

HU000025181T2

(19) **HU**

(11) Lajstromszám: **E 025 181**

13) **T2**

MAGYARORSZÁG Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(21) Magyar ügyszám: **E 07 721824**

(51) Int. Cl.: **B60C 23/00**

(2006.01)

(22) A bejelentés napja: 2007. 05. 23.

B60C 150/24

(2006.01)

(96) Az európai bejelentés bejelentési száma:

EP 20070721824

(86) A nemzetközi (PCT) bejelentési szám:

PCT/CZ 07/000035

(97) Az európai bejelentés közzétételi adatai:

2007. 11. 29.

(87) A nemzetközi közzétételi szám:

WO 07134556

(97) Az európai szabadalom megadásának meghirdetési adatai:

EP 2040943 B1

EP 2040943 A1

2015. 01. 07.

(30) Elsőbbségi adatok:

20060335

2006.05.23.

- 1

CZ

(73) Jogosult(ak):

Sithold, S.R.O., 150 00 Praha 5 (CZ)

(72) Feltaláló(k):

HRABAL, Frantisek, 150 00 Praha 5 (CZ)

(74) Képviselő:

PINTZ ÉS TÁRSAI Szabadalmi, Védjegy és Jogi Iroda Kft., Budapest

(54) Perisztaltikus szivattyú kamrája abroncs nyomásbeállításához

(11) EP 2 040 943 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:07.01.2015 Bulletin 2015/02

(21) Application number: 07721824.6

(22) Date of filing: 23.05.2007

(51) Int Cl.: **B60C 23/00** (2006.01) **B60C 15/024** (2006.01)

(86) International application number: PCT/CZ2007/000035

(87) International publication number: WO 2007/134556 (29.11.2007 Gazette 2007/48)

(54) A CHAMBER OF A PERISTALTIC PUMP FOR TIRE PRESSURE ADJUSTMENT

KAMMER EINER SCHLAUCHPUMPE ZUR REIFENDRUCKEINSTELLUNG
CHAMBRE DE POMPE PÉRISTALTIQUE POUR LE RÉGLAGE DE PRESSION DE PNEU

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR

(30) Priority: 23.05.2006 CZ 20060335

(43) Date of publication of application: 01.04.2009 Bulletin 2009/14

(73) Proprietor: Sithold, S.R.O. 150 00 Praha 5 (CZ)

(72) Inventor: HRABAL, Frantisek 150 00 Praha 5 (CZ)

(74) Representative: Kratochvil, Vaclav Patent and Trademark Office P.O. Box 26 295 01 Mnichovo Hradiste (CZ)

(56) References cited:

WO-A-2005/012009 DE-A1- 3 433 318 US-A- 1 050 886 US-A- 1 134 361

P 2 040 943 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Technical field

[0001] The invention regards a chamber with shape memory for tire pressure adjustment, which is a part of the tire or is adjacent to the tire wall and connected with the tire internal space at one end and with the exterior environment at the other end. It also concerns the production method of the chamber and tire and rim with this chamber.

1

Background art

[0002] Different solutions for pressure maintenance in the tire under operation are used in technical practice. These are for example tires fitted with an air intake, connected to an external source of pressurized air. The draw back of these solutions are high costs and complexity of the devices.

[0003] There are also self-inflating tires. For example, the model type of a self-inflating tire is described in pending patents CZ PV 2002-1364 and CZ PV 2001-4451 (see WO-A-03049958). The air feed chamber is located in the tire wall or adjacent to it. The chamber is periodically completely compressed or broken, with progressive rolling deformation across the tire chamber, the advancing compression of the chamber to the zero cross-section area forces the medium contained in the chamber forward, thus creating vacuum behind. The chamber in the shape of a hose placed in the tire wall or in its vicinity along the tire perimeter works as a peristaltic pump.

[0004] During tire manufacture, the individual layers of various components are applied in the form of flat material onto the revolving building drum. Components are then expanded and shaped by pressure applied from the interior side to a ring-shaped arrangement.

[0005] The pressure is usually provided and directed by a blader described for instance in CZ patent 246152, defining the center blader of the building drum for tire building and use of such bladers.

[0006] Following the pressure forming, the raw rubber tire is removed from the building drum and inserted into the forming and vulcanizing mould in the shape of the finished tire. The mould is sealed and heated. The raw rubber tire is radially expanded in the outward direction up to the mould perimeter, through injection of the power fluid into the hardening blader mounted inside the mould and placed inside the mould. The hardening blader expands, it pushes the tread and the side walls of the raw tire into the mould heated walls. Upon this vulcanization, the individual layers are joined together and the tire gets its final shape and hardness.

[0007] The tire re-treading is performed in a similar

[0008] The blader function is for example described in CZ patent 273325 "Mobile unit for vulcanization of tirecasings" where the unit consists of two-piece mould,

halves of which can be joined to form a ring-shaped chamber for holding the non-vulcanized casing. One of both halves of the mould contains a closed circuit for the pressure vulcanization medium. The closed circuit includes the interior of the blader, which is squeezed into the ring-shaped chamber, and housing connected to the heated feeding channels and return channels. The blader is made of elastomer, it is of the C-shape and expands inside the ring-shaped chamber, thus pressing on the inner surface of the non-vulcanized raw casing.

[0009] The CZ patent 246152 defines the center blader of the building drum of the machine for tire casing building and use of such bladers, which serve as curing membranes for most building drum types. They have the role of an active element in reshaping the originally manufactured drum-shaped tire casing semi-finished product to the torus shape.

[0010] To clarify some of the new production methods of tire chamber-type, it is necessary to mention the design of the tubeless tire and rim assembly and the behavior of this assembly in operation. In general, the tubeless tire has the C-shape. After the tire is fitted onto the rim and inflated, the tire walls expand in the direction of the rotation axis and in the bead area they press against the rim walls, which makes the inflated tire seal. The hermetically closed assembly then consists of the tire side walls, the tire tread part, and the rim.

[0011] Disadvantages of these designs are high production costs, worse operation and mounting of the chamber and the related components into the wheel assembly, very high risk of breakage, crumbling and abrasion of the chamber walls in their compressing, and thus shortened chamber life expectancy as well as the tire safety. In case of forces applied on the chamber against the direction of the chamber closing, which can be quite common during the chamber function, its wall can be ripped. Another disadvantage is difficult or unsolved joining of the individual chamber components; then the need for fundamental modifications in the tire chamber-type manufacturing method, and especially the fundamental modifications of the production machinery. Yet another disadvantage is the need of production basically complete unique chamber assembly for each tire type and pressure. And finally, with respect to a relatively small space, which is available for the chamber installation, the chamber will have a relatively small working volume and output.

[0012] Attention is also drawn to the document WO-A-2005012009.

Disclosure of the invention

[0013] The above mentioned draw backs are significantly eliminated by the use of the chamber with shape memory for the tire pressure correction in the tire, which is a part of the tire or is adjacent to the tire wall and is connected with the inside space of the tire at one end and with the outer environment at the other end, accord-

ing to this invention. The core of this invention is that the chamber has the shape of the curved hollow channel, where at least one its enclosing wall is formed by at least a part of the pair of surfaces coplanar with the longitudinal direction of the chamber and at the angle α = 0 to 120°. If the angle is α > 0° it is on the connecting edge of these surfaces, located on the remote side from the center of the transverse chamber cross-section.

[0014] The chamber has an advantage of being at least partly ring-shaped, or at least partly torus, or at least partly helix. The chamber can be located in the space of the tire sidewall, at its bead; or it can be located in the ancillary structure inserted between the tire sidewall and at least one component of the assembly consisting of the rim, hub-cap, or support. In the efficient design, the ancillary structure with chamber is firmly connected to the rim or hub-cap, or with the tire sidewall. The ancillary structure containing the chamber is efficiently shaped for tight fitting with the tire sidewall from one side and shaped for fitting with the rim from the other side.

[0015] Then the invention regards the production method of the above stated chamber. In this method, a usually flat matrix is inserted between the layers forming the tire sidewall before vulcanization, with the width of 0.1 to 200 mm and thickness of 0.01 to 100 mm. Then vulcanization is performed and the inserted matrix is removed in one piece, or in parts. In the efficient design, the matrix thickness is increased in the direction from the center axis

[0016] After vulcanization, the matrix is removed and a member with the cross-section identical to the chamber cross-section at the place of location of the member inside the chamber is inserted into the formed slot with the U-shaped cross-section opening towards the center axis. After fitting the tire onto the rim, all the chamber wall surfaces will take the working position and the slot walls will touch each other in their respective parts and the chamber cross-section will correspond to the required chamber cross-section before loading. In the effective design the member is, at least at one end, fitted with a channel, which opens at the face of the chamber and leads into the free space outside the tire, or outside the ancillary structure.

[0017] The matrix is effectively divided into at least two parts, where the first part corresponds with the chamber length and is removed after vulcanization. The second (additional) part of the matrix remains in the tire, while an incompressible channel is effectively formed in the additional part at least at one end, and this leads to one of the faces of the chamber ends and its other side leads into the empty space inside the tire or outside the tire.

[0018] The chamber can be effectively formed also by the matrix circumscribing only a part of the circle of the tire or ancillary structure.

[0019] The ancillary structure with the chamber, or the chamber in the tire wall, respectively can be formed by sticking of two strips of material together, where at least in one of the strips at least a part of the chamber will be

pressed out, ground out, milled out, machined, cut out, melted off, or burned out. The chamber in the ancillary structure formed in only one strip of material or the tire wall, respectively can also be made by pressing out, grinding out, milling out, machining, cutting out, melting off, or burning out, or the whole ancillary structure can be extruded in a similar way to producing sealing, hoses, etc.

[0020] The invention also concerns the tire or rim with a wall that is fitted with a profile for the fitting with of the ancillary structure.

[0021] The advantage of the chamber is that the chamber walls, formed by the pair of surfaces under a small angle, are subjected to relatively small forces upon the chamber deformation. This decreases the possibility of wall damage, for example through ripping or breaking as a result of internal tension under load.

