WO 2004/099950 A1 || 0000 000 00 I 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

AT O Y00 O

(10) International Publication Number

WO 2004/099950 A1l

18 November 2004 (18.11.2004) PCT
(51) International Patent Classification’: GO6F 1/00
(21) International Application Number:
PCT/GB2004/001928
(22) International Filing Date: 4 May 2004 (04.05.2004)
(74)
(25) Filing Language: English
(26) Publication Language: English
(81
(30) Priority Data:
10/435,916 12 May 2003 (12.05.2003) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504

(US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUNDVALL,

(84)

Shawn [US/US]; 10 Wantaugh Avenue, Poughkeepsie,
NY 12603 (US). SMITH, Ronald [US/US]; 131 Cider
Mill Loop, Wappingers Falls, NY 12590 (US). YEH, Phil,
Chi-Chung [US/US]; 88 Round Hill Road, Poughkeepsie,
NY 12603 (US).

Agent: FOURNIER, Kevin, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter, Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: INSTRUCTIONS TO ASSIST THE PROCESSING OF A CIPHER MESSAGE

4 5
% I-FIFO 0-FIFO
[an]
=
=
% S
=
; T 1
S COMMAND ' ‘
2 2 CRYPTO ; '!
3 COPROCESSOR | 1
£ CONTROL , |
2 STATUS ; ,
g b .
bz 1 _
i S ol
I
1 1
Eq E, R
L]

(57) Abstract: A method, system and program product for enciphering or deciphering storage of a computing environment by
specifying, via an instruction, a unit of storage to be enciphered or deciphered.

WO 2004/099950 A1 I} A08OH0 T 0000 00000000

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, ance Notes on Codes and Abbreviations" appearing at the begin-
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ning of each regular issue of the PCT Gazette.

GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

WO 2004/099950 PCT/GB2004/001928

INSTRUCTIONS TO ASSIST THE PROCESSING OF A CIPHER MESSAGE

This invention relates to computer system architecture and particularly to
the processing of new instructions which augment the IBM z/Architecture

and can be emulated by other architectures.

Before our invention IBM has created through the work of many highly
talented engineers beginning with machines known as the IBM System 360 in
the 1960s to the present, a special architecture which, because of its
essential nature to a computing system, became known as “the mainframe”
whose principles of operation state the architecture of the machine by
describing the instructions which may be executed upon the “mainframe”
implementation of the instructions which had been invented by IBM
inventors and adopted, because of their significant contribution to
improving the state of the computing machine represented by “the
mainframe”, as significant contributions by inclusion in IBM’s Principles
of Operation as stated over the years. The First Edition of the
z/Architecture Principles of Operation which was published December, 2000
has become the standard published reference as SA22-7832-00.

We determined that furfher new instructions would assist the art and could
be included in a z/Architecture machine and also emulated by others in

simpler machines, as described herein.
The present invention provides a method as claimed in claim 1.

The features of the preferred embodiments of the invention will be
apparent to one skilled in the art from the following detailed description
of the invention taken in conjunction with the accompanying drawings in
which:

Fig. 1 is the Cipher Message (KM) instruction in the RRE instruction
format;

Fig. 2 1s the Cipher Message with Chaining (KMC) instruction in the
RRE insgtruction format;

Fig. 3 is a table showing the function codes for the Cipher Message
instruction of Fig. 1;

Fig. 4 is a table showing the function codes for the Cipher Message
with Chaining instruction of Fig. 2;

Fig. 5 is a representation of the general register assignments for
the XM and KMC instructions;

Fig. 6 illustrates the symbol for the Bit-Wise Exclusive Or;

Fig. 7 illustrates the symbols for DEA Encryption and Decryption;

WO 2004/099950 PCT/GB2004/001928

Fig. 8 illustrates the format for the parameter block of the
KM~-Query;

Fig. 9 illustrates the parameter block of KM-DEA;

Fig. 10 illustrates the KM-DEA Encipher Operation;

Fig. 11 illustrates the KM-DEA Decipher Operation;

Fig. 12 illustrates the format for the parameter block for
KM-TDA-128;

Fig. 13 illustrates the KM-TDEA-128 Encipher Operation;

Fig. 14 illustrates the KM-TDEA-128 Decipher Operation;

Fig. 15 illustrates the format for the parameter block for
RM-TDEA-192;

Fig. 16 illustrates the KM-TDEA-192 Encipher Operation;

Fig. 17 illustrates the KM-TDEA-192 Decipher Operation;

Fig. 18 illustrates the format for the parameter block for
KMC-Query;

Fig. 19 illustrates the format for the parameter block for KMC-DEA;

Fig. 20 illustrates the KMC-DEA Encipher Operation;

Fig. 21 illustrates the KMC-DEA Decipher Operation;

Fig. 22 illustrates the format for the parameter block for
KMC-TDEA-128;

Fig. 23 illustrates the KMC-TDEA-128 Encipher Operation; .

Fig. 24 illustrates the KMC-TDEA-128 Decipher Operation;-

Fig. 25 illustrates the format for the parameter block for
KMC-TDEA-128;

Fig. 26 illustrates the KMC-TDEA-192 Encipher Operation;

Fig. 27 illustrates the KMC-TDEA-192 Decipher Operatiomn;

Fig. 28 is a table showing the priority of execution of KM and KMC;

Fig. 29 illustrates our cryptographic coprocessor; and

Fig. 30 shows the generalized preferred embodiment of a computer
memory sStorage containing instructions in accordance with the preferred
embodiment and data, as well as the mechanism for fetching, decoding and
executing these instructions, either on a computer system employing these
architected instructions or as used in emulation of our architected

instructions.

The CIPHER MESSAGE (KM) instruction and the CIPHER MESSAGE WITH CHAINING
(KMC) instruction will first be discussed, followed by a discussion of the
preferred computer system for executing these instructions. In the

alternative, a second preferred computer system which emulates another

computer system for executing these instructions will be discussed.

WO 2004/099950 PCT/GB2004/001928

CIPHER MESSAGE (KM)

Fig. 1 is the Cipher Message (KM) instruction in the RRE instruction

format.

CIPHER MESSAGE WITH CHAINING (KMC)

Fig. 2 is the Cipher Message with Chaining (KMC) instruction in the RRE
instruction format.

A function specified by the function code in general register 0 is

performed.

