It is appreciated that distance D and distance D' can be varied as required for the type of bag 1 manufactured (FIGS. 48 and 51). Preferably, lip 6, bend 154, opposite wall 156, and lower flange area 158 are formed from one piece of plastic material.

[0107] It is appreciated that fastener or zipper 18 is completely sealed in the inside storage volume of bag 1 as illustrated in FIGS. 50 and 53. In this embodiment, bag 1 is free of tear tabs with perforations or tear strips. Rather, a dotted line 70 or other indicia is printed across bag 1, below or just below, top seal 5. Bag 1 is opened along dotted line 70 with scissors or other suitable cutting utensil, and used as a normal recloseable bag 1 upon severance of bag 1 along the dotted line 70.

[0108] FIG. 52 is a partial side cross-sectional view of lower flange portion 158 and opposite wall 156, and lip 6 to back wall 4 greatly extend the life of the gripping portion 72 even after multiple continued openings and closings of fastener 18. They also provide a reinforced base upon which both portions of fastener 18 are mounted. It is further appreciated that bi-laminate upper gripping portions 72 are more rigid than either walls 3, 4, lip 6, or opposite wall 156 alone, and facilitate the direct vertical insertion of products back into bag 1 through mouth 78 as indicated by arrow 74, after severance of bag 1 along line 72 and opening of fastener 18 (FIG. 57). Bag 1 can have various degrees of flexibility. These varying degrees of flexibility include more flexibility at front wall portion 3 below lower flange 158 and at back wall 4 below fastener 18 relative to the upper portion of bag 1, that includes the various tape 150 or flange 60 sealed thereto. This feature allows the storage volume 76 to readily adapt to the size and shape of products contained therein while simultaneously providing less flexible upper gripping portions 72, which facilitates alignment of the fastener 18 elements one with another, and closure thereof. The arrangement of the elements of the invention as described herein eliminates the risk of outside contamination during storage of bag 1 or during store display due to the fail-safe reclosable features described herein. Only, when top seal 5 is cut off bag 1 does the reclosable fastener 18 reclosably seal off the bag contents in the bag storage volume without the protection of top seal 5. Upper temporary storage volume 80 (FIGS. 50 and 53) may also optionally retain advertising literature and coupons as described above.

[0109] FIG. 55 is a side cross sectional view of the tape of FIG. 54 in an assembled bag 1. Phantom line 12 of FIG. 48 is a side cross-sectional view of optional reclosable tape 150 in an assembled bag 1. Tape 150 has inside loop surface 152 that is treated to be non-sealable. Many compositions are known in the art that can make a surface non-sealable. As an example, one such composition is lacquer. In this embodiment, lip 6 has bend 154 and opposite wall 156 and lower flange area 158. Both lower flange portion 158 and opposite wall 156 are sealed to front wall 3 of web 50 (FIG. 49). In a preferred embodiment, distance D is about 3/4 inches long and distance D' is about 1 1/4 inches long. It is appreciated that distance D and distance D' can be varied as required for the type of bag 1 manufactured (FIGS. 48 and 51). Preferably, lip 6, bend 154, opposite wall 156, and lower flange area 158 are formed from one piece of plastic material.

[0107] It is appreciated that fastener or zipper 18 is completely sealed in the inside storage volume of bag 1 as illustrated in FIGS. 50 and 53. In this embodiment, bag 1 is free of tear tabs with perforations or tear strips. Rather, a dotted line 70 or other indicia is printed across bag 1, below or just below, top seal 5. Bag 1 is opened along dotted line 70 with scissors or other suitable cutting utensil, and used as a normal recloseable bag 1 upon severance of bag 1 along the dotted line 70.

[0108] FIG. 52 is a partial side cross-sectional view of lower flange portion 158 and opposite wall 156, and lip 6 to back wall 4 greatly extend the life of the gripping portion 72 even after multiple continued openings and closings of fastener 18. They also provide a reinforced base upon which both portions of fastener 18 are mounted. It is further appreciated that bi-laminate upper gripping portions 72 are more rigid than either walls 3, 4, lip 6, or opposite wall 156 alone, and facilitate the direct vertical insertion of products back into bag 1 through mouth 78 as indicated by arrow 74, after severance of bag 1 along line 72 and opening of fastener 18 (FIG. 57). Bag 1 can have various degrees of flexibility. These varying degrees of flexibility include more flexibility at front wall portion 3 below lower flange 158 and at back wall 4 below fastener 18 relative to the upper portion of bag 1, that includes the various tape 150 or flange 60 sealed thereto. This feature allows the storage volume 76 to readily adapt to the size and shape of products contained therein while simultaneously providing less flexible upper gripping portions 72, which facilitates alignment of the fastener 18 elements one with another, and closure thereof. The arrangement of the elements of the invention as described herein eliminates the risk of outside contamination during storage of bag 1 or during store display due to the fail-safe reclosable features described herein. Only, when top seal 5 is cut off bag 1 does the reclosable fastener 18 reclosably seal off the bag contents in the bag storage volume without the protection of top seal 5. Upper temporary storage volume 80 (FIGS. 50 and 53) may also optionally retain advertising literature and coupons as described above.

[0109] FIG. 55 is a side cross sectional view of the tape of FIG. 54 in an assembled bag 1. Phantom line 12 of FIG.
54 indicates the location of the cross sectional view of FIG. 55. Walls 3 and 4 are fusibly sealed one to another at fused seal 80 through apertures 70 and 72 disposed near ends 74 and 76. Fusel seal 80 is juxtaposed around the periphery 72’ of aperture 72.