[0022] The pair of surfaces can continue outside the chamber under the angle of 0 degrees. These surfaces, pressed together, take the internal wall tension onto themselves in a smaller extent. If the wall was not formed by partly parallel surfaces a higher mutual transmission of forces would occur. On the other hand, with parallel surfaces, the internal forces within the chamber wall will be much simplex and less interacting.

[0023] The walls diverge or open towards the inside of the chamber. If there is a temporary need for the surfaces to open in a further distance from the chamber cross-section center upon the chamber deformation, the point of opening can move to the place of the original parallel surfaces. However, if the surfaces were firmly joined in the original place of opening and they did not continue in parallel outside the chamber, a ripping could occur in this point. The option of moving the point of opening thus provides lower strength stress of the chamber walls during different loading of the tire and chamber.

[0024] The opposite chamber walls can have a different cross-section length. Nonetheless, it is necessary that they hermetically fit on each other under the load and their cross-section lengths were sized up at the same time. This can be achieved by transverse compression of the wall with a longer cross-section, or by transverse stretching the wall with a shorter cross-section, respectively. Compression or stretching of the walls is limited by their compressibility, or expandability of the wall material. However, if the wall with a longer cross-section is formed by two surfaces making an angle of 0 to 120 degrees and the vertex of the angle will be located, for example, in the center of the cross-section of this wall then this wall will change its cross-section length easier when subjected to load. Since the place of the chamber location as well as material qualities are limited this folded arrangement will allow maximization of the chamber volume also in the given limited conditions, even in the limited space.

[0025] The chamber walls with different lengths will have a tendency to shift over each other when under the load. The folded arrangement will reduce this tendency,

the chamber will fold to its final closed shape under the load and the opposite walls will become almost parallel just before their mutual contact. Under this arrangement at the same time, the chamber walls are subjected to forces generally perpendicular to the chamber walls. Thus, their orientation closes the chamber, which is the required state, and also does not act in parallel with the chamber wall in such a great extent, which would be an undesirable state, because the walls would shift over each other. The sliding of the walls on each other causes their abrasion and destruction, which can lead to the tightness failure or the increase in volume of a part of the chamber, and thus to the change in the output pressure. With a regular passenger vehicle tire, there are about 500 revolutions per kilometer, or 5 million revolutions per every 10 thousand kilometers. This is why it is necessary to minimize any causes of a possible defect.

[0026] The chamber is effectively at least partly ringshaped or torus-shaped, or at least partly helix-shaped because these shapes can be easily manufactured and help to achieve the required effects. The chamber is effectively placed in the area of the tire side wall at its bead because here is enough room for its placement. The chamber can be easily connected to the air inlet and outlet and all the chamber parts, including the valve, are close to the rim where they are subjected to the lowest centrifugal forces within the tire and thus it is easier to balance the tire. The bead area is one of the most rigid places in the tire and therefore the tire here behaves very predictably over the rotation cycle and it has the lowest deviations from the set point and expected state and it is one of the most protected places from wear and tear in the tire here.

[0027] The chamber can be placed in the ancillary structure, which is inserted between the tire side wall and at least one part from the following: the rim, hubcap, or support. This design allows the use of the regular contemporary tire and the overall contemporary wheel design; it is also possible to fasten the ancillary structure together with the rim or hubcap or tire side wall, which reduces the danger of its shifting or loss.

[0028] The matrix used to create the chamber can be pulled out of the chamber using the parallel surfaces of the chamber wall. If the surfaces continue through the tire wall out of the tire, as well as the matrix between them, it is possible to pull out the matrix between them out of the space formed by the matrix. For easier matrix extraction, these surfaces may be pulled apart temporarily. After fitting the tire onto the rim, all the chamber wall surfaces will take up a functional position and the chamber cross-section will correspond to the desired chamber cross-section before applying a load. The forces commonly present between the tire and the rim are therefore effectively used to ensure the required shape of the chamber and to seal all the sealing surfaces.

[0029] Even in the case when the chamber wall surfaces continue in parallel outside the chamber, though not outside the tire, or in the case that a thin and bendable, or flexible, matrix is used the extraction of the matrix after the vulcanization will be easier. By applying pressure on the chamber in parallel with the extension of chamber walls, or by applying pull on the chamber walls across the chamber walls, the chamber walls will get apart from each other in the direction of the pull and will not adjoin to most of the outer matrix surface. Thus they will not create considerable resistance against the extraction of the matrix out of the chamber lengthwise. However, the condition is that the matrix ripples or bends in its part creating the foot print of the parallel surfaces and thus allows the chamber to get contracted in this direction.

[0030] Effectively, the matrix can be bendable, e.g. rubber coated, fabric. Such material is bendable, but just a little compressible, which ensures the required shape of the foot print of the matrix. The bendable matrix can then be very easily extractible since it shrugs and avoids obstructions on its own when being extracted.

[0031] In the tire manufacture, the parallel surfaces enable the production of the chamber by a simple design change of the vulcanizing mould, commonly used in tire production. The chamber production matrix is attached to the vulcanizing mould and the matrix is then removed along with the vulcanization mold after the vulcanization of the tire. It is a relatively inexpensive and technically simple change, which will ensure the creation of a fullfledged chamber after fitting the tire on the rim. The chamber production matrix can also be inserted between the tire layers separately, before the tire is inserted into the vulcanizing mould and removed after the tire is taken out of the mould. The matrix can also be placed on the tire layers and subsequently covered by a layer of material and then vulcanized.

[0032] The chamber created between the tire and rim, or support mounted on the rim, takes the full advantage of the force arising between the tire and rim upon the tire deformation. In order to utilize the forces, which act these days in the tire wall above the bead in the point where the tire is not touching the rim any more, but is coming close to it periodically, it is possible to create a lug boss on the tire wall, which will fill up this room and uses the forces caused by the tire coming close to the rim to close the within contained chamber. If this lug boss is produced together with the tire it is again a simple change in design.

The lug boss can also be replaced by an ancillary structure inserted between the tire and the rim.

[0033] Moreover, the lug boss or ancillary structure can increase the rigidity of the tire side wall, which is positive. Efficiently, it can be created at both beads of the tire, even if only one of them will contain the functional chamber in. Such placement at both beads will ensure the bilaterally symmetrical rigidity of the tire.

[0034] The tire walls are subjected to significant heat stress; the tire bead ambiance is among the exposed places. Periodical airflow inside the chamber will ensure increase in heat dissipation off the tire wall.

[0035] Since a flat matrix with a width of 0.1 to 200mm and thickness of 0.01 to 100 mm and efficiently fitted with

a shaped protrusion will be inserted between the layers comprising the side wall of the tire or ancillary structure before vulcanization, the matrix can be easily removed after vulcanization, while the required profile will remain impressed in the material. The matrix can be extracted in parts, which makes its extraction easier, or as a whole, where it is possible to use the matrix repeatedly without the need to realign its individual parts every time. The extraction of the matrix can go easier even if the matrix thickness is changing offward the center axis.

[0036] If the wall of the tire and rim is equipped with a profile for fitting tight of the ancillary structure already in their production then the placement of this ancillary structure will be correct and fixed.

[0037] The chamber made in this way - if placed at the bead part near the rim - allows the connection with the more robust parts interconnecting the chamber with the tire and exterior environment. For example, the use of a larger valve allows its higher fineness and/or fitting of the valve with more features such as mechanical or electronic communication with other devices, status indication to the driver, air relief from the tire, and so on. The valve can be mounted directly onto the rim and thus it will not directly burden the structure of the tire. The closer the whole structure is to the wheel axis, the more massive it can be, and the less it will burden the wheel by its centrifugal forces. The interconnection of the chamber with its other parts created between the rim and the tire or ancillary structure, or partial creation of a part of the chamber within the tire or ancillary structure and the rest of the chamber, e.g. in the rim or between the rim and the tire, allows simple interconnection of these parts and their sealing by fitting the tire on the rim and the pressure between the tire and the rim. The formation of the incompressible channels allows to create not only the interconnection of the individual parts of the chamber but directly the incompressible channels can make a part of the chamber non-deformable to zero cross-section area of the chamber. Creating of a part of the chamber within the tire or ancillary structure and another part of the chamber outside them allows to form the chamber in a modular way, where the individual elements are standardized and usable e.g. for different tire sizes. In this way, it is, for example, possible to form a chamber within the tire with an exactly defined interior volume of the chamber and to define the resulting inflating pressure of the chamber by the volume of the non-deformable channels formed within the rim, with their volume corresponding to the inflating pressure required for the particular vehicle using these rims. The chamber can then be formed universally for different tire sizes and different inflating pressures while it is fine-tuned using suitable follow-up parts of the chamber for specific requirements.

[0038] Approximately a half of the vehicles on the roads have at least one tire underinflated by more than 20 percent, which is considered as highly risky. An underinflated tire can keep track worse and overheats, which leads to its rapid wear and tear, and thus to the

loss of grip, or even to its explosion. Besides these safety risks, the economic side is important too. An underinflated tire has shorter operating life and higher rolling resistance, which shows by increased fuel consumption of the vehicle. Since drivers generally tend to overlook this risk and do not deal with it, self-inflation will have great safety and economic impacts.

[0039] In order to give a general idea of the function of the self-inflating tire chamber not only under this patent, a description of the general fundamental principles of its function will follow. A longitudinal chamber, e.g. of a rectangular cross-section of 1 times 3 millimeters, is formed in the tire o. The tire gets compressed at the contact point of the tread and road and this deformation spreads through the tire approx. towards the tire axis up to the bead or to the rim, respectively. The chamber is formed diagonally to this deformation and therefore the deformation closes the chamber diagonally and the cross section of the closed chamber is 0times 3 millimeters. The chamber has a zero cross-section area of the chamber at the point of the diagonal closing; it is blind. While the tire is rolling along the road surface the point of deformation moves along the tire circumference and the point of the diagonal closing of the chamber moves as well gradually and pushes the air compressed in the chamber ahead, while a vacuum is formed behind the deformation point within the chamber.

[0040] Based on the above mentioned principle, there are several alternatives of the chamber, which vary in the number and type of the valves used and the method of controlling the output or the maximum pressure of the chamber. For example, in the chamber using at least one valve the output pressure or the maximum pressure can be set by creating a chamber with a fully deformable part and fully non-deformable part, where both of these parts have defined maximum and minimum internal volume. The output pressure or the maximum pressure in the chamber is then defined by the ratio of the maximum volume of the chamber parts at the start of the cycle to the minimum internal volume at the end of the cycle.