Bits 16-23 of the instruction are ignored. Bit positions 57-63 of general
register 0 contain the function code. Figs. 3 and 4 show the assigned
function codes for CIPHER MESSAGE and CIPHER MESSAGE WITH CHAINING,
respectively. All other function codes are unassigned. For cipher
functions, bit 56 is the.modifier bit which specifies whether an
encryption or a decryption operation is to be performed. The modifier bit
is ignored for all other functions. All other bits of general register 0
are ignored. General register 1 contains the logical address of the
leftmost byte of the parameter block in storage. In the 24-bit addressing
mode, the contents of bit positions 40-63 of general register 1 constitute
the address, and the contents of bit positions 0-39 are ignored. In the
31-bit addressing mode, the contents of bit positions 33-63 of general
register 1 constitute the address, and the contents of bit positions 0-32

are ignored.

In the 64-bit addressing mode, the contents of bit positions 0-63 of
general register 1 constitute the address.

The function codes for CIPHER MESSAGE are shown in Fig. 3.

The function codes for CIPHER MESSAGE WITH CHAINING are shown in Fig. 4.

All other function codes are unassigned. The query function provides the

means of indicating the availability of the other functions. The contents
of general registers R1l, R2, and Rl + 1 are ignored for the query

function.

For all other functions, the second operand is ciphered as specified by

the function code using a cryptographic key in the parameter block, and

WO 2004/099950 PCT/GB2004/001928

the result is placed in the first-operand location. For CIPHER MESSAGE
WITH CHAINING, ciphering also uses an initial chaining value in the
parameter block, and the chaining value is updated as part of the

operation.

The R1 field designates a general register and must designate an
even-numbered register; otherwise, a specification exception is

recognized.

The R2 field designates an even-odd pair of general registers and must
designate an even-numbered register; otherwise, a specification exception

is recognized.

The location of the leftmost byte of the first and second operands is
specified by the contents of the Rl and R2 general registers,
respectively. The number of bytes in the second-operand location is
specified in general register R2 + 1. The first operand is the same

length as the second operand.

As part of the operation, the addresses in general registers R1 and R2 are
incremented by the number of bytes processed, and the length in general
register R2 + 1 is decremented by the same number. The formation and
updating of the addresses and length is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit positions 40-~63 of
general registers Rl and R2 constitute the addresses of the first and
second operands, respectively, and the contents of bit positions 0-392 are
ignored; bits 40-63 of the updated addresses replace the corresponding
bits in general registers R1 and R2, carries out of bit position 40 of the
updated address are ignored, and the contents of bit positions 32-39 of
general registers Rl and R2 are set to zeros. In the 31-bit addressing
mode, the contents of bit positions 33-63 of general registers R1 and R2
constitute the addresses of the first and second operands, respectively,
and the contents of bit positions 0-32 are ignored; bits 33-63 of the
updated addresses replace the corresponding bits in general registers R1
and R2, carries out of bit position 33 of the updated address are ignored,
and the content of bit position 32 of general registers Rl and R2 is set
to zero. In the 64-bit addressing mode, the contents of bit positions 0-63
of general registers R1 and R2 constitute the addresses of the first and
second operands, respectively; bits 0-63 of the updated addresses replace
the contents of general registers R1 and R2, and carries out of bit

position 0 are ignored.

WO 2004/099950 PCT/GB2004/001928

In both the 24-bit and the 31-bit addressing modes, the contents of bit
positions 32-63 of general register R2 + 1 form a 32-bit unsigned binary
integer which specifies the number of bytes in the first and second
operands, and the contents of bit positions 0-31 are ignored; bits 32-63
of the updated value replace the corresponding bits in general register R2
+ 1. In the 64-bit addressing mode, the contents of bit positions 0-63 of
general register R2 + 1 form a 64-bit unsigned binary integer which
specifies the number of bytes in the first and second operands; and the

updated value replaces the contents of general register R2 + 1.

In the 24-bit or 31-bit addressing mode, the contents of bit positions
0-31 of general registers R1l, R2, and R2 + 1, always remain unchanged.
Fig. 5 shows the contents of the general registers just described.

In the access-register mode, access registers 1, R1l, and R2 specify the
address spaces containing the parameter block, first, and second operands,

respectively.

The result is obtained as if processing starts at the left end of both the
first and second operands and proceeds to the right, block by block. The
operation is ended when the number of bytes in the second operand as
specified in general register R2 + 1 have been processed and placed at the
first-operand location (called normal completion) or when a CPU-determined
number of blocks that is less than the length of the second operand have
been processed (called partial completion). The CPU-determined number of
blocks depends on the model, and may be a different number each time the
instruction is executed. The CPU-determined number of blocks is usually
nonzero. In certaln unusual situations, this number may be zero, and
condition code 3 may be set with no progress. However, the CPU protects

against endless reoccurrence of this no-progress case.

The results in the first-operand location and the chaining-value field are
unpredictable if any of the following situations occur:

1. The cryptographic-key field overlaps any portion of the first operand.
2. The chaining-value field overlaps any portion of the first operand or
the second operand.

3. The first and second operands overlap destructively. Operands are said
to overlap destructively when the first-operand location would be used as
a source after data would have been moved into it, assuming processing to
be performed from left to right and one byte at a time.

WO 2004/099950 PCT/GB2004/001928

When the operation ends due to normal completion, condition code 0 is set
and the resulting value in R2 + 1 is zero. When the operation ends due to
partial completion, condition code 3 is set and the resulting value in R2

+ 1 is nonzero.

When a storage-alteration PER event is recognized, fewer than 4K
additional bytes are stored into the first-operand locations before the

event is reported.

When the second-operand length is initially zero, the parameter block,
first, and second operands are not accessed, general registers Rl, R2, and

R2 + 1 are not changed, and condition code 0 is set.

When the contents of the Rl and R2 fields are the same, the contents of
the designated registers are incremented only by the number of bytes

processed, not by twice the number of bytes processed.

As observed by other CPUs and channel programs, references to the
parameter block and storage operands may be multiple-access references,
accesses to these storage locations are not necessarily block-concurrent,

and the sequence of these accesses or references is undefined.

In certain unusual situations, instruction execution may complete by
setting condition code 3 without updating the registers and chaining value
to reflect the last unit of the first and second operands processed. The
size of the unit processed in this case depends on the situation and the
model, but is limited such that the portion of the first and second
operands which have been processed and not reported do not overlap in
storage. In all cases, change bits are set and PER storage-alteration
events are reported, when applicable, for all first-operand locations

processed.

