

(43) International Publication Date
3 December 2015 (03.12.2015)(51) International Patent Classification:
A61K 31/44 (2006.01) A61K 31/167 (2006.01)
A61K 31/4192 (2006.01)

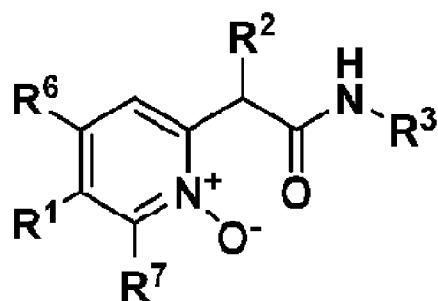
(72) Inventors; and

(71) Applicants (for US only): **ALI, Amjad** [US/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US). **KUANG, Rongze** [US/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US). **WU, Heping** [US/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US).(21) International Application Number:
PCT/US2015/032091(74) Common Representative: **MERCK SHARP & DOHME CORP.**; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US).(22) International Filing Date:
22 May 2015 (22.05.2015)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).


(26) Publication Language: English

(30) Priority Data:
62/003,693 28 May 2014 (28.05.2014) US(71) Applicant (for all designated States except US): **MERCK SHARP & DOHME CORP.** [US/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US).

(72) Inventors; and

(71) Applicants (for NZ, US only): **LIU, Weiguo** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **EDMONDSON, Scott, D.** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **GUO, Zhuyan** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **MERTZ, Eric** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **OGAWA, Anthony, K.** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **SO, Sung-Sau** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **SUN, Wanying** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US). **BROCK-UNIER, Linda, L.** [US/US]; 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 (US).*[Continued on next page]*

(54) Title: FACTOR XIA INHIBITORS

I

(57) Abstract: The present invention provides a compound of Formula I (The chemical formula should be inserted here.) and pharmaceutical compositions comprising one or more said compounds, and methods for using said compounds for treating or preventing thromboses, embolisms, hypercoagulability or fibrotic changes. The compounds are selective Factor Xa inhibitors or dual inhibitors of Factor Xa and plasma kallikrein.

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))* — *with international search report (Art. 21(3))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

TITLE OF THE INVENTION

FACTOR XIa INHIBITORS

BACKGROUND OF THE INVENTION

5 Factor XIa is a plasma serine protease involved in the regulation of blood coagulation. While blood coagulation is a necessary and important part of the regulation of an organism's homeostasis, abnormal blood coagulation can also have deleterious effects. For instance, thrombosis is the formation or presence of a blood clot inside a blood vessel or cavity of the heart. Such a blood clot can lodge in a blood vessel blocking circulation and inducing a 10 heart attack or stroke. Thromboembolic disorders are the largest cause of mortality and disability in the industrialized world.

15 Blood clotting is a process of control of the blood stream essential for the survival of mammals. The process of clotting, and the subsequent dissolution of the clot after wound healing has taken place, commence after vascular damage, and can be divided into four phases. The first phase, vasoconstriction or vasoconstriction, can cause a decrease in blood loss in the 20 damaged area. In the next phase, platelet activation by thrombin, platelets attach to the site of the vessel wall damage and form a platelet aggregate. In the third phase, formation of clotting complexes leads to massive formation of thrombin, which converts soluble fibrinogen to fibrin by cleavage of two small peptides. In the fourth phase, after wound healing, the thrombus is dissolved by the action of the key enzyme of the endogenous fibrinolysis system, plasmin.

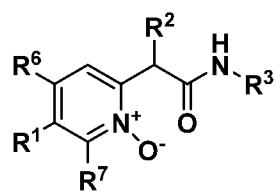
25 Two alternative pathways can lead to the formation of a fibrin clot, the intrinsic and the extrinsic pathway. These pathways are initiated by different mechanisms, but in the later phase they converge to give a common final path of the clotting cascade. In this final path of clotting, clotting factor X is activated. The activated factor X is responsible for the formation of a thrombus on the bottom of a vessel wall abnormality without a wound is the result of the intrinsic pathway. Fibrin clot formation as a response to tissue damage or an injury is the result 30 of the extrinsic pathway. Both pathways comprise a relatively large number of proteins, which are known as clotting factors. The intrinsic pathway requires the clotting factors V, VIII, IX, X, XI and XII and also prekallikrein, high molecular weight kininogen, calcium ions and phospholipids from platelets. The activation of factor XIa is a central point of intersection between the two pathways of activation of clotting. Factor XIa has an important role in blood clotting.

Coagulation is initiated when blood is exposed to artificial surfaces (e.g., during

hemodialysis, "on-pump" cardiovascular surgery, vessel grafts, bacterial sepsis), on cell surfaces, cellular receptors, cell debris, DNA, RNA, and extracellular matrices. This process is also termed contact activation. Surface absorption of factor XII leads to a conformational change in the factor XII molecule, thereby facilitating activation to proteolytic active factor XII molecules (factor 25 XIIa and factor XIIf). Factor XIIa (or XIIf) has a number of target proteins, including plasma prekallikrein and factor XI. Active plasma kallikrein further activates factor XII, leading to an amplification of contact activation. Alternatively, the serine protease prolylcarboxylpeptidase can activate plasma kallikrein complexed with high molecular weight kininogen in a multiprotein complex formed on the surface of cells and matrices (Shariat-Madar et al., Blood, 108:192-199 (2006)). Contact activation is a surface mediated process responsible in part for the regulation of thrombosis and inflammation, and is mediated, at least in part, by fibrinolytic-, complement-, kininogen/kinin-, and other humoral and cellular pathways (for review, Coleman, R., "Contact Activation Pathway", Hemostasis and Thrombosis, pp. 103-122, Lippincott Williams & Wilkins (2001); Schmaier, A.H., "Contact Activation", Thrombosis and Hemorrhage, pp. 105-128 (1998)). The biological relevance of the contact activation system for thromboembolic diseases is supported by the phenotype of factor XII deficient mice. More specifically, factor XII deficient mice were protected from thrombotic vascular occlusion in several thrombosis models as well as stroke models and the phenotype of the XII deficient mice was identical to XI deficient mice (Renne et al., J Exp. Med., 202:271-281 (2005); Kleinschmitz et al., J Exp. Med., 203:513-518 (2006)). The fact that factor XI is downstream from factor XIIa, combined with the identical phenotype of the XII and XI deficient mice suggest that the contact activation system could play a major role in factor XI activation in vivo.

Plasma kallikrein is a zymogen of a trypsin-like serine protease and is present in plasma. The gene structure is similar to that of factor XI. Overall, the amino acid sequence of plasma kallikrein has 58% homology to factor XI. Proteolytic activation by factor XIIa at an internal I 389-R390 bond yields a heavy chain (371 amino acids) and a light chain (248 amino acids). The active site of plasma kallikrein is contained in the light chain. The light chain of plasma kallikrein reacts with protease 15 inhibitors, including alpha 2 macroglobulin and Cl-inhibitor. Interestingly, heparin significantly accelerates the inhibition of plasma kallikrein by antithrombin III in the presence of high molecular weight kininogen (HMWK). In blood, the majority of plasma kallikrein circulates in complex with HMWK. Plasma kallikrein cleaves HMWK to liberate bradykinin. Bradykinin release results in increase of vascular permeability and vasodilation (for review, Coleman, R., "Contact Activation Pathway", Hemostasis and Thrombosis, pp. 103-122, Lippincott Williams & Wilkins (2001); Schmaier A.H., "Contact

Activation", Thrombosis and Hemorrhage, pp. 105-128 (1998)).

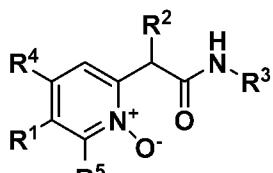

Patients presenting genetic deficiency on C1-esterase inhibitor suffer from hereditary angioedema (HAE), a lifelong disease that results in intermittent swelling throughout the body, including the hands, feet, face, throat, genitals and gastrointestinal tract. Analysis of blisters 5 arising from acute episodes have been shown to contain high levels of plasma kallikrein, and treatment with a protein-based reversible plasma kallikrein inhibitor, Ecallantide (Kalbitor), has been approved by the FDA for the treatment of acute attacks of HAE (Schneider, L, *et al.*, J.Allergy Clin.Immunol., 120: p.416 (2007)).

Additionally, the plasma kallikrein-kinin system is abnormally abundant in patients 10 diagnosed with advanced diabetic macular edema (DME). Recent publications have shown that plasma kallikrein contributes to observed retinal vascular leakage and dysfunction in diabetic rodent models (A. Clermont, *et al.*, Diabetes, 60:1590 (2011)), and that treatment with a small molecule plasma kallikrein inhibitor ameliorated the observed retinal vascular permeability and other abnormalities related to retinal blood flow.

15 Factor XIa inhibitor compounds are described in WO2014160592, WO2013022814, WO 2013022814, WO 2013022818, WO 2013055984, WO2013056034, WO2013056060, WO2013118805 . WO2013093484.WO2002042273, WO2002037937, WO2002060894, WO2003015715, WO2004002405, US20040180855, WO2004080971, WO2004094372, US20050228000, US20050282805, WO2005123680, US20090036438, 20 US20120088758, US20060074103, WO2006062972, WO2006076246, US20060154915, US20090062287, US20060183771, WO2007070818, WO2007070816, WO2007070826, WO2008076805, WO2008157162, WO2009114677, WO2011100402, and WO2011100401.

SUMMARY OF THE INVENTION

25 The present invention relates to compounds of Formula I:


I

or pharmaceutically acceptable salts thereof. The compounds of Formula I are selective Factor 30 XIa inhibitors or dual inhibitors of Factor XIa and plasma kallikrein, and as such may be useful in the treatment, inhibition or amelioration of one or more disease states that could benefit from

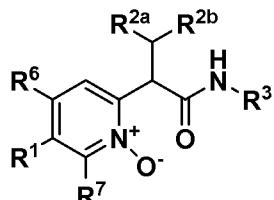
inhibition of Factor XIa or plasma kallikrein, including thromboses, embolisms, hypercoagulability or fibrotic changes. The compounds of this invention could further be used in combination with other therapeutically effective agents, including but not limited to, other drugs useful for the treatment of thromboses, embolisms, hypercoagulability or fibrotic changes. The invention furthermore relates to processes for preparing compounds of Formula I, and pharmaceutical compositions which comprise compounds of Formula I.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compounds of Formula I:

10 \mathbf{R}^5
I

wherein \mathbf{R}^1 is aryl, heteroaryl, C_{3-6} cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, \mathbf{R}^4 , OR^4 , $(\text{C}=\text{O})\mathbf{R}^4$, $(\text{C}=\text{O})\text{OR}^4$, $\text{NR}^4\mathbf{R}^5$, $(\text{C}_{1-3}\text{ alkyl})\text{NR}^4\mathbf{R}^5$, $\text{NH}(\text{C}=\text{O})\mathbf{R}^4$, $\text{NH}(\text{C}=\text{O})\text{OR}^4$, $\text{C}(\text{NH})\text{NR}^4\mathbf{R}^5$, C_{3-6} cycloalkyl and heteroaryl (which is optionally substituted with halo, cyano, $(\text{C}=\text{O})\text{NR}^4\mathbf{R}^5$ or \mathbf{R}^4);
15 \mathbf{R}^2 is hydrogen, hydroxy or $\text{CH}(\mathbf{R}^{2a})(\mathbf{R}^{2b})$;
 \mathbf{R}^{2a} is C_{1-6} alkyl, aryl, heteroaryl, C_{3-6} cycloalkyl or heteroalkyl, wherein said alkyl group is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano, and wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, \mathbf{R}^4 and OR^4 ;
20 \mathbf{R}^{2b} is hydrogen or C_{1-6} alkyl, which is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano;
25 \mathbf{R}^3 is aryl, heteroaryl, C_{3-10} cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, \mathbf{R}^4 , OR^4 , $(\text{C}=\text{O})\mathbf{R}^4$, $(\text{C}=\text{O})\text{OR}^4$, $\text{NR}^4\mathbf{R}^5$, $\text{NH}(\text{C}=\text{O})\mathbf{R}^4$, $\text{NH}(\text{C}=\text{O})\text{OR}^4$, $\text{C}(\text{NH})\text{NR}^4\mathbf{R}^5$ and heteroaryl;
 \mathbf{R}^4 is hydrogen or C_{1-6} alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;
30 \mathbf{R}^5 is hydrogen or C_{1-6} alkyl, which is optionally substituted with one to three groups


independently selected from the group consisting of halo and hydroxy;

R⁶ is hydrogen, cyano, halo, R⁴ or OR⁴;

R⁷ is hydrogen, cyano, halo, R⁴ or OR⁴;

or a pharmaceutically acceptable salt thereof.