[0041] Different tires have different dimensions. Just for illustration, a common tire size R13 has the contact area of its bottom part and rim about 12 mm wide and the contact area of its side part and rim about 7 mm high. Such a common tire for a passenger vehicle can get closer to the rim with its side wall at the upper part of its rim wall by tenths of millimeter and on the outer side of the tire above the contact area of a contemporary tire and rim in the matter of millimeters when rolling off. These dimensions then define the size of the unloaded chamber created at the tire bead in the matter of tenths of millimeters to millimeters. If the design of the common tire was changed it would be possible to increase this span.

[0042] For tires for trucks and special machinery these spans can then be reasonably higher depending on the size and design of these tires.

Brief description of drawings

[0043] The chamber with shape memory for tire pressure correction according to this invention will be described in detail using particular examples of design with the help of drawings attached. Fig. 1.a) shows the sectional view of the tire and fig. 1.b) shows in the front view. Figs. 2.a) through 2.d) show the detail of the chamber arrangement. Figs. 3.a) through 3.i) show different types of chamber cross-sections in the sectional view and their process of manufacture. Figs. 4.a) through 4.d): show the procedure of the matrix extraction, where Figs. 4.a) and 4.b) show the section through the tire and Figs. 4.c) and 4.d) show the tire in the front view. Fig. 5.a) shows the member. Figs. 5.b) through 5.f) show the cut of the tire with inserted member and Figs. 6.a) through 6.e) show different shapes of the cross-section of the chamber and matrix in their manufacture and the function of the chamber. Fig. 7.a) shows the detail of the chamber and interconnection of its parts outside the tire. Fig. 8.a) shows the detail of the arrangement of the member and support between the tire and rim.

Examples of the design of the invention

[0044] For illustration, the invention is described on the individual examples of its design.

Example 1

[0045] The chamber 1 with shape memory for pressure correction in the tire, which is a part of the tire or adjacent to the tire wall and is connected with the internal space of the tire at one end and with the exterior environment at the other end, has the shape of a curved hollow channel, with its enclosing wall partly formed by the pair of surfaces 10 lengthwise coplanar with the chamber 1 (channel) under the angle of $\underline{\alpha}$ = 2 to 15°. The angle $\underline{\alpha}$ > 0° is on the contacting edge of these surfaces 10 located on the further side from the center of the chamber 1 cross-section. The chamber 1 is placed in the area of the tire side wall 4 at its bead.

[0046] When manufacturing the chamber 1 a flat matrix 9 with a shaped protrusion and with a width of 0.8 mm and thickness of 0.02 mm, is inserted between the layers forming the tire side wall $\underline{4}$ before vulcanization, then the vulcanization is performed and the inserted matrix 9 is extracted as a whole towards the center axis 2 of the tire 4. The thickness of the matrix 9 refers to the measurement roughly perpendicular to the width of the matrix 9. The width of the matrix 9 impressed in the ancillary structure $\underline{6}$ as shown on the fig. 3. g) is then the entire length of the matrix 9 along the arrow and the thickness is measured roughly across the matrix <u>9</u> arrow. The member <u>19</u> with the cross-section identical to the chamber 1 crosssection is inserted into the formed slot with the generally U-shaped cross-section, opening towards the center axis of the tire $\underline{4}$. The member $\underline{19}$ is fitted with the channel

913 at one end, which opens at the face 12 of the end of the chamber 1 and leads to the internal space of the tire 4; another member 19 opens at the opposite face 12 of the opposite end of the chamber 1 and leads to the external environment outside the tire 4. The matrix 9 can also be extracted in a different direction than towards the axis of tire 4, e.g. offward the axis of the tire 4 or in parallel with the axis of the tire 4. The condition is that the formed slot or extended surfaces 10, respectively, through which the matrix 9 is being extracted were created in the direction, in which, after fitting the tire 4 on the rim 7, sufficient forces are present to seal them hermetically, as shown on fig. 3.h), where this is shown at the ancillary structure 6.

[0047] The fig. 3.h) shows the circular chamber 1 created in the ancillary structure 6, while the extended surfaces 10 are led out through the wall of the ancillary structure $\underline{6}$ towards the free space outside the tire $\underline{4}$ and rim 7. The surfaces 10 are hermetically pressed together by pressure between the tire $\underline{4}$ and rim $\underline{7}$. Accordingly, it is possible to create the chamber 1 with the extended surfaces $\underline{10}$ in the tire $\underline{4}$ side wall. It is also possible to lead out the extended surfaces 10 through the wall of the ancillary structure 6 towards the tire 4 wall. Generally, it is then possible to lead the surfaces 10 out of the ancillary structure 6, and/or tire 4, towards any outside wall of the ancillary structure 6, or of the tire 4, respectively. The only condition is that they are placed at the extended surfaces 10 to the point sufficient pressure, which will ensure their hermetical sealing.

[0048] In general, the chamber 1 can contain a part deformable to zero cross-section area of the chamber 1. A part non-deformable to zero cross-section area of the chamber 1 can be added. The examples describe mainly the deformable part of the chamber 1, nonetheless the part of the chamber which is not deformable to zero chamber cross-section area can be created in a similar way, too. To make it clear, any part of the chamber 1, which may be concerned, is referred to as the chamber 1 in this application.

[0049] Fig. 1.a) shows the cut through an unloaded tire 4 and rim 7. The circle indicates the place used for placement of the chamber 1 detail on the other figures, while fig. 2.a) depicts an enlarged detail of this circle.

[0050] On fig. 2.b), the ancillary structure 6 is placed between the unloaded tire 4 and rim 7. The cross-section of the tire 4 wall matches the shape of this structure 6 from one side and from the other, it matches to the cross-section of the rim 7. It holds at the required location due to the pressure of the tire 4 onto the rim 7, or it can be fixed to the rim 7 or tire 4.

[0051] Fig. 2.d) shows the tire $\underline{4}$ side wall under load. The tire $\underline{4}$ affects the ancillary structure $\underline{6}$ by its wall and compresses it against the rim $\underline{7}$. Within contained chamber $\underline{1}$ will be compressed along with the ancillary structure $\underline{6}$. The direction of deformation is indicated by the broken arrow.

[0052] The chamber 1 can be created in the ancillary

structure $\underline{6}$ or directly in the tire $\underline{4}$ wall, namely either between the layers of the commonly produced tire $\underline{4}$, or if there is not enough space in the tire $\underline{4}$ wall, it can be created in the lug boss on the tire $\underline{4}$ wall, which is analogous to the ancillary structure $\underline{6}$. Such a lug boss on tire $\underline{4}$ wall is shown on fig 2.c) and as for a cross-section, it corresponds with the ancillary structure $\underline{6}$ on fig. 2.c) in this case. Under load, the lug boss will get deformed accordingly with the ancillary structure $\underline{6}$ on fig. 2.d).

[0053] The tire $\underline{4}$ is being periodically compressed when driving, while its bead is being pressed onto the rim $\underline{7}$ in the bead area and the wall of the tire $\underline{4}$ is getting closer to the rim 7 periodically above the bead area. This forcing and approaching ensures the transverse closure of the chamber $\underline{1}$ placed at the tire $\underline{4}$ bead or above it. Lengthwise, the chamber 1 can have a shape of incomplete annulus and can veer from the annulus-like shape towards the axis of the tire $\underline{4}$ as well as in parallel with the axis; the only condition for transverse closure is that the chamber 1 was located at the point of sufficient force for closing the chamber 1. Such a point can be found e.g. between the tire $\underline{4}$ and rim $\underline{7}$. A part of the chamber $\underline{1}$, or the whole chamber 1 can be circular, elliptic, linear, spiral, or helix, or in the shape of another curve, or the center of the cross-section area of the chamber 1 or its part can be placed on these curves.

Example 2

[0054] Fig. 3.a) shows the ancillary structure 6 containing the chamber 1 with the cross-section in the shape of a three-pointed star. This part of the chamber 1 is placed on the outside side wall of the tire 4 above the tire 4 bead and the rim 7 The tire, 4 is not shown here and the chamber 1 is shown in an unloaded condition. There is a sharp angle $\underline{\alpha}$ on the surfaces $\underline{10}$ comprising the wall of one of the points. The sharp angle will ensure the hermetical sealing of the walls forming the chamber 1 upon deformation of the chamber 1, while there is minimum bending and tension in the walls, which reduces the overall tension and material stress in the chamber 1 walls. The fig. 3.b) shows a cross-section through the chamber 1 under load, the walls of the chamber 1 adjoin each other in the loaded point, the chamber 1 is blind and has the zero cross-section area of the chamber <u>1</u> in this point. The direction of deformation caused by load is indicated by a broken arrow.

[0055] The chamber 1 with sharp angles on the sides of surfaces further from the center of the chamber 1 cross-section area shown here can be created at any place of the tire 4 wall or in its vicinity, for example also in the tread or side wall of the tire 4. The reason why the concept "the center of cross-section area of the chamber 1" is used is that the cross-section area of the chamber 1 needs not to be a definable geometrical center or point of symmetry. So it is an approximate center of this area. [0056] Fig 3.c) shows the ancillary structure 6 containing the chamber 1 in the shape of three-pointed star. The

chamber $\underline{1}$ has the same profile as the chamber $\underline{1}$ on fig. 3.a). However, the surfaces $\underline{10}$ of the chamber $\underline{1}$ walls are extended beyond the point of sharp angle shown on fig. 3.a) and continue in parallel to each other, it means under zero angle, deeper into the chamber $\underline{1}$ wall. Due to this extension, indicated by P, the walls of the chamber $\underline{1}$ are physically separated from each other, and these extended surfaces $\underline{10}$ reduce the forces, caused by deformation, transferred between the chamber $\underline{1}$ walls. In this example, the extension is shown for all points of the three-pointed-star shaped chamber $\underline{1}$ even though it is indicated by P only at one of its points.

