A pocket handkerchief support device comprises a thin, substantially planar, flexible, resilient and substantially rectangular card having corners, a first opening with a first open area and a second opening having a second open area, the first and second openings having corresponding first and second centroids vertically aligned with each other, the first and second areas being selected such that a handkerchief freely passes through said openings and is frictionally held in place in the openings without an attachment device.
FIG. 2
POCKET SQUARE SUPPORT DEVICE AND METHOD OF USING SAME

BACKGROUND

[0001] A pocket handkerchief or pocket square is a man’s dress accessory commonly placed in an exterior chest pocket of a coat so that the pocket square can be seen. As is well known, a pocket square personalizes a coat and adds panache.

[0002] A well-known problem with a pocket square is folding it and inserting it into a coat pocket so that it will be visible when it is first inserted and stay in place over time without the pocket square being undesirably prominent. A pocket square support device that simplifies and facilitates the insertion and use of a pocket square would be an improvement over the prior art.

BRIEF DESCRIPTION OF THE FIGURES

[0003] FIG. 1 depicts a pocket square and pocket square support device in the chest pocket of a suit coat or jacket;

[0004] FIG. 2 is a perspective view of a pocket square support device;

[0005] FIG. 3 is a is a cross-sectional view of the pocket square support device;

[0006] FIG. 4 is a front elevation view of the pocket square support device;

[0007] FIG. 5 is an isolated view of the top and bottom edges of the pocket square support device showing the radius or curvature provided to outside edges of the pocket square support device;

[0008] FIG. 6 is a front elevation view of a first alternate embodiment of a pocket square support device;

[0009] FIG. 7 is a front elevation view of a second alternate embodiment of a pocket square support device;

[0010] FIG. 8 is a front elevation view of a third alternate embodiment of a pocket square support device;

[0011] FIG. 9 depicts the deformation of the pocket square support device;

[0012] FIG. 10 is a top view of the pocket square support device showing the curvature of the pocket square support device around the curvature of a human rib cage; and

[0013] FIGS. 11-14 depict steps of a method of using the pocket square support device with a pocket square.

DETAINED DESCRIPTION

[0014] As used herein, “pocket” refers to a small bag, which is sewn into a garment so that it is open at the top. Front chest pockets in men’s coats are well known. Typically located between the arm pit and the left-hand lapel, front chest pockets are typically found on coats that can include suit coats, sport coats, blazers, vest and overcoats. Such chest pockets provide a space typically large enough to receive small items such as pens, business cards, or a pocket square. A slit or opening in the front side of the coat provides access to the interior of the chest pocket.

[0015] FIG. 1 is a front view of the left-hand shoulder of a man’s coat showing a chest pocket 20. A decorative handkerchief 30, also known a pocket square 30, is folded and held in the chest pocket 20 by a pocket square support device 100 so that the pocket square 30 protrudes from the chest pocket neatly and unobtrusively. The shape of the pocket square 30 that extends above the opening 24 of the chest pocket 20 is maintained by the pocket square support device 100.

[0016] FIG. 2 is a perspective view of a preferred embodiment of a pocket square support device 100. The support device 100 is a thin, planar or flat, flexible and substantially rectangular card 100. A true rectangle is drawn “below” the pocket square support device 100 to depict conceptually how the shape of the preferred embodiment differs from a true rectangle.

[0017] The preferred shape of the pocket square support device 100 is considered to be “substantially rectangular” because it has four nominal “corners” 102, 104, 106 and 108 but which are essentially the sharp corners of a true rectangle rounded off, i.e., provided with a radius of curvature, r, in order to facilitate insertion of the support device 100 into a chest pocket 20. Rounding off the corners to also helps conceal the support device 100 inside the pocket. In a preferred embodiment, the corners 102, 104, 106 and 108 have a radius of curvature, r, of at least one-quarter of an inch, up to about one inch.

[0018] The radius or curvature provided to the different corners do not have to be equal but can instead be different from each other as best seen in FIG. 4. The top corners 102, 108 can be seen to have a greater radius of curvature than the bottom corners 104, 106.

[0019] The support device 100 has a top edge 110, a bottom edge 112, a right side or edge 114, and a left side or edge 116. It also has a substantially planar front side 111 and a substantially planar backside 120, not visible in FIG. 2 but substantially identical to the front side 110.

[0020] Three openings 122, 124 and 126 through the support device 100 have middle points or centroids 125, 127 and 129, which are aligned with a vertical axis 131 of the support device 100. The openings 122, 124 and 126 are thus vertically aligned with each other in the material from which the support device 100 is made. Alternate embodiments of course have openings that are not aligned with each other but which are offset from each other, if only slightly.