[0111] An apparatus is also provided to make recloseable tape 150 or flange material 60 and wind tape 150 or flange 60 into rolls 245 (FIG. 56). The apparatus is located upstream of apparatus 28 and apparatus 200. Apparatus 200 unwinds a roll of tape 150 or flange 60, indexes as appropriate (advancing and indexing device 300), and optionally punches holes 70 and 72 with hole punching device 160 near opposite ends 74 and 76 of lip 6. Preferably holes 74 and 76 are in the range of about 3/8 of inch to about 1/2 of an inch in diameter (FIG. 54) and are equidistant from ends 74, 76 respectively. Holes 70 and 72 are made of a desired size and geometric shape, e.g. circular, oval, square, rectangular, etc., depending upon the type of fusible seal 80 that is desired to be created (FIG. 55).

[0112] As illustrated in FIG. 56, apparatus 200 indexes again to a location centered above the backside of the intended front panel 3 of the basic web material 202 (cross web) and tape 150 or flange 60 is cut to a length that is less than the width of front panel 3 of bag 1. Concurrent with the unwinding step described above, base web 202 is fed or indexed to a position that allows registration of zipper strip 18 (cross web) to just below the intended top of the finished bag 1 (advancing and indexing device 400). Lower flange area 158 and ends 74 and 76 of lip 6, fold 154 and opposite wall 156 adjacent to the inside surface of front panel 3 are substantially sealed to the inside surface of front panel 3, (using seal bars 220). As discussed above, the prepared web 50 is then fed to apparatus 28. Apparatus 28, in addition to making the normal cross sealing and cutting operations, utilizes sealing bars that are modified and of a size and shape to seal the opposite side of the loop or flange area.

[0113] While the invention is susceptible of embodiment in many different forms, there is shown in the drawings and described herein, several specific embodiments with the understanding that those of ordinary skill in the art who have the disclosure before them will be able to make modifications and variations therein without departing from the central spirit and scope of the invention. Thus, the preferred embodiment described hereinabove is to be considered in all respects as illustrative and not restrictive, of the scope of the invention being indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced herein.

Claims

1. An apparatus for dispensing, applying and sealing individual sections of thermoplastic tape (100) across a portion of a web (110) of thermoplastic material, said apparatus comprising: means for dispensing said tape (2108); a tape applicator apparatus (420); means for delivering tensioned tape from said tape dispensing means to said tape applicator apparatus comprising a tape drive assembly for advancing said tape (2107); a tape cutter assembly for cutting said tape into individual sections of a preselected length; a tape sealing mechanism (2159) for applying pressure and heat to said tape section on said web for a specified dwell time; and means for sequentially advancing said web characterised in that the apparatus comprises a vacuum belt means (2132) for advancing said section of tape into a desired position across said web of thermoplastic material and the means for delivering tensioned tape from said tape dispensing means to said tape applicator apparatus comprises a tape registration assembly (2105) for adjusting the position of said tape.

2. The apparatus of claim 1 wherein said means for dispensing said tape comprises: a roll of said tape pivotally mounted on a powered unwind reel (2108); a tension arm (2100) having said tape wound thereon, said tension arm being slidably mounted so as to rise or descend in response to tension on said tape; and means for controlling rotation speed and tension of said unwind reel in response to said rise or descent of said tension arm.

3. The apparatus of claim 1 or claim 2 wherein said means for delivering said tape comprises: a plurality of dancer rollers (490) thereon, the position of said dancer rollers indicating tension on said tape; film synchronizer means (2112) for synchronizing said tape with said tape application, said film synchronizer means having one or more vertically adjustable rollers therein, said rollers being vertically adjustable in response to tension on said tape disposed through said rollers; a tape registration assembly for adjusting the registration of said tape, and a nip drive assembly (470) for feeding said tape in response to the position of said rollers in said film synchronizer means and the position of said dancer rollers.

4. The apparatus of any one of claims 1 to 3 wherein said means for advancing said web of thermoplastic includes a motorized drive roll for dispensing said web; one or more dancer rollers (2126) having said web threaded there-
through, a dancer arm supporting at least one of said dancer rollers; a pair of motorized nip rollers (2128) for advancing said web through said apparatus; means for detecting the position of said dancer arm and actuating said motorized drive roll and said motorized nip rolls at the speed required to maintain a selected tension on said web; means for detecting the position of said tape and for signalling said web drive roll and said nip rollers to speed up or slow down in response thereto; and control means for co-ordinating the signals from said means for detecting the position of said tension arm and said means for detecting the position of said tape and for controlling the speed of said web and said tape.

5. The apparatus of claim 4 further comprising a form fill seal machine having a set of dancer rollers on the front portion thereof for carrying said web having said sections of tape thereon; a sensor for determining the position of at least one of said dancer rollers so as to determine the tension on said web; and means for signalling said control means for controlling the speed of said web and said tape.

6. The apparatus of claim 4 or claim 5 wherein said control means comprises: a computer electronically connected to said tension arm, said motorized drive roll, said means for detecting the position of said dancer arm, said motorized nip rollers, said means for detecting the position of said tape, said tape drive roll, and said tape nip rollers.

7. The apparatus of claim 4 or claim 5 wherein said control means comprises fluid logic controls to said tension arm, said motorized drive roll, said means for detecting the position of said dancer arm, said motorized nip rolls, said means for detecting the position of said tape, said tape drive roll and said tape nip rollers.

8. The apparatus of any preceding claim further comprising means (2102) for ultrasonic sealing the ends of said sections of said tape prior to cutting of said tape, positioned between said means for dispensing said tape and said tape applicator.