Access exceptions may be reported for a larger portion of an operand than
is processed in a single execution of the instruction; however, access
exceptions are not recognized for locations beyond the length of an
operand nor for locations more than 4K bytes beyond the current location

being processed.
Symbols Used in Function Descriptions

The following symbols are used in the subsequent description of the CIPHER
MESSAGE and CIPHER MESSAGE WITH CHAINING functions. For

WO 2004/099950 PCT/GB2004/001928

data-encryption-algorithm (DEA) functions, the DEA-key-parity bit in each
byte of the DEA key is ignored, and the operation proceeds normally,
regardless of the DEA-key parity of the key. Further description of the
data-encryption algorithm may be found in. Data Encryption Algorithm,
ANST-X3.92.1981, American National Standard for Information Systems.

Fig. 6 illustrates the symbol for the Bit-Wise Exclusive Or, Fig. 7
illustrates the symbols for DEA Encryption and Decryption.

KM-Query (KM Function Code 0)

The locations of the operands and addresses used by the instruction are as
shown in Fig. 5.

The parameter block used for the function KM-Query has the format shown in
Fig. 8

A 128-bit status word is stored in the parameter block. Bits 0-127 of this
field correspond to function codes 0-127, respectively, of the CIPHER
MESSAGE instruction. When a bit is one, the corresponding function is

installed; otherwise, the function is not installed.

Condition code 0 ig set when execution of the KM-Query function completes;

condition code 3 is not applicable to this function.
KM-DEA (KM Functlon Code 1)

The locations of the operands and addresses used by the instruction are as

shown in Fig. 5.

The parameter block used for the function KM-DEA has the format shown in
Fig. 9.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (Pl, P2, ..., Pn) in operand 2
are enciphered using the DEA algorithm with the 64-bit cryptographic key
in the parameter block. Each plaintext block is independently enciphered;
that is, the encipher operation is performed without chaining. The
ciphertext blocks (Cl, C2, ..., Cn) are stored in operand 1. The operation

is shown in Fig. 10.

WO 2004/099950 PCT/GB2004/001928

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (€1, C2, ..., Cn) in operand 2
are deciphered using the DEA algorithm with the 64-bit cryptographic key
in the parameter block. Each ciphertext block is independently deciphered;
that is, the decipher operation is performed without chaining. The
plaintext blocks (Pl, P2, ..., Pn) are stored in operand 1. The KM-DEA

decipher operation is shown in Fig. 11.
KM~TDEA-128 (KM Function Code 2)

The locations of the operands and addresses used by the instruction are as
shown in Fig. 5. The parameter block used for the KM-TDEA-128 function is
shown in Fig. 12.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (Pl1, P2, ..., Pn) in operand 2
are enciphered using the TDEA (triple DEA) algorithm with the two 64-bit
cryptographic keys in the parameter block. Each plaintext block is
independently enciphered; that is, the encipher operation is performed
without chaining. The ciphertext blocks (Cl, C2, ..., Cn) are stored in
operand 1. The KM-TDEA-128 encipher operation is shown in Fig. 13.

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (Cl, C2, ..., Cn) in operand 2
are deciphered using the TDEA algorithm with the two 64-bit cryptographic
keys in the parameter block. . Each ciphertext block is independently
deciphered; that is, the decipher operation is performed without chaining.
The plaintext blocks (P1, P2, ..., Pn) are stored in operand 1. The
KM-TDEA~128 decipher operation is shown in Fig. 14.

KM-TDEA-192 (KM Function Code 3)

The locations of the operands and addresses used by the instruction are as

shown in Fig. 5.

The parameter block used for the KM-TDEA-192 function has the format shown
in Fig. 15.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (P1, P2, ..., Pn) in operand 2
are enciphered using the TDEA algorithm with the three 64-bit
cryptographic keys in the parameter block. Each plaintext block is

WO 2004/099950 PCT/GB2004/001928

independently enciphered; that is, the encipher operation is performed
without chaining. The ciphertext blocks (Cl, €2, ..., Cn) are stored in

operand 1. The KM-TDEA-192 encipher operation is shown in Fig. 16.

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (Cl, C2, ..., Cn) in operand 2
are deciphered using the TDEA algorithm with the three 64-bit
cryptographic keys in the parameter block. Each ciphertext block is
independently deciphered; that is, the decipher operation is performed
without chaining. The plaintext blocks (P1, P2, ..., Pn) are stored in

operand 1. The KM-TDEA-192 decipher operation is shown in Fig. 17.
KMC-Query (KMC Function Code 0)

The locations of the operands and addresses used by the instruction are as

shown in Fig. 5.

The parameter block used for the KMC-Query function has the format shown

in Fig. 18.

A 128-bit status word is stored in the parameter block. Bits 0-127 of this
field correspond to function codes 0-127, respectively, of the CIPHER
MESSAGE WITH CHAINING instruction. When a bit is one, the corresponding
function is installed; otherwise, the function is not installed.

Condition code 0 is set when execution of the KMC-Query function

completes; condition code 3 is not applicable to this function.
KMC-DEA (KMC Function Code 1)

The locations of the operands and addresses used by the instruction are as

shown in Fig. 5.

The parameter block used for the KMC-DEA function has the format shown in
Fig. 19.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (P1, P2, ..., Pn) in operand 2
are enciphered using the DEA algorithm with the 64-bit cryptographic key

and the 64-bit chaining value in the parameter block.

WO 2004/099950 PCT/GB2004/001928
10

The chaining value, called the initial chaining value (ICV), for deriving
the first ciphertext block is the chaining value in the parameter block;
the chaining value for deriving each subsequent ciphertext block is the
corresponding previous ciphertext block. The ciphertext blocks (Cl, C2,

., Cn) are stored in operand 1. The last ciphertext block is the output
chaining value (OCV) and is stored into the chaining-value field of the

parameter block. The KMC-DEA encipher operation is shown in Fig. 20.

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (Ci, C2, ..., Cn) in operand 2
are deciphered using the DEA algorithm with the 64-bit cryptographic key
and the 64-bit chaining value in the parameter block.

The chaining value, called the initial chaining value (ICV), for deriving
the first plaintext block is in the parameter block; the chaining value
for deriving each subsequent plaintext block is the corresponding previous
ciphertext block. The plaintext blocks (Pl1, P2, ..., Pn) are stored in
operand 1. The last ciphertext block is the output chaining value (0OCV)
and 1s stored into the chaining-value field in the parameter block. The

KMC-DEA decipher operation is shown in Fig. 21.

KMC-TDEA-128 (KMC Function Code 2)

The locations of the operands and addresses used by the instruction are as

shown in Fig. 5.

The parameter block used for the KMC-TDEA-128 function has the format
shown in Fig. 22.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (P1l, P2, ..., Pn) in operand 2
are enciphered using the TDEA algorithm with the two 64-bit cryptographic
keys and the 64-bit chaining value in the parameter block.