[0021] The openings 122, 124 and 126 are substantially rectangular but with internal corners 133, 135, 137 and 139 that are rounded, similar to how the outside corners 102, 104, 106 and 108. Rounding the openings facilitates smooth passage of pocket square fabric through them. The openings as shown in FIG. 2 are considered herein to be oval, substantially oval or “obround.” Elliptically-shaped or parabolic-shaped openings are considered herein to be equivalent alternative embodiments.

[0022] As best seen in FIG. 3, the pocket square support device 100 has a substantially uniform, nominal thickness, t, which means that the thickness is substantially the same between the top edge 110, the bottom edge 112 and the left and right edges, 114, 116 respectively. The thickness of the support device 100 is thus considered herein to be uniform or at least substantially uniform.

[0023] It is well known that a pocket has width and a depth. The ratio of the width to the depth is a matter of choice. Chest pockets of men’s dress coats are typically between about four inches and about six inches deep; about three to about five inches wide.

[0024] The pocket square support device 100 has a nominal width along or near the top edge 110, which is denominated as w1. It has a slightly smaller width, w2, along or at the bottom edge 112. The support device 100 also has a height h1. The widths w1 and w2 are selected to be less than the width of a chest pocket 20, typically between about seventy-five percent up to about ninety-five percent of the inside width of a man’s
dress coat chest pocket 20. The height h_1 is also selected to be less than the depth of a man’s dress coat chest pocket 20 into which the pocket square support device 100 is to be used, preferably about seventy-five percent up to about ninety-five percent of the depth of a chest pocket 20. [0025] The smaller width, w_2, at the bottom edge 112 provides the support device with a taper. The taper or slimming from top to bottom, facilitates insertion of the support device 100 into a pocket 20. The amount or degree of the taper is considered herein to be the difference between w_1 and w_2 divided by the height, h_1. Experimentation indicated that a taper of about 0.35 to about 0.75 provided for smooth insertion and removal of the support device into a pocket.

[0026] As best seen in FIG. 4, a preferred embodiment of a pocket square support device 100 has three openings 122, 124, and 126 or more. An alternate embodiment, however, has only two openings.

[0027] Unlike the slits identified by reference numeral “11” in U.S. Pat. No. 1,631,398, which have zero height or near-zero height, the openings 122, 124, and 126 in the support device 100 have comparatively large non-zero heights, h_2, h_3, and h_4. The heights, h_2, h_3, and h_4, are preferably between about one-quarter inch and up to about seven-eighths inch but more preferably about one-half inch. In any case, the non-zero height should be at least four and up to at least ten-times the thickness of the fabric from which a pocket square is made to facilitate free passage of the pocket square fabric through them, unlike slits used in at least one prior art device.

[0028] The slits disclosed in U.S. Pat. No. 1,631,398 are problematic because it is difficult to push and/or pull a pocket square through them. Those slits are also problematic because they essentially guarantee snagging one or more threads of the fabric from which a pocket square is made. The dimensions of the heights h_2, h_3, and h_4 of the various embodiments disclosed herein are therefore important because a greater-than-zero height facilitates smooth insertion and removable of different pocket squares, which are typically made of silk, cotton and wool, all of which are damaged when a thread is snagged. They also reduced the likelihood of snagging a thread from which a pocket square is woven.

[0029] As can be seen in FIG. 4, the first or top opening 122 has a width w_2 and a corresponding height h_2. Similarly, the other two openings 124 and 126 have corresponding widths w_3 and w_4 and corresponding heights h_3 and h_4. In the preferred embodiment, the heights h_2, h_3, and h_4 are the same or substantially the same. The widths however, narrow from the top edge 110 to the bottom edge 112 due to the fact that the pocket square support device has a taper described above.

[0030] Those of ordinary skill in the art will recognize that the product of the height of each opening and the width of each opening defines an “open area” for each opening. Inasmuch as the openings 122, 124 and 126 have different widths, they will of course have correspondingly different open areas. The widths, heights and the resultant open areas are selected to facilitate the insertion of a pocket square into the openings as well as the retention of the pocket square in the openings by friction between the pocket square and the support device 100 due to a slight compression of the pocket square by the openings.

[0031] It is important that the pocket square support device 100 be unseen or obscure when it is inside a vest pocket. The pocket square support device 100 is therefore thin, lightweight and flexible.

[0032] Referring again to FIG. 3, in order for the pocket square support device 100 to be not visible when it is inside a pocket, it should have a thickness, t_s, as thin as possible yet thick enough to provide rigidity required to support a pocket square. The thickness, t_s, is preferably less than one-quarter of an inch. In order for a plastic support device 100 to have at least some rigidity, however, it has a thickness t_s of about one-sixteenth ($\frac{1}{16}$") of an inch. It is also substantially planar or flat on the top side 118 and backside 120. The outside edges 130 are also preferably rounded over or provided with a radius in order to facilitate insertion of the device 100 into a pocket and also assist with making the support device 100 obscure when it is inside a pocket.