9. The apparatus of any preceding claim wherein said vacuum belt means, said tape registration assembly and said tape cutter assembly are interconnected by a belt drive constructed and arranged for maintaining the relative speed of operation of said vacuum belt means, said tape cutter assembly and said nip rollers, and for retaining the relative position of said tape and said tape segments during operation of said apparatus.

10. The apparatus of claim 9 wherein said belt drive is powered by a single motor so as to provide constant speed and tension.

11. The apparatus of claim 9 or claim 10 as dependent on claim 4 or a claim dependent thereon wherein said tape drive assembly comprises a double hub having a first hub and a second hub, said first hub being connected by a toothed belt to a third hub on said drive motor, said third hub being mounted on a first shaft powered by said drive motor so as to rotate said third hub thereby causing said double hub to rotate; said double hub being mounted on an end of one of said nip rollers so as to cause rotation of said nip roller when said double hub is rotated; said vacuum belt having a drive shaft extending through one end thereof and a fourth hub extending from said drive shaft, said fourth hub having a toothed drive belt disposed thereon; said toothed drive belt being connected to first said hub so as to cause said fourth hub and said drive shaft to rotate when said first hub rotates, thereby driving said vacuum belt in synchronization with said cutter assembly and said nip rollers.

12. The apparatus of any preceding claim wherein said tape cutter assembly (2109) comprises: an air piston mechanism (2123) having a shaft (2125) extending downwardly therefrom, said air piston being constructed and arranged to selectively raise and lower said shaft; a cutter blade (2121) and clamp affixed to the distal end of said shaft for clamping and cutting of said tape; a slidable die plate (2119) for selectively being positioned under said tape, said die plate having a slot extending therethrough and a spring loaded stripper block (2129) proximate said slot; said clamp being constructed and arranged for pushing down said stripper block when said shaft is extended so as to facilitate cutting of said tape; said stripper block being constructed and arranged to press upwardly when said clamp is pulled upwardly by said shaft, said stripper block being constructed and arranged to push the distal end of said tape towards said vacuum belt.

13. The apparatus of any preceding claim wherein said vacuum belt means comprises a vacuum belt having a plurality of holes extending therethrough; said vacuum belt being rotatably mounted on a pair of rollers; at least one of said rollers being powered so as to selectively cause rotation of said belt and incremental advancement of said belt a desired distance; a ledge extending below said belt constructed of a slick thermoplastic elastomer and sized and positioned so as to serve as a barrier to air from said web moving thereunder, and as an eliminator of static electricity.
14. The apparatus of claim 13 wherein said vacuum belt is approximately one inch (about 25mm) wide and said holes are centred 5/8" (about 16mm) from the edge of said belt.

15. The apparatus of any preceding claim wherein said tape comprises a folded loop (1202, 1090) having a pair of interlocked fastener profilers (720, 730, 980) attached thereto on the inside surface thereof, said interlocked fastener profilers being constructed and arranged for selectivity opening and resealing, whereby when said tape is positioned and sealed on said web, said web is suitable for conversion into a plurality of resealable bags.

16. The apparatus of any preceding claim further comprising computer means for co-ordinating said means for dispensing said tape, said tape applicator, said tape cutter, said tape drive, said vacuum belt and said means for sequentially advancing said web.

17. The apparatus of claim 16 further comprising: keyboard means for adjusting the length of said tape sections, the space between said tape sections, the space between said tape sections sealed on said web, and the speed of operation of said apparatus for dispensing, applying and sealing said individual sections of tape to said web.

18. A method of sealing individual sections of thermoplastic tape (100) across a portion of a web (110) of thermoplastic material comprising: dispensing said tape a desired distance; cutting said tape to a desired length of the individual sections of said tape; grasping the end of said individual section through the use of a vacuum; sequentially applying vacuum to the length of said individual section of tape and simultaneously advancing said individual section of tape over said web; pressing said individual section of tape to said web; and heat sealing said individual section of tape to said web.

19. The method of claim 18 further comprising the step of co-ordinating the advancement of said web with the advancement of said tape and said section of tape.

20. The method of claim 18 or claim 19 further comprising the steps of: running said web from an unwind roll through a series of dancer rollers (2126); reading the position of said dancer rollers; signalling a drive motor to advance or retard said web based on the position of said dancer rollers; signalling a tape drive the position of said roller; running said tape through a series of tape dancer rollers (490); signalling said tape drive the position of said tape dancer rollers, thereby causing said tape drive to advance or retard said tape; and signalling said drive motor to advance or retard said web.

21. The method of claim 20 further comprising: feeding said web with sections of tape sealed thereon into a form fill seal machine and through a set of form fill seal dancer rollers at the back thereof; signalling the position of said form fill seal dancer rollers to said tape drive and said web drive motor so as to control movement of said tape and said web.

22. A method as claimed in claim 18 comprising dispensing, applying, and sealing individual sections of thermoplastic tape across a portion of a web of thermoplastic material, the method comprising dispensing tensioned tape from a tape dispensing means to a tape applicator apparatus comprising a tape registration assembly for adjusting the position of said tape and a tape drive assembly for advancing said tape; cutting said tape into individual sections of a preselected length; advancing said section of tape by vacuum advancing means into a desired position across said web of thermoplastic material and applying pressure and heat to said tape section on said web for a specified dwell time to seal said tape to said web, and sequentially advancing said web.