The chaining value, called the initial chaining value (ICV), for deriving
the first ciphertext block is the chaining value in the parameter block;
the chaining value for deriving each subsequent ciphertext block is the
corresponding previous ciphertext block. The ciphertext blocks (Cl, C2,
.., Cn) are stored in operand 1. The last ciphertext block is the output
chaining value (OCV) and is stored into the chaining-value field of the
parameter block. The KMC-TDEA-128 encipher operation is shown in Fig. 23.

WO 2004/099950 PCT/GB2004/001928
11 ‘

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (Cl, C2, ..., Cn) in operand 2
are deciphered using the TDEA algorithm with the two 64-bit cryptographic
keys and the 64-bit chaining value in the parameter block.

The chaining value, called the initial chaining value (ICV), for deriving
the first plaintext block is in the parameter block; the chaining value
for deriving each subsequent plaintext block is the corresponding previous
ciphertext block. The plaintext blocks (Pl, P2, ..., Pn) are stored in
operand 1. The last ciphertext block is the output chaining value (0OCV)
and is stored into the chaining-value field in the parameter block. The
KMC-TDEA-128 operation is shown in Fig. 24.

KMC~TDEA-192 (KMC Function Code 3)
The locations of the operands and addresses used by the instruction are as
shown in Fig. 5.

The parameter block used for the RMC-TDEA-192 function has the format
shown in Fig. 25.

When the modifier bit in general register 0 is zero, an encipher operation
is performed. The 8-byte plaintext blocks (P1, P2, ..., Pn) in operand 2
are enciphered using the TDEA algorithm with the three 64-bit
cryptographic keys and the 64-bit chaining value in the parameter block.

The chaining value, called the initial chaining value (ICV), for deriving
the first ciphertext block is the chaining value in the parameter block;
the chaining value for deriving each subsequent ciphertext block is the
corresponding previous ciphertext block. The ciphertext blocks (Cl, C2,

.+ Cn) are stored in operand 1. The last ciphertext block is the output
chaining value (OCV) and is stored into the chaining-value field of the
parameter block. The KMC-TDEA-192 encipher operation is shown in 'Fig. 26.

When the modifier bit in general register 0 is one, a decipher operation
is performed. The 8-byte ciphertext blocks (Cl, C2, ..., Cn) in operand 2
are deciphered using the TDEA algorithm with the three 64-bit
cryptographic keys and the 64-bit chaining value in the parameter block.

The chaining value, called the initial chaining value (ICV), for deriving
the first plaintext block is in the parameter block; the chaining value
for deriving each subsequent plaintext block is the corresponding previous

WO 2004/099950 PCT/GB2004/001928
12

ciphertext block. The plaintext blocks (PL, P2, ..., Pn) are stored in
operand 1. The last ciphertext block is the output chaining value (OCV)
and is stored into the chaining-value field in the parameter block. The
KMC-TDEA-192 decipher operation is shown in Fig. 27.

Special Conditions for KM and KMC

A specification exception is recognized and no other action is taken if

any of the following occurs:

1. Bits 57-63 of general register 0 specify an unassigned or uninstalled
function code.

2. The Rl or R2 field designates an odd-numbered register or general
register 0.

3. The second operand length is not a multiple of the data block size of
the designated function (see Figure 7-3 on page 7-35 to determine the data
block sizes for CIPHER MESSAGE functions; see Figure 7-4 on page 7-35 to
determine the data block gsizes for CIPHER MESSAGE WITH CHAINING
functions). This specification-exception condition does not apply to the

query functions.

Resulting Condition Code:
0 Normal completion
1 ==
2 --
3 Partial completion
Program Exceptions:
Access (fetch, operand 2 and cryptographic key; store, operand 1; fetch
and store, chaining value)

Operation (if the message-security assist is not installed)

Specification
Fig. 28 is a table showing the priority of execution of KM and XKMC.

Programming Notes:

1. When condition code 3 is set, the general registers containing the
operand addresses and length, and, for CIPHER MESSAGE WITH CHAINING,
the chaining value in the parameter block, are usually updated such
that the program can simply branch back to the instruction to

continue the operation.

WO 2004/099950 PCT/GB2004/001928
13

For unusual situations, the CPU protects against endless reoccurrence of
the no- progress case and also protects against setting condition
code 3 when the portion of the first and second operands to be
reprocessed overlap in storage. Thus, the program can safely branch
back to the instruction whenever condition code 3 is set with no
exposure to an endless loop and no exposure to incorrectly retrying
the instruction.

2. If the length of the second operand is nonzero initially and condition
code 0 is set, the registers are updated in the same manner as for
condition code 3. For CIPHER MESSAGE WITH CHAINING, the chaining
value in this case is such that additional operands can be processed
as if they were part of the same chain.

3. To save storage, the first and second operands may overlap exactly or
the starting point of the first operand may be to the left of the
starting point of the second operand. In either case, the overlap is

not destructive.

CRYPTO COPROCESSOR:

The preferred embodiment provides a crypto coprocessor which can be used
with the instructions described herein and to execute cipher messages and
assist in a variety of chaining message tasks which can be employed for
chained and cryptographic use with.the appropriate instructions.

Fig. 29 illustrates our cryptographic coprocessor which is directly
attached to a data path common to all internal execution units on the
general purpose microprocessor, which has multiple execution pipelines.
The microprocessor internal bus (1) is common to all other execution units
is attached to the cryptographic control unit (2), and the control unit

watches the bus for processor instructions that it should execute.

The cryptographic control unit provides a cryptographic coprocessor
directly attached to a data path common to all internal execution units of
the central processing unit on a general purpose microprocessor providing
the available hardware (E,...E;, or from a combination thereof in the
preferred embodiment having multiple execution pipelines) for the central
processing unit. When a cryptographic instruction is encountered in the
command register (3), the control unit (2) invokes the appropriate
algorithm from the available hardware. Operand data is delivered over the
same internal microprocessor bus via an input FIFO register (4). When an
operation is completed the a flag is set in a status register (6) and the
results are available to be read out from the output FIFO register (5).

WO 2004/099950 PCT/GB2004/001928
14

The illustrated preferred embodiment of our invention is designed to be
extensible to include as many hardware engines as required by a particular
implementation depending on the performance goals of the system. The data

paths to the input and output registers (7) are common among all engines.

The preferred embodiment of the invention cryptographic functions are
implemented in execution unit hardware on the CPU and this implementation
enables a lower latency for calling and executing encryption operations

and increases the efficiency.

