

DOMANDA DI INVENZIONE NUMERO	102021000024191
Data Deposito	21/09/2021
Data Pubblicazione	21/03/2023

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	41	В	11	80
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo

Titolo

Dispositivo cattura-droni

GIORGIO A. KARAGHIOSOFF MANDATARIO MELITATO SALEM

DESCRIZIONE dell'Invenzione Industriale dal titolo: "Dispositivo cattura-droni"

appartenente a Stam S.r.l.di nazionalità italiana, con sede in VIA PARETO, 8 AR, 16129 Genova.

5 P.IVA: 02417330996

Depositato il

15

20

25

30

Al Nr.

TESTO DELLA DESCRIZIONE

La presente invenzione ha per oggetto un 10 dispositivo cattura-droni.

Attualmente, è possibile acquistare droni di piccole o medie dimensioni, liberamente, cioè senza restrizioni. Tali droni possono essere utilizzati per trasportare ad esempio armi o dispositivi con cui è possibile generare effetti dannosi sia sugli esseri umani e sia su attrezzature, apparecchiature, impianti, sistemi o simili.

In particolare i droni a cui il dispositivo si riferisce sono droni che presentano un peso di massimo alcuni Kg, in particolare e preferibilmente un peso al di sotto di un kg, e specialmente droni con un peso al di sotto di circa 500gr. In questa tipologia di droni rientra la maggior parte dei droni liberamente reperibili in commercio senza alcuna restrizione o la richiesta di abilitazione alla conduzione.

Droni di questo tipo che quindi non richiedono alcun controllo relativamente alla identificazione del proprietario e/o dell'utente, sono facilmente utilizzabili per eseguire attività illecite e/o criminali o comunque attività destinate a generare un danneggiamento a target desiderati come ad esempio azioni contro manifestazioni che avvengono in spazi aperti stadi, spazi espositivi, come

istituzionali, aereoporti, porti e/o altri siti sensibili o potenzialmente oggetto di attacchi.

In questo caso nel prevedere un dispositivo di cattura di droni del suddetto tipo risulta essenziale evitare il più possibile che il drone catturato non possa cadere al suolo o sulle persone che occupano l'area target. Per questo motivo, una semplice intercettazione dei droni con armi che ne consentano il solo abbattimento non risulta essere una soluzione proponibile, poiché non garantisce l'incolumità delle persone od evita in taluni casi che l'azione di danneggiamento abbia comunque luogo.

10

15

20

25

30

La presente invenzione mira, pertanto, alla realizzazione di un dispositivo cattura-droni che possa consentire di recuperare od evitare efficacemente la caduta al suolo dei droni intercettati.

Secondo un ulteriore aspetto, la presente invenzione mira, inoltre, a realizzare un dispositivo cattura-droni che possa essere relativamente leggero in modo tale da poter essere posizionato su qualsiasi struttura anche mobile e/o di sollevamento e/o fissa e prevista ad una certa altezza dal suolo e con riferimento al campo di azione in cui l'attività di cattura è prevista.

Secondo ancora un ulteriore scopo, la presente invenzione mira a realizzare un dispositivo catturadroni che oltre agli scopi precedentemente descritti possa risultare estremamente semplice da realizzare ed in cui l'azione di sparo non necessiti di mezzi di propulsione di tipo esplosivo.

L'invenzione consegue gli scopi su esposti con un dispositivo cattura-droni, comprendente:

GIORGIO A. KARAGHIOSOFF MANDATARIO MEKITATO SAFEM

- un gruppo di sparo di almeno tre proiettili secondo traiettorie fra loro divergenti e che presentano almeno una componente direzionale delle dette traiettorie fra loro parallela;

- una rete di intrappolamento di materiale flessibile e/o pieghevole, avente una prestabilita forma in pianta in proiezione su un piano ed una prestabilita dimensione nelle due direzioni che sottendono il detto piano;

5

15

25

30

- almeno tre punti del bordo perimetro di detta rete essendo collegati o collegabili ciascuno ad un proiettile, dei detti almeno tre proiettili;

il detto gruppo di sparo essendo provvisto
di un attuatore di propulsione dei detti proiettili e
di organi di comando di attivazione dello stesso;

- la detta rete essendo ulteriormente collegata mediante un cavo od un elemento flessibile anti/caduta e/o di recupero al detto dispositivo.

In una forma esecutiva, i detti proiettili essendo 20 provvisti di una testa uncinata di aggancio nelle maglie della rete.

Inoltre, in una forma esecutiva che può essere prevista in combinazione con le precedenti forme esecutive i detti proiettili presentano una massa prestabilita atta a garantire una inerzia di moto sufficiente ad eseguire una traiettoria con una componente di ritorno quando il drone viene a contatto con la rete.