Patentansprüche

1. Gerät für die Ausgabe, das Aufbringen und das Versiegeln einzelner Abschnitte von thermoplastischem Band (100) über einen Abschnitt einer Bahn (110) aus thermoplastischem Material hinweg, wobei das Gerät umfasst: Mittel für die Ausgabe des Bandes (2108); eine Bandaufbringvorrichtung (420); Mittel für die Zuführung von unter Spannung stehendem Band vom Bandausgabemittel zur Bandaufbringvorrichtung, welche eine Bandantriebsanordnung für den Vorschub des Bandes (2107) umfasst; eine Bandschneideanordnung für das Zuschneiden des Bandes in einzelne Abschnitte mit einer vorbestimmten Länge; eine Bandversiegelungsvorrichtung (2159) für das Aufbringen von Druck und Wärme auf den Bandabschnitt auf der Bahn für eine festgelegte Verweilzeit; und Mittel für den sequentiellen Vorschub der Bahn, dadurch gekennzeichnet, dass das Gerät ein Vakuum-Treibriemenmittel (2132) für den Vorschub des Abschnitts des Bandes in eine gewünschte
Position über die Bahn von thermoplastischem Material hinweg umfasst, und das Mittel für die Zuführung von unter Spannung stehendem Band vom Bandausgabemittel zur Bandaufbringvorrichtung eine Bandausrichtungsanordnung (2105) für das Ausrichten der Position des Bandes umfasst.

2. Gerät nach Anspruch 1, **dadurch gekennzeichnet, dass** das Mittel für die Ausgabe des Bandes umfasst: eine Rolle des Bandes, schwenkbar angebracht auf einer Abwickelspule mit Motorantrieb (2108); einen Spannarm (2100), auf welchen das Band gewickelt ist, wobei der Spannarm gleitbar angebracht ist, um sich als Reaktion auf Spannung auf dem Band zu heben oder zu senken; und Mittel für das Steuern der Umdrehungsgeschwindigkeit und der Spannung der Abwickelspule als Reaktion auf das Heben oder Senken des Spannarms.

3. Gerät nach Anspruch 1 oder Anspruch 2, **dadurch gekennzeichnet, dass** das Mittel für die Zuführung des Bandes umfasst: eine Vielzahl von Tänzerrollen (490) auf dieser, wobei die Position der Tänzerrollen die Spannung auf dem Band angibt; eine Folien-Synchronisierereinrichtung (2112) für das Synchronisieren des Bandes mit der Bandaufbringung, wobei die Folien-Synchronisierereinrichtung eine oder mehr vertikal ausrichtbare Rollen in derselben aufweist und die Rollen vertikal ausrichtbar sind als Reaktion auf Spannung auf dem Band, die durch die Rollen erfolgt; eine Bandausrichtungsanordnung für das Anpassen der Ausrichtung des Bandes, und eine Klemmantriebsvorrichtung (470) für die Zuführung des Bandes als Reaktion auf die Position der Rollen in der Folien-Synchronisierereinrichtung und die Position der Tänzerrollen.

4. Gerät nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet, dass** das Mittel für den Vorschub der Bahn thermoplastischen Materials eine motorgetriebene Antriebsrolle für die Ausgabe der Bahn einschließt; eine oder mehr Tänzerrollen (2126), durch welche hindurch die Bahn gefädelt ist, einen Tänzerarm als Auflage für zumindest eine der Tänzerrollen; ein Paar motorgetriebene Klemmrollen (2128) für den Vorschub der Bahn hindurch; Mittel für das Feststellen der Position des Tänzerarms und des Betätigen der motorgetriebenen Antriebsrolle und der motorgetriebenen Klemmrollen bei der Geschwindigkeit, die erforderlich ist, um eine gewählte Spannung auf der Bahn aufrechtzuerhalten; Mittel für das Feststellen der Position des Bandes und für das Übermitteln eines Signals an die Bahnantreibereinrichtung und die Klemmrollen, um die Geschwindigkeit als Reaktion darauf zu erhöhen oder zu vermindern; und Steuermittel für das Koordinieren der Signale von diesem Mittel für die Feststellung der Position des Spannarmes und dem Mittel für das Feststellen der Position des Bandes und für die Steuerung der Geschwindigkeit der Bahn und des Bandes.

7. Gerät nach Anspruch 4 oder Anspruch 5, **dadurch gekennzeichnet, dass** das Steuermittel Fluidiksteuerungen zum Spannarm, zur motorgetriebenen Antriebsrolle, zum Mittel für das Feststellen der Position des Tänzerarms, der motorgetriebenen Klemmrollen, des Mittels für das Feststellen der Position des Bandes, der Bandantriebsrolle und der Bandklemmrollen umfasst.

8. Gerät nach einem der vorangehenden Ansprüche, welches weiterhin Mittel (2102) für die Ultraschallversiegelung der Enden der Abschnitte des Bandes vor dem Zuschneiden des Bandes, angeordnet zwischen dem Mittel für die Ausgabe des Bandes und der Bandaufbringvorrichtung, umfasst.

9. Gerät nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet, dass** das Vakuum-Treibriemenmittel, die Bandausrichtungsanordnung und die Bandzuschneideanordnung miteinander verbunden sind durch einen Riemenantrieb, der konstruiert und angeordnet ist für die Aufrechterhaltung der relativen Betriebsgeschwindigkeit des Vakuum-Treibriemenmittels, der Bandzuschneideanordnung und der Klemmrollen und für die Beibehaltung der relativen Position des Bandes und der Bandsegmente während des Betriebs des Gerätes.