5 An embodiment of the present invention relates to compounds of Formula Ia:

Ia

wherein R¹ is aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents

10 independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, (C₁₋₃ alkyl)NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵, C₃₋₆ cycloalkyl and heteroaryl (which is optionally substituted with R⁴);

R^{2a} is C₁₋₆ alkyl, aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said alkyl group is optionally substituted with one to three substituents independently selected from the group

15 consisting of halo, hydroxy and cyano, and wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴ and OR⁴;

R^{2b} is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano;

20 R³ is aryl, heteroaryl, C₃₋₁₀ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵ and heteroaryl;

R⁴ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups

25 independently selected from the group consisting of halo and hydroxy;

R⁵ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;

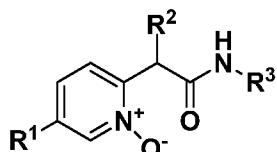
R⁶ is hydrogen, halo, R⁴ or OR⁴;

R⁷ is hydrogen, halo, R⁴ or OR⁴;

30 or a pharmaceutically acceptable salt thereof.

In an embodiment of the invention, R¹ is aryl, which optionally is substituted with one to three substituents independently selected from the group consisting of halo, C₃₋₆ cycloalkyl and heteroaryl (which is optionally substituted with R⁴). In a class of the embodiment, R¹ is phenyl, which optionally is substituted with one to three substituents independently selected from the group consisting of halo, C₃₋₆ cycloalkyl, tetrazolyl, oxazolyl, triazolyl, thiazolyl, pyridinyl, thiadiazolyl, pyrazinyl and pyrazolyl. In a subclass of the embodiment, R¹ is phenyl, which optionally is substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, C₃₋₆ cycloalkyl and tetrazolyl.

5 independently selected from the group consisting of halo, C₃₋₆ cycloalkyl, tetrazolyl, oxazolyl, triazolyl, thiazolyl, pyridinyl, thiadiazolyl, pyrazinyl and pyrazolyl. In a subclass of the embodiment, R¹ is phenyl, which optionally is substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, C₃₋₆ cycloalkyl and tetrazolyl.


In an embodiment of the invention, R² is hydrogen. In another embodiment of the invention, R² is CH(R^{2a})(R^{2b}).

In an embodiment of the invention, R^{2a} is aryl, which optionally is substituted with one to three halo. In a class of the embodiment, R^{2a} is phenyl. In another class of the embodiment, R^{2a} is phenyl which is substituted with halo. In another embodiment of the embodiment, R^{2a} is cyclopropyl.

15 In an embodiment of the invention, R^{2b} is hydrogen.

In an embodiment of the invention, R³ is aryl or heteroaryl, wherein said aryl and heteroaryl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, R⁴ and (C=O)OR⁴. In a class of the embodiment, R³ is aryl which is optionally substituted (C=O)OR⁴. In another class of the embodiment, R³ is heteroaryl.

20 The present invention also relates to compounds of the formula:

wherein R¹ is aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵, C₃₋₆ cycloalkyl and heteroaryl which is optionally substituted with R⁴;

25 R² is hydrogen or CH(R^{2a})(R^{2b});

R^{2a} is C₁₋₆ alkyl, aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said alkyl group is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano, and wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently

selected from the group consisting of halo, nitro, cyano, oxo, R⁴ and OR⁴;
R^{2b} is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy and cyano;
R³ is aryl, heteroaryl, C₃₋₁₀ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl
5 and heterocyclyl groups are optionally substituted with one to three substituents independently
selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴,
NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵ and heteroaryl;
R⁴ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups
independently selected from the group consisting of halo and hydroxy,
10 R⁵ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups
independently selected from the group consisting of halo and hydroxy,
or a pharmaceutically acceptable salt thereof.

Reference to the preferred classes and subclasses set forth above is meant to
include all combinations of particular and preferred groups unless stated otherwise.

15 Specific embodiments of the present invention include, but are not limited to the
compounds identified herein as Examples 1 to 59, or pharmaceutically acceptable salts thereof.

Also included within the scope of the present invention is a pharmaceutical
composition which is comprised of a compound of Formula I or Formula Ia as described above
and a pharmaceutically acceptable carrier. The invention is also contemplated to encompass a
20 pharmaceutical composition which is comprised of a pharmaceutically acceptable carrier and any
of the compounds specifically disclosed in the present application. These and other aspects of
the invention will be apparent from the teachings contained herein.

The invention also includes compositions for inhibiting loss of blood platelets,
inhibiting formation of blood platelet aggregates, inhibiting formation of fibrin, inhibiting
25 thrombus formation, inhibiting embolus formation, and treating inflammatory disorders in a
mammal, comprising a compound of the invention in a pharmaceutically acceptable carrier.
These compositions may optionally include anticoagulants, antiplatelet agents, and thrombolytic
agents. The compositions can be added to blood, blood products, or mammalian organs in order
to effect the desired inhibitions.

30 The invention also includes compositions for preventing or treating unstable
angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation,
thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation,
ocular build up of fibrin, and reocclusion or restenosis of recanalized vessels, in a mammal,
comprising a compound of the invention in a pharmaceutically acceptable carrier. These

compositions may optionally include anticoagulants, antiplatelet agents, and thrombolytic agents.

The invention also includes a method for reducing the thrombogenicity of a surface in a mammal by attaching to the surface, either covalently or noncovalently, a compound of the invention.

Compounds of the invention are Factor XIa inhibitors and may have therapeutic value in, for example, preventing coronary artery disease. The compounds are selective Factor XIa inhibitors or dual inhibitors of Factor XIa and plasma kallikrein.

The compounds of the present invention may be administered in the form of a pharmaceutically acceptable salt. The term "pharmaceutically acceptable salt" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts of basic compounds encompassed within the term "pharmaceutically acceptable salt" refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid. Representative salts of basic compounds of the present invention include, but are not limited to, the following: acetate, ascorbate, adipate, alginate, aspirate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, camphorate, camphorsulfonate, camsylate, carbonate, chloride, clavulanate, citrate, cyclopentane propionate, diethylacetic, digluconate, dihydrochloride, dodecylsulfonate, edetate, edisylate, estolate, esylate, ethanesulfonate, formic, fumarate, gluceptate, glucoheptanoate, gluconate, glutamate, glycerophosphate, glycolylarsanilate, hemisulfate, heptanoate, hexanoate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, 2-hydroxyethanesulfonate, hydroxynaphthoate, iodide, isonicotinic, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, methanesulfonate, mucate, 2-naphthalenesulfonate, napsylate, nicotinate, nitrate, N-methylglucamine ammonium salt, oleate, oxalate, pamoate (embonate), palmitate, pantothenate, pectinate, persulfate, phosphate/diphosphate, pimelic, phenylpropionic, polygalacturonate, propionate, salicylate, stearate, sulfate, subacetate, succinate, tannate, tartrate, teoclate, thiocyanate, tosylate, triethiodide, trifluoroacetate, undeconate, valerate and the like. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof include, but are not limited to, salts derived from inorganic bases including aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, mangamous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable

organic non-toxic bases include salts of primary, secondary, and *tertiary* amines, cyclic amines, dicyclohexyl amines and basic ion-exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, 5 glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like. Also, included are the basic 10 nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.

These salts can be obtained by known methods, for example, by mixing a compound of the present invention with an equivalent amount and a solution containing a 15 desired acid, base, or the like, and then collecting the desired salt by filtering the salt or distilling off the solvent. The compounds of the present invention and salts thereof may form solvates with a solvent such as water, ethanol, or glycerol. The compounds of the present invention may form an acid addition salt and a salt with a base at the same time according to the type of substituent of the side chain.

The present invention encompasses all stereoisomeric forms of the compounds of Formula I and Formula Ia. Unless otherwise noted, centers of asymmetry that are present in the compounds of Formula I and Formula Ia can all independently of one another have (R) 20 configuration or (S) configuration. When bonds to the chiral carbon are depicted as straight lines in the structural Formulas of the invention, it is understood that both the (R) and (S) 25 configurations of the chiral carbon, and hence both enantiomers and mixtures thereof, are embraced within the Formula. Similarly, when a compound name is recited without a chiral designation for a chiral carbon, it is understood that both the (R) and (S) configurations of the chiral carbon, and hence individual enantiomers and mixtures thereof, are embraced by the 30 name. The production of specific stereoisomers or mixtures thereof may be identified in the Examples where such stereoisomers or mixtures were obtained, but this in no way limits the inclusion of all stereoisomers and mixtures thereof from being within the scope of this invention.

The invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios. Thus, enantiomers are a subject of the invention in enantiomerically pure form, both as

levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios. In the case of a cis/trans isomerism the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios. The preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture 5 by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis. Optionally a derivatization can be carried out before a separation of stereoisomers. The separation of a mixture of stereoisomers can be carried out at an intermediate step during the synthesis of a compound of Formula I or Formula Ia or it can be done on a final racemic product. 10 Absolute stereochemistry may be determined by X-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing a stereogenic center of known configuration. Where compounds of this invention are capable of tautomerization, all individual tautomers as well as mixtures thereof are included in the scope of this invention. The present invention includes all such isomers, as well as salts, solvates 15 (including hydrates) and solvated salts of such racemates, enantiomers, diastereomers and tautomers and mixtures thereof.

In the compounds of the invention, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic 20 mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the specifically and generically described compounds. For example, different isotopic forms of hydrogen (H) include protium (¹H) and deuterium (²H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing *in vivo* half-life or reducing dosage 25 requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the general process schemes and examples herein using appropriate isotopically-enriched reagents and/or intermediates.

30 When any variable (e.g. R⁴, etc.) occurs more than one time in any constituent, its definition on each occurrence is independent at every other occurrence. Also, combinations of substituents and variables are permissible only if such combinations result in stable compounds. Lines drawn into the ring systems from substituents represent that the indicated bond may be

attached to any of the substitutable ring atoms. If the ring system is bicyclic, it is intended that the bond be attached to any of the suitable atoms on either ring of the bicyclic moiety.

It is understood that one or more silicon (Si) atoms can be incorporated into the compounds of the instant invention in place of one or more carbon atoms by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials. Carbon and silicon differ in their covalent radius leading to differences in bond distance and the steric arrangement when comparing analogous C-element and Si-element bonds. These differences lead to subtle changes in the size and shape of silicon-containing compounds when compared to carbon. One of ordinary skill in the art would understand that size and shape differences can lead to subtle or dramatic changes in potency, solubility, lack of off-target activity, packaging properties, and so on. (Diass, J. O. *et al.* *Organometallics* (2006) 5:1188-1198; Showell, G.A. *et al.* *Bioorganic & Medicinal Chemistry Letters* (2006) 16:2555-2558).