Grazie a queste caratteristiche, il dispositivo cattura-droni proietta una rete di intrappolamento verso un drone in volo. I proiettili eiettati dal gruppo di sparo ed associati ciascuno ad un punto diverso del perimetro della rete, vengono proiettati

lungo traiettorie fra loro divergenti ma che comunque presentano una componente direzionale orientata in direzione di avanzamento verso il drone da catturare. In questo modo la rete in volo viene contemporaneamente proiettata contro il drone ed allargata ovvero distesa in modo da interferire con il drone stesso. Una volta raggiunto il drone, questo viene a contatto con una zona intermedia della rete ed i proiettili, grazie alla loro inerzia ed al fatto che la rete resta legata al drone eseguono una variazione di traiettoria direzione trasversale o di chiusura della rete stessa intorno al drone. La presenza di artigli od uncini sulla testa dei proiettili consente che questi una volta deviati in dietro possano agganciare la rete e richiuderla intorno al drone in modo da evitare la fuoriuscita dello stesso dalla rete.

10

15

20

25

30

Grazie al cavo anti caduta o di recupero fissato ad una estremità alla rete ed all'altra al dispositivo è possibile evitare che il drone catturata cada a terra e/o anche recuperarlo.

13.1 a 13.5 Le figure 12 е mostrano schematicamente il meccanismo di cattura di un drone da parte del dispositivo secondo la presente invenzione.

una forma esecutiva che può Secondo essere qualsivoglia prevista in combinazione sotto combinazione con più delle precedenti una 0 caratteristiche, il detto dispositivo comprende una pluralità di canne od ugelli di sparo ciascuno destinato ad accogliere un proiettile, le dette canne essendo disposte su una circonferenza concentrica ed opzionalmente angolarmente equidistanziate fra loro rispetto ad una tazza centrale di alloggiamento della

detta rete, la detta tazza centrale di alloggiamento essendo aperta frontalmente ed orientata in direzione di una componente direzionale della traiettoria parallela all'asse della detta circonferenza ed essendo opzionalmente apribile e chiudibile mediante un elemento di chiusura amovibile e/o che può essere distrutto dalla rete di intrappolamento all'atto dello sparo.

Vantaggiosamente, inoltre secondo ancora una caratteristica, le dette canne e/o i detti ugelli possono essere orientabili rispetto alla componente direzionale della traiettoria parallela all'asse della detta circonferenza, secondo una direzione di oscillazione radiale rispetto all'asse centrale della detta circonferenza.

10

15

20

25

30

Grazie a ciò è possibile impostare e/o modificare la traiettoria di ciascun proiettile sia per quanto riguarda la componente direzionale di volo verso il drone da catturare, ovvero la componente direzionale parallela all'asse della detta circonferenza, sia per riguarda la componente direzionale quanto proiettili orientata in direzione parallela o tangente alla rete e che causa l'allargamento maggiore o minore della stessa con riferimento alla traiettoria in direzione del drone da catturare. Ciò significa che è possibile ottimizzare l'apertura o la distensione della rete con riferimento al percorso di volo verso il drone da catturare prevedendo una apertura od una distinzione maggiore o minore della rete in funzione dalla distanza dal drone da catturare e/o dalla gittata massima possibile.

Questa gittata massima possibile dipende ovviamente dalla potenza del gruppo di sparo ed anche

in termini di limite massimo dalla lunghezza del cavo anti-caduta o di recupero.

Secondo ancora una caratteristica che può essere prevista in qualsivoglia combinazione sottocombinazione con una o più delle precedenti caratteristiche in cui in condizione piegata della detta rete di intrappolamento nel detto vano di alloggiamento i detti almeno tre punti del bordo perimetrale della detta rete di interpolamento sono collegati mediante elementi flessibili di collegamento al corrispondente proiettile, preferibilmente alla testata anteriore del corrispondente proiettile, i quali elementi flessibili di collegamento passano all'esterno attraverso fori dell'elemento di chiusura frontale della tazza di alloggiamento della rete di intrappolamento in presenza di detto elemento di chiusura.

10

15

20

25

30

Vantaggiosamente, una forma esecutiva prevede in combinazione con una o più qualsivoglia delle precedenti caratteristiche che il cavo anti-caduta e/o di recupero è collegato alla sua estremità opposta a quella di collegamento alla rete, ad un dispositivo automatico di recupero, opzionalmente ad una puleggia motorizzata di avvolgimento dello stesso.

Una variante esecutiva della suddetta forma esecutiva può prevedere organi automatici di azionamento del detto dispositivo automatico recupero del cavo anti-caduta e/o di recupero, i quali organi automatici comprendono sensori delle condizioni di moto ad esempio di tensionamento e/o della forza di trazione esercitata dal cavo anti-caduta e/o recupero dalla rete d'intrappolamento e/o di prestabilito intervallo di tempo dall'istante di sparo.