10. Gerät nach Anspruch 9, **dadurch gekennzeichnet, dass** der Riemenantrieb angetrieben wird von einem einzelnen
Verfahren für das Versiegeln einzelner Abschnitte des thermoplastischen Bandes (100) über einen Abschnitt einer Bahn (110) aus thermoplastischem Material hinweg, umfassend: Ausgabe des Bandes über eine gewünschte Strecke; einen Anschlag, der sich unter dem Riemen erstreckt, ausgebildet und verschiebbar; eine verschiebbare Formplatte (2119) für deren selektive Positionierung unter dem Band, wobei der Luftkolben so konstruiert und angeordnet ist, dass er die Welle selektiv anhebt und senkt; die Platte einen sich durch diese hindurch erstreckenden Schlitz aufweist und einen unter Federspannung stehenden Abstreifblock (2121) in der Nähe des Schlitzes; wobei die Platte an der inneren Oberfläche derselben befestigt sind, wobei die verzahnten Befestigungsprofilformer für das selektive Öffnen und Wiederversiegeln konstruiert und angeordnet sind, wodurch, wenn das Band auf der Bahn positioniert und zu schneiden; eine verschiebbare Formplatte (2119) für deren selektive Positionierung unter dem Band, wobei der Luftkolben so konstruiert und angeordnet ist, dass er die Welle selektiv anhebt und senkt; die Platte einen sich durch diese hindurch erstreckenden Schlitz aufweist und einen unter Federspannung stehenden Abstreifblock (2121) in der Nähe des Schlitzes; wobei die Platte an der inneren Oberfläche derselben befestigt sind, wobei die verzahnten Befestigungsprofilformer für das selektive Öffnen und Wiederversiegeln konstruiert und angeordnet sind, wodurch, wenn das Band auf der Bahn positioniert und versiegelt wird, die Bahn geeignet ist für die Umwandlung in eine Vielzahl von wiederversiegelbaren Beuteln.

Gerät nach Anspruch 9 oder Anspruch 10, abhängig von Anspruch 4 oder einem davon abhängigen Anspruch, dadurch gekennzeichnet, dass die Bandantriebsanordnung eine Doppelnabe umfasst, welche eine erste Nabe und eine zweite Nabe aufweist, wobei die erste Nabe verbunden ist durch einen Zahnriemen mit einer dritten Nabe auf dem Antriebsmotor, wobei die dritte Nabe angebracht ist auf einer ersten Welle, die vom Antriebsmotor ange trieben wird, um die dritte Nabe zu drehen, wodurch die Doppelnabe zum Drehen gebracht wird; wobei die Doppelnabe auf einem Ende einer der Klemmrollen so angebracht ist, dass die Drehung der Klemmrolle bewirkt wird, wenn die Doppelnabe gedreht wird; wobei der Vakuum-Treibriemen eine Antriebswelle aufweist, welche sich durch ein Ende desselben hindurch erstreckt, und eine vierte Nabe, die sich von der Antriebswelle aus erstreckt, und die vierte Nabe einen Zahnantriebsriemen aufweist, der auf dieser angeordnet ist; wobei der Zahnantriebsriemen mit der ersten Nabe so verbunden ist, dass die Drehung der vierten Nabe und der Antriebswelle bewirkt wird, wenn sich die erste Nabe dreht und wodurch der Vakuum-Treibriemen in Synchronisation mit der Zuschnieideanordnung und den Klemmrollen angetrieben wird.

Gerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Bandzuschneideanordnung (2109) umfasst: eine Luftkolbenvorrichtung (2123) mit einer Welle (2125), die sich von dieser nach unten erstreckt, wobei der Luftkolben so konstruiert und angeordnet ist, dass er die Welle selektiv anhebt und senkt; eine Schneideklinge (2121) und eine Klemme, die an dem distalen Ende der Welle befestigt sind, um das Band festzuklemmen und zu schneiden; eine verschiebbare Formplatte (2119) für deren selektive Positionierung unter dem Band, wobei die Platte einen sich durch diese hindurch erstreckenden Schlitz aufweist und einen unter Federspannung stehenden Abstreifblock (2129) in der Nähe des Schlitzes; wobei die Klemme so konstruiert und angeordnet ist, dass sie den Abstreifblock nach unten drückt, wenn die Welle ausgefahren wird, um das Schneiden des Bandes zu ermöglichen; wobei der Abstreifblock so konstruiert und angeordnet ist, dass er nach oben gezogen wird, wenn die Klemme durch die Welle nach oben gezogen wird, und wobei der Abstreifblock so konstruiert und angeordnet ist, dass er das distale Ende des Bandes zum Vakuum-Treibriemen hin schiebt.

Gerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Vakuum-Treibriemennmittel einen Vakuumtreibriemen umfasst, der eine Vielzahl von Öffnungen aufweist, die sich durch diesen hindurch er strecken; wobei der Vakuum-Treibriemen drehbar auf einem Rollenpaar befestigt ist; wobei zumindest eine der Rollen so angetrieben wird, dass sie selektiv die Drehung des Riemen und den zunehmenden Vorschub des Riemens über eine gewünschte Strecke bewirkt; einen Anschlag, der sich unter dem Riemen erstreckt, ausgebildet aus einem glatten thermoplastischen Elastomer, und der so dimensioniert und positioniert ist, dass er als eine Barriere gegen Luft von der sich unter ihm bewegenden Bahn und als eine Entladeeinrichtung dient.

Gerät nach Anspruch 13, dadurch gekennzeichnet, dass der Vakuum-Treibriemennab zirk. ein Zoll (ungefähr 25 mm) breit ist, und dass die Öffnungen 5/8 Zoll (ungefähr 16 mm) vom Rand des Treibriemens mittig angeordnet sind.

Gerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Band eine gefaltete Schleife (1202, 1090) mit einem Paar verzahnter Befestiguungsprofilformer (720, 730, 980) umfasst, die an dieser an der inneren Oberfläche derselben befestigt sind, wobei die verzahnten Befestiguungsprofilformer für das selektive Öffnen und Wiederversiegeln konstruiert und angeordnet sind, wodurch, wenn das Band auf der Bahn positioniert und versiegelt wird, die Bahn geeignet ist für die Umwandlung in eine Vielzahl von wiederversiegelbaren Beuteln.

Gerät nach einem der vorangehenden Ansprüche, welches weiterhin eine Computereinheit für das Koordinieren des Mittels für die Ausgabe des Bandes, der Bandaufbringvorrichtung, der Bandzuschneidevorrichtung, des Bandantriebs, des Vakuumtreibriemens und des Mittels für den sequentiellen Vorschub der Bahn umfasst.

Gerät nach Anspruch 16, welches weiterhin umfasst: eine Tastatureinheit für das Anpassen der Länge der Bandabschnitte, des Abstands zwischen den Bandabschnitten, des Abstands zwischen den auf der Bahn versiegelten Bandabschnitten und der Geschwindigkeit des Betriebes des Gerätes für die Ausgabe, das Aufbringen und das Versiegeln der einzelnen Bandabschnitte auf der Bahn.

Verfahren für das Versiegeln einzelner Abschnitte des thermoplastischen Bandes (100) über einen Abschnitt einer Bahn (110) aus thermoplastischem Material hinweg, umfassend: Ausgabe des Bandes über eine gewünschte Strecke; Zuschneiden des Bandes auf eine gewünschte Länge der einzelnen Abschnitte des Bandes; Ergreifen des Endes des einzelnen Abschnitts durch Einsatz eines Vakuums; sequentielle Anwendung des Vakuums auf die Länge des individuellen Abschnitts des Bandes und gleichzeitiger Vorschub des einzelnen Abschnitts des Bandes.
über die Bahn hinweg; Pressen des einzelnen Abschnitts des Bandes auf die Bahn; und Heißsiegeln des einzelnen Abschnitts des Bandes auf die Bahn.

20. Verfahren nach Anspruch 18 oder Anspruch 19, welches weiterhin folgende Schritte umfasst: Ablaufen der Bahn von einer Abwickelrolle über eine Reihe von Tänzerrollen (2126); Ablesen der Position der Tänzerrollen; Signalübermittlung an einen Antriebsmotor für den Vorschub oder die Verlangsamung der Bahn auf der Grundlage der Position der Tänzerrollen; Signalisieren der Position der Rolle an einen Bandantrieb; Führen des Bandes durch eine Reihe von Band-Tänzerrollen (490); Signalisieren der Position der Band-Tänzerrollen an den Bandantrieb, wodurch bewirkt wird, dass der Bandantrieb das Band vorschiebt oder verlangsamt; und Signalübermittlung an den Antriebsmotor, die Bahn vorzuschieben oder zu verlangsamen.

Revendications

1. Appareil pour distribuer, appliquer et souder des sections individuelles de bande thermoplastique (100) en travers d’une partie d’une toile (110) en matière thermoplastique, ledit appareil comprenant : des moyens pour distribuer la bande (2108) ; un appareil applicateur de bande (420) ; des moyens pour distribuer un appareil- également distributeur de bande en bande sous tension à partir desdits moyens de distribution de bande comprenant un montage d’entraînement de bande afin de faire avancer ladite bande (2107) ; un montage de coupe de bande pour couper ladite bande en sections individuelles de longueur présélectionnée ; un mécanisme de soudage de bande (2159) pour appliquer pression et chaleur à ladite section de bande sur ladite toile pendant un temps d’application spécifié ; et des moyens pour faire avancer ladite toile en séquence caractérisé en ce que l’appareil comprend des moyens formant une courroie d’aspiration (2132) pour faire avancer ladite section de bande dans une position désirée en travers de ladite toile en matière thermoplastique et en ce que les moyens pour distribuer un applicateur de bande en bande sous tension à partir desdits moyens de distribution de bande comprennent un montage de repérage de bande (2105) pour régler la position de ladite bande.

2. Appareil selon la revendication 1, dans lequel lesdits moyens pour distribuer ladite bande comprennent : un rouleau contenant ladite bande monté pivotant sur un dérouleur motorisé (2108) ; un bras de tension (2100) ayant ladite bande enroulée dessus, ledit bras de tension étant monté coulissant afin de monter et de descendre en réponse à la tension de ladite bande ; et des moyens pour commander la vitesse de rotation et la tension dudit dérouleur en réponse à ladite montée ou ladite descente dudit bras de tension.

3. Appareil selon la revendication 1 ou la revendication 2, dans lequel lesdits moyens pour distribuer ladite bande comprennent : une pluralité de rouleaux danseurs (490), la position desdits rouleaux danseurs indiquant ladite tension sur ladite bande ; des moyens synchroniseurs de film (2112) pour synchroniser ladite bande avec ladite application de bande, lesdits moyens synchroniseurs de film possédant verticalement un ou plusieurs rouleaux réglables, lesdits rouleaux étant réglables verticalement en réponse à la tension sur ladite bande disposée à travers lesdits rouleaux ; un montage de repérage de bande pour régler le repérage de ladite bande, et un montage d’entraînement à contact (470) pour faire avancer ladite bande en réponse à la position desdits rouleaux dans lesdits
moyens synchroniseurs de film et à la position desdits rouleaux danseurs.