This decreased latency greatly enhances the capability of general purpose
processors in systems that frequently do many encryption operations,
particularly when only small amounts of data are involved. This allows an
implementation that can significantly accelerate the processes involved in
doing secure online transactions. The most common methods of securing
online transactions involve a set of three algorithms. The first
algorithm is only used one time in a session, and may be implemented in
hardware or software, while the other operations are invoked with every
transaction of the session, and the cost in latency of calling external

hardware as well as the .cost in time to execute the algorithm in software

are both eliminated with this invention.

In Fig. 30 we have shown conceptually how to implement what we have in a
preferred embodiment implemented in a mainframe computer having the
microprocessor described above which can effectively be used, as we have
experimentally proven within IBM, in a commercial implementation of the
long displacement facility computer architected instruction format the
instructions are used by programmers, usually today “C” programmers. These
instruction formats stored in the storage medium may be executed natively
in a Z/Architecture IBM Server, or alternatively in machines executing
other architectures. They can be emulated in the existing and in future
IBM mainframe servers and on other machines of IBM (e.g. pSeries Servers
and xSeries Servers). They can be executed in machines running Linux on a
wide variety of machines using hardware manufactured by IBM, Intel, AMD,
Sun Microsystems and others. Besides execution on that hardware under a
7/Architecture, Linux can be used as well as machines which use emulation
by Hercules, UMX, FXI or Platform Solutions, where generally execution is
in an emulation mode. In emulation mode the specific instruction being
emulated is decoded, and a subroutine built to implement the individual
instruction, as in a “C” subroutine or driver, or some other method of
providing a driver for the specific hardware as is within the skill of
those in the art after understanding the description of the preferred

WO 2004/099950 PCT/GB2004/001928
15

embodiment. Various software and hardware emulation patents including, but
not limited to US 5551013, US6009261, US5574873, US6308255, US6463582 and
US5790825, illustrate the variety of known ways to achleve emulation of an
instruction format architected for a different machine for a target
machine available to those skilled in the art, as well as those commercial
software techniques used by those referenced above.

In the preferred embodiment the existing pre-long displacement instruction
formats for a non superscalar instruction form the operand storage address
by the summing of the base register and 12 bit unsigned displacement or
the base register, the index register, and the 12 bit unsigned
displacement and the new long displacement instruction formats form the
operand storage address by the summing of the base register and the 20
bit signed displacement or the base register, the index register, and the
20 bit signed displacement.

As illustrated by Fig. 30, these instructions are executed in hardware by
a processor or by emulation of sald instruction set by software executing
on a computer having a different native instruction set.

In Fig. 30, #501 shows a computer memory storage containing instructions
and data. The long displacement instructions described in this invention
would initially stored in this computer. #502 shows a mechanism for
fetching instructions from a computer memory and may also contain local
buffering of these instructions it has fetched. Then the raw instructions
are transferred to an instruction decoder, #503, where it determines what
type of instruction has been fetched. #504, shows a mechanism for
executing instructions. This may include loading data into a register
from memory, #501, storing data back to memory from a register, or
performing some type of arithmetic or logical operation. This exact type
of operation to be performed has been previously determined by the
instruction decoder. The long displacement instructions described in this
invention would be executed here. If the long displacement instructions
are being executed natively on a computer system, then this diagram is
complete as described above. However, if an instruction set architecture,
containing long displacement instructions, is being emulated on another
computer, the above process would be implemented in software on a host
computer, #505. In this case, the above stated mechanisms would typically
be implemented as one or more software subroutines within the emulator

software. In both cases an instruction is fetched, decoded and executed.

WO 2004/099950 PCT/GB2004/001928
16

More particularly, these architected instructions can be used with a
computer architecture with existing instruction formats with a 12 bit
unsigned displacement used to form the operand storage address and also
one having additional instruction formats that provide a additional
displacement bits, preferably 20 bits, which comprise an extended signed
displacement used to form the operand storage address. These computer
architected instructions comprise computer software, stored in a computer
storage medium, for producing the code running of the processor utilizing
the computer software, and comprising the instruction code for use by a
compiler or emulator/interpreter which is stored in a computer storage
medium 501, and wherein the first part of the instruction code comprises
an operation code which specified the operation to be performed and a
second part which designates the operands for that participate. The long
displacement instructions permit additional addresses to be directly

addressed with the use of the long displacement facility instruction.

As illustrated by Fig. 30, these instructions are executed in hardware by
a processor or by emulation of said instruction set by software executing

on a computer having a different native instruction set.

In accordance with the computer architecture of the preferred embodiment
the displacement field is defined as being in two parts, the least
significant part being 12 bits called the DL, DL1 for operand 1 or DL2 for
operand 2, and the most significant part being 8 bits called the DH, DHL
for operand 1 or DH2 for operand 2.

Furthermore, the preferred computer architecture has an instruction format
such that the opcode is in bit positions 0 through 7 and 40 through 47, a
target register called Rl in bit positions 8 through 11, an index register
called X2 in bit positions 12 through 15, a base register called B2 in bit
positions 16 through 19, a displacement composed of two parts with the
first part called DL2 in bit positions 20 through 31 and the second part
called DH2 in bit positions 32 through 39.

This computer architecture has an instruction format such that the opcode
is in bit positions 0 through 7 and 40 through 47, a target register
called Rl in bit positions 8 through 11, an source register called R3 in
bit positions 12 through 15, a base register called B2 in bit positions 16
through 19, a displacement composed of two parts with the first part
called DL2 in bit positions 20 through 31 and the second part called DH2
in bit positions 32 through 39.

WO 2004/099950 PCT/GB2004/001928
17

Furthermore, our computer architecture instructions having a long
displacement facility has an instruction format such that the opcode is in
bit positions 0 through 7 and 40 through 47, a target register called R1
in bit positions 8 through 11, a mask value called M3 in bit positions 12
through 15, a base register called B2 in bit positions 16 through 19, a
displacement composed of two parts with the first part called DL2 in bit
positions 20 through 31 and the second part called DH2 in bit positions 32
through 39.

As illustrated, our preferred computer architecture with its long
displacément facility has an dinstruction format such that the opcode is in
bit positions 0 through 7 and 40 through 47, an immediate value called I2
in bit positions 8 through 15, a base register called B2 in bit positions
16 through 19, a displacement composed of two parts with the first part
called DLl in bit positions 20 through 31 and the second part called DH1
in bit positions 32 through 39.