Ovviamente altri tipi di sensori possono essere previsti in alternativa e/o in combinazione fra loro ed il tecnico del ramo è in grado di scegliere fra i sensori attualmente noti allo stato dell'arte sulla base della propria conoscenza tecnica di base.

Secondo una forma esecutiva che può essere qualsivoglia in combinazione prevista sottocombinazione con una o più delle precedenti forme e/o varianti esecutive e/o delle precedenti caratteristiche, gli attuatori di propulsione dei proiettili del gruppo di sparo sono costituiti da ugelli di emissione di un getto di un fluido a pressione, preferibilmente aria compressa, ciascun ugello essendo associato ad una canna di sparo di un corrispondente proiettile avente una prestabilita lunghezza essendo previsto un serbatoio di fluido di propulsione ad una pressione prestabilita essendo detto serbatoio collegato a ciascun ugello mediante una valvola che è comandabile dall'organo di comando per l'alimentazione contemporanea del detto fluido di pressione a ciascun ugello.

10

15

20

25

30

Grazie a questo tipo di configurazione è possibile raggiungere gittate dell'ordine di alcune decine di metri, in particolare di 25/30 metri.

Secondo un perfezionamento, in combinazione con ciascun proiettile sono previsti organi di trattenimento dei proiettili nelle corrispondenti canne di sparo, i detti organi essendo automaticamente disattivabili contestualmente al comando di attivazione del gruppo di sparo, ovvero all'azionamento degli organi di comando di sparo.

In una forma esecutiva gli organi di trattenimento del proiettile nella corrispondente canna del gruppo

di sparo sono costituiti da una depressione esercitata all'interno della detta canna, essendo ciascuna canna collegabile alternativamente ad un serbatoio di fluido in depressione, mentre la o le valvole di alimentazione del fluido di propulsione dal serbatoio a pressione agli ugelli del gruppo di sparo sono configurate per collegare alternativamente gli ugelli delle dette canne con il serbatoio di un fluido in depressione e/o con il serbatoio del fluido di propulsione alla detta prestabilita pressione.

10

15

20

25

30

Al fine di consentire una impostazione delle componenti direzionali dei proiettili in direzione di volo verso il drone da catturare, cioè consentire di puntare sostanzialmente la rete di intrappolamento verso il drone, la rete essendo intesa come baricentro o zona di interferenza col drone da catturare, almeno il gruppo di sparo con la tazza di alloggiamento della rete d'intrappolamento sono montati orientabili secondo un asse verticale di rotazione e/o orientabili secondo un asse orizzontale di oscillazione di alzo.

In una forma esecutiva preferita della presente invenzione, la rete di intrappolamento presenta una pianta della proiezione su bidimensionale essenzialmente quadrata o rettangolare, ciascun vertice di ciascuna zona d'angolo essendo collegata o collegabile mediante un elemento flessibile ad un corrispondente proiettile, mentre il centro della detta forma in pianta è collegato al cavo anti-caduta e/o di recupero, le canne del gruppo di sparo dei quattro proiettili essendo posizionate con le basi di fissaggio circonferenza concentricamente su una rispetto ad una tazza di alloggiamento della rete di e/o intrappolamento in posizione angolarmente

GIORGIO A. KARAGHIOSOFF MANDATARIO ABICITATO SATEM

equidistanziate fra loro o distanziate fra loro in modo da formare un quadrilatero simile nella significato geometrico del termine alla forma in pianta della rete di intrappolamento.

Ulteriori caratteristiche saranno oggetto delle sottorivendicazioni.

5

10

20

25

30

Queste ed altre caratteristiche e vantaggi della presente invenzione risulteranno più chiaramente dalla seguente descrizione di alcuni esempi esecutivi illustrati nei disegni allegati in cui:

La fig.1 illustra uno schema a blocchi di un esempio esecutivo della presente invenzione.

Le figure 2 e 3 mostrano una vista in prospettiva sul lato frontale e sul lato posteriore di un dispositivo cattura-droni secondo una ulteriore forma esecutiva della presente invenzione.

La figura 4 mostra un dettaglio ingrandito della zona del basamento di supporto del gruppo di sparo del dispositivo secondo le figure 2 e 3.

Le figure 5 e 6 mostrano rispettivamente in una vista in elevazione laterale ed una vista in pianta di sopra le possibili movimentazioni di puntamento del dispositivo secondo le precedenti figure, nonché le oscillazioni delle canee e/o degli ugelli del gruppo di sparo.