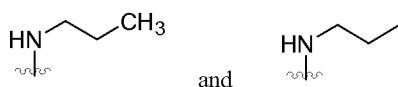
It is understood that substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results. The phrase “optionally substituted” (with one or more substituents) should be understood as meaning that the group in question is either unsubstituted or may be substituted with one or more substituents.

Furthermore, compounds of the present invention may exist in amorphous form and/or one or more crystalline forms, and as such all amorphous and crystalline forms and mixtures thereof of the compounds of Formula I and Formula Ia are intended to be included within the scope of the present invention. In addition, some of the compounds of the instant invention may form solvates with water (i.e., a hydrate) or common organic solvents. Such solvates and hydrates, particularly the pharmaceutically acceptable solvates and hydrates, of the instant compounds are likewise encompassed within the scope of this invention, along with unsolvated and anhydrous forms.

Reference to the compounds of this invention as those of a specific formula or embodiment, e.g., Formula I or Formula Ia or any other generic structural formula or specific compound described or claimed herein, is intended to encompass the specific compound or compounds falling within the scope of the formula or embodiment, including salts thereof,

particularly pharmaceutically acceptable salts, solvates of such compounds and solvated salt forms thereof, where such forms are possible unless specified otherwise.

Also, in the case of a carboxylic acid (-COOH) or alcohol group being present in the compounds of the present invention, pharmaceutically acceptable esters of carboxylic acid derivatives, such as methyl, ethyl, or pivaloyloxymethyl, or acyl derivatives of alcohols, such as *O*-acetyl, *O*-pivaloyl, *O*-benzoyl, and *O*-aminoacyl, can be employed. Included are those esters and acyl groups known in the art for modifying the solubility or hydrolysis characteristics for use as sustained-release or prodrug formulations.


If the compounds of Formula I or Formula Ia simultaneously contain acidic and basic groups in the molecule the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions). Salts can be obtained from the compounds of Formula I and Formula Ia by customary methods which are known to the person skilled in the art, for example by combination with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange from other salts. The present invention also includes all salts of the compounds of Formula I and Formula Ia which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of pharmaceutically acceptable salts.

Any pharmaceutically acceptable pro-drug modification of a compound of this invention which results in conversion in vivo to a compound within the scope of this invention is also within the scope of this invention. For example, esters can optionally be made by esterification of an available carboxylic acid group or by formation of an ester on an available hydroxy group in a compound. Similarly, labile amides can be made. Pharmaceutically acceptable esters or amides of the compounds of this invention may be prepared to act as pro-drugs which can be hydrolyzed back to an acid (or -COO⁻ depending on the pH of the fluid or tissue where conversion takes place) or hydroxy form particularly in vivo and as such are encompassed within the scope of this invention. Examples of pharmaceutically acceptable pro-drug modifications include, but are not limited to, -C₁₋₆alkyl esters and -C₁₋₆alkyl substituted with phenyl esters.

Accordingly, the compounds within the generic structural formulas, embodiments and specific compounds described and claimed herein encompass salts, all possible stereoisomers and tautomers, physical forms (e.g., amorphous and crystalline forms), solvate and hydrate forms thereof and any combination of these forms, as well as the salts thereof, pro-drug forms thereof, and salts of pro-drug forms thereof, where such forms are possible unless specified otherwise.

Except where noted herein, the term "alkyl" is intended to include both branched- and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. Commonly used abbreviations for alkyl groups are used throughout the specification, e.g. methyl, may be represented by conventional abbreviations including "Me" or CH₃ or a symbol

5 that is an extended bond as the terminal group, e.g. "Σ—", ethyl may be represented by "Et" or CH₂CH₃, propyl may be represented by "Pr" or CH₂CH₂CH₃, butyl may be represented by "Bu" or CH₂CH₂CH₂CH₃, etc. "C₁₋₄ alkyl" (or "C_{1-C₄} alkyl") for example, means linear or branched chain alkyl groups, including all isomers, having the specified number of carbon atoms. For example, the structures

have equivalent meanings. C₁₋₄ alkyl includes n-, iso-, sec- and t-butyl, n- and isopropyl, ethyl and methyl. If no number is specified, 1-4 carbon atoms are intended for linear or branched alkyl groups.

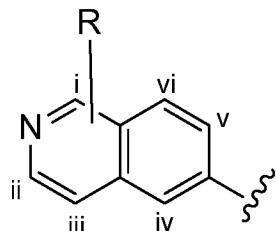
15 Except where noted herein, "alkanol" is intended to include aliphatic alcohols having the specified number of carbon atoms, such as methanol, ethanol, propanol, etc., where the -OH group is attached at any aliphatic carbon, e.g., propan-1-ol, propan-2-ol, etc.

20 Except where noted, the term "cycloalkyl" means a monocyclic or bicyclic saturated aliphatic hydrocarbon group having the specified number of carbon atoms, and can include bridged and fused systems. For example, "cycloalkyl" includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[2.2.2]octanyl, and so on.

Except where noted, the term "halogen" or "halo" means fluorine, chlorine, bromine or iodine.

25 Except where noted, the term "heteroaryl", as used herein, represents a stable monocyclic, bicyclic or tricyclic ring of up to 10 atoms in each ring, wherein at least one ring is aromatic, and at least one ring contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S. Heteroaryl can include bicyclic fused ring systems, with at least one ring contains from 1 to 4 heteroatoms selected from the group consisting of O, N and S, and wherein one ring is aromatic and one is saturated. Heteroaryl groups within the scope of this definition include but are not limited to: benzimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridyl, pyrimidinyl,

5 pyrrolyl, quinazolinyl, quinolyl, quinoxaliny, tetrazolyl, tetrazolopyridyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, dihydrobenzimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydroindolyl, dihydroquinoliny, methylenedioxybenzene, benzothiazolyl, benzothienyl, quinolinyl, isoquinolinyl, oxazolyl, tetra-hydroquinoline and 3-oxo-3,4-dihydro-2Nbenzo[b][1,4]thiazine. If the heteroaryl contains nitrogen atoms, it is understood that the corresponding N-oxides thereof are also encompassed by this definition.


10 Except where noted, the term "heterocycle" or "heterocyclyl" as used herein is intended to mean a 5- to 10-membered nonaromatic ring, unless otherwise specified, containing from 1 to 4 heteroatoms selected from the group consisting of O, N, S, SO, or SO₂ and includes bicyclic groups. "Heterocyclyl" therefore includes, but is not limited to the following: piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, dihydropiperidinyl, tetrahydrothiophenyl and the like. If the heterocycle contains a nitrogen, it is understood that the corresponding N-oxides thereof are also encompassed by this definition.

15 Except where noted, the term "aryl" is intended to mean any stable monocyclic or bicyclic carbon ring of up to 12 atoms in each ring, wherein at least one ring is aromatic.

Examples of such aryl elements include phenyl, naphthyl, tetrahydronaphthyl and indanyl.

"Celite®" (Fluka) diatomite is diatomaceous earth, and can be referred to as "celite".

20 Except where noted herein, structures containing substituent variables such as variable "R" below:

25 which are depicted as not being attached to any one particular bicyclic ring carbon atom, represent structures in which the variable can be optionally attached to any bicyclic ring carbon atom. For example, variable R shown in the above structure can be attached to any one of 6 bicyclic ring carbon atoms i, ii, iii, iv, v or vi.

Except where noted herein, bicyclic ring systems include fused ring systems, where two rings share two atoms, and spiro ring systems, where two rings share one atom.

30 The invention also includes derivatives of the compounds of Formula I and Formula Ia, acting as prodrugs and solvates. Prodrugs, following administration to the patient, are converted in the body by normal metabolic or chemical processes, such as through hydrolysis

in the blood, to the compound of Formula 1 or Formula Ia. Such prodrugs include those that demonstrate enhanced bioavailability, tissue specificity, and/or cellular delivery, to improve drug absorption of the compound of Formula I or Formula Ia. The effect of such prodrugs may result from modification of physicochemical properties such as lipophilicity, molecular weight, charge, 5 and other physicochemical properties that determine the permeation properties of the drug.

The preparation of pharmaceutically acceptable salts from compounds of the Formula I and Formula Ia capable of salt formation, including their stereoisomeric forms is carried out in a manner known per se. With basic reagents such as hydroxides, carbonates, hydrogencarbonates, alkoxides and ammonia or organic bases, for example, trimethyl- or 10 triethylamine, ethanolamine, diethanolamine or triethanolamine, trometamol or alternatively basic amino acids, for example lysine, ornithine or arginine, the compounds of the Formula I and Formula Ia form stable alkali metal, alkaline earth metal or optionally substituted ammonium salts. If the compounds of the Formula I and Formula Ia have basic groups, stable acid addition salts can also be prepared using strong acids. For this, inorganic and organic acids such as 15 hydrochloric, hydrobromic, sulfuric, hemisulfuric, phosphoric, methanesulfonic, benzenesulfonic, p-toluenesulfonic, 4-bromobenzenesulfonic, cyclohexylamidosulfonic, trifluoromethylsulfonic, 2-hydroxyethanesulfonic, acetic, oxalic, tartaric, succinic, glycerolphosphoric, lactic, malic, adipic, citric, fumaric, maleic, gluconic, glucuronic, palmitic or trifluoroacetic acid are suitable.

20 The invention also relates to medicaments containing at least one compound of the Formula I or Formula Ia and/or of a pharmaceutically acceptable salt of the compound of the Formula I or Formula Ia and/or an optionally stereoisomeric form of the compound of the Formula I or Formula Ia or a pharmaceutically acceptable salt of the stereoisomeric form of the compound of Formula I or Formula Ia, together with a pharmaceutically suitable and 25 pharmaceutically acceptable vehicle, additive and/or other active substances and auxiliaries.

Anticoagulant therapy is indicated for the treatment and prevention of a variety of thrombotic conditions, particularly coronary artery and cerebrovascular disease. Those experienced in this field are readily aware of the circumstances requiring anticoagulant therapy. The term "patient" used herein is taken to mean mammals such as primates, humans, sheep, 30 horses, cattle, pigs, dogs, cats, rats, and mice.

Factor XIa or dual Factor XIa/plasma kallikrein inhibition are useful not only in the anticoagulant therapy of individuals having thrombotic conditions, but are useful whenever inhibition of blood coagulation is required such as to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage. Thus, the Factor

XIa or dual Factor XIa/plasma kallikrein inhibitors can be added to or contacted with any medium containing or suspected of containing thrombin and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material selected from the group consisting of vascular grafts, stents, orthopedic prosthesis, cardiac prosthesis, and 5 extracorporeal circulation systems.

Compounds of the invention may be useful for treating or preventing venous thromboembolism (e.g., obstruction or occlusion of a vein by a detached thrombus; obstruction or occlusion of a lung artery by a detached thrombus), cardiogenic thromboembolism (e.g., obstruction or occlusion of the heart by a detached thrombus), arterial thrombosis (e.g., 10 formation of a thrombus within an artery that may cause infarction of tissue supplied by the artery), atherosclerosis (e.g., arteriosclerosis characterized by irregularly distributed lipid deposits) in mammals, and for lowering the propensity of devices that come into contact with blood to clot blood.

Examples of venous thromboembolism which may be treated or prevented with 15 compounds of the invention include obstruction of a vein, obstruction of a lung artery (pulmonary embolism), deep vein thrombosis, thrombosis associated with cancer and cancer chemotherapy, thrombosis inherited with thrombophilic diseases such as Protein C deficiency, Protein S deficiency, antithrombin III deficiency, and Factor V Leiden, and thrombosis resulting 20 from acquired thrombophilic disorders such as systemic lupus erythematosus (inflammatory connective tissue disease). Also with regard to venous thromboembolism, compounds of the invention may be useful for maintaining patency of indwelling catheters.