[0033] As best seen in FIG. 5, each edge of the device 100 (both inside the openings and the outer perimeter edge) has a radius of curvature 140, which is substantially equal to the one-half the thickness t_s of the material. Providing at least some amount of a radius on edges of the device 100 facilitates manufacture of a device 100 that is made of plastic, typically by injection molding. Rounded edges also facilitate insertion of the pocket square support device 100 into a pocket and facilitate the insertion and removal of a pocket square through the openings as described above.

[0034] FIG. 6 depicts a first alternate embodiment of a pocket square support device 200. The support device 200 is nearly a perfect rectangle with sharp corners 201 and three rectangular openings 202, 204, and 206, also with sharp corners 207.

[0035] FIG. 7 depicts a second alternate embodiment of a pocket square support device 300. It too has sharp corners. The openings 302, 304, 306, however, are circular or nearly circular.

[0036] FIG. 8 depicts a fourth alternate embodiment of a pocket square support device 400. Its openings 402, 404, 406 are substantially triangular.

[0037] Regardless of a particular shape or the number of openings in a pocket square support device, in order for a pocket square support device to be not visible when used, it should be thin, planar or substantially planar and flexible. Flexibility is important in order for the pocket square support device 100 to be obscure or hidden by the fabric from which a suit coat is made. The support device should also be resilient so that when it bends or flexes in a chest pocket 20, it returns to its original shape.

[0038] FIG. 9 is a perspective view of the support device 100. The broken lines show the support device 100 when it is in a relaxed condition. The solid lines show a rectangular support device 101 in a second deformed shape 150, as will exist when the support device is used. FIG. 9 thus shows the device 100 deflected about a horizontal axis 162.

[0039] FIG. 10 is a top-edge view of the support device 100. The broken line in FIG. 10 show the support device 100 when it is in a relaxed condition. The solid line in FIG. 10 show the support device 100 in a second deformed shape 150, as will exist when the support device is used. FIGS. 10 thus shows the device 100 deflected about a vertical axis 160. Together, FIGS. 9 and 10 show the device 100 as being isotropic, which means it is deformable about its longitudinal axis 160 and its transverse axis 162. It is also resilient; it will return to its original shape when a bending force is removed.

[0040] A curve or arc 154 shown in FIG. 10 depicts a radius of curvature 156, representative of a typical human rib cage. In a preferred embodiment the pocket square support device is made of a material the thickness and elastic modulus of
which are selected to provide a curvature or bend radius, \(r \), substantially equal to the bend radius \(156 \) of a human rib cage \(154 \) of a person wearing the support device. The pocket square support device is deformable to both convex and concave surfaces upon the application of a force sufficiently equal to that provided by a suit coat being worn by a user. High-density polyethylene (HDPE) and polypropylene (PP) are two materials considered herein to be suitable for a support device. A thick paper, plastic coated paper or corrugated “cardboard” are also suitable materials.

[0041] As set forth above, the pocket square support device greatly simplifies the use of a pocket handkerchief or pocket square \(30 \) in the chest pocket of a man’s suit coat. FIG. 11-14 depict steps of at least one method \(1100 \) of using the pocket square support device \(100 \) with a pocket square \(30 \) or pocket handkerchief \(30 \).

[0042] Referring now to FIG. 11, a pocket square \(30 \) is preferably folded across diagonally opposite corners \(1104 \) and \(1106 \) to provide a long edge \(1108 \) with a center region \(1110 \), i.e., an area located in the middle of the pocket square \(30 \). For illustration purposes, the folded pocket square \(30 \) and support device \(100 \) are shown in FIGS. 11-13 on a flat surface \(1108 \).

[0043] In FIG. 12, the center region \(1110 \) is pushed or pulled through the lower opening \(126 \) of the pocket square support device \(100 \) leaving most of the pocket square \(30 \) “below” the lower opening \(126 \). FIG. 13 thus illustrates the importance of the openings \(122, 124 \) and \(126 \) having heights, \(h_2, h_4, h_6 \) in FIG. 4) which are non-zero and great enough to allow a smooth, nearly frictionless passage of the pocket square material through the openings. The widths \(w_3, w_4 \) and \(w_6 \) in FIG. 4) are substantially equal to the width of the pocket square in order to avoid “branching” the pocket square material as it passes through the openings, which would cause the displayed portion to appear more like a rope than a pocket square.