La figura 7 mostra una vista frontale in direzione dell'asse centrale della tazza di alloggiamento della rete, con la rete raccolta e piegata nella stessa e con gli elementi flessibili di collegamento dei vertici di una rete quadrata ad una corrispondente testa uncinata di un proiettile.

La figura 8 mostra una vista ingrandita della zona della puleggia motorizzata di recupero mediante

GIORGIO A. KARAGHIOSOFF MANDATARIO ABILITATIO 557 BM

avvolgimento del cavo anti-caduta e di recupero della rete in cui il drone è stato intrappolato.

La figura 9 mostra un particolare ingrandito della zona di supporto oscillante di una canna di sparo.

5

10

15

20

25

30

La figura 10 mostra una testa uncinata di un proiettile provvisto dei mezzi di attacco di un corrispondente elemento flessibile di collegamento di un punto del perimetro della rete di intrappolamento, il detto proiettile essendo inserito nella canna del gruppo di sparo.

La figura 11 illustra un esempio esecutivo di un proiettile estratto dalla canna di sparo e libero dalla rete di intrappolamento.

La figura 12 mostra schematicamente il meccanismo di cattura e di trattenimento anti caduta e/o di recupero di un drone.

Le figure 13.1 a 13.5 mostrano schematicamente alcune fasi del comportamento della rete di intrappolamento durante un volo di cattura di un drone.

Con riferimento alla figura 1, un esempio esecutivo di uno schema a blocchi di un dispositivo cattura droni secondo la presente invenzione, prevede un basamento 10 che è destinato a portare un gruppo di sparo 1. Per una rete di intrappolamento di un drone che è trascinata in volo da almeno tre proiettili 9. Ciascuno dei detti proiettili 9 essendo collegato mediante un cavo flessibile 11 ad un diverso punto del bordo perimetrale della rete, la posizione relativa dei proiettili fra loro e la posizione relativa dei punti di corrispondenti collegamento al bordo perimetrale della rete essendo sostanzialmente identiche. I proiettili 9 sono eiettati per mezzo di impulso generato da un fluido a pressione, un

preferibilmente un gas, alimentato ad un ugello ad una canna di sparo 2 da un serbatoio che contiene il detto fluido in pressione e che è collegato mediante un distributore e condotti flessibili 3 a ciascuno degli ugelli di ciascuna canna di sparo 2. Una valvola 4 che apre e chiude il collegamento del distributore con il serbatoio 5 del fluido a pressione costituisce l'organo di comando di sparo. Il serbatoio 5 può essere caricato da una linea di alimentazione di fluido in pressione o da un ulteriore serbatoio (non illustrati) attraverso un bocchettone di caricamento 8 a cui è associata una valvola di non ritorno 7 ed un misuratore della pressione 6.

10

15

20

25

30

Come apparirà con maggiore dettaglio nel seguito della presente descrizione, la rete è alloggiata piegata o semplicemente raccolta in una tazza di alloggiamento 12 ed è collegata stabilmente al dispositivo per mezzo di un cavo flessibile anti-caduta o di recupero che nella figura non appare in dettaglio.

Come apparirà con maggiore dettaglio in seguito, la combinazione ugelli o canne di sparo 2 del gruppo di sparo 1 e tazza di alloggiamento 12 per la rete presenta una configurazione sostanzialmente simmetrica a rotazione in cui l'asse centrale della tazza di alloggiamento 12 è coincidente con l'asse centrale di una circonferenza lungo cui sono disposti angolarmente equidistanziati fra loro, gli ugelli o le canne di sparo 2. L'asse passante per detto centro costituisce la componente direzionale della traiettoria verso il target da catturare e quindi l'asse di puntamento del dispositivo.

Le figure 2 e 3 mostrano una forma esecutiva preferita del suddetto dispositivo da cui risultano con

maggiore dettaglio le caratteristiche già sopra evidenziate.

Come appare nelle figure 2 e 3, ed in ulteriori figure 5, 6 e 7, il gruppo di sparo 1 presenta quattro canne cilindriche di sparo 2 in cui sono alloggiabili il corpo cilindrico 101 (vedi fig. 11) di un rispettivo proiettile 1. Le teste dei proiettili 110 presentano una pluralità di uncini 121. Nella forma esecutiva illustrata questi si dipartono radialmente dalla 110 periferia della testata e arcuati sono sostanzialmente elicoidalmente in avanti oltre la testata 110 e radialmente verso l'asse centrale del corpo cilindrico del proiettile 1. Nel lato di testa della testata è previsto un anello di ancoraggio 131 per l'estremità di un elemento flessibile che collega ciascun proiettile 1 ad un corrispondente punto del perimetro della rete di intrappolamento. Come apparirà più chiaramente dalla figura della rete completamente distesa prima della cattura del drone, la posizione relativa dei proiettili fra loro è allineata direzione di prolungamento dell'asse di ciascuna canna di sparo 2 con il punto di collegamento dell'elemento flessibile al punto del perimetro della rete di intrappolamento.