Examples of cardiogenic thromboembolism which may be treated or prevented with compounds of the invention include thromboembolic stroke (detached thrombus causing 25 neurological affliction related to impaired cerebral blood supply), cardiogenic thromboembolism associated with atrial fibrillation (rapid, irregular twitching of upper heart chamber muscular fibrils), cardiogenic thromboembolism associated with prosthetic heart valves such as mechanical heart valves, and cardiogenic thromboembolism associated with heart disease.

Examples of arterial thrombosis include unstable angina (severe constrictive pain 30 in chest of coronary origin), myocardial infarction (heart muscle cell death resulting from insufficient blood supply), ischemic heart disease (local anemia due to obstruction (such as by arterial narrowing) of blood supply), reocclusion during or after percutaneous transluminal coronary angioplasty, restenosis after percutaneous transluminal coronary angioplasty, occlusion of coronary artery bypass grafts, and occlusive cerebrovascular disease. Also with regard to

arterial thrombosis, compounds of the invention may be useful for maintaining patency in arteriovenous cannulas.

Examples of atherosclerosis include arteriosclerosis.

5 The compounds of the invention may also be kallikrein inhibitors and especially useful for treatment of hereditary angioedema.

Examples of devices that come into contact with blood include vascular grafts, stents, orthopedic prosthesis, cardiac prosthesis, and extracorporeal circulation systems.

10 The medicaments according to the invention can be administered by oral, inhalative, rectal or transdermal administration or by subcutaneous, intraarticular, intraperitoneal or intravenous injection. Oral administration is preferred. Coating of stents with compounds of the Formula (I) and other surfaces which come into contact with blood in the body is possible.

15 The invention also relates to a process for the production of a medicament, which comprises bringing at least one compound of the Formula (I) into a suitable administration form using a pharmaceutically suitable and pharmaceutically acceptable carrier and optionally further suitable active substances, additives or auxiliaries.

20 Suitable solid or galenical preparation forms are, for example, granules, powders, coated tablets, tablets, (micro)capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and preparations having prolonged release of active substance, in whose preparation customary excipients such as vehicles, disintegrants, binders, coating agents, swelling agents, glidants or lubricants, flavorings, sweeteners and solubilizers are used.

25 Frequently used auxiliaries which may be mentioned are magnesium carbonate, titanium dioxide, lactose, mannitol and other sugars, talc, lactose, gelatin, starch, cellulose and its derivatives, animal and plant oils such as cod liver oil, sunflower, peanut or sesame oil, polyethylene glycol and solvents such as, for example, sterile water and mono- or polyhydric alcohols such as glycerol.

30 The dosage regimen utilizing the Factor XIa inhibitors or dual Factor XIa/plasma kallikrein inhibitors is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed. An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.

Oral dosages of the Factor XIa inhibitors or dual Factor XIa/plasma kallikrein inhibitors, when used for the indicated effects, will range between about 0.01 mg per kg of body

weight per day (mg/kg/day) to about 30 mg/kg/day, preferably 0.025-7.5 mg/kg/day, more preferably 0.1-2.5 mg/kg/day, and most preferably 0.1-0.5 mg/kg/day (unless specified otherwise, amounts of active ingredients are on free base basis). For example, an 80 kg patient would receive between about 0.8 mg/day and 2.4 g/day, preferably 2-600 mg/day, more

5 preferably 8-200 mg/day, and most preferably 8-40 mg/kg/day. A suitably prepared medicament for once a day administration would thus contain between 0.8 mg and 2.4 g, preferably between 2 mg and 600 mg, more preferably between 8 mg and 200 mg, and most preferably 8 mg and 40 mg, e.g., 8 mg, 10 mg, 20 mg and 40 mg. Advantageously, the Factor XIa inhibitors may be administered in divided doses of two, three, or four times daily. For administration twice a day,

10 a suitably prepared medicament would contain between 0.4 mg and 4 g, preferably between 1 mg and 300 mg, more preferably between 4 mg and 100 mg, and most preferably 4 mg and 20 mg, e.g., 4 mg, 5 mg, 10 mg and 20 mg.

Intravenously, the patient would receive the active ingredient in quantities sufficient to deliver between 0.025-7.5 mg/kg/day, preferably 0.1-2.5 mg/kg/day, and more preferably 0.1-0.5 mg/kg/day. Such quantities may be administered in a number of suitable ways, e.g. large volumes of low concentrations of active ingredient during one extended period of time or several times a day, low volumes of high concentrations of active ingredient during a short period of time, e.g. once a day. Typically, a conventional intravenous formulation may be prepared which contains a concentration of active ingredient of between about 0.01-1.0 mg/mL, e.g. 0.1 mg/mL, 0.3 mg/mL, and 0.6 mg/mL, and administered in amounts per day of between 0.01 mL/kg patient weight and 10.0 mL/kg patient weight, e.g. 0.1 mL/kg, 0.2 mL/kg, 0.5 mL/kg. In one example, an 80 kg patient, receiving 8 mL twice a day of an intravenous formulation having a concentration of active ingredient of 0.5 mg/mL, receives 8 mg of active ingredient per day. Glucuronic acid, L-lactic acid, acetic acid, citric acid or any pharmaceutically acceptable acid/conjugate base with reasonable buffering capacity in the pH range acceptable for intravenous administration may be used as buffers. The choice of appropriate buffer and pH of a formulation, depending on solubility of the drug to be administered, is readily made by a person having ordinary skill in the art.

Compounds of the Formula I and Formula Ia can be administered both as a

30 monotherapy and in combination with other therapeutic agents, including antithrombotics (anticoagulants and platelet aggregation inhibitors), thrombolytics (plasminogen activators), other profibrinolytically active substances, hypotensives, blood sugar regulators, lipid-lowering agents and antiarrhythmics.

The Factor XIa inhibitors or dual Factor XIa/plasma kallikrein inhibitors can also be co-administered with suitable anticoagulants, including, but not limited to, other Factor XIa inhibitors, thrombin inhibitors, thrombin receptor antagonists, factor VIIa inhibitors, factor Xa inhibitors, factor IXa inhibitors, factor XIIa inhibitors, adenosine diphosphate antiplatelet agents (e.g., P2Y12 antagonists), fibrinogen receptor antagonists (e.g. to treat or prevent unstable angina or to prevent reocclusion after angioplasty and restenosis), other anticoagulants such as aspirin, and thrombolytic agents such as plasminogen activators or streptokinase to achieve synergistic effects in the treatment of various vascular pathologies. Such anticoagulants include, for example, apixaban, dabigatran, cangrelor, ticagrelor, vorapaxar, clopidogrel, edoxaban, 10 mipomersen, prasugrel, rivaroxaban, and semuloparin. For example, patients suffering from coronary artery disease, and patients subjected to angioplasty procedures, would benefit from coadministration of fibrinogen receptor antagonists and thrombin inhibitors. Factor XIa inhibitors may be administered first following thrombus formation, and tissue plasminogen activator or other plasminogen activator is administered thereafter.

15 Alternatively or additionally, one or more additional pharmacologically active agents may be administered in combination with a compound of the invention. The additional active agent (or agents) is intended to mean a pharmaceutically active agent (or agents) that is active in the body, including pro-drugs that convert to pharmaceutically active form after administration, which is different from the compound of the invention, and also includes free-acid, free-base and pharmaceutically acceptable salts of said additional active agents when such forms are sold commercially or are otherwise chemically possible. Generally, any suitable 20 additional active agent or agents, including but not limited to anti-hypertensive agents, additional diuretics, anti-atherosclerotic agents such as a lipid modifying compound, anti-diabetic agents and/or anti-obesity agents may be used in any combination with the compound of the invention 25 in a single dosage formulation (a fixed dose drug combination), or may be administered to the patient in one or more separate dosage formulations which allows for concurrent or sequential administration of the active agents (co-administration of the separate active agents). Examples 30 of additional active agents which may be employed include but are not limited to angiotensin converting enzyme inhibitors (e.g., alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, moveltipril, perindopril, quinapril, ramipril, spirapril, temocapril, or trandolapril); angiotensin II receptor antagonists also known as 35 angiotensin receptor blockers or ARBs, which may be in free-base, free-acid, salt or pro-drug form, such as azilsartan, e.g., azilsartan medoxomil potassium (EDARBI®), candesartan, e.g., candesartan cilexetil (ATACAND®), eprosartan, e.g., eprosartan mesylate (TEVETAN®),

irbesartan (AVAPRO®), losartan, e.g., losartan potassium (COZAAR®), olmesartan, e.g., olmesartan medoximil (BENICAR®), telmisartan (MICARDIS®), valsartan (DIOVAN®), and any of these drugs used in combination with a thiazide-like diuretic such as hydrochlorothiazide (e.g., HYZAAR®, DIOVAN HCT®, ATACAND HCT®, etc.); potassium sparing diuretics such as 5 amiloride HCl, spironolactone, epleranone, triamterene, each with or without HCTZ; neutral endopeptidase inhibitors (e.g., thiorphan and phosphoramidon); aldosterone antagonists; aldosterone synthase inhibitors; renin inhibitors; enalkrein; RO 42-5892; A 65317; CP 80794; ES 1005; ES 8891; SQ 34017; aliskiren (2(S),4(S),5(S),7(S)-N-(2-carbamoyl-2-methylpropyl)-5-10 amino-4-hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)-phenyl]-octanamid hemifumarate) SPP600, SPP630 and SPP635); endothelin receptor antagonists; vasodilators (e.g. nitroprusside); calcium channel blockers (e.g., amlodipine, nifedipine, verapamil, diltiazem, , felodipine, gallopamil, niludipine, nimodipine, nicardipine); potassium channel activators (e.g., 15 nicorandil, pinacidil, cromakalim, minoxidil, aprilkalim, loprazolam); sympatholitics; beta-adrenergic blocking drugs (e.g., acebutolol, atenolol, betaxolol, bisoprolol, carvedilol, metoprolol, metoprolol tartate, nadolol, propranolol, sotalol, timolol); alpha adrenergic blocking 20 drugs (e.g., doxazocin, prazocin or alpha methyldopa); central alpha adrenergic agonists; peripheral vasodilators (e.g. hydralazine); lipid lowering agents, e.g., HMG-CoA reductase inhibitors such as simvastatin and lovastatin which are marketed as ZOCOR® and MEVACOR® in lactone pro-drug form and function as inhibitors after administration, and pharmaceutically acceptable salts of dihydroxy open ring acid HMG-CoA reductase inhibitors such as atorvastatin (particularly the calcium salt sold in LIPITOR®), rosuvastatin (particularly the calcium salt sold in CRESTOR®), pravastatin (particularly the sodium salt sold in PRAVACHOL®), and 25 fluvastatin (particularly the sodium salt sold in LESCOL®); a cholesterol absorption inhibitor such as ezetimibe (ZETIA®), and ezetimibe in combination with any other lipid lowering agents such as the HMG-CoA reductase inhibitors noted above and particularly with simvastatin (VYTORIN®) or with atorvastatin calcium; niacin in immediate-release or controlled release forms, and particularly niacin in combination with a DP antagonist such as laropiprant and/or with an HMG-CoA reductase inhibitor; niacin receptor agonists such as acipimox and acifran, as 30 well as niacin receptor partial agonists; metabolic altering agents including insulin sensitizing agents and related compounds for the treatment of diabetes such as biguanides (e.g., metformin), meglitinides (e.g., repaglinide, nateglinide), sulfonylureas (e.g., chlorpropamide, glimepiride, glipizide, glyburide, tolazamide, tolbutamide), thiazolidinediones also referred to as glitazones (e.g., pioglitazone, rosiglitazone), alpha glucosidase inhibitors (e.g., acarbose, miglitol),

dipeptidyl peptidase inhibitors, (e.g., sitagliptin (JANUVIA®), alogliptin, vildagliptin, saxagliptin, linagliptin, dutogliptin, gemigliptin), ergot alkaloids (e.g., bromocriptine), combination medications such as JANUMET® (sitagliptin with metformin), and injectable diabetes medications such as exenatide and pramlintide acetate; or with other drugs beneficial for
5 the prevention or the treatment of the above-mentioned diseases including but not limited to diazoxide; and including the free-acid, free-base, and pharmaceutically acceptable salt forms, pro-drug forms, e.g., esters, and salts of pro-drugs of the above medicinal agents, where chemically possible. Trademark names of pharmaceutical drugs noted above are provided for exemplification of the marketed form of the active agent(s); such pharmaceutical drugs could be
10 used in a separate dosage form for concurrent or sequential administration with a compound of the invention, or the active agent(s) therein could be used in a fixed dose drug combination including a compound of the invention.