[0057] Upon deformation of the tire $\underline{4}$, forces are absorbed by this separation of surfaces that could otherwise damage the walls of the chamber $\underline{1}$ if the surfaces were not separated. Such a chamber $\underline{1}$ with extended surfaces $\underline{10}$ can be created at any place in the wall of the tire $\underline{4}$ or in its vicinity, so for example, in the tread or side wall of the tire $\underline{4}$, too.

[0058] The chamber 1 is located at the point with variable deformation forces. When these forces act temporarily against the forces closing the chamber 1 during the cycle, the extension of the surface 10 of the chamber 1 walls will allow a wider opening of the chamber 1 walls temporarily and the touch point of the chamber 1 walls will move towards the extension in this case. If there was no extension of the surfaces 10, the wall of the chamber 1 could be torn in the point of sharp angle shown on fig. 3.a).

Example 3

[0059] The chamber $\underline{1}$ can be manufactured by pressing in the matrix $\underline{9}$ between the walls of the chamber $\underline{1}$ and subsequent extraction of the matrix $\underline{9}$. The extension of the surfaces $\underline{10}$ outside the chamber $\underline{1}$ itself under the zero angle between the surfaces $\underline{10}$ then allows simple extraction of the matrix $\underline{9}$ in the manufacture of the chamber $\underline{1}$.

[0060] Figure 3.d) shows the manufacture of the chamber 1 with a circular profile. The partly circular matrix 9 is impressed in the material of future chamber 1 walls; it is then expended outside the circular cross-section of the chamber 1 and led out of the ancillary structure 6. After pressing out, this extension will make parallel surfaces 10 passing through the chamber wall up to the point outside of the ancillary structure 6. Thus it will create a passage for extraction of the impressed matrix 9. Extraction of the matrix 9 is shown on fig. 3e).

[0061] After fitting the ancillary structure 6 and tire $\underline{4}$ onto the rim $\underline{7}$, these extended surfaces $\underline{10}$ will press together tight and the chamber $\underline{1}$ cross-section will take on the required cross-section shape of the unloaded chamber $\underline{1}$. This sealing and taking the desired cross-section of the chamber $\underline{1}$ is shown on fig. 3.f). Accordingly, the chamber $\underline{1}$ can be created in the wall of the tire $\underline{4}$, too.

[0062] If the matrix 9 is at least partly made of bendable

or flexible material, e.g. vulcanized-rubber-coated fabric

or thin steel sheet, it will contract or bend upon extraction and will not present any significant resistance. The extraction of the matrix $\underline{9}$ can be made easier by using a separator, which is applied on the matrix $\underline{9}$ walls before vulcanization. This separator ensures that the matrix $\underline{9}$ will not adhere to the chamber $\underline{1}$ walls upon vulcanization. [0063] Figure 3.g) shows partial extraction of the arrow-shaped matrix $\underline{9}$. Not even the walls of the ancillary structure $\underline{6}$ present any significant resistance due to their flexibility. Extraction of the matrix $\underline{9}$ can be made easier by temporary opening of the profile, created by the matrix $\underline{9}$ in the ancillary structure $\underline{6}$, using a suitable tool. The matrix $\underline{9}$ can also be divided into more parts and extract them piece by piece. This will make the extraction easier

[0064] Figure 4.a) shows the tire 4 with an impressed bendable matrix $\underline{9}$ in section; fig. 4.c) shows this in a side view. In the side view, the wall of the tire $\underline{4}$ overlaining the matrix $\underline{9}$ is shown as partly transparent. Figures 4.b) and 4.d) show partial extraction of the matrix $\underline{9}$ in its upper part, while the side and bottom parts of the matrix $\underline{9}$ are not extracted yet. Upon extraction, the matrix $\underline{9}$ has crouched and bent and thus created a space for extraction of the remaining matrix $\underline{9}$.

mainly in case of using a solid matrix 9.

[0065] Figure 3.i) shows other efficient designs of the chamber 1 profile in the shape of two types of lenses. Then it shows a folded and diamond-shaped type of the chamber 1 profile. The efficient design of the chamber 1 shape is chamber 1 with the walls as perpendicular as possible to the forces acting on the walls of the chamber 1. This prevents mutual shifting of the opposing walls of the chamber 1 over each other and their abrasion and destruction.

[0066] The walls of the tire $\underline{4}$ or the ancillary structure $\underline{6}$ can by provided with rubber industry reinforcing and strengthening elements such as fabric cord, wire, impact ply, reinforce strip, or bandage.

[0067] Rubber making the body of the tire $\underline{4}$ can have relatively high permeability for air entrapped in the tire $\underline{4}$. For this reason, a layer of so called internal rubber, that ensures impermeability of the tire $\underline{4}$, is used for its innermost layer. Accordingly, internal rubber can be used for walls of the chamber $\underline{1}$. In the manufacture of the chamber $\underline{1}$, internal rubber can be used directly for the production of the tire $\underline{4}$ layers or for the ancillary structure $\underline{6}$, between which the matrix $\underline{9}$ is being placed when the chamber $\underline{1}$ is produced, or a layer of internal rubber can be put on the matrix $\underline{9}$ before its insertion between the layers of the produced tire $\underline{4}$ or ancillary structure $\underline{6}$. Upon the subsequent vulcanization, the internal rubber merges with the adjacent layer of material.

[0068] The chamber $\underline{1}$ can also be made by cutting operation, cutting with a thermal knife, melting off, or burning out within the wall of the tire $\underline{4}$ or ancillary structure $\underline{6}$. It is also possible to create the chamber $\underline{1}$ by spewing, in a similar way as rubber hoses or seals are produced.

[0069] Either a hollow hose to contain the chamber 1 can be put into the slot formed by the matrix $\underline{9}$ or by the above mentioned method, or a solid hose that will make the final space of the chamber 1 by its outer walls and walls formed by the matrix 9 or in other above-mentioned way. The hollow hose can be made of more elastic material than the walls of the slot and it will then better close and seal the chamber 1 under load. It can also be made of impermeable rubber and substitute the need for adding internal rubber into walls of the chamber 1 upon its vulcanization. Accordingly, the solid, i.e. not hollow hose can effectively be made of more elastic material than the walls of the slot and it will better diagonally close and seal the chamber 1 under load, while it will leave transition space in the chamber 1, between its external walls and walls formed by the matrix 9 or in other above-mentioned way, when not under load.

Example 4

[0070] The rims $\underline{7}$ are standardized, nonetheless their parts, profiles of which are supposed to correspond to the wall of the ancillary structure $\underline{6}$ or the wall of the tire $\underline{4}$ containing the chamber $\underline{1}$, can vary from type to type of the rim $\underline{7}$. This can be treated by standardizing the relevant part of the rim $\underline{7}$, or by making a support $\underline{15}$ fixed to the rim $\underline{7}$ or to the hubcap or between the rim $\underline{7}$ and tire $\underline{4}$. This support $\underline{15}$ then takes on the supporting function of the rim $\underline{7}$. To function properly, the support $\underline{15}$, by its profile, must partly correspond to the profile of external walls of the ancillary structure $\underline{6}$ containing the chamber $\underline{1}$ or the walls of the tire $\underline{4}$ containing the chamber $\underline{1}$. The support $\underline{15}$ can efficiently be part of the hubcap.

[0071] The chamber <u>1</u> can be created in the ancillary structure <u>6</u> by gluing two strips of material together, e.g. two rubber strips, which already have the chamber <u>1</u> profile impressed in them. These strips can form a complete circle lengthwise with the chamber <u>1</u>, or at least a part of the circle in the same direction. Instead of gluing together, the strips can be just placed over each other, and they are then sealed by constant pressure between the tire <u>4</u> and rim <u>7</u>. These pressures exceed dozens of atmospheres at some points of contact of contemporary rims 7 and tires 4.

[0072] The tire 7 wall cross-sections vary for different tires 4. Production-simple solution is to place the chamber 1 into the ancillary structure 6 and to provide the ancillary structure 6 with a standardized profiled wall. The tires 4 must then be provided with a similar profile of their walls in the point of contact with the ancillary structure 6, which is a simple change in the tire 4 design. This can make sure that forces between the wall of the tire 4 and the ancillary structure 6 are more-less perpendicular to the wall of the ancillary structure 6, and thus reduce the risk of mutual shifting and abrasion.

Example 5

[0073] Figure 5.a) shows the member 19. The top arc part of the member 19 cross-section corresponds to the cross-section of the chamber 1. Straight parts indicated as Vv and Vs include through channels 913 interconnecting the faces 12 with the opposite ends of Vv and Vs parts. The channels 913 are indicated by broken arrows. [0074] Figure 5.b) shows fitting of the tire $\underline{4}$ onto the rim 7. Prior to this, an impression of the matrix 9 was made in the tire $\underline{4}$, along the entire circumference of the tire 4. Since the chamber 1 created in this way must be discontinued in order to function, the discontinuation will be made by inserting the member 19, which at least in one of its points corresponds to the chamber 1 crosssection. This member 19, which will prevent air permeation between the parts of the chamber 1 through the part of the chamber 1 with the member 19 inserted.

[0075] A part of the member $\underline{19}$ is inserted into the chamber $\underline{1}$, with its shape corresponding to the chamber $\underline{1}$ profile. The profile of this part of the member $\underline{19}$ corresponds to the A-A cross-section on fig. 5.a). After complete fitting of the tire $\underline{4}$ onto the rim $\underline{7}$ shown on fig. 5.c), the walls of the chamber $\underline{1}$ and the walls of the member $\underline{19}$ will get sealed and make the chamber $\underline{1}$ impermeable in this part.

[0076] Figure 5.d) shows the insertion of the member $\underline{19}$, including its Vv part, between the walls of the chamber $\underline{1}$ and also between the tire $\underline{4}$ and rim $\underline{7}$. After complete fitting of the tire $\underline{4}$ onto the rim $\underline{7}$ shown on fig. 5.e), the member $\underline{19}$, including its Vv part , the chamber $\underline{1}$, tire $\underline{4}$, and rim $\underline{7}$ will seal together. The chamber $\underline{1}$ is interconnected between the face $\underline{12}$ of the member $\underline{19}$ and the internal space of the tire $\underline{4}$ by the channel 913 placed in a part of the member $\underline{19}$ marked as Vv. The section of the part of the member $\underline{19}$ indicated as B-B on fig. 5.a) corresponds to the section of the member $\underline{19}$ shown on figs. 5.d) and 5.e), while, however, on figs. 5.d) and 5.e) the member is bent in its Vv part in order to copy its lead-out of the chamber 1.