Our long displacement facility computer architecture operates effectively
when using new instructions which are created that only use the

instruction format with the new 20 bit unsigned displacement.

A specific embodiment of our computer architecture utilizes existing
instructions which have the instruction formats that only have the 12 bit
unsigned displacement and are now defined to be in the new instruction
formats to have either the existing 12 bit unsigned displacement value
when the high orxrder 8 bits of the displacement, field DH, are all zero, or
a 20 bit signed value when the high order 8 bits of the displacement,

field DH, is non-zero.

An apparatus for enciphering or deciphering storage of a computing
environment, said apparatus comprising:

means for specifying, via an instruction, a unit of storage to be
enciphered or deciphered; and

means for enciphering or deciphering the unit of storage.

WO 2004/099950 PCT/GB2004/001928
18

CLAIMS

1. A method of enciphering or deciphering storage of a computing
environment, said method comprising:

specifying, via an instruction, a unit of storage to be enciphered
or deciphered; and

enciphering or deciphering the unit of storage.

2. The method of claim 1 wherein the specifying comprises providing
location information of a data structure associated with the unit of

storage.

3. The method of claim 2 wherein the location information comprises an

origin of the data structure.

4. The method of claim 3 wherein the location information further
comprises an index of an entry of the data structure, said entry
corresponding to the unit of storage.

5. The method of claim 1, wherein the enciphering or deciphering

comprises providing a cryptographic key by said instruction.

6. The method of claim 1 wherein the unit of storage comprises one of a
segment of storage and a region of storage, and wherein said data
structure comprises one of a segment data structure and a region data

structure.

7. The method of claim 1 wherein the enciphering or deciphering is

performed via the instruction.

8. The method of claim 1 wherein the enciphering or deciphering

comprises setting a cryptographic key associated with the unit of storage.

9. The method of claim 1 wherein the data structure comprises a
plurality of entries, and wherein the enciphering or deciphering further
comprises employing an index to obtain the entry associated with the unit
of storage to be enciphered or deciphered, said entry having the
cryptographic key.

10. The method of claim 1 wherein the unit of storage comprises a
segment of storage, said segment of storage comprising a plurality of
pages of storage.

WO 2004/099950 PCT/GB2004/001928
19

11. The method of claim 1 wherein the unit of storage comprises a region
of storage, said region of storage comprising a plurality of segments of

storage, a segment of storage comprising a plurality of pages of storage.

12. The method of claim 1 wherein the specifying comprises specifying a
plurality of units of storage, and the enciphering or deciphering

comprises enciphering or deciphering the plurality of units of storage.

13. The method of claim 12 wherein the enciphering or deciphering
comprises a chaining operation for enciphering or deciphering the

plurality of units of storage.

14. The method of claim 1 wherein the storage comprises virtual storage.

15. The method of claim 1 wherein the instruction is implemented in as

least one of hardware, firmware and software.

16. The method of claim 1 wherein the instruction is executed by a
processing unit emulating an architecture of the instruction, said
architecture of the instruction being different than an architecture of

the processing unit.

17. A gystem for enciphering or deciphering storage of a computing
environment, sald system comprising means for carrying out the steps of

any preceding method claim.

18. A computer program product comprising:
at least one computer usable medium having computer readable program
code for performing the method of any preceding method claim.

WO 2004/099950 PCT/GB2004/001928

1112

KM RRy [RRE]

‘B92E’ |/1/1111/{R1| Ry
0 16 24 28 31

FIG.1

KMC R{,Rp [RRE]

‘BI2F" |71111111) R1| R

0 16 24 28 31
FIG.2
PARM. | DATA
BLOCK | BLOCK
SIZE | SizE
CODE|FUNCTION (BYTES)|(BYTES)
0 |KM—QUERY 16] =
1 |KM—DEA 8 8
2 |KM—TDEA—128 16 | 8
3 |KM—TDEA—192 24 | 8
EXPLANATION:
— NOT APPLICABLE

FIG.3

WO 2004/099950 PCT/GB2004/001928

2112
PARM. | DATA
BLOCK | BLOCK
SIZE { SIZE
CODE| FUNCTION (BYTES) (BYTES)
0 | KMC—QUERY 16 —
1G.4 1 | KMC—DEA 16 8
2 | KMC—-TDEA-128 24 | 8
3 | KMC~TDEA-192 32 8
EXPLANATION:
— NOT APPLICABLE
’3
B—s=1 XOR
IG.6 7
C
C=AXOR B
K <8> P «<8> K <8> C <8>
- T
DEA DEA
E D
Y Y
C P <8>

SYMBOL, FOR DEA ENCRYPTION SYMBOL FOR DEA DECRYPTION

SYMBOL ~ EXPLANATION
<n> LENGTH OF ITEM IN BYTES

C CIPHERTEXT
K KEY VALUE
P PLAINTEXT

FIG.7

WO 2004/099950

3112

PCT/GB2004/001928

Ro

Ro+1

GRO

GR1

S51—BIT_ADDRESSING MODE -

24—BIT_ADDRESSING MODE

4
ML] ,Ml FC

/-
7/

/"

v

FC

0'32 56

63

0°32 56 63

4 PARAMETER=-BLOCK
I ADDRESS

1/ PARAMETER-BLOCK
, ADDRESS

032 40

63

/
33 63

/ FIRST—OPERAND
i ADDRESS

FIRST—OPERAND
ADDRESS

~

N S
S
~

0’32 20

63

63

11111117

1 SECOND—OPERAND
ADDRESS

SECOND—QOPERAND
ADDRESS

0732

/.

40

63

63

T SECOND—OPERAND
LENGTH

SECOND—OPERAND
LENGTH

0'32
64-BIT_ADDRESSING MODE

FC |

/l// 11
0'32 56
PARAMETER—-BLOCK ADDRESS
O {

'FIRST—OPERAND ADDRESS
OI
SECOND—OPERAND ADDRESS

SECOND—OPERAND LENGTH

63

63

63

63

63

63

63

FIG.