Typical doses of Factor XIa inhibitors or Factor XIa/plasma kallikrein inhibitors of the invention in combination with other suitable anti-platelet agents, anticoagulation agents, or
15 thrombolytic agents may be the same as those doses of Factor XIa inhibitors administered without coadministration of additional anti-platelet agents, anticoagulation agents, or thrombolytic agents, or may be substantially less than those doses of thrombin inhibitors administered without coadministration of additional anti-platelet agents, anticoagulation agents, or thrombolytic agents, depending on a patient's therapeutic needs.

20 The compounds are administered to a mammal in a therapeutically effective amount. By "therapeutically effective amount" it is meant an amount of a compound of the present invention that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to treat (i.e. prevent, inhibit or ameliorate) the thromboembolic and/or inflammatory disease condition or treat the progression of the disease in a host.

25 The compounds of the invention are preferably administered alone to a mammal in a therapeutically effective amount. However, the compounds of the invention can also be administered in combination with an additional therapeutic agent, as defined below, to a mammal in a therapeutically effective amount. When administered in a combination, the combination of compounds is preferably, but not necessarily, a synergistic combination. Synergy, as described
30 for example by Chou and Talalay, *Adv. Enzyme Regul.* 1984, 22, 27-55, occurs when the effect (in this case, inhibition of the desired target) of the compounds when administered in combination is greater than the additive effect of each of the compounds when administered individually as a single agent. In general, a synergistic effect is most clearly demonstrated at suboptimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity,

increased anticoagulant effect, or some other beneficial effect of the combination compared with the individual components.

By "administered in combination" or "combination therapy" it is meant that the compound of the present invention and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.

The present invention is not limited in scope by the specific embodiments disclosed in the examples which are intended as illustrations of a few aspects of the invention and any embodiments that are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the relevant art and are intended to fall within the scope of the appended claims.

For purposes of this specification, the following abbreviations have the indicated meanings:

List of Abbreviations:

ACN = acetonitrile

DAST = diethylaminosulfur trifluoride

20 DMF = dimethylformamide

DMS = dimethyl sulfate

DCM = dichloromethane

dppf = 1,1'-bis(diphenylphosphino)ferrocene

EtOAc = ethyl acetate

25 EtOH = ethanol

RP HPLC = Reverse Phase High Pressure Liquid Chromatography

[Ir(dF-CF₃-ppy)₂(dtbbpy)]PF₆ = [4,4'-Bis(*tert*-butyl)-2,2'-bipyridine]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl]phenyl]iridium(III) hexafluorophosphate

LDA = lithium diisopropylamide

30 LHMDS = lithium hexamethyldisilazide

LiOH = lithium hydroxide

Me = methyl

mCPBA = meta-chloroperoxybenzoic acid

PCC = pyridinium chlorochromate

Ph = phenyl

rt or RT = room temperature

THF = tetrahydrofuran

Sat. = saturated

5 SFC = supercritical fluid chromatography

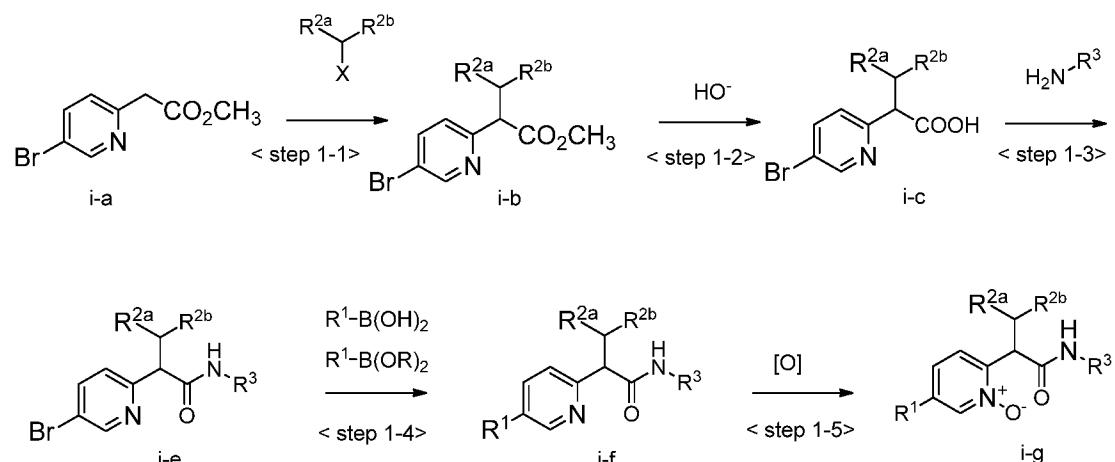
SM = Starting material

TFA = Trifluoroacetic acid

Vac = Vacuum

HATU = 2-(1H-7-Azabenzotriazol-1-yl)--1,1,3,3-tetramethyluronium hexafluorophosphate

10 Methanaminium


Also, TLC is thin layer chromatography; Ts is tosyl; UV is ultraviolet; W is watts; wt. % is percentage by weight; x g is times gravity; α_D is the specific rotation of polarized light at 589 nm; °C is degrees Celsius; % w/v is percentage in weight of the former agent relative to the volume of the latter agent.

15 LCMS conditions: column: SUPELCO Ascentis Express C18 3x100 mm, 2.7 um.

Solvent system: A - 0.05% TFA in water and B- 0.05% TFA in Acetonitrile.

Gradient condition: 10%B to 99%B in 3.5 min.

GENERIC SCHEME

20 <Step 1-1> A compound represented by formula (i-b) can be produced by allowing the commercially available (i-a) to react with a properly substituted alkylating reagent such as an alkylhalide, an alkylmethanasulfonate, or an alkyl-p-toluenesulfonate by a well-known process or a process similar to that described in published documents (For example, Hajri, Majdi; Blondelle, Clement; Martinez, Agathe; Vasse, Jean-Luc; Szymoniak, Jan Tetrahedron Letters (2013), 54(8), 1029-1031), in the presence of a base such as lithium bis(trimethylsilyl)amide

25

(LHMDS), lithium diisopropylamide (LDA), or sodium hydride in a solvent which is inactive to the reaction such as tetrahydrofuran or toluene at a temperature in the range of -78 0°C to room temperature.

<Step 1-2> A compound represented by formula (i-c) can be produced by allowing the suitably

5 substituted (i-b) to react with an inorganic or organic base such as lithium hydroxide, sodium hydroxide, or sodium *tert*-butoxide by a well-known process or a process similar to that described in published documents (For example, Huang, Hanmin; Xia, Chungu; Xie, Pan, Ger. Offen. (2013), DE 102012224021 A1 Nov 14, 2013.) in an aqueous solvent containing water and an organic co-solvent such as methanol, acetonitrile, and tetrahydrofuran.

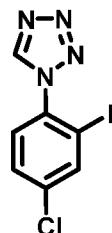
10 **<Step 1-3>** A compound represented by formula (i-e) can be produced by allowing acid (i-c) to react with an amine ($R^3\text{-NH}_2$) by a well-known or a process similar to that described in published documents (for example, Organic synthesis IV, Acids, amino acids, and peptides, pp. 191-309, 1992, Maruzen Co., Ltd.), in the presence of a condensing agent, such as 1,3-dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide

15 hydrochloride (WSC·HCl or EDC HCl), O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), benzotriazol-1-yloxy tris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent), or bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-Cl), in a solvent which is inactive to the reaction, such as a halogenated solvent, e.g., dichloromethane or chloroform; an ethereal solvent, e.g., diethyl 20 ether or tetrahydrofuran; an aromatic hydrocarbon solvent, e.g., toluene or benzene; a polar solvent, e.g., N,N-dimethylformamide; or an alcoholic solvent, e.g., methanol, ethanol, or 2-propanol; in the presence or absence of a base, such as triethylamine or N,N-diisopropylethyl amine; at a temperature in the range of 0°C to the solvent reflux temperature.

<Step 1-4> A compound represented by formula (i-f) can be produced by a method commonly

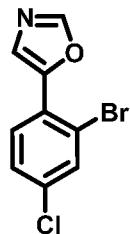
25 referred to as the Suzuki coupling reaction. Compounds of type (i-f) can be treated with an aryl- or heteroaryl-boronic acid of type $R^1\text{-B(OH)}_2$, or alternatively, an aryl- or heteroarylboronate of type $R^1\text{-B(OR)}_2$, in the presence of a suitable palladium catalyst, such as [1,1'-bis(diphenylphosphino)ferrocene]-dichloropalladium(II), or

tetrakis(triphenylphosphine)palladium (0), or the like, and a mild base, such as sodium

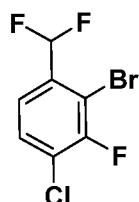

30 carbonate, sodium phosphate tribasic, or the like (*Pure Appl. Chem.* **1991**, *63*, 419-422). The reaction is usually performed in a suitable degassed aqueous mixture of inert organic solvents, such as toluene, ethanol or dioxane, at elevated temperatures, generally between 70°C and the boiling temperature of the solvent mixture, for a period of 3-24 h. Alternatively, those skilled in the art can perform the Suzuki reaction described above in a suitable vessel that enables heating

in a microwave reactor to superheated reaction temperatures that can reduce reaction times to between 1 min and 1 h. Conditions suitable for performing Suzuki reactions at room temperature have been published (for example, see: *J. Am. Chem. Soc.* **2000**, *122*, 4020-4028, and references therein).

5 <Step 1-5> A compound represented by formula (i-g) can be produced by allowing the suitably substituted pyridine amide (i-f) to react with an oxidizing reagent commonly referred to as a peroxide, such as hydrogen peroxide, meta-chloroperbenzoic acid, oxone, dimethyldioxirane, and peracitic acid in a proper solvent including water, methylene chloride and acetic acid. The reaction is usually performed at a temperature between 0 to 70°C in a time period ranging from a
10 few minutes to a few days. Such a process or processes are similar to that are described in published documents (For example, see, Deng, Lisheng; Sundriyal, Sandeep; Rubio, Valentina; Shi, Zheng-zheng; Song, Yongcheng, *Journal of Medicinal Chemistry* (2009), *52*(21), 6539-6542).


INTERMEDIATES

15 1-(4-Chloro-2-iodophenyl)-1H-tetrazole


4-Chloro-2-iodoaniline (3000 mg, 11.84 mmol) was mixed with trimethoxymethane (3800 mg, 35.5 mmol) and sodium azide (2300 mg, 35.5 mmol). The mixture was cooled to 5°C. Acetic acid (10 ml) was slowly added. The mixture was stirred at 5°C for 1 hour, then at room
20 temperature overnight. Additional trimethoxymethane (2 mL), sodium azide (1000 mg), and acetic acid (15 mL) were added. The mixture was then stirred at room temperature for another day. The mixture was concentrated, and water was added. The product was taken up with ethyl acetate, and washed with water and brine. After it was dried over anhydrous sodium sulfate, the solution was concentrated. The crude was purified by column chromatography on silica gel
25 Isolute Flash Si; 100 g prepacked, eluting with gradient 0 ~ 30% EtOAc/iso hexane to give the product.