[0077] Accordingly, the chamber $\underline{1}$ is interconnected between the opposite face $\underline{12}$ of the member $\underline{19}$ and the external environment by another channel 913 placed in a part of the member $\underline{19}$ marked as Vs, as is shown on fig. 5.f). The section of a part of the member $\underline{19}$ indicated as C-C on fig. 5.a) corresponds to the section of the member $\underline{19}$ shown on fig. 5.f), while figure 5.f) shows the member $\underline{19}$ bent in its Vs part in order to copy its lead-out of the chamber $\underline{1}$.

[0078] Channels 913 can also be embedded in the wall of the tire $\underline{4}$ or rim $\underline{7}$, or formed inside the wall of the tire $\underline{4}$ or rim $\underline{7}$, and they need not be an integral part of the member $\underline{19}$.

Example 6

[0079] If the deformable part of the chamber $\underline{1}$ is made almost along the entire circumference of the tire $\underline{4}$, then

at the same time, the chamber 1 will be diagonally closed by deformation in points of its inlet and outlet during the revolution of each tire 4, and there will be no total pressure equalizing with the internal space of the tire $\underline{4}$ or external environment in the face of the chamber 1, which can then lead to inability to set the built-in output pressure through compression ratio of the deformable and non-deformable part of the chamber 1. If the output pressure of the chamber 1 is controlled by the valve operated depending on pressure in the tire 4, the output pressure need not be adjusted through the ratio of parts of the chamber 1, and the non-deformable part of the chamber 1 is not essential, but still can be present. In this case, the inability to set the output pressure of the chamber 1 through the builtin output pressure does not necessarily mean a hindrance.

[0080] When the output pressure of the chamber 1 is set by the built-in output pressure of the chamber 1 and also when the chamber 1 is provided with a valve enabling deflating the tire 4 through the chamber 1 it is suitable to put the inlet and outlet of at least a part of the chamber 1, deformable to zero cross-section area of the chamber 1, to a relative distance that will allow that at least once during one revolution of the loaded tire 4, the whole chamber will be at the place unloaded by the tire 4 deformation causing the deformation of the chamber 1 to its zero cross-section area. It means that all parts of the deformable part of the chamber 1 will be interconnected with each other at least once per loaded wheel revolution.

[0081] The distance between the inlet and outlet is given, for example, by the length of the member $\underline{19}$. The chamber $\underline{1}$ can also be made in the required length of the tire $\underline{4}$ circumference by using the matrix $\underline{9}$ that will be shorter than the circumference of the tire $\underline{4}$ by the length of the tire $\underline{4}$ circumference deformed by loading the tire $\underline{4}$, or possibly by a greater distance.

[0082] The difference between the length of the matrix $\underline{9}$ and the length of the entire tire $\underline{4}$ circumference can be then filled with liquid material of the tire $\underline{4}$ walls upon vulcanization of the tire $\underline{4}$.

[0083] In manufacture of the chamber $\underline{1}$, it is also possible to use the matrix $\underline{9}$ in the required length of the chamber $\underline{1}$ with the additional part of the matrix $\underline{9}$ added, which will remain in the wall of the tire $\underline{4}$ after its vulcanization of the tire $\underline{4}$ and chamber $\underline{1}$ and will eliminate the need of insertion of the member $\underline{19}$, or the need of moving the material within the tire $\underline{4}$ wall upon vulcanization.

Example 7

[0084] Figure 6.a) shows a cross-section through the chamber 1 with an impressed matrix 9. After vulcanization, the matrix 9 creates the chamber 1 with the extended surfaces of the chamber 1 walls. The broken arrows on fig. 6.b) represent application of pressure on the wall of the chamber 1 roughly in parallel with the extended surfaces of the chamber 1 wall and the withdrawing the

chamber $\underline{1}$ walls from the matrix $\underline{9}$. A part of the matrix $\underline{9}$ contracts. There is only a minimum contact between the walls of the matrix $\underline{9}$ and chamber $\underline{1}$ and the matrix $\underline{9}$ can be extracted from the chamber $\underline{1}$ lengthwise. Figure 6 shows the chamber $\underline{1}$ after extraction of the matrix $\underline{9}$ and before fitting between the tire $\underline{4}$ and rim $\underline{7}$. Figure 6.d) shows the chamber $\underline{1}$ after being fitted between the unloaded tire $\underline{4}$ and rim $\underline{7}$. The surfaces $\underline{10}$ of the chamber $\underline{1}$ walls will fit tight on each other and make a zero angle between each other. Figure 6.e) shows the chamber $\underline{1}$ at the point loaded by deformation of the tire $\underline{4}$. All the walls of the chamber $\underline{1}$ fit together and make a zero cross-section area of the chamber $\underline{1}$ at this point.

Example 8

[0085] The tire $\underline{4}$, ancillary structure $\underline{6}$, rim $\underline{7}$, and support 15 or hubcap all can include formed parts and components of the chamber 1. For example, a part of the chamber 1 deformable to a zero cross-section area of the chamber 1 formed in the ancillary structure 6, suction inlet with a filter in the rim 7; the discharge channel can be led through the wall of the chamber 4. All these components can intercommunicate through the openings, which will be created against each other on the individual intercommunicating components, while the edges of these openings will be pressed together and sealed by the pressure between the tire $\underline{4}$ and rim $\underline{7}$. Since the parts such as tire 4, rim 7, ancillary structure 6, hubcap or support <u>15</u> are always at least partly concentric, the openings can be made in the same distance from the axis and when assembling the wheel it must only be ensured that they are placed opposite even along the circumference. The correct assembly along the circumference can be made easier by making recesses along the longer part of circumference or along the entire circumference of at least one communicating component. Thus the communication opening of the opposite interconnected component will always be against the recess after the assembly of the wheel. Even when the recess is made not along the whole component circumference but only along the part of it, the communication opening of the opposing component will then fit more easily than if both communication channels had small dimensions.

[0086] Figure 7.a) shows the section through the tire $\underline{4}$ indicated by light gray color, including the chamber $\underline{1}$ interconnected by a channel with the diameter of 0.5 mm leading into the recess Z on the outer wall of the tire $\underline{4}$ between the outer wall of the tire $\underline{4}$ and rim $\underline{7}$. The recess Z has thickness of 1 mm, width of 2 mm and it closes the circle, i.e. its length corresponds with the entire length of the circumference of the tire $\underline{4}$ and/or rim $\underline{7}$ at this area. An opening O with the diameter of 0.5 mm indicated by dark gray color is made in the rim $\underline{7}$ against the recess Z, which connects the recess Z with the external environment. The opening O will always be located against the recess Z, even in the event of swing of the tire $\underline{4}$ against the rim $\underline{7}$. At the same time, they will always be

sealed together by pressure of the tire $\underline{4}$, or the ancillary structure $\underline{6}$, onto the rim $\underline{7}$. The dotted-broken arrow indicates the air flow from the external environment through the opening O in the rim $\underline{7}$ into the recess Z; the broken arrow indicates the air flow from the recess Z through the channel into the chamber $\underline{1}$. The recess Z and opening O will therefore become a part of the channel.

Example 9

[0087] Picture 8. a) shows the tire $\underline{4}$, ancillary structure $\underline{6}$, rim $\underline{7}$, and support $\underline{15}$. The ancillary structure $\underline{6}$ partly leans against the wall of the tire $\underline{4}$, partly against the rim $\underline{7}$, and partly against the support $\underline{15}$. In this case, the support $\underline{15}$ completes the rim $\underline{7}$ and unlike the rim $\underline{7}$ at this point, it corresponds to the profile of the wall of the ancillary structure $\underline{6}$. Moreover, the support $\underline{15}$ in this example allows the extension of the ancillary structure $\underline{6}$ to places, where it would not be otherwise possible to use the approaching of the tire $\underline{4}$ to the rim $\underline{7}$. Efficiently, the support $\underline{15}$ is solid, e.g. made of steel or plastic. It can be also made of little compressible material, e.g. vulcanized rubber.

Utility of the patent

[0088] The chamber with shape memory for pressure correction in the tire according to this invention will find its application in production of new tires and in modification to existing tires, both for passenger vehicles and utility vehicles.

Claims

35

45

50

- 1. A chamber with shape memory for the pressure correction in a tire, which is a part of the tire or adjacent to the tire wall and is connected with the interior of the tire on one end and with the external environment on the other end, the chamber (1) being in the shape of a curved hollow channel and being placed in the area of the tire side wall (4) at its bead, characterised in that it has at least one its enclosing wall formed at least by a part of a pair of surfaces (10) lengthwise coplanar with the chamber (1) and making an angle α = 0 to 120°, where if the angle α > 0°, it is at the connecting edge of these surfaces (10), located on the further side from the center of the surface of the chamber (1) cross-section, the chamber has a width of 0.1 mm to 200 mm and thickness of 0.01 to 100 mm.
- The chamber according to the claim No. 1, characterized by the fact that the chamber (1) is at least partially ring-shaped, or at least partially helix-shaped.
- 3. The chamber according to the claim No. 1 or 2, char-

15

20

25

40

45

50

55

acterized by the fact that it is placed in an ancillary structure (6) inserted between the tire side wall (4) and at least one piece from the following: a rim (7), hubcap, or support (15) connected to the rim (7) or hubcap.