10

15

20

25

30

Le canne di sparo 2 sono distribuite lungo una circonferenza concentrica con la tazza di alloggiamento 12 della rete di intrappolamento R che è illustrata schematicamente nella condizione piegata o raccolta nella detta tazza di alloggiamento 12 nella figura 7.

In particolare le estremità posteriori delle canne di sparo 2 sono articolate in modo oscillante ad estensioni radiali 200 di una piastra di supporto 210 che porta concentricamente la tazza di alloggiamento

GIORGIO A. KARACHIOSOFE MANDATARIO ADILITATO SAFEM

12. Gli assi di oscillazione sono secanti alla circonferenza concentrica alla tazza di alloggiamento 12 è consentono una oscillazione delle singole canne di sparo 2 nel piano radiale rispetto alla detta tazza di alloggiamento, 12, ovvero rispetto alla componente direzionale di volo della rete in direzione del target da catturare.

All'estremità posteriore le canne di sparo 2 presentano un ugello di alimentazione del gas di propulsione a pressione che viene fornito azionando la valvola di comando di sparo dal serbatoio a pressione 5 come precedentemente descritto.

10

15

20

25

30

Come appare evidente, nella condizione inserita nelle canne 2, i proiettili 1 sono disposti con la loro testa uncinata che è esterna all'estremità della corrispondente canna di sparo 2.

E' possibile prevedere una valvola di comando di sparo centralizzata come mostrato nell'esempio della figura 1 oppure ciascun ugello di ciascuna canna di sparo è previsto in combinazione con una valvola dedicata, le dette valvole essendo servocomandate e comandabili in apertura da un organo di comando comune e centralizzato, ad esempio una pulsantiera di comando direttamente sul dispositivo od una pulsantiera remota e collegabile mediante cavi e/o mediante comunicazione wireless al dispositivo stesso.

Il gruppo di sparo 1, con la tazza di alloggiamento 12 della rete di intrappolamento, con il serbatoio 5 del fluido a pressione e/o con la o le valvole e le relative connessioni al serbatoio ed agli ugelli ed alle unità di comando sono montate in modo oscillante intorno ad un asse orizzontale su una parete di supporto verticale e/o una forcella verticale 220.

L'oscillazione può essere comandata da un motore elettrico 230 come illustrato nelle figure. A sua volta la parete verticale e/o la forcella verticale 220 è montata in modo girevole intorno ad un asse verticale su un basamento 10. La rotazione intorno a questo asse è comandata anch'essa mediante un motore 250 come mostrato meglio nella figura di dettaglio 4.

Relativamente al movimento oscillatorio nel corrispondente piano radiale delle canne 2 di sparo, questo movimento può essere anch'esso comandato da motori oppure può essere impostato manualmente.

10

15

20

25

30

Le figure 5 e 6 mostrano con le frecce 500, 510 e 600, 610 rispettivamente le oscillazioni delle canne di sparo 2, la rotazione intorno all'asse orizzontale per la regolazione dell'alzo e la rotazione intorno all'asse verticale per la rotazione di brandeggio.

Nella zona sottostante il gruppo di sparo,1, ovvero al di sotto delle due canne inferiori 2 e della tazza di alloggiamento 12 della rete di intrappolamento, è previsto un vassoio di raccolta 260 per un cavo anti-caduta e/o di recupero della rete di intrappolamento dopo che la stessa è stata proiettata verso il target. Il detto cavo è alloggiato di preferenza completamente libero di allungarsi nel detto vassoio 260. Una estremità del cavo è fissata ad una zona centrale della rete di intrappolamento, mentre l'altra estremità è fissata ad una puleggia 270 azionata da un motore 280 e destinata ad avvolgere il detto cavo per il recupero della rete. Un elemento di quida 290 del cavo è previsto per evitare che il cavo non venga avvolto nella puleggia ma si scarrucoli durante l'avvolgimento. Nella forma esecutiva illustrata tale guida cavo 290 è sotto forma di foro

od occhiello in una parete di supporto che trattiene la luce del detto occhiello allineata con la cava di avvolgimento della puleggia 270. Nelle figure il cavo anti-caduta o di recupero non è illustrato, se non nella figura 8 di dettaglio in cui è indicato con il numero 800.

Analogamente a quanto avviene per gli elementi flessibili 11 che collegano punti del perimetro della rete con i singoli proiettili 9, il tratto terminale del cavo 800 collegato alla rete entra anch'esso liberamente nella tazza di alloggiamento 12 sporgendo fuori dalla stessa e prolungandosi nel vassoio 260.