5-(2-Bromo-4-chlorophenyl)oxazole

2-Bromo-4-chlorobenzaldehyde (3 g, 14 mmol) was mixed with tosylmethyl isocyanide (3.20 g, 16 mmol) and potassium carbonate (2.3 g, 16 mmol) in MeOH (24 ml). The resulting mixture was heated to 70°C for 7 hours. The mixture was concentrated, and water was added. The product was taken up with ethyl acetate, and washed with water and brine. After it was dried over anhydrous sodium sulfate, the solution was concentrated. The crude was purified by column chromatography on silica gel Isolute Flash Si; 100 g prepacked, eluting with gradient 0 ~ 30% EtOAc/isohexane to give the product.

2-Bromo-4-chloro-1-(difluoromethyl)-3-fluorobenzene

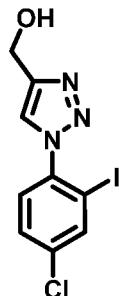
Step 1. 2-Bromo-4-chloro-3-fluorobenzoic acid A solution of 4-chloro-3-fluorobenzoic acid (2.0 g, 11.46 mmol) in THF (25 ml) was added by a syringe pump to a solution of LDA (13.18 ml, 26.4 mmol) in THF (50 ml) at -78°C over 30 min. followed by stirring at -78°C for 3h. Then, a solution of 1,2-dibromotetrachloroethane (7.5 g, 23 mmol) in THF (25 ml) was added. The reaction was run at -78°C for 30min, then it was slowly warmed up to room temperature and stirred overnight. The reaction mixture was quenched with water, and extracted with Et₂O. The aqueous was neutralized with 4N HCl in dioxane (45.8 ml, 45.8 mmol) and extracted with EtOAc. The organic phase was dried over MgSO₄, filtered and concentrated to give the title compound. MS (ESI) *m/z* 276.04 (M+H).

Step 2. (2-Bromo-4-chloro-3-fluorophenyl)methanol BH₃.DMS (2.367 ml, 4.73 mmol) was added to a solution of 2-bromo-4-chloro-3-fluorobenzoic acid (1.0 g, 3.95 mmol) in THF (30 ml) at 0°C. After the mixture was stirred at 0°C for 1h, the ice-bath was removed and the reaction was run at room temperature for 5h. Additional BH₃.DMS (2.367 ml, 4.73 mmol) was added to the reaction mixture at 0°C and it continued to stir overnight while slowly warming up to room temperature. Then, the mixture was treated with 1 N HCl (10 ml) and extracted with EtOAc (2 X 50 ml). The combined organic phase was dried over MgSO₄, filtered, concentrated and

purified by flash chromatography on a silica-gel column with 0-30 % EtOAc/hexane to give the title compound. MS (ESI) *m/z* 240.25 (M+H).

Step 3. 2-Bromo-4-chloro-3-fluorobenzaldehyde PCC (0.57 g, 2.66 mmol) was added to a solution of (2-bromo-4-chloro-3-fluorophenyl)methanol (0.58 g, 2.42 mmol) in CH₂Cl₂ (10 ml)

5 at 0°C. Then, the ice-bath was removed, and the reaction was run at room temperature for 2h.


The solvent was removed and the residue was purified by a flash chromatography on a silica-gel column with 0-20 % EtOAc/hexane to give the title compound. MS (ESI) *m/z* 238.31 (M+H).

Step 4. 2-Bromo-4-chloro-1-(difluoromethyl)-3-fluorobenzene DAST (0.31 ml, 2.37 mmol) was added to a solution of 2-bromo-4-chloro-3-fluorobenzaldehyde (0.45 g, 1.90 mmol) in

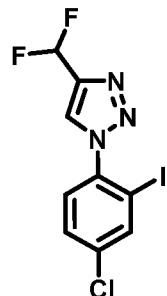
10 CH₂Cl₂ (15 ml) at 0°C. After the mixture was stirred for 1h, the ice-bath was removed and the reaction was run at room temperature for 5h. The mixture was quenched with 1N HCl. The

organic phase was separated. The aqueous was extracted with EtOAc. The combined organic phase was dried over MgSO₄, filtered, concentrated and purified by a flash chromatography on a silica-gel column with 0-20% EtOAc/hexane to give the product. MS (ESI) *m/z* 397.25 (M+H).

15 (1-(4-Chloro-2-iodophenyl)-1H-1,2,3-triazol-4-yl)methanol

Step 1. 1-Aazido-4-chloro-2-iodobenzene To a solution of 4-chloro-2-iodoaniline (5600 mg, 22 mmol) in ethyl acetate (40 ml) and water (5 mL) in a ice-water bath, was added concentrated HCl solution (12 ml, 146 mmol). The resulting mixture was stirred for 10 minutes. To this

20 solution was added a solution of sodium nitrite (2550 mg, 37.0 mmol) in water (7.5 mL) over 3 minutes. The mixture was stirred for 30 minutes. A solution of sodium azide (2400 mg, 37 mmol) in water (8 mL) was added slowly. The mixture was then stirred in an ice-water bath overnight. Water (60 mL) was added to the reaction mixture. The product was extracted with

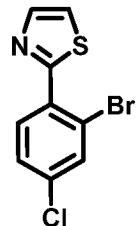

ethyl acetate. The organic layer was washed with water (2x50 mL), diluted sodium bicarbonate solution, and brine. The organic layer was separated, and dried over anhydrous sodium sulfate.

After it was concentrated, the crude was purified by column chromatography on silica gel Isolute Flash Si; 100 g prepacked, eluting with 0 ~ 50 % gradient DCM/hexane to give the product.

Step 2. (1-(4-Chloro-2-iodophenyl)-1H-1,2,3-triazol-4-yl)methanol 1-Azido-4-chloro-2-iodobenzene (1400 mg, 5 mmol) and prop-2-yn-1-ol (280 mg, 5.00 mmol) were mixed in DMF

(5 ml). Cupric sulfate (1M, 1.0 ml, 1.0 mmol), then sodium ascorbate (0.4 ml, 0.400 mmol) was added. The mixture was stirred at 50°C overnight. The mixture was poured into 100 mL of water, then stirred at room temperature overnight. The precipitate was collected by filtration, and washed with water, then dried in a vacuum overnight. MS (ESI) *m/z* 335.9 (M+H).

5 1-(4-Chloro-2-iodophenyl)-4-(difluoromethyl)-1H-1,2,3-triazole


Step 1. 1-(4-chloro-2-iodophenyl)-1H-1,2,3-triazole-4-carbaldehyde (1-(4-Chloro-2-iodophenyl)-1H-1,2,3-triazol-4-yl)methanol (500 mg, 1.490 mmol) in DCM (7 ml) was mixed with Dess-Martin periodinane (758 mg, 1.79 mmol). The mixture was stirred at room

10 temperature overnight. The reaction mixture was filtered, and the solid was washed with DCM. The solution was concentrated, and the residue was purified by column chromatography on silica gel Isolute Flash Si; 50 g prepacked, eluting with gradient 0 ~ 40% EtOAc/isohexane to give the product.

Step 2. 1-(4-Chloro-2-iodophenyl)-4-(difluoromethyl)-1H-1,2,3-triazole 1-(4-Chloro-2-

15 iodophenyl)-1H-1,2,3-triazole-4-carbaldehyde (300 mg, 0.9 mmol) in DCM (6 ml) was cooled in an ice-water bath. DAST (0.47 ml, 3.6 mmol) was added. The mixture was stirred at 0°C for 1 hour, then at room temperature for 3 hours. DCM (50 mL) was added, and the mixture was cooled to 0°C. NaHCO₃ (1M solution) was added slowly to quench the excess DAST. The organic layer was separated, and dried over anhydrous sodium sulfate. After it was filtered and 20 concentrated, the crude was purified by column chromatography on silica gel Isolute Flash Si; 50 g prepacked, eluting with gradient 0 ~ 50% DCM/hexane to give the product. MS (ESI) *m/z* 355.8 (M+H).

2-(2-Bromo-4-chlorophenyl)thiazole

Step 1. 2-Bromo-4-chlorobenzamide 2-Bromo-4-chlorobenzoic acid (3000 mg, 12.7 mmol) in toluene (30 ml) was mixed with SOCl_2 (1.4 ml, 19 mmol) and DMF (0.020 ml, 0.26 mmol). The mixture was then heated to 80°C for 1.5 hours. After it was cooled to room temperature, the mixture was concentrated to dryness. The acyl chloride intermediate was dissolved in DCM (50 ml) and added dropwise to a pre-cooled ammonium hydroxide (8.86 ml, 63.7 mmol) solution at 0°C. The mixture was stirred at room temperature for 4 hours, then concentrated by rotavapor. The product was washed with water and dried in a vacuum oven at 50°C overnight.

Step 2. 2-Bromo-4-chlorobenzothioamide 2-Bromo-4-chlorobenzamide (2 g, 8.5 mmol) in THF (40 ml) was mixed with Lawesson's reagent (4.1 g, 10 mmol). The mixture was stirred at room temperature overnight. The reaction mixture was mixed with silica gel, and concentrated to dryness. The silica gel was loaded with crude product and was connected to an 80-gram size silica gel column, and eluting with gradient 0 ~ 40 % EtOAc/iso hexane to give the product. MS (ESI) m/z 251.8 (M+H).

Step 3. 2-(2-Bromo-4-chlorophenyl)thiazole 2-Bromo-4-chlorobenzothioamide (970 mg, 3.87 mmol) in ethanol (4 ml) was mixed with bromoacetaldehyde diethyl acetal (839 mg, 4.26 mmol). The mixture was stirred at 78°C overnight. After it was cooled to room temperature, hexane was added to further precipitate the product. The product was collected by filtration, and washed with hexane. The product was dried in a vacuum oven at 50°C overnight. MS (ESI) m/z 275.8 (M+H).

20 1-(4-Chloro-2-(trimethylstannylyl)phenyl)-1H-1,2,4-triazole

Step 1. 1-(2-Bromo-4-chlorophenyl)-1H-1,2,4-triazole To a mixture of 2-bromo-4-chloro-1-fluorobenzene (2 g, 9.6 mmol) and 4H-1,2,4-triazole (0.79 g, 11.5 mmol) in DMF (20 mL) was 25 added K_2CO_3 (5.28 g, 38.2 mmol), and the mixture was stirred at 100°C for 16 h. The mixture was diluted with water (50 mL) and extracted with EtOAc (50 mL x 3). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel gradient chromatography (SiO_2 , petroleum ether: EtOAc = 10:1-1:1) to give the title compound.

30 **$^1\text{H NMR}$ (CDCl_3 , 400MHz):** δ 8.48 (s, 1H), 8.14 (s, 1H), 7.77 (s, 1H), 7.46 (d, J =1.1 Hz, 2H).

Step 2. 1-(4-Chloro-2-(trimethylstannyl)phenyl)-1H-1,2,4-triazole. To a mixture of 1-(2-bromo-4-chlorophenyl)-1H-1,2,4-triazole (100 mg, 0.39 mmol) and 1,1,1,2,2,2-hexamethyldistannane (380 mg, 1.2 mmol) in toluene (2 mL) was added $\text{Pd}(\text{Ph}_3\text{P})_4$ (89 mg, 0.077 mmol), and the resulting mixture was stirred at 90°C for 12 h. The mixture was diluted with water (50 mL) and extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative TLC (SiO_2 , petroleum ether: EtOAc = 10:1) to give the title compound.