4. Appareil selon l’une quelconque des revendications 1 à 3, dans lequel lesdits moyens pour faire avancer ladite toile en matière thermoplastique incluent un rouleau d’entraînement motorisé pour distribuer ladite toile ; un ou plusieurs rouleaux danseurs (2126) ayant ladite toile embobinée entre eux, un bras danseur portant au moins un desdits rouleaux danseurs ; une paire de rouleaux à contact motorisés (2128) pour faire avancer ladite toile à travers ledit appareil ; des moyens pour détecter la position dudit bras danseur et pour activer ledit rouleau d’entraînement motorisé et lesdits rouleaux à contact motorisés à la vitesse requise pour maintenir une tension sélectionnée sur ladite toile ; des moyens pour détecter la position de ladite bande et pour en réponse à celle-ci envoyer des signaux audit rouleau d’entraînement de toile et auxdits rouleaux de contact afin de les accélérer ou de les ralentir ; et des moyens de commande pour coordonner les signaux desdits moyens afin de détecter la position dudit bras de tension et desdits moyens pour détecter la position de ladite bande et de commander la vitesse de ladite toile et de ladite bande.

5. Appareil selon la revendication 4, comprenant de plus une machine de soudage à remplissage de forme ayant un ensemble de rouleaux danseurs sur la partie avant de celle-ci pour transporter ladite toile présentant sur elle lesdites sections de bande ; un capteur pour déterminer la position d’au moins un desdits rouleaux danseurs afin de déterminer la tension sur ladite toile ; et des moyens pour envoyer des signaux auxdits moyens de commande afin de commander la vitesse de ladite toile et de ladite bande.

6. Appareil selon la revendication 4 ou la revendication 5, dans lequel lesdits moyens de commande comprennent : un ordinateur connecté électroniquement audit bras de tension, audit rouleau d’entraînement motorisé, auxdits moyens de détection de la position dudit bras de tension, ledit rouleau d’entraînement de bande, audit rouleau d’entraînement de bande, et auxdits rouleaux à contact de bande.

7. Appareil selon la revendication 4 ou la revendication 5, dans lequel lesdits moyens de commande comprennent des commandes logique à fluide sur ledit bras de tension, ledit rouleau d’entraînement motorisé, ledits moyens pour la détection de la position dudit bras danseur, ledits rouleaux à contact motorisés, ledits moyens pour la détection de la position de ladite bande, ledit rouleau d’entraînement de bande et ledits rouleaux à contact de bande.

8. Appareil selon l’une quelconque des revendications précédentes, comprenant de plus des moyens (2102) pour le soudage par ultrasons des extrémités desdites sections de ladite bande avant la coupe de ladite bande, positionnée entre lesdits moyens pour distribuer ladite bande et ledit applicateur de bande.

9. Appareil selon l’une quelconque des revendications précédentes dans lequel lesdits moyens formant une courroie d’aspiration, ledit montage de repérage de bande et ledit montage de coupe de bande sont interconnectés par un entraînement par courroie construit et agencé pour maintenir la vitesse de fonctionnement relative desdits moyens formant une courroie d’aspiration, ledit montage de coupe et desdits rouleaux à contact, et pour conserver la position relative de ladite bande et desdits segments de bande durant le fonctionnement dudit appareil.

10. Appareil selon la revendication 9, dans lequel ledit entraînement par courroie est entraîné par un seul moteur afin de fournir une vitesse et une tension constantes.

11. Appareil selon la revendication 9 ou la revendication 10 dépendante de la revendication 4 ou d’une revendication dépendante de celle-ci, dans lequel ledit montage d’entraînement de bande comprend un double moyeu ayant un premier moyeu et un deuxième moyeu, ledit premier moyeu étant connecté par une courroie dentée à un troisième moyeu sur ledit moteur d’entraînement, ledit troisième moyeu étant monté sur un premier arbre entraîné par ledit moteur d’entraînement afin de faire tourner ledit troisième moyeu pour que ledit moyeu double tourne ; ledit moyeu double étant monté sur une extrémité d’un desdits rouleaux à contact pour que ledit rouleau à contact tourne quand ledit double moyeu tourne ; ladite courroie d’aspiration ayant un arbre d’entraînement traversant une extrémité de celui-ci et un quatrième moyeu ancrée à l’intérieur de ladite courroie d’aspiration, ledit quatrième moyeu ayant une courroie d’entraînement dentée disposée sur celui-ci ; ladite courroie d’entraînement dentée étant connectée audit premier moyeu pour que ledit quatrième moyeu et ledit arbre d’entraînement tournent lorsque ledit premier moyeu tourne, ce qui entraîne ladite courroie aspirante en synchronisation avec ledit montage de coupe et lesdits rouleaux à contact.

12. Appareil selon l’une quelconque des revendications précédentes, dans lequel ledit montage de coupe de bande (2109) comprend : un mécanisme de piston à air (2123) ayant un arbre (2125) sortant vers le bas de celui-ci, ledit
piston à air étant construit et agencé pour sélectivement élever et abaisser ledit arbre ; une lame de coupe (2121) et une pince fixée à l’extrémité distale dudit arbre pour serrer et couper ladite bande ; un plateau matrice coulissant (2119) à positionner sélectivement sous ladite bande, ledit plateau matrice ayant une fente s’étendant à travers celui-ci et un bloc de débourrage à ressort chargé (2129) près de ladite fente ; ladite pince étant construite et agencée pour abaisser ledit bloc de débourrage lorsque ledit arbre est sorti afin de faciliter la coupe de ladite bande ; ledit bloc de débourrage étant construit et agencé afin d’appuyer vers le haut lorsque ladite pince est remontée par ledit arbre, ledit bloc de débourrage étant construit et agencé pour pousser l’extrémité distale de ladite bande vers la courroie d’aspiration.