10

15

20

25

30

La figura 7 mostra in modo schematico la rete R piegata o raccolta nella tazza di alloggiamento 12. Nel caso presente, la rete di intrappolamento R presenta una forma sostanzialmente quadrata, per cui ciascuna zona d'angolo è collegata ad un corrispondente proiettile 9 con un elemento flessibile 11. Le canne sono previste in punti di intersezione di una diagonale di una forma sostanzialmente quadrata e concentrica con la tazza di alloggiamento 12, con una circonferenza anch'essa concentrica con la detta tazza alloggiamento 12., mentre gli assi di oscillazione delle dette canne sono perpendicolari alle dette diagonali, in modo da oscillare in piani coincidenti con le dette diagonali e passanti per il centro della tazza di alloggiamento 12.

In questo modo come apparirà più chiaramente a seguito, i proiettili trascineranno la rete sia verso il drone da catturare, con una componente direzionale parallela al piano verticale contenente lasse centrale della detta tazza di alloggiamento, e nel contempo eserciteranno una azione di distensione od allargamento

della rete secondo componenti divergenti fra loro ed orientate sostanzialmente in direzione delle dette diagonali.

Appare qui evidente che la soluzione scelta e descritta è relativa ad una forma esecutiva che prevede una rete di intrappolamento di forma sostanzialmente quadrata. Il tecnico del ramo, tuttavia, comprenderà che l'esempio non è limitativo, ma può essere esteso, mutatis mutandis, anche ad altre forme in pianta della rete di intrappolamento e ad altre disposizioni ed orientamenti delle canne di sparo.

10

15

20

25

30

L'azionamento della puleggia di avvolgimento del cavo di recupero 800 può avere luogo sia su comando manuale e sia mediante un comando automatico generato da sensori, come sensori di misurazione della tensione nel cavo di recupero e/o di accelerazione dello stesso e/o sensori che semplicemente in base a misurazioni empiriche misurano il tempo trascorso dall'istante si sparo e lo confrontano con tempi di volo della rete dall'istante di sparo alla condizione in cui la rete ha terminato la sua traiettoria di volo che sono stati misurati in sede sperimentale.

Molte alternative sono possibili e possono essere previste separatamente od in alternativa fra loro. Dette alternative ricadono comunque nell'ambito delle scelte di opportunità che il tecnico del ramo è in grado di fare sulla base delle sue conoscenze tecniche di base.

Con riferimento alle figure, 2 a 9, secondo un ulteriore esempio esecutivo, al fine di evitare una fuoriuscita accidentale dei proiettili, quando, posizionando il dispositivo su una struttura di elevazione, come una piattaforma od un palo o simili,

il puntamento del dispositivo richiede che esso venga inclinato verso il basso, per ciascuna canna di sparo 2 è possibile prevedere un dispositivo di trattenimento in posizione del proiettile il quale dispositivo è rilasciabile o disattivabile, liberando il proiettile contestualmente od in modo lievemente anticipato rispetto all'istante in cui ha luogo l'alimentazione dell'impulso di pressione.

10

15

20

25

30

Qualsivoglia tipo di dispositivo di trattenimento è possibile. Una forma esecutiva non limitativa è illustrata nelle figure 2 a 6. Secondo questo esempio esecutivo, è previsto un serbatoio in depressione 5' che è collegabile alternativamente al serbatoio in pressione 5 a ciascuna canna di sparo 2 e che genera all'interno della stessa una depressione atta trattenere in posizione il corrispondente proiettile. Il collegamento del serbatoio di depressione 5' può avere luogo analogamente a quello di pressione 5, mediante una valvola centralizzata servocomandata ed distributore oppure mediante una valvola per ciascuna canna di sparo 2 ed un comando centralizzato delle dette valvole. Vantaggiosamente secondo una forma esecutiva, è possibile prevedere che la valvola centralizzata e/o le valvole dedicate siano valvole a tre vie che collegano alternativamente il serbatoio di depressione 5' ed il serbatoio di pressione 5 alle canne di sparo 2. In questo modo un unico comando provvede a intercettare la depressione ed alimentare l'impulso di pressione e viceversa.

Vantaggiosamente le valvole di comando di sparo o di collegamento al serbatoio di depressione i driver di azionamento dei motori o degli attuatori di rotazione di alzo e di brandeggio, di recupero del cavo

anticaduta e/o di oscillazione delle canne di sparo nonché i sensori sopra descritti sono collegati ad una unità di controllo che esegue un programma in cui sono codificate le istruzioni per l'esecuzione funzioni più sopra descritte ed alla quale centralina è collegato o collegabile un quadro di comando grazie collegamento via cavo e/o ad un mediante comunicazione wireless. Una unità di controllo di questo tipo è nota al tecnico del ramo ed è realizzabile attingendo alle sue conoscenze tecniche di base.