5 $^1\text{H NMR}$ (CDCl_3 , 400MHz): δ 8.25 (s, 1H), 7.88 (s, 1H), 7.42 (d, $J=2.2$ Hz, 1H), 7.20-7.25 (m, 1H), 7.13-7.18 (m, 1H), 0.00 (s, 9H). MS (ESI) m/z 343.9 (M+H).

10 Chloro-2-(trimethylstannyl)phenyl)pyrazine

Step 1. 2-(2-Bromo-4-chlorophenyl)pyrazine. To a degassed solution of 2-bromo-4-chloro-1-iodobenzene (1.26 g, 4.0 mmol), 2-(tributylstannyl)pyrazine (1.32 g, 3.6 mmol) in DMF (20 mL) was added $\text{Pd}(\text{PPh}_3)_4$ (230 mg, 0.2 mmol) and CuI (80 mg, 0.4 mmol). Then the mixture was heated with microwave at 100°C under N_2 protection for 4 h. The reaction mixture was cooled to room temperature, then diluted with a saturated aqueous solution of KF (20 mL) and extracted with DCM (20 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate and concentrated. The residue was then purified by column chromatography on silica gel (PE/EtOAc = 100/1 to 10/1) to give the title compound.

20 $^1\text{H NMR}$ (CDCl_3 , 400MHz): δ 8.94 (br. s, 1H), 8.52 - 8.77 (m, 2H), 7.75 (br. s, 1H), 7.39 - 7.61 (m, 2H). MS (ESI) m/z 270.8 (M+H).

Step 2. 2-(4-Chloro-2-(trimethylstannyl)phenyl)pyrazine. To a mixture of 2-(2-bromo-4-chlorophenyl)pyrazine (380 mg, 1.410 mmol) and 1,1,1,2,2,2-hexamethyldistannane (924 mg, 2.82 mmol) in toluene (4 mL) was added $\text{Pd}(\text{PPh}_3)_4$ (163 mg, 0.141 mmol) and the mixture was stirred at 100°C for 12 h. The mixture was diluted with water (50 mL) and extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative TLC (SiO_2 , petroleum ether: EtOAc = 10:1) to give the title compound.

MS (ESI) m/z : 396.1 (M+ CH_3CN)

4-(4-Chloro-2-(trimethylstannylyl)phenyl)-1,2,3-thiadiazole

Step 1. (E)-ethyl 2-(1-(2-bromo-4-chlorophenyl)ethylidene)hydrazinecarboxylate. To a mixture of 1-(2-bromo-4-chlorophenyl)ethanone (1 g, 4.3 mmol) and ethyl hydrazinecarboxylate (0.54 g, 5.1 mmol) in 2-propanol (5 mL) and water (15 mL) was added HOAc (0.012 mL, 0.21 mmol) at 10°C. The mixture was stirred at 90°C for 3 h. The mixture was filtered. The filter cake was washed with water (20 mL) and dried in vacuum to give the title compound, which was used for next step without further purification. MS (ESI) *m/z* 320.8 (M+H).

Step 2. 4-(2-Bromo-4-chlorophenyl)-1,2,3-thiadiazole. A mixture of (E)-ethyl 2-(1-(2-bromo-4-chlorophenyl)ethylidene)hydrazinecarboxylate (600 mg, 1.3 mmol) in SOCl₂ (2880 μL, 39.4 mmol) was stirred at 100°C for 5 h. The mixture was concentrated. The residue was diluted with saturated NaHCO₃ (30 mL) and extracted with EtOAc (30 mL x 3). The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel gradient chromatography (SiO₂, petroleum ether: EtOAc = 500:1-100:1) to 15 give the title compound.

¹H NMR (CDCl₃, 400MHz): δ 9.01 (s, 1H), 7.94 (d, *J*=8.4 Hz, 1H), 7.76 (d, *J*=1.8 Hz, 1H), 7.46 (dd, *J*=8.4, 1.5 Hz, 1H).

Step 3. 4-(4-Chloro-2-(trimethylstannylyl)phenyl)-1,2,3-thiadiazole. To a mixture of 4-(2-bromo-4-chlorophenyl)-1,2,3-thiadiazole (100 mg, 0.363 mmol) and 1,1,1,2,2,2-hexamethyldistannane 20 (357 mg, 1.089 mmol) in toluene (2 mL) was added Pd(Ph₃P)₄ (84 mg, 0.073 mmol), and the mixture was stirred at 90°C for 12 h. The mixture was diluted with water (50 mL) and extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative TLC (SiO₂, petroleum ether: EtOAc = 10:1) to give the title compound.

25 ¹H NMR (CDCl₃, 400MHz): δ = 8.41 (s, 1H), 7.48 (d, *J*=2.2 Hz, 1H), 7.42 (d, *J*=7.9 Hz, 1H), 7.21 (dd, *J*=8.4, 2.2 Hz, 1H), 0.00 (s, 9H).

1-(4-Chloro-2-(trimethylstannylyl)phenyl)-1H-1,2,3-triazole

Step 1. 1-(2-Bromo-4-chlorophenyl)-1H-1,2,3-triazole. To a solution of 2-bromo-4-chloro-1-fluorobenzene (5 g, 24 mmol) and 2H-1,2,3-triazole (6.60 g, 95 mmol) in DMF (2 mL) was added K_2CO_3 (16.50 g, 119 mmol). The mixture was stirred at 100°C for 13 h under N_2 atmosphere. The mixture was diluted with water (10 mL) and extracted with EtOAc (10 mL x 2). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by column chromatography (SiO_2 , PE: EtOAc = 100: 1 to 3: 1) to give the title compound.

MS (ESI) m/z 260.0 (M+H).

Step 2. 1-(4-Chloro-2-(trimethylstannyl)phenyl)-1H-1,2,3-triazole. To a solution of 1-(2-bromo-4-chlorophenyl)-1H-1,2,3-triazole (300 mg, 1.16 mmol) and 1,1,1,2,2,2-hexamethyldistannane (0.602 mL, 2.90 mmol) in toluene (2 mL) was added $Pd(Ph_3P)_4$ (268 mg, 0.23 mmol). The reaction was degassed three times and refilled with N_2 and then stirred at 100°C for 2 h. The reaction was quenched with water (20 mL) and extracted with EtOAc (20 mL x 3). The combined organic layers were dried over sodium sulfate and concentrated. The residue was purified by column chromatography (SiO_2 , PE: EtOAc = 10: 1 to 5:1) to give the title compound.

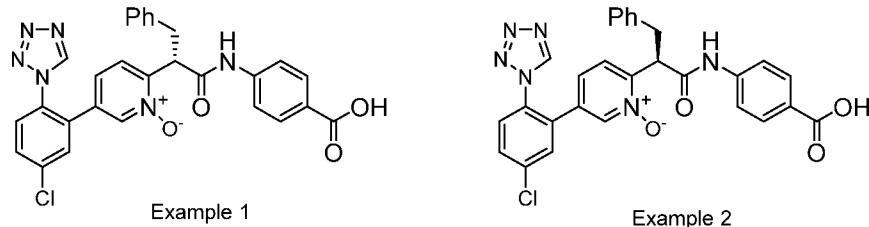
MS (ESI) m/z 343.8 (M+H).

1-(4-Chloro-2-(trimethylstannyl)phenyl)-1H-pyrazole

Step 1. 1-(2-Bromo-4-chlorophenyl)-1H-pyrazole.

To a solution of 2-bromo-4-chloro-1-fluorobenzene (1 g, 4.77 mmol), 1H-pyrazole (0.341 g, 5.01 mmol) in DMF (5 mL) was added K_2CO_3 (1.98 g, 14 mmol) and the mixture was stirred at 80°C for 16 h. The mixture was diluted with water (30 mL) and extracted with EtOAc (30 mL x 3). The combined organic layers were washed with brine (50 mL x 3), dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel gradient chromatography (SiO_2 , petroleum ether: EtOAc = 10:1-3:1) to give the title compound.

¹H NMR (CDCl₃, 400MHz): δ 7.80 (d, *J*=2.4 Hz, 1H), 7.73 (d, *J*=1.5 Hz, 1H), 7.70 (d, *J*=2.2 Hz, 1H), 7.42-7.49 (m, 1H), 7.35-7.41 (m, 1H), 6.46 (t, *J*=2.1 Hz, 1H). MS (ESI) *m/z* 258.8 (M+H).


Step 2. 1-(4-Chloro-2-(trimethylstannylyl)phenyl)-1H-pyrazole. To a mixture of 1-(2-bromo-4-chlorophenyl)-1H-pyrazole (100 mg, 0.39 mmol) and 1,1,1,2,2,2-hexamethyldistannane (382

5 mg, 1.2 mmol) in toluene (2 mL) was added Pd(Ph₃P)₄ (90 mg, 0.078 mmol), the mixture was stirred at 90°C for 12 h. The mixture was diluted with water (50 mL) and extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative TLC (SiO₂, petroleum ether: EtOAc = 10:1) to give the title compound.

10 ¹H NMR (CDCl₃, 400MHz): δ 7.66 (d, *J*=2.2 Hz, 1H), 7.38-7.49 (m, 2H), 7.12-7.24 (m, 2H), 6.29 (d, *J*=2.2 Hz, 1H), 0.00 (s, 9H).

EXAMPLES 1 & 2

(R)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (**Example 1**) and (S)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine-1-oxide (**Example 2**)

Step 1. Methyl 2-(5-bromopyridin-2-yl)-3-phenylpropanoate(**1-A**): To a solution of methyl 2-(5-bromopyridin-2-yl)acetate (1g, 4.35 mmol) in THF (20 mL) was added LHMDS (4.35 mL, 4.35 mmol, 1M) at -78°C. The mixture was stirred at -78°C for 2hrs. (Bromomethyl)benzene (0.743 20 g, 4.35 mmol) was added slowly. Next, the cold bath was removed and the mixture was stirred at room temperature for 2 hours. The reaction mixture was diluted with EtOAc, washed with water, brine and dried over Na₂SO₄. The solvent was removed in vacuo. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give product **1-A**. ¹H NMR (500 MHz, CDCl₃) δ : 3.24 (1 H, dd), 3.45 (1 H, dd), 3.66 (3 H, s), 4.09 (1 H, t), 7.12-7.09 (4 H, m), 7.24-7.12 (2H, m), 7.73 (1 H, dd), 8.65 (1 H, d).

Step 2. tert-Butyl 4-(2-(5-bromopyridin-2-yl)-3-phenylpropanamido)benzoate (**1-B**): To a solution of methyl 2-(5-bromopyridin-2-yl)-3-phenylpropanoate(**1-A**) (780 mg, 2.4 mmol) in MeOH (10 mL) was added LiOH aq. solution (2.92 mL, 2.92 mmol, 1M). The mixture was heated at 50°C for 15 min. The solvent was removed in vacuo. It was azeotroped by toluene and MeOH twice. The acid intermediate was dissolved in DMF (10 mL). *tert*-Butyl-4-aminobenzoate

(706 mg, 3.65 mmol) and HATU (1.85g, 4.87 mmol) was added. It was stirred at room temperature for 30 min. The mixture was quenched with water, and extracted with EtOAc. The organic layer was washed with brine and dried over Na_2SO_4 , and solvent was removed. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give 5 the title compound **1-B**. ^1H NMR (500 MHz, CDCl_3) δ : 1.67 (9 H, s), 3.23 (1 H, dd), 3.51 (1 H, dd), 4.16 (1 H, m), 7.04 (3 H, t), 7.22-7.17 (3 H, m), 7.60 (2H, d), 7.74 (1 H, d), 7.95 (2H, d), 8.73 (1 H, d), 9.71 (1 H, s).