S

WO 2004/099950

L112

PCT/GB2004/001928

0
X STATUS WORD 1G.8
0 63
0 | CRYPTOGRAPHIC KEY (K) FIG.9
0 63
PARAMETER
BLOCK IN K <8>
STORAGE I
oP 2 K A /
IN P1 <8> P2 <8> P3 <8> Pn <8>
STORAGE 7 7 7 / 7
K—={DEA K —={DEA K—=DEA K—={DEA
E E E E
OP 1 ¥ Y { y v
IN C1 <8> C2 <8> C3 <8> || Cn <8
STORAGE /
FIG.10
PARAMETER
BLOCK IN K. <8>
STORAGE !
OP 2 ' K /.
IN C1 <8> C2 <8> C3 <8 [| Cn <8>
STORAGE ! . ! i ’ !
K —=DEA K—=DEA K—={DEA K—»{DEA
D D D D
OP 1 ! Y Y y !
IN P1 <8> P2 <8> P3 <8> || Pn <8>
STORAGE /

WO 2004/099950

PCT/GB2004/001928
5712
0 | CRYPTOGRAPHIC KEY 1 (K1) FIG.12
8 | CRYPTOGRAPHIC KEY 2 (K2) | —==
0 63
PARAMETER
‘BLOCK IN | K1 <8> | K2 <8>
STORAGE T3 Tk /
gfor%még P1 <8> P2<8> | P3<8> || Pn<8>
i i ! / i
K1—={DEA K1—-DEA K1—=DEA K1—=1DEA
£ E | E E
(] :] (] Y
K2—=DEA K2—~DEA K2—~DEA K2—=DEA
D D D D
i i i i
K1—={DEA K1—=DEA K1—=DEA K1—=DEA
E E E E
; i] 3
OP 1 IN
STORAGE | C1 <8> C2 <8> C3 <> |[| Cn<8>
FIG.13
PARAMETER
BLOCK IN KT <8> K2 <8>
STORAGE 1K1 YK?
OP 2 IN /
STORAGE C1 :8> C2 *<8> C3 1<8> y Cn*<8>
K1—={DEA K1—=DEA K1—=DEA K1—=DEA
D D D D
i i i i
K2—=DEA K2—=~DEA K2—DEA| =~ K2—{DEA
E E E E
i] i i
K1—=DEA K1—={DEA K1—~DEA K1—=DEA
D D D D
i ; i ¥
OP 1IN ’
STORAGE P1 <8> P2 <8> P3 <8> y Pn <8>

FIG.14

WO 2004/099950

61712

PCT/GB2004/001928

0 | CRYPTOGRAPHIC KEY 1 (K1)
8 | CRYPTOGRAPHIC KEY 2 (K2)| FIG.15
16 | CRYPTOGRAPHIC KEY 3 (K3)
0 63
PARAMETER
BLOCK IN K1 <8> K2 <8> K3 <8>
STORAGE K1 K2 K3
OP 2 IN ™51 g5 P2 <8> 3 <e> |1 Pn <8>
STORAGE) n
[’ ; ¥ / ¥
K1—=DEA K1—={DEA K 1—s={DEA K1—={DEA
E E E E
Y .] Y
K2—={DEA K2—»{DEA K2 —»{DEA K2—{DEA
D D D D
] ¥ ¥
K3—{DEA K3—={DEA K3—{ DEA K3—={DEA
E E E E
[] Y L]) I]
OP 1IN /
STORAGE C1 <8> C2 <8> C3 <8> . Cn <8>
FIG.16
PARAMETER
BLOCK IN K1 <8> K2 <8> K3 <8>
STORAGE K1 K2 tK3
P 2 IN C1 <8> 02 <8> C3 <8> T Cn <8
STORAGE . . ; y i
K3—{DEA K3~ DEA K3—={DEA K3—=DEA
D D D D
(3 i i v
K2—=DEA K2—»{DEA K2—={DEA K2—= DEA
E E E £
¥ (3 ¥
K1—{DEA K1~—»{DEA K1—={DEA K1—={DEA
D D D D
Y /
0P 1IN /
STORAGE P1 <8> P2 <8> P3 <8>) Pn <8>

FIG.17

WO 2004/099950

PCT/GB2004/001928

7112
0
; STATUS WORD FIG.18
0 - 63
0| CHAINING VALUE (CV)
FIG.19
8 | CRYPTOGRAPHIC KEY (K) | +—2=
0 63
PARAMETER $0CV
BLOCK IN CV 8> K <8>
STORAGE Tiov Tk
OP 2 IN P1 <8> P2 <8> P3 <8> [| Pn <8>
STORAGE . ; — ; / ;
IcV—{XOR ~XOR ~XOR| —/—=JXOR]
i ¥ ¥ i
K —»DEA K —s|DEA DEA K —»| DEA
E F E F
OP 1 IN ‘ ' ’ / —
STORAGE C1 <8> C2 <8> C3 <8> y Cn <8>
FIG.20
PARAMETER $00
BLOCK IN CV <8> K <8>
STORAGE Tiev Tk
OP2IN [¢f<8> | c2<8> C3 <8> || Cn <8>
STORAGE /
Y \ i / .VL——’OCV
K —s{DEA K —={DEA K —= DEA K—s{DEA
D D D D
) ¥ ¥ ¥
IcVv—{XOR ~XOR ~[XOR| ——/—=IXOR
P 1IN i i) ¥
STorace L_P1<8> P2 <8> P3 <8> } Pn <8>

FIG.21

WO 2004/099950

8 /12

PCT/GB2004/001928

0 CHAINING VALUE (cV)

8 [CRYPTOGRAPHIC KEY 1 (K1)| F1G.22
16 | CRYPTOGRAPHIC KEY 2 (K2)
0 63
PARAMETER }0CV
BLOCK IN CV <8> K1 <8> K2 <8>
STORAGE
o Ticv YK1 1K2 ,
STORAGE | P v<8> P2 '<8> | P3 §8> '/' Pr; <8> |
IcV—={XOR ~XOR ~XOR| —/—={XOR
]] L]]
_»|DEA _.[DEA —|DEA _.|DEA
K1 E K1 : K1 2 K1 E
DfZA Dg:A D‘E'A DEA
k2—=DEA] | K2~ ; K2 —» £ K2 —» ;
Y [1 Y Y
K1—~>DEA K1—>DEA K1—-—DEA K1—>DEA
OP 1 IN i ; ; o
STORAGE C1 <8> | C2<8 | C3<8> Il Cn<8>]
FIG.23
PARAMETER {0CV
BLOCK IN CV <8> K1 <8> K2 <8>
STORAGE
TicV K1 TK2
gPORZAéN [Ci<e> | C2<85 [c3<85 T[] Cn <>
. FA | DFA | DFA DEA o
—DD e — —
K1 : K1 : K1 E K1 £
EA DEA DIYZA D:ZA
—-—»D —i] —]
K2—~DE K2 —=DE K2 E k2—~1DE
DEA DEA DEA DEA
k1—~DE K1—» : K1—» : K1—~DE
[} K] [}
ICV—={XOR ~XOR XOR| “—/—=[XOR
OP 1IN] i i PR
STORAGE | P1 <8> P2 <8> | P3 <8 /,J Pn <8>