[0044] FIG. 13 shows the center portion \(1110 \) that was pulled or pushed through the bottom opening \(126 \) after it has been pushed or pulled through the center opening \(124 \) of the support device \(100 \). Most of the pocket square \(30 \) shown in FIG. 13 extends from the top opening \(126 \). The middle or center section \(1110 \) of the pocket square \(30 \) is pulled upwardly through both openings \(126, 124 \) and into the top opening \(122 \) until a user-selected portion of the pocket square \(30 \) extends from the top opening \(122 \) as shown in FIG. 14.

[0045] FIG. 14 shows the pocket square as supported by the support device \(100 \). Inasmuch as the pocket square support device \(100 \) is thin, tapered, planar, flexible yet resilient, it and the pocket square \(30 \) that it supports can both be inserted into a chest pocket of a suit coat. Inasmuch as the pocket square support device \(100 \) has a width less than the width of a chest pocket and a height less than a vest pocket, the pocket square support device \(100 \) enables a top portion \(1400 \) of the pocket square to be displayed without the support device \(100 \) itself being visible.

[0046] Those of ordinary skill in the art will recognize that the orientation of the pocket square as shown in FIGS. 11-14 can be reversed such that the middle or central portion of the pocket square is downward or inside the bottom of the vest pocket. Those of ordinary skill in the art will also recognize that the two opposing corners \(1104 \) and \(1106 \) can be “threaded” through the openings \(126, 124, 122 \) instead of the central region \(1110 \), in which case the displayed portion of the pocket square would be the corners \(1104, 1106 \) and portions of the pocket square adjacent thereto.

[0047] In a preferred embodiment, the material and dimensions of the pocket square support device \(100 \) are selected to provide a weight that is preferably less than about an ounce, more preferably less than about half an ounce.

[0048] The foregoing description is for purposes of illustration only. The true scope of the invention is set forth in the following claims.

What is claimed is:

1. A pocket handkerchief support device comprising: a thin, substantially planar, flexible and substantially rectangular card having a first opening with a first open area and a second opening having a second open area, the first and second openings having corresponding first and second centroids, substantially aligned with each other vertically, the first and second areas being selected such that a handkerchief freely passes through said openings and is frictionally held in place in the openings.

2. The pocket handkerchief support device of claim 1, wherein the first and second areas are selected and configured such that a handkerchief is held in place in the openings without an attachment device.

3. The pocket handkerchief support device of claim 1, wherein the substantially rectangular card has a top and a bottom and a width at the top of the card that is greater than a width at the bottom of the card such that the substantially rectangular card is tapered between the top and bottom.

4. The pocket handkerchief support device of claim 1, wherein the substantially rectangular card has four corners, which are rounded, each corner having a predetermined radius of curvature.

5. The pocket handkerchief support device of claim 4, wherein at least two corners have different radii of curvature.

6. The pocket handkerchief support device of claim 1, wherein at least one of the first and second openings are substantially oval.

7. The pocket handkerchief support device of claim 1, wherein at least one of the first and second openings are substantially rectangular.

8. The pocket handkerchief support device of claim 1, wherein at least one of the first and second openings are substantially circular.

9. The pocket handkerchief support device of claim 1, wherein at least one of the first and second openings are substantially triangular.

10. The pocket handkerchief support device of claim 1, wherein the card is made of an isotropic material with an elastic modulus and thickness such that the support device is deformable about its longitudinal and transverse axes such that the card is conformable to both convex and concave surfaces.

11. The pocket handkerchief support device of claim 1, wherein the card is made of a material having a thickness and elastic modulus, which are selected together to provide a predetermined bend radius substantially equal to the bend radius of a human rib cage.

12. The pocket handkerchief support device of claim 1, wherein the card is made of a material having a thickness that is between about one-sixteenth of an inch and about one-quarter of an inch.

13. The pocket handkerchief support device of claim 1, wherein the card has a weight less than about an ounce.
14. The pocket handkerchief support device of claim 1, wherein the card has a weight less than about one half of an ounce.

15. A method of using a pocket square with a pocket square support device, the support device comprising a thin, substantially planar, flexible and substantially rectangular card having corners, a first opening with a first, non-zero open area and a second opening having a second, non-zero open area, the first and second openings having corresponding first and second centroids, substantially aligned with each other, the method comprising:
 passing a first portion of a pocket square through the first opening;
 passing the first portion of the pocket square through the second opening leaving a second portion of the pocket square below the first opening; and
 placing the pocket square support device and the pocket square into a chest pocket such that the first portion is visible above the chest pocket and the second portion of the pocket square and the pocket square support device are inside the vest pocket.

16. The method of claim 12, further comprising the step of passing the pocket square through a third opening prior to the step of placing the pocket square support device into a chest pocket.

17. The method of claim 12, wherein the steps of passing portions of the pocket square through the openings comprises passing the pocket square through openings that are at least one of: oval; elliptical; parabolic; and rectangular, each opening having a non-zero height and configured to hold a pocket square using friction.

* * * * *