13. Appareil selon l’une quelconque des revendications précédentes, dans lequel lesdits moyens formant une courroie d’aspiration comprennent une courroie d’aspiration ayant une pluralité d’orifices la traversant ; ladite courroie d’aspiration étant montée en rotation sur une paire de rouleaux ; au moins un desdits rouleaux étant entraîné afin de faire tourner de façon sélective ladite courroie et de faire avancer par incrément ladite courroie d’une distance désirée ; une traverse s’étendant sous ladite courroie construite en élastomère thermoplastique lisse et dimensionnée et positionnée afin de servir de barrière à l’air provenant de ladite toile se déplaçant dessous et de dispositif d’élimination d’électricité statique.

14. Appareil selon la revendication 13, dans lequel ladite courroie aspirante a à peu près un pouce de large (environ 25 mm) et lesdits orifices sont centrés à 5/8 pouce (environ 16 mm) à partir du bord de ladite courroie.

15. Appareil selon l’une quelconque des revendications précédentes dans lequel ladite bande comprend une boucle repliée (1202, 1090) ayant une paire de profileurs d’attache enclenchés entre eux (720, 730, 980) fixés à l’autre par leur surface intérieure, ledits profileurs d’attache enclenchés entre eux étant construits et agencés pour être sélectivement ouverts et ressoudés, ce qui fait que quand ladite bande est positionnée et soudée sur ladite toile, ladite toile convient pour être transformée en une pluralité de sacs ressoudables.

16. Appareil selon l’une quelconque des revendications précédentes comprenant en outre des moyens d’ordinateur pour coordonner lesdits moyens pour distribuer ladite bande, ledit applicateur de bande, ledit couteau de bande, ladite unité d’entraînement de bande, ladite courroie d’aspiration et lesdits moyens pour faire avancer ladite bande en séquence.

17. Appareil selon la revendication 16, comprenant en outre : des moyens de clavier pour régler la longueur desdites sections de bande, l’espace entre lesdites sections de bande, l’espace entre lesdites sections de bande soudées sur ladite toile, et la vitesse de fonctionnement dudit appareil pour distribuer, appliquer et souder lesdites sections individuelles de bande sur ladite toile.

18. Procédé de soudage de sections individuelles de bande thermoplastique (100) en travers d’une partie d’une toile (110) en matière thermoplastique comprenant : la distribution de ladite bande sur une distance désirée ; la coupe de ladite bande sur une longueur désirée des sections individuelles de ladite bande ; la préhension de l’extrémité de ladite section individuelle par l’utilisation d’une aspiration ; l’application en séquence d’une aspiration à la longueur de ladite section individuelle de bande et l’avance simultanément de ladite section individuelle de bande sur ladite toile ; la pression de ladite section individuelle de bande sur ladite toile et le soudage à chaud de ladite section individuelle sur ladite toile.

19. Procédé selon la revendication 18, comprenant en outre l’étape consistant à coordonner l’avance de ladite toile avec l’avance de ladite bande et de ladite section de bande.

20. Procédé selon la revendication 18 ou la revendication 19 comprenant en outre les étapes suivantes : dérouler ladite toile d’un dérouleur à l’aide d’une série de rouleaux danseurs (2126) ; lire la position desdits rouleaux danseurs ; envoyer des signaux à un moteur d’entraînement pour faire avancer ou reculer ladite toile en fonction de la position desdits rouleaux danseurs ; envoyer la position dudit rouleau à une unité d’entraînement de bande ; dérouler ladite bande à l’aide d’une série de rouleaux danseurs (490) ; envoyer la position desdits rouleaux danseurs à ladite unité d’entraînement de bande pour que ladite unité d’entraînement de bande fasse avancer ou reculer ladite bande ; et envoyer des signaux audit moteur d’entraînement pour faire avancer ou reculer ladite toile.

21. Procédé selon la revendication 20, comprenant en outre : la fourniture à ladite toile de sections de bande soudées sur elle dans une machine de soudage à remplissage de forme et par un ensemble de rouleaux danseurs de soudage à remplissage de forme au dos de celle-ci ; l’envoi de la position desdits rouleaux danseurs à soudage par remplissage...
de forme à ladite unité d'entraînement de bande et audit moteur d'entraînement de toile afin de commander le déplacement de ladite bande et de ladite toile.

22. Procédé selon la revendication 18 comprenant la distribution, l’application et le soudage de sections individuelles de bande en matière thermoplastique en travers d’une partie d’une toile en matière thermoplastique, le procédé comprenant la distribution à un appareil applicateur de bande d’une bande sous tension par des moyens de distribution de bande comprenant un montage de repérage de bande pour régler la position de ladite bande et un montage d'entraînement de bande pour faire avancer ladite bande ; la coupe de ladite bande en sections individuelles d’une longueur présélectionnée ; l’avance de ladite section de bande par des moyens d’avance d’aspiration en une position désirée en travers de ladite toile en matière thermoplastique et l’application d’une pression et de chaleur à ladite section de bande sur ladite toile pendant un temps d’application spécifié afin de souder ladite bande sur ladite toile, et l’avance en séquence de ladite toile.
FIG. 3

FIG. 4
FIG. 34

FIG. 35