10

15

20

25

30

La figura 12 mostra schematicamente il funzionamento del dispositivo. La figura 12 a) mostra un dispositivo secondo una o più delle forme esecutive della presente invenzione montato su una struttura di elevazione ad una altezza h. Un drone D è in volo sulla zona coperta dal raggio di azione, ovvero dalla gittata del detto dispositivo cattura droni. La struttura di elevazione, può essere un braccio telescopico, un a colonna, un palo, un terrazzo o simili e può essere accessibile da personale di servizio sia per l'azionamento del dispositivo oppure solo per operazioni di manutenzione e di ricarica.

Il dispositivo puntato contro il drone D viene comandato per proiettare la rete contro il drone. La rete viene trascinata dai proiettili 9 sia verso il drone e sia in direzione di allargamento o distensione della stessa. Raggiunto il drone, la rete R lo avvolge ed i proiettili con le teste uncinate eseguono un modo di sostanziale ritorno avvolgendo la rete intorno alo drone e trattenendolo chiuso all'interno della stessa.

Il drone cade in caduta libera ed il motore di recupero recupera il cavo anti-caduta e di recupero

con la rete ed il drone intrappolato nella stessa evitando che cada al suolo.

Le figure 13.1 a 13.5 mostrano una simulazione della dinamica di volo della combinazione di rete e dei quattro proiettili 9. Questi presentano una traiettoria con una componente maggiore in direzione di volo verso il drone, sostanzialmente parallela per tutti e quattro i proiettili. L'oscillazione radiale in fuori determina che ciascun proiettile esegua una traiettoria avente una componente radiale e divergente rispetto al centro di massa della rete, per cui la stessa viene progressivamente allargata e distesa fino ad assumere la forma della figura 13.5 in cui il drone ricade all'interno dell'estensione della rete per cui viene sicuramente intrappolato dalla stessa.

10

15

20

25

Nonostante le forme esecutive illustrate siano relative ad uno specifico esempio esecutivo, appare evidente che questo costituisce solo un esempio non limitativo essendo possibili molteplici varianti esecutive sia per quanto riguarda il gruppo di sparo, la forma della rete e la disposizione ed il numero di proiettili ed anche per quanto attiene specifiche soluzioni costruttive che il tecnico del ramo può variare attingendo alle conoscenze tecniche del bagaglio culturale di base.

GIORGIO A. KARAGHIOSOFF MANDATARIO ABILITATIO 501 BM

RIVENDICAZIONI

10

20

- 1. Dispositivo cattura-droni, comprendente:
- un gruppo di sparo di almeno tre proiettili secondo traiettorie fra loro divergenti e che presentano almeno una componente direzionale delle dette traiettorie fra loro parallela;
- una rete di intrappolamento di materiale flessibile e/o pieghevole, avente una prestabilita forma in pianta in proiezione su un piano ed una prestabilita dimensione nelle due direzioni che sottendono il detto piano;
- almeno tre punti del bordo perimetro di detta rete essendo collegati o collegabili ciascuno ad un proiettile, dei detti almeno tre proiettili;
- 15 il detto gruppo di sparo essendo provvisto di un attuatore di propulsione dei detti proiettili e di organi di comando di attivazione dello stesso;
 - la detta rete essendo ulteriormente collegata mediante un cavo od un elemento flessibile anti/caduta e/o di recupero al detto dispositivo.
 - 2. Dispositivo secondo la rivendicazione 1, in cui i detti proiettili essendo provvisti di una testa uncinata di aggancio nelle maglie della rete.
- 3. Dispositivo secondo le rivendicazioni 1 o 2, in cui i detti proiettili essendo provvisti di una massa prestabilita atta a garantire una inerzia di moto sufficiente ad eseguire una traiettoria con una componente di ritorno quando il drone viene a contatto con la rete.
- 4. Dispositivo secondo una o più delle precedenti rivendicazioni, in cui il detto dispositivo comprende una pluralità di canne od ugelli di sparo ciascuno destinato ad accogliere un proiettile, le dette canne

essendo disposte su una circonferenza concentrica ed opzionalmente angolarmente equidistanziate fra loro rispetto ad una tazza centrale di alloggiamento della detta rete, la detta tazza centrale di alloggiamento essendo aperta frontalmente ed orientata in direzione di una componente direzionale della traiettoria parallela all'asse della detta circonferenza ed essendo opzionalmente apribile e chiudibile mediante un elemento di chiusura amovibile e/o che può essere distrutto dalla rete di intrappolamento all'atto dello sparo.