- **4.** Chamber according to the claim No. 3, **characterized by** the fact that the ancillary structure (6) with the chamber (1) is firmly connected to the rim (7) or hubcap or tire side wall (4).
- 5. Chamber according to the claims Nos. 3 or 4, characterized by the fact that the shape of the ancillary structure (6) with the chamber (1) is adapted for a tight connection to the side wall of the tire (4) from one side and its shape is adapted for a tight connection to the rim (7) from the other side.
- **6.** Chamber according to any of the above mentioned claims, **characterized by** the fact that it is terminated by a member (19) at least at one end.
- 7. The chamber according to any of the above mentioned claims, **characterized by** the fact that it is interconnnected with at least one of the following parts: a tire (4), rim (7), support (15), or hubcap.
- 8. Method for manufacturing a chamber (1) according to the claims Nos. 1 to 8, characterized by the fact that a matrix (9) with a width of 0.1 mm to 200 mm and thickness of 0.01 to 100 mm is placed between the layers forming the side wall of a tire (4) or of an ancillary structure (6); then the vulcanization is performed and the inserted matrix (9) is extracted as a whole or at length corresponding to the length of the chamber (1), whole or in parts wherein the chamber is in the shape of a curved hollow channel and has at least one its enclosing wall formed at least by a part of a pair of surfaces (10) lengthwise coplanar with the chamber (1) and making an angle α = 0 to 120°, where if the angle $\alpha > 0$ °, it is at the connecting edge of these surfaces (10), located on the further side from the center of the surface of the chamber (1) cross-section.
- 9. The manufacturing method according to the claim No. 8, **characterized by** the fact that the thickness of the matrix (9) changes at least in part of the matrix (9) width in the direction of the matrix (9) center axis.
- 10. The manufacturing method according to the claim No. 8 or 9, **characterized by** the fact that the matrix (9) is extracted and a member (19) with the cross-section at least at one point identical with the cross-section of the chamber (1) at the place of location of the member (19) in the chamber (1) is inserted into the formed slot, generally U-shaped open outwards the tire (4) wall or the ancillary structure (6) wall.

- 11. The manufacturing method according to any of the claims Nos. 8 to 10, **characterized by** the fact that the matrix (9) is divided into at least two parts, where the first part corresponding to the length of the chamber (1) is extracted after vulcanization and the supplementary part of the matrix (9) remains in the tire (4) or in the ancillary structure (6).
- 12. The manufacturing method according to any of the claims Nos. 8 to 11, characterized by the fact that the member (19) is at least at one end fitted with a channel (913), which opens at the face (12) of the end of the chamber (1) and then leads into the free space outside the tire (4), or outside the ancillary structure (6).
- 13. The manufacturing method according to any of the above mentioned claims characterized by the fact that at least a part of the chamber (1) is pressed, extruded, ground out, milled out, machined, cut out, melted off, or burned out.
- 14. The manufacturing method according to any of the above mentioned claims, characterized by the fact that a hose containing the chamber (1) is inserted into the slot and/or it is fitted with a solid section with the hose cross-section with a smaller area than the area of the cross-section of the unloaded chamber (1).
- 15. The manufacturing method according to any of the above mentioned claims, characterized by the fact that forces being applied on at least a part of the chamber (1) wall are generally of perpendicular direction.
- **16.** Tire **characterized by** the fact that its wall is fitted with a profile for an ancillary structure (6) to fit wherein the ancillary structure (6) comprises a chamber (1) according to any of claims 1 to 8.
- 17. Wheel rim **characterized by** the fact that at least one of its walls is fitted with a profile for an ancillary structure (6) to fit wherein the ancillary structure (6) comprises a chamber (1) according to any of claims 1 to 8.

Patentansprüche

Eine Kammer mit Formgedächtnis für die Druckkorrektur in einem Reifen, der ein Teil des Reifens oder in der Nähe der Reifenwand ist und mit dem Inneren des Reifens an einem Ende und mit der äußeren Umgebung auf der anderen Seite verbunden ist, (1) wobei die Kammer in der Form eines gekrümmten Hohlkanal und in dem Bereich der Reifenseitenwand (4) an dessen Wulst angeordnet ist, dadurch ge-

15

20

25

35

40

kennzeichnet, dass sie mindestens eine seiner umschließenden Wand mindestens von einem Teil gebildet wird aus einem Paar von Flächen (10) längs einer Ebene mit der Kammer (1) und einen Winkel α = 0 bis 1200, wobei, wenn der Winkel α > 0 °, an der Verbindungskante dieser Oberflächen (10), auf die es sich weitere Seite von der Mitte der Fläche der Kammer (1) Querschnitt, weist die Kammer eine Breite von 0,1 mm bis 200 mm und einer Dicke von 0,01 bis 100 mm.

- Die Kammer gemäß dem Anspruch Nr. 1, dadurch gekennzeichnet, daß die Kammer (1) zumindest teilweise ringförmig oder zumindest teilweise helixförmig.
- 3. Die Kammer gemäß Anspruch Nr. 1 oder 2, dadurch gekennzeichnet, daß sie in einem Hilfsstruktur angeordnet ist (6) zwischen der Reifenseitenwand (4) und mindestens ein Stück aus der folgenden eingesetzt: eine Felge (7), Radkappe oder Träger (15) an der Felge (7) oder Radkappe verbunden.
- **4.** Kammer nach Anspruch Nr. 3, **dadurch gekennzeichnet**, **dass** die Hilfsstruktur (6) mit der Kammer (1) fest mit der Felge (7) verbunden oder Radkappe oder Reifenseitenwand (4).
- 5. Kammer nach einem der Ansprüche Nos. 3 oder 4, dadurch gekennzeichnet, dass die Form der Hilfsstruktur (6) mit der Kammer (1) für eine feste Verbindung mit der Seitenwand des Reifens (4) angepaßt einerseits und seine Form ist für eine feste Verbindung mit dem Rand (7) von der anderen Seite eingerichtet.
- **6.** Kammer nach einem der oben genannten Ansprüche, **dadurch gekennzeichnet, dass** es mindestens an einem Ende ein Element (19) beendet.
- Die Kammer nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass es mit mindestens einem der folgenden Teile verbunden: ein Reifen (4) Rand (7), Träger (15) oder der Radkappe.
- 8. Verfahren zur Herstellung einer Kammer (1) nach einem der Ansprüche Nr. 1 bis 8, dadurch gekennzeichnet, dass eine Matrix (9) mit einer Breite von 0,1 mm bis 200 mm und einer Dicke von 0,01 bis 100 mm zwischen dem platziert Schichten, die die Seitenwand eines Reifens (4) oder einer Hilfsstruktur (6); dann die Vulkanisation durchgeführt wird und die eingelegte Matrize (9) als Ganzes oder in Länge, die der Länge der Kammer (1), ganz oder in Teilen, wobei die Kammer in der Form eines gekrümmten Hohlkanal extrahiert und zumin mindestens einer umschließenden Wand mindestens ein Teil aus ei-

nem Paar von Flächen (10) in Längsrichtung in einer Ebene mit der Kammer (1) ausgebildet und mit einem Winkel α = 0 bis 1200, wobei, wenn der Winkel α > 0°, ist es bei der Verbindungs Rand dieser Flächen (10) auf der weiteren Seite von der Mitte der Fläche der Kammer (1) Querschnitt angeordnet,.

- Herstellungsverfahren nach dem Anspruch Nr. 9, dadurch gekennzeichnet, dass die Dicke der Matrix (9) ändert, wenigstens einen Teil der Matrix (9) in der Breitenrichtung der Matrize (9) Mittelachse.
- 10. Herstellungsverfahren nach dem Anspruch Nr. 9 oder 10, dadurch gekennzeichnet, dass die Matrix (9) extrahiert wird und ein Element (19) mit dem Querschnitt an mindestens einem Punkt identisch mit dem Querschnitt der Kammer (1) am Ort der Lage des Elements (19) in der Kammer (1) in den gebildeten Schlitz eingeführt ist, im wesentlichen U-förmigen nach außen des Reifens (4) der Wand oder dem Hilfsstruktur (6) Wand geöffnet.
- 11. Herstellungsverfahren nach einem der Ansprüche Nos. 9 bis 11, dadurch gekennzeichnet, dass die Matrix (9) in mindestens zwei Teile, wobei der erste Teil der Länge der Kammer entspricht, geteilt (1) (6) nach der Vulkanisation entnommen und die ergänzende Teil der Matrix (9) des Reifens (4) oder in der Zusatzstruktur verbleibt.
- 12. Herstellungsverfahren nach einem der Ansprüche Nos. 9 bis 12, dadurch gekennzeichnet, daß das Element (19) zumindest an einem Ende mit einem Kanal (913), die an der Fläche (12) öffnet angebracht das Ende der Kammer (1) und führt dann in den freien Raum außerhalb des Reifens (4) oder außerhalb der Hilfsstruktur (6).
- 13. Herstellungsverfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Kammer (1) gedrückt wird, extrudiert, ausgeschliffen, fräst, bearbeitet, ausgeschnitten, abgeschmolzen oder ausgebrannt.
- 45 14. Herstellungsverfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass ein Schlauch in die Kammer, die (1) in den Schlitz eingeführt ist und / oder es wird mit einem festen Abschnitt der Schlauchquerschnitt mit einer Einbau kleinere Fläche als die Fläche des Querschnitts der Kammer entladen wird (1).
 - 15. Herstellungsverfahren nach einem der oben genannten Ansprüche, gekennzeichnet durch die Tatsache, dass Kräfte, die auf zumindest einem Teil der Kammer (1) aufgebracht Wand sind im allgemeinen senkrechten Richtung.

- 16. Reifen gekennzeichnet durch die Tatsache, dass die Wand mit einem Profil für einen Hilfsstruktur (6) angebracht ist, um (1) nach einem der Ansprüche 1 bis 8 zu passen, wobei die Zusatzstruktur (6) eine Kammer enthält.
- 17. Radfelge dadurch gekennzeichnet, dass mindestens eine seiner Wände mit einem Profil für einen Hilfsstruktur (6) versehen, um (1) nach einem der Ansprüche 1 bis 8 zu passen, wobei die Zusatzstruktur (6) eine Kammer.