FIG.24

WO 2004/099950

91712

PCT/GB2004/001928

0] CHAINING VALUE (CV)
8 |CRYPTOGRAPHIC KEY 1 (K1) FIG.25
16 |CRYPTOGRAPHIC KEY 2 (K2)| -2~
24 | CRYPTOGRAPHIC KEY 3 (K3)|
0 63
PARAMETER {OcV |
BLOCK' IN CV <8> K1 <8> K2 <8> K3 <8>
STORAGE
o icV 1K W o K3
STORAGE | P1 f8> | P2 '<8> | P3 v<8> I/,L Pr; <8> |
ICV—={XOR ~XOR ~XOR| ——={XOR
o] BER ot Bt
K1—~DE K1—~DEA . K1—~DE K1—-DE
Dg:A D?ZA DEA D::A'
K2—+DE Ka—+DE Ka—DE Ka—~DE
(] (] Y Y
K3———DEA KS——DEA K3——>DEA KB——DEA
0P 1 IN i i i 0y
STORAGE Cl1 <8 | C2<8 | €3<8 [] Cn<8
FIG.26
PARAMETER {OCcv
BLOCK IN CV <8> K1 <8> K2 <8> K3 <8>
STORAGE
Yicv 1K1 CIRE
SPO é—Aé'; C1 <8> | (2 <& C3<8> ['] Cn <8>
T DEA DEA DEA / DgAT’OCV
K3—DE K3—DE K3—~DE k3—={DE
Ot PR e Ot
Ka—=DE Ka—»DE Ka—DE K2—+DE
DEA DEA D%A DEA
K1—~DE K1—DE K1—~DE k1—~DE
¥ ¥ 7 ¥
ICV—={XOR ~(XOR ~XOR /—=XOR
OP 1 IN Y Y Y / Y
STORAGE | P1.<8> | P2<8> [P3<8 [] Pn<8> |

FIG.27

PCT/GB2004/001928

WO 2004/099950

10712

8¢l

"(OY3ZNON TS HIONT1
ANYY3d0—-ANOJ3S) NOWITdNOD WILMYd 0L 3nd ¢ 300D NOILANOD

.AOmWN owom&m:.mSm.OmuNzozZ._,qz_o_w_oEozm._
UNV43dO—ONOO3S) NOILFTdNOD TYWYON OL 3nd 0 3A0D NOLLIANOD

‘ . "UNVY3dO ONOD3S 0
1Sdld A0078 Y3LIAVYYd FHL OL SSI0OV NV 404 SNOILdIOXT SSID0V

'0d3Z ATIVNIOIMO HLONIT ONWMIdO-ANOO3S 0L 3G 0 3009 NOILANOD

"HLONIT ONVY3dO QINVANI OL 3nd NOILdIOXI NOILYDI4I03dS

‘HIENNN ¥3LSIO3Y ANVANI
d0 3000 NOILONNS QNVANI OL 3na NOILd3OX3 NOLLYOIHDIdS

"NOLL3OX3 NOILYY3dO

- "0JOMJTVH NOILONYLSNI NOJ3S ¥04 SNOILdIOXI SSF00V
ASVO VYINIO 3JHL 404 SNOILIANOD NOILdNYYILNI

¢l

1
01

'8
gL
V.

—AVHI0Nd 40 ALRMOIMd 3FHL SV ALIMORI IWYS JHL HLIM SNOILJIOX3 '9—"1

PCT/GB2004/001928

WO 2004/099950

1112

__.Illlll._
|
| 3 & 05
|
L]
-ll«llll.wrll Y | /
L
== _ I . S
| | _ SNIVLS 3
| | T04INOO e a
| | 40553008400 _ S
| | OLdAYD z %
| | - ONVAIOD 2
L _ﬂ m
=
=
&
0414-0 04141 &
G 2

WO 2004/099950

12112

PCT/GB2004/001928

HOST COMPUTER EMULATING ANOTHER COMPUTER (OPTIONAL)
INSTRUCTION _
FETCH
502 COMPUTER MEMORY
CONTAINING
[INSTRUCTIONS AND DATA
INSTRUCTION |
DECODE
903
Y
INSTRUCTION
EXECUTION I
504 501
505

International Application No

INTERN
ATIONAL SEARCH REPORT PCT/GB2004/001928

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F1/00

According 1o International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARGHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GOG6F ‘

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO~Internai

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X "IBM PCI Cryptographic Coprocessor CCA 1-18
Basic Services Reference and Guide for IBM
4758 Models 002 and 023 with Release 2.40"
‘Online!

September 2001 (2001-09), INTERNATIONAL
BUSINESS MACHINE CORPORATION , CHARLOTTE,
NC 28262—-8563 USA , XP00229143Q

Retrieved from the Internet:
URL:http://www.zone-h.org/files/33/CCA_Bas

ic_Services_240.pdf>
pages 1-1 - pages 2-18

pages 6-1 - pages 6-16
pages 7-1 - pages 7-24
pages B-1 - pages B-42
pages F-1 - pages F-4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A* document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or afterthe international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as spacified)

0 document referring o an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
tater than the priority date claimed

‘T" later document published afier the international filing date
or priority date and not in conflict with the application but
cited 1o understand the principte or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
invoive an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
.m%r‘ns, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completlon of the international search

5 August 2004

Date of mailing of the intemational search report

30/08/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswilk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nazzaro, A

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB2004/001928

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WU L ET AL: "CryptoManiac: a fast
flexible architecture for secure
communication”

PROCEEDINGS OF THE 28TH. INTERNATIONAL
SYMPOSIUM ON COMPUTER ARCHITECTURE. ISCA
2001. GOTEBORG, SWEDEN, JUNE 30 - JULY 4,
2001, INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE. (ISCA), LOS ALAMITOS, CA,
IEEE COMP. SOC, US,

30 June 2001 (2001-06-30), pages 104-113,
XP010553867

ISBN: 0-7695-1162-7

the whole document

X US 5 666 411 A (MCCARTY JOHNNIE C)

9 September 1997 (1997-09-09)

abstract; figures 5-12

columns 6-23

X US 2003/028765 Al (CROMER DARYL CARVIS ET
AL) 6 February 2003 (2003-02-06)

the whole document

1-18

1-18

1-18

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent ramity mempers

International Application No

PCT/GB2004/001928
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5666411 A 09-09-1997 NONE
US 2003028765 Al 06-02-2003 NONE

Form PCTASA/210 (patert family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