10

15

20

25

30

- 5. Dispositivo secondo una o più delle precedenti rivendicazioni, le dette canne e/o i detti ugelli essendo orientabili rispetto alla componente direzionale della traiettoria parallela all'asse della detta circonferenza, secondo una direzione di oscillazione radiale rispetto all'asse centrale della detta circonferenza.
- 6. Dispositivo secondo una o più delle precedenti rivendicazioni, in cui in condizione piegata della detta rete di intrappolamento nel detto vano di alloggiamento i detti almeno tre punti del bordo perimetrale della detta rete di interpolamento sono collegati mediante elementi flessibili di collegamento al corrispondente proiettile, preferibilmente alla testata anteriore del corrispondente proiettile, i quali elementi flessibili di collegamento passano all'esterno attraverso fori dell'elemento di chiusura frontale della tazza di alloggiamento della rete di intrappolamento in presenza di detto elemento di chiusura.
- 7. Dispositivo secondo una o più delle precedenti rivendicazioni, in cui il cavo anti-caduta e/o di

recupero è collegato alla sua estremità opposta a quella di collegamento alla rete, ad un dispositivo automatico di recupero, opzionalmente ad una puleggia motorizzata di avvolgimento dello stesso.

- 8. Dispositivo la rivendicazione 7, in cui sono previsti organi automatici di azionamento del detto dispositivo automatico di recupero del cavo anti-caduta e/o di recupero, i quali organi automatici comprendono sensori delle condizioni di moto ad esempio di tensionamento e/o della forza di trazione esercitata dal cavo anti-caduta e/o di recupero dalla rete d'intrappolamento e/o di un prestabilito intervallo di tempo dall'istante di sparo.
 - 9. Dispositivo secondo una o più delle precedenti rivendicazioni, in cui gli attuatori di propulsione dei proiettili del gruppo di sparo sono costituiti da ugelli di emissione di un getto di un fluido a pressione, preferibilmente aria compressa, ciascun ugello essendo associato ad una canna di sparo di un corrispondente proiettile avente una prestabilita lunghezza essendo previsto un serbatoio di fluido di propulsione ad una pressione prestabilita essendo detto serbatoio collegato a ciascun ugello mediante una valvola che è comandabile dall'organo di comando per l'alimentazione contemporanea del detto fluido di pressione a ciascun ugello.

20

25

30

10. Dispositivo secondo una o più delle precedenti rivendicazioni in cui previsti sono organi trattenimento dei proiettili nelle corrispondenti canne di sparo, i detti organi essendo automaticamente disattivabili contestualmente al comando di attivazione del gruppo di sparo, ovvero all'azionamento degli organi di comando di sparo.

11. Dispositivo secondo la rivendicazione 10, in cui gli organi di trattenimento del proiettile nella corrispondente canna del gruppo di sparo costituiti da una depressione esercitata all'interno della detta canna, essendo ciascuna canna collegabile di alternativamente ad un serbatoio fluido in depressione, mentre la o le valvole di alimentazione del fluido di propulsione dal serbatoio a pressione agli ugelli del gruppo di sparo sono configurate per collegare alternativamente gli ugelli delle dette canne con il serbatoio di un fluido in depressione e/o con il serbatoio del fluido di propulsione alla detta prestabilita pressione.

10

20

25

30

- 12. Dispositivo secondo una o più delle precedenti rivendicazioni, caratterizzato dal fatto che almeno il gruppo di sparo con la tazza di alloggiamento della rete d'intrappolamento sono montati orientabili secondo un asse verticale di rotazione e/o orientabili secondo un asse orizzontale di oscillazione di alzo.
 - 13. Dispositivo secondo una o più delle precedenti rivendicazioni, caratterizzato dal fatto che la rete di intrappolamento presenta una forma in pianta della proiezione su un piano bidimensionale essenzialmente quadrata o rettangolare, ciascun vertice di ciascuna zona d'angolo essendo collegata o collegabile mediante un elemento flessibile ad un corrispondente proiettile, mentre il centro della detta forma in pianta è collegato al cavo anti-caduta e/o di recupero, le canne del gruppo di sparo dei quattro proiettili essendo le basi di posizionate con fissaggio una circonferenza concentricamente rispetto ad una tazza di alloggiamento della rete di intrappolamento e/o in posizione angolarmente equidistanziate fra loro o

GIORGIO A. KARAGHIOSOFF, MANDATARIO ABILITATO 501 BM

distanziate fra loro in modo da formare un quadrilatero simile nella significato geometrico del termine alla forma in pianta della rete di intrappolamento.

5

P.I. Stam S.r.l.

Giorgio A. Karaghiosoff Mandatario Abilitato

Iscritto al N. 531 BM

Juga st Kaylerff