Revendications

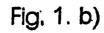
- 1. Une chambre à mémoire de forme pour la correction de la pression dans un pneu, qui est une partie du pneumatique ou au voisinage de la paroi du pneu et qui est relié avec l'intérieur du pneumatique sur une extrémité et avec l'environnement extérieur à l'autre extrémité, la chambre (1) se présentant sous la forme d'un canal creux incurvé à l'intérieur et étant placé dans la zone de la paroi latérale du pneu (4) à son talon, caractérisé en ce qu'il comporte au moins un son mur d'enceinte formée au moins par une partie d'une paire de surfaces (10) coplanaires avec la longueur de la chambre (1) et faisant un angle α = 0 à 120 °, où, si l'angle α > 0 °, il est à l'arête de jonction de ces surfaces (10), situé sur l'en outre côté du centre de la surface de la chambre (1) de section transversale, la chambre a une largeur de 0,1 mm à 200 mm et une épaisseur de 0,01 à 100 mm.
- 2. La chambre selon la revendication n° 1, caractérisé par le fait que la chambre (1) est au moins partiellement en forme d'anneau ou en forme de spirale au moins en partie.
- 3. La chambre selon la revendication n° 1 ou 2, caractérisé par le fait qu'il est placé dans une structure auxiliaire (6) inséré entre la paroi latérale du pneu (4) et au moins un élément parmi les suivants: une jante (7), les enjoliveurs, ou support (15) reliée à la jante (7) ou enjoliveur.
- 4. Chambre selon la revendication n ° 3, caractérisé par le fait que la structure auxiliaire (6) avec la chambre (1) est fermement reliée à la bordure (7) ou de la paroi latérale enjoliveur ou pneumatique (4).
- 5. Chambre selon les revendications Nos. 3 ou 4, caractérisé par le fait que la forme de la structure auxiliaire (6) avec la chambre (1) est adapté pour une liaison étanche à la paroi latérale du pneu (4) à partir de d'un côté et sa forme est adaptée pour un raccordement étanche à la bordure (7) de l'autre côté.

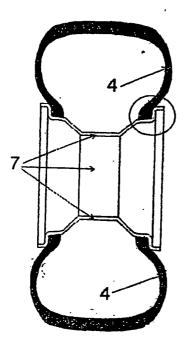
- 6. Chambre selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé par le fait qu'il se termine par un élément (19) au moins à une extrémité.
- 7. La chambre selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé par le fait qu'il est interconnecté avec au moins l'un des éléments suivants: un pneumatique (4), la jante (7), le support (15), ou enjoliveur.
- 8. Procédé de fabrication d'une enceinte (1) selon l'une des revendications Nos. 1 à 8, caractérisé par le fait que la matrice (9) avec une largeur de 0,1 mm à 200 mm et une épaisseur de 0,01 à 100 mm est placé entre l'couches formant la paroi latérale d'un pneumatique (4) ou d'une structure auxiliaire (6); puis la vulcanisation est effectuée et la matrice insérée (9) est extrait en totalité ou en longueur correspondant à la longueur de la chambre (1), tout ou parties, dans lequel la chambre a la forme d'un canal creux incurvé et présente au moins un son mur d'enceinte formée au moins par une partie d'une paire de surfaces (10) de la longueur coplanaire avec la chambre (1) et faisant un angle α = 0 à 120 °, où, si l'angle α > 0°, il est à la liaison bord de ces surfaces (10), situé sur le côté plus éloigné du centre de la surface de la chambre (1) de section transversale,.
- 9. Procédé de fabrication selon la revendication n° 9, caractérisé par le fait que l'épaisseur de la matrice
 (9) change au moins en partie de la matrice (9) de largeur dans la direction de la matrice (9) de l'axe central
 - 10. Le procédé de fabrication selon la revendication n° 9 ou 10, caractérisé par le fait que la matrice (9) est extrait et un élément (19) de la section transversale en au moins un point identique à la section transversale de la chambre (1) à l'endroit de l'emplacement de l'élément (19) dans la chambre (1) est insérée dans la fente formée, généralement en forme de U ouvert vers l'extérieur du pneumatique (4) la paroi ou de la structure auxiliaire (6) de paroi.
 - 11. Le procédé de fabrication selon l'une quelconque des revendications Nos. 9 à 11, caractérisé par le fait que la matrice (9) est divisée en au moins deux parties, où la première partie correspondant à la longueur de la chambre (1) est extrait après la vulcanisation et la partie complémentaire de la matrice (9) reste dans le pneumatique (4) ou de la structure auxiliaire (6).
 - 5 12. Le procédé de fabrication selon l'une quelconque des revendications Nos. 9 à 12, caractérisé par le fait que l'élément (19) est au moins à une extrémité, comportant un canal (913), qui s'ouvre sur la face

40

30

35


40


45

50

- (12) de l'extrémité de la chambre (1) et débouche dans l'espace libre à l'extérieur du pneu (4), ou à l'extérieur de la structure auxiliaire (6).
- 13. Le procédé de fabrication selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé par le fait qu'au moins une partie de la chambre (1) est pressé, extrudé, broyé à, fraisée, usiné, découpé, fondu hors tension, ou brûlé.
- 14. Le procédé de fabrication selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé par le fait que un tuyau contenant la chambre (1) est insérée dans la fente et / ou il est équipé d'une pièce solide avec la section de tuyau avec une aire inférieure à l'aire de la section transversale de la chambre à vide (1).
- 15. Le procédé de fabrication selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé par le fait que les forces appliquées sur au moins une partie de la chambre (1) de paroi sont généralement direction perpendiculaire.
- **16.** Tire **caractérisé par le fait que** sa paroi est munie d'un profil d'une structure auxiliaire (6) pour s'adapter dans lequel la structure auxiliaire (6) comprend une chambre (1) selon l'une quelconque des revendications 1 à 8.
- 17. jante de roue, caractérisé par le fait qu 'au moins une de ses parois est équipée d'un profil d'une structure auxiliaire (6) pour s'adapter dans lequel la structure auxiliaire (6) comprend une chambre (1) selon l'une quelconque des revendications 1 à 8.

Fig. 1. a)

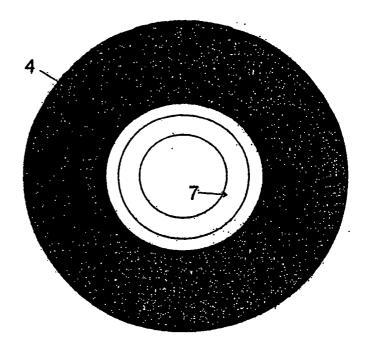
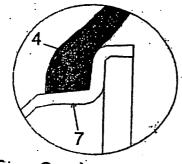
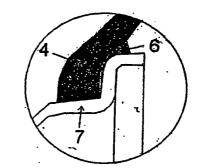
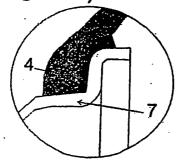
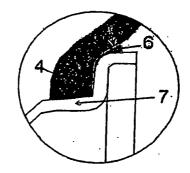
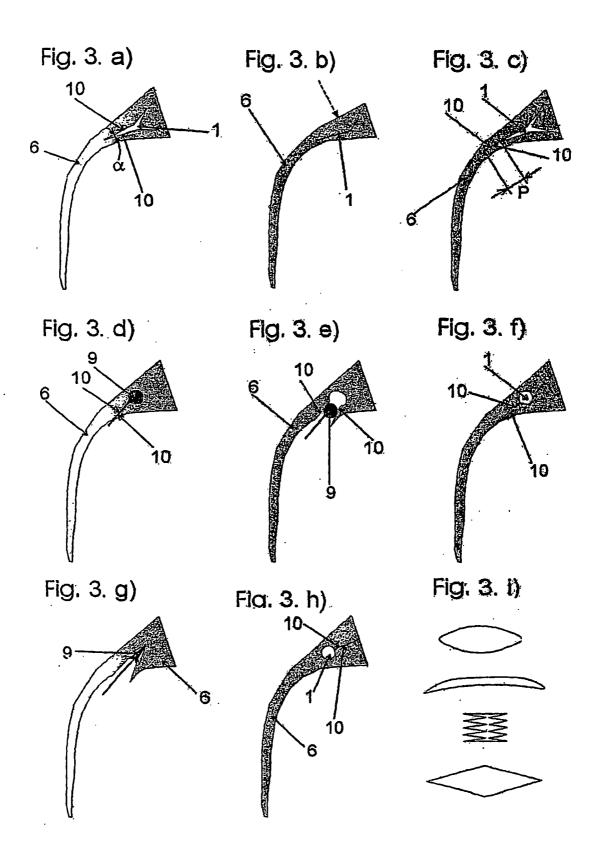
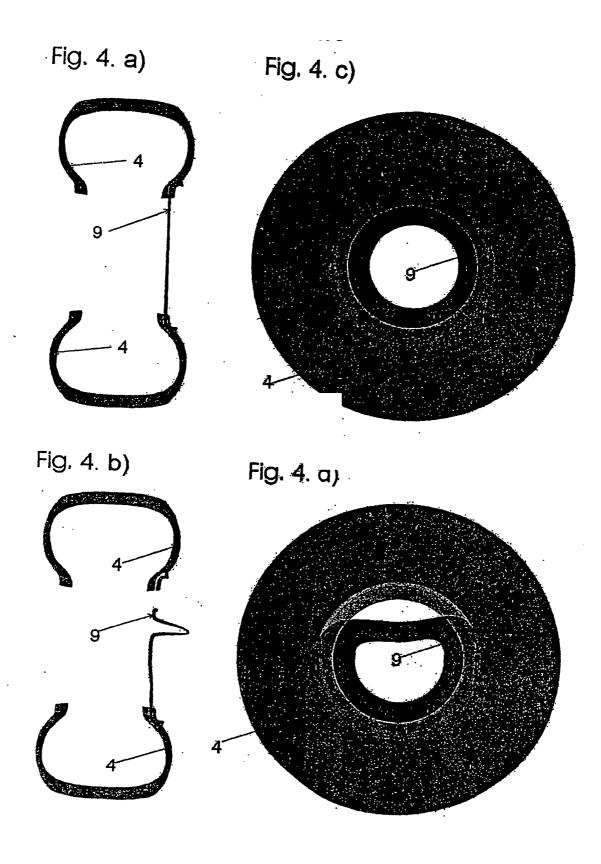
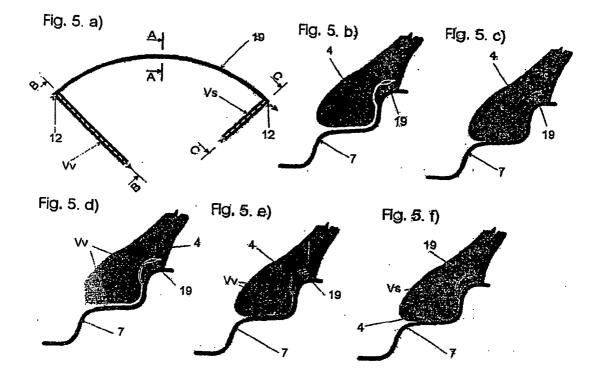



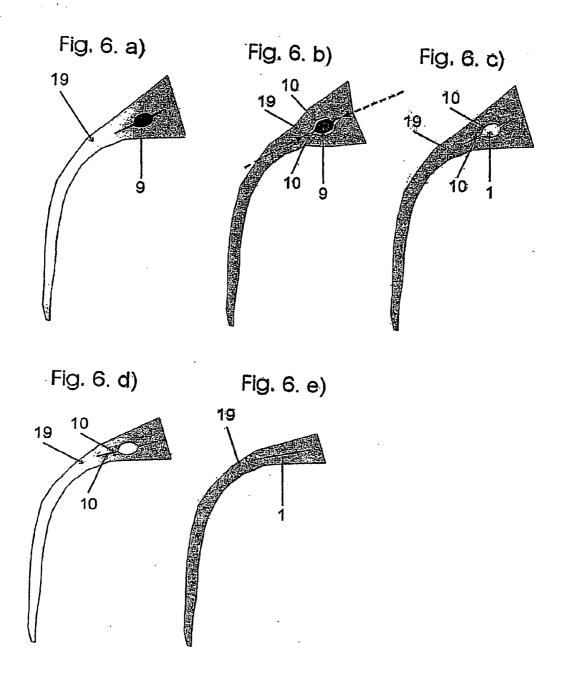
Fig. 2.a)

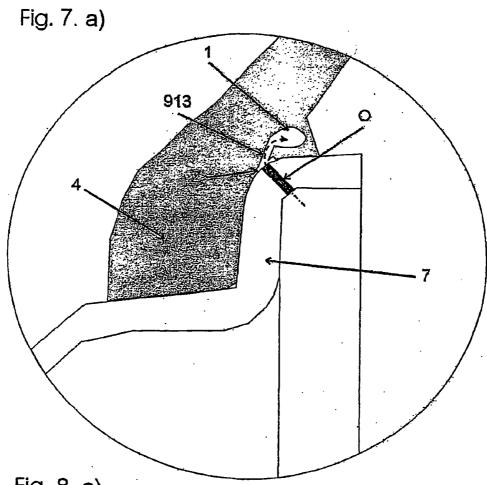
Fig. 2. b)

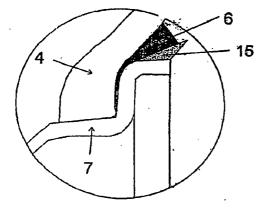






Fig. 2. c)


Fig. 2. d)







EP 2 040 943 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- CZ PV20021364 [0003]
- CZ PV20014451 [0003]
- WO 03049958 A [0003]

- CZ 246152 [0005] [0009]
- CZ 273325 [0008]
- WO 2005012009 A [0012]

PERISZTALTIKUS SZIVATTYÚ KAMRÁJA ABRONCS NYOMÁSBEÁLLÍTÁSÁHOZ SZABADALMI IGÉNYPONTOK

- 1. Kamra alak-memóriával (shape-memory) a nyomás korrekciójához egy abroncsban (tire), amely az abroncsnak egy része vagy szomszédos az abroncsfallal, és össze van kapcsolva az abroncs belsejével az egyik végén és a külső környezettel a másik végén; a kamra (1) görbült üreg csatorna alakjában van és az abroncs (4) oldalfal területében van elhelyezve annak pereménél (bead), azzal jellemezve, hogy ennek van legalább egy olyan burkoló fala, ahol ez felületek (10) egy párja legalább részeként van kialakítva; ezek a felületek közős síkúak (koplanárisak) a kamrával (1), és α= 0-tól 120×-ig terjedő szőget zárnak be; ahol ha a szög α> 0°, ez ezen felületek (10) összekapcsoló élénél van, elhelyezve a további oldalon a kamra (1) keresztmetszet felülete központjától, és a kamra 0,1 mm és 200 mm közti szélességgel és 0,01 és 100 mm közti vastagsággal bír.
- Az 1. igénypont szerinti kamra, azzal jellemezve, hogy a kamra (1) legalább részlegesen gyűrű alakú, vagy legalább részlegesen csígavonal alakú.
- 3. Az 1. vagy 2. igénypont szerinti kamra, azzal jellemezve, hogy ez egy kiegészítő (ancillary) szerkezetben (6) van elhelyezve, beiktatva az abroncs (4) oldalfala és legalább egy darab közé a következők közüt: karima (rim) (7), védősapka (hubcap), vagy támasztó (support) (15), hozzákapcsolva a karimához (7) vagy a védősapkához.
- 4. A 3. igénypont szerinti kamra, azzal jellemezve, hogy a kiegészítő szerkezet (6) a kamrával (1) szorosan hozzá van kapcsolva a karimához (7), vagy a védősapkához, vagy az abroncs (4) oldalfalhoz.
- 5. A 3. vagy 4. igénypont szerinti kamra, azzal jellemezve, hogy a kiegészítő szerkezet (6) aiakja a kamrával (1) szoros kapcsolathoz van adaptálva az abroncs (4) oldalfalához az egyik oldalról, és alakja szoros kapcsolathoz van adaptálva a karimához (7) a másik oldalról.
- 6. Az 1-5. igénypontok bármelyike szerinti kamra, **azzal jellemezve, hogy** ez egy tag (member) (19) révén van lehatárolval legalább egyik végénél.
- 7. Az 1-6. igénypontok bármelyike szerinti kamra, azzal jellemezve, hogy ez összekapcsolja a következő részek legalább egyikét: abroncs (4), karima (7), támasz (15), és védősapka.
- 8. Eljárás egy, az 1-7. igénypontok bármelyike szerinti kamra (1) gyártására, azzal jellemezve, hogy egy 0,1 mm és 200 mm közti szélességgel és 0,01 mm és 100 mm közti vastagsággal bíró mátrixot (9) helyezünk azon rétegek közé, amelyek alakítják az abroncs (4) vagy egy kiegészítő szerkezet (6) oldalfalát, ezután végrehajtjuk a vulkanizátást és a beiktatott mátrixot (9) ellávolítjuk mint egészet, vagy olyan hosszúságig, amely megfelel a kamra (1) hosszúságának, egészben vagy részben; a kamra (1) görbült űreg csatoma alakjában van és van legalább egy olyan burkoló fala, ahol ez felületek (10) egy párja legalább részeként van kialakítva; ezek a felületek közős sikúak (koplanárisak) a kamrával (1), és α= 0-tól 120°-ig terjedő szöget zámak be; ahol ha a szóg α> 0°, ez ezen felületek (10) összekapcsoló élénél van, elhelyezve a további oldalon a kamra (1) keresztmetszet felülete központjától.

- 9. A 8. igénypont szerinti gyártási eljárás, azzal jellemezve, hogy a mátrix (9) vastagsága változik legalább részben a mátrix (9) szélességével a mátrix (9) központi tengely irányában.
- 10. A 8. vagy 9. igénypontok szerinti gyártási eljárás, azzal jellemezve, hogy a mátrixot (9) eltávolitjuk, és egy tagot (19) olyan keresztmetszettel, amely legalább egy ponton szonos a kamra (1) keresztmetszetével a tag (19) elrendezésének helyénél a kamrában (1), belktatunk a kialakult nyilásba (slot), amely általában U alakú, nyitott az abroncs (4) faltól vagy a kiegészítő szerkezet (6) faltól kifelé.
- 11. A 8-10. igénypontok bármelyike szerinti gyártási eljárás, **azzal jellemezve, hogy** a mátrix (9) el van osztva legalább két részre, ahol az első részt, amely megfelel a kamra (1) hosszának, eltávolitjuk a vulkanizátás után, és a mátrix (9) kiegészítő része megmarad az abroncsban (4) vagy a kiegészítő szerkezetben (6).
- 12. A 8-11. igénypontok bármelyike szerinti gyártási eljárás, **azzal jellemezve, hogy** a tag (19) olyan, amely legalább egyik végénél illeszkedik egy csatornához (channel) (13), amely pedig nyít a kamra (1) egyik végének felületénél (face) (12), majd vezet a szabad térbe az abroncson (4) kívülre vagy a kiegészítő szerkezeten (6) kívülre.
- 13. A 8-12. igénypontok bármelyike szerinti gyártási eljárás, azzal jellemezve, hogy a kamra legalább egy része össze van nyomva, extrudálva van, örölve van, apritva van, fel van dolgozva, el van hasitva, fel van olvasztva vagy ki van égetve.
- 14. A 8-13. igénypontok bármelyike szerinti gyártási eljárás, azzal jellemezve, hogy a kamrát (1) tartalmazó tömlő (hose) be van iktatva a nyilásba és/vagy ez illeszkedik egy szilárd szekcióhoz, ahol a főmlő keresztmetszet kisebb területű, mint a terheletten (unloaded) kamra (1) keresztmetszetének területe.
- 15. A 8-13. igénypontok bármelyike szerinti gyártási eljárás, azzal jellemezve, hogy a kamra (1) fal legalább egy részére gyakorolt nyomás általában merőleges irányú.
- 16. Abroncs, azzal jellemezve, hogy a fala összeillik egy profillal egy kiegészítő szerkezethez (6), hogy ott illeszkedjék, ahol a kiegészítő szerkezet (6) tartalmaz egy, az 1-8. igénypontok bármelyike szerinti kamrát (1).
- 17. Kerék karima (wheel rim), azzal jellemezve, hogy a falainak legalább egyike összelilik egy profillal egy kiegészítő szerkezethez (6), hogy ott illeszkedjék, ahol a kiegészítő szerkezet (6) tartalmaz egy, az 1-8. igénypontok bármelyike szerinti kamrát (1).