Step 3. *tert*-Butyl 4-(2-(5-(5-chloro-2-nitrophenyl)pyridin-2-yl)-3-phenylpropanamido) benzoate(1-C**)**

A mixture of *tert*-butyl 4-(2-(5-bromopyridin-2-yl)-3-phenylpropanamido) benzoate (**1-B**) (0.475 g, 0.987 mmol), (5-chloro-2-nitrophenyl)boronic acid (0.397 g, 1.973 mmol), $\text{PdCl}_2(\text{dppf})\text{-CH}_2\text{Cl}_2$ adduct (0.16 g, 0.197 mmol) in THF(5 mL) was added potassium phosphate tribasic aqueous solution (2 mL, 4 mmol, 2M) in a microwave tube. The tube was sealed, degassed and refilled with N_2 . The mixture was heated at 100°C by microwave for 1 hour. The reaction mixture was diluted with water, extracted with EtOAc, and the organic layers 15 were combined and washed with brine and dried over Na_2SO_4 . Solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give product **1-C**. ^1H NMR (500 MHz, CDCl_3) δ : 1.66 (9H, s), 3.32 (1 H, dd), 3.60 (1 H, dd), 4.10 (1 H, m), 7.05 (2 H, d), 7.10-7.24 (4H,m), 7.42 (1 H, d), 7.58-7.63 (4H, m), 7.95 (2 H, d), 8.03 (1 H, d), 8.59 (1 H, s), 10.00 (1 H, s).

Step 4. *tert*-Butyl-4-(2-(5-(2-amino-5-chlorophenyl)pyridin-2-yl)-3-phenylpropanamido) benzoate (1-D**)**

A suspension of *tert*-butyl 4-(2-(5-(5-chloro-2-nitrophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate(**1-C**) (0.61 g, 1.093 mmol) in EtOH (2 mL) and EtOAc (1 mL) was added tin(II) chloride dihydrate (0.987 g, 4.37 mmol). The reaction mixture was heated at 50°C in an oil bath for 3 hours and cooled to room temperature. It was next diluted with EtOAc, 25 washed with 1N $\text{NaOH}_{\text{aq.}}$, brine, and dried over Na_2SO_4 . Solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give product **1-D**. ^1H NMR (500 MHz, CDCl_3) δ : 1.69 (9 H, s), 3.34 (1 H, dd), 3.63 (1 H, dd), 4.23 (1 H, m), 6.75 (1 H, d), 7.30-7.01 (9 H, m), 7.65 (2H, d), 7.78 (1 H, d), 7.96 (3 H, d), 8.72 (1 H, s), 10.05 (1 H, s).

Step 5. *tert*-Butyl 4-(2-(5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (1-E**)**

A reaction mixture of *tert*-butyl 4-(2-(5-(2-amino-5-chlorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (**1-D**) (0.48 g, 0.909 mmol), sodium azide (0.177 g, 2.73 mmol) and trimethoxymethane (0.289 g, 2.73 mmol) in acetic acid (9 mL) in

a flask was heated at 90°C for 3 hours. The mixture was cooled and the solvent was removed *in vacuo*. The residue was diluted with ethyl acetate, washed with water, brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give the product **1-E**. ¹H NMR (500 MHz, CDCl₃) δ: 1.67 (9H, m), 3.23 (1 H, dd), 3.53 (1 H, dd), 4.00 (1 H, dd), 7.02-6.96 (3 H, m), 7.25-7.15 (4 H), 7.65-7.56 (5 H, m), 7.95-7.93 (2 H, m), 8.36 (2 H, s), 9.79 (1 H, s).

Step 6. 2-(1-((4-(*tert*-Butoxycarbonyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (1-F)

A solution of *tert*-butyl 4-(2-(5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (**1-E**) (0.42 g, 0.723 mmol) in CH₂Cl₂ (3 mL) was added mCPBA (0.356 g, 1.446 mmol) at room temperature. It was stirred for 2 hours. The solvent was removed *in vacuo*. The residue was purified by column chromatography on silica, eluting with EtOAc/hexane to give product **1-F**. ¹H NMR (500 MHz, CDCl₃) δ: 1.71 (9H, s), 3.15 (1 H, dd), 3.70 (1 H, dd), 4.98 (1 H, t), 6.93 (1 H, dd), 7.3-7.1 (5H,m), 7.42 (1 H, d), 7.57-7.52 (4 H, m), 7.68 (1 H, dd), 7.90-7.88 (2 H, m), 8.27 (1 H, d), 8.55 (1 H, s), 10.34 (1 H, s).

Step 7. 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine-1-oxide (1-G)

To a solution of 2-(1-((4-*tert*-butoxycarbonyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (**1-F**) (300 mg, 0.502 mmol) in CH₂Cl₂ (0.5 mL) was added TFA (1 mL, 12.98 mmol). It was stirred at room temperature for 15 minutes. The solvent was removed *in vacuo*. The residue was redissolved in 1 mL of ACN and 0.5 mL of water. The solution was freeze dried to give product **1-G**. Compound **1-G** was resolved by SFC with chiral column (AS-H) to give (R)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (**Example 1**) and (S)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine-1-oxide (**Example 2**). ¹H NMR (500 MHz, acetone-d6) δ: 3.25 (1 H, dd), 3.57 (1 H, dd), 4.91 (1 H, t), 7.12 (1 H, d), 7.19 (1 H, t), 7.34-7.26 (5 H, m), 7.66 (3 H, dd), 7.84 (2 H, s), 7.88 (1 H, s), 7.97 (2 H, d), 8.39 (1 H, s), 9.33 (1 H, s), 10.63 (1 H, s).

EXAMPLES 3 and 4

(R)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide (**Example 3**) & (S)-2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide (**Example 4**)

Step 1. tert-Butyl 4-(2-(5-(3-chloro-2,6-difluorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (2-A)

To a mixture of *tert*-butyl 4-(2-(5-bromopyridin-2-yl)-3-phenylpropanamido)benzoate (1-B)(0.65 g, 1.35 mmol), (3-chloro-2,6-difluorophenyl)boronic acid (0.39 g, 2.0 mmol), palladium(II) acetate/1,1'-bis(di-*t*-butylphosphino)ferrocene/potassium phosphate

5 admixture (0.246 g, 0.27 mmol) in THF (12 mL) was added potassium phosphate tribasic aqueous solution (2.7 mL, 5.4 mmol, 2M) in a microwave tube. The reaction tube was sealed, degassed and refilled with N₂. The mixture was heated at 100°C by microwave for 1 hr. The reaction mixture was diluted with water, extracted with EtOAc, and the organic was washed with brine, dried over Na₂SO₄. The solvent was removed *in vacuo*. The residue was purified by 10 column chromatography on silica gel, eluting with EtOAc/hexane to give product **2-A**. ¹H NMR (500 MHz, CDCl₃) δ: 1.59 (9H, s), 3.35 (1 H, dd), 3.61 (1 H, dd), 4.07-4.05 (1H, m), 7.08-7.04 (3H, m), 7.22-7.16 (4 H, m), 7.46 (1 H, td), 7.64 (2 H, d), 7.71 (1 H, d), 7.97 (2 H, d), 8.79 (1 H, s), 10.05 (1 H, s).

Step 2. 2-(1-((4-(*tert*-Butoxycarbonyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-

15 **2,6-difluorophenyl)pyridine-1-oxide (2-B)** To a solution of *tert*-butyl 4-(2-(5-(3-chloro-2,6-

difluorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (2-A) (250 mg, 0.455 mmol) in DCM (5 mL) was added mCPBA (225 mg, 0.911 mmol) at room temperature. The reaction mixture was stirred for 1.5 hours. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to give 20 product **2-B**. ¹H NMR (500 MHz, CDCl₃) δ: 1.70 (9H, s), 3.23 (1H, dd), 3.81 (1 H, dd), 4.13 (1 H, q), 5.14-5.13 (1 H, m), 7.04 (1 H, dd), 7.20 (1 H, t), 7.34-7.24 (4H, m), 7.51-7.47 (2 H, m), 7.59 (3 H, t), 7.90 (2 H, d), 8.50 (1 H, s), 10.73 (1 H, s).

Step 3. 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-

difluorophenyl)pyridine-1-oxide (2-C) To a solution of 2-(1-((4-(*tert*-

25 Butoxycarbonyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide (2-B) (0.17g, 0.25mmol) in CH₂Cl₂ (0.5 mL) was added TFA (1 mL, 12.98 mmol). It was stirred at room temperature for 1 hour. The solvent was removed *in vacuo*. The residue was redissolved in 1 mL of ACN and 0.5 mL of water. The solution was freeze dried to give product **2-C**.

30 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide was resolved by SFC with chiral column (AS-H) to give

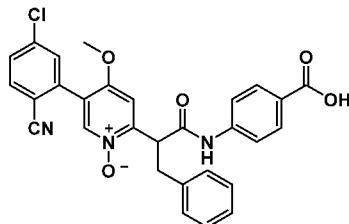
Example 3 (R)-2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide and **Example 4 (S)- 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)pyridine-1-oxide**. ¹H NMR (500 MHz,

acetone-d6) δ : 3.33 (1 H, s), 3.36 (1 H, m), 3.64 (1 H, d), 3.91 (1 H, t), 5.06 (1 H, b), 7.19 (1 H, d), 7.28 (3H, m), 7.42 (2 H, d), 7.65 (1 H, m), 7.70 (3 H, d), 7.87 (1 H, d), 7.96 (2 H, d), 8.64 (1 H, s), 10.71 (1 H, s).

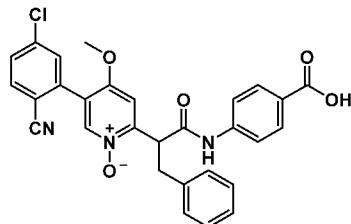
5 By using the procedures described above, and appropriate starting materials, the following compounds were synthesized. These compounds were characterized by LC/MS.

EX	Structure	IUPAC Name	LCMS [M+1]	Chiral Separation
1		4-[(2S)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl]amino]benzoic acid	541	AS-H column, Fast eluting isomer
2		4-[(2R)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl]amino]benzoic acid	541	AS-H column, slow eluting isomer
3		4-[(2S)-2-{5-[3-chloro-2,6-difluorophenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl]amino]benzoic acid	509	AS-H column, Fast eluting isomer

4		4-((2R)-2-[5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl]-3-phenylpropanoyl)amino)benzoic acid	509	AS-H column, slow eluting isomer
5		2-[5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl]-N-1H-indazol-6-yl-3-phenylpropanamide	505	racemic
6		2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-N-1H-indazol-6-yl-3-phenylpropanamide	537	racemic
7		4-{[(2S)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-(4-fluorophenyl)propanoyl]amino}benzoic acid	559	AS-H column, fast eluting isomer
8		4-{[(2R)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-(4-fluorophenyl)propanoyl]amino}benzoic acid	559	AS-H column, slow eluting isomer


9		4-((5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl)acetyl)benzoic acid	419	NA
10		4-((5-(5-chloro-2-cyclopropylphenyl)-1-oxidopyridin-2-yl)acetyl)benzoic acid	423	NA
11		4-((5-(5-chloro-2-cyclopropylphenyl)-1-oxidopyridin-2-yl)(hydroxy)acetyl)benzoic acid	439	racemic
12		4-((5-(5-chloro-2-(difluoromethoxy)phenyl)-1-oxidopyridin-2-yl)acetyl)benzoic acid	449	NA
13		4-((5-(5-chloro-2-(difluoromethyl)phenyl)-1-oxidopyridin-2-yl)acetyl)benzoic acid	433	NA
14		4-((5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)-1-oxidopyridin-2-yl)acetyl)benzoic acid	451	NA

15		4-((2-[5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl]-3-phenylpropanoyl)amino)bicyclo[2.2.2]octane-1-carboxylic acid	541	OD-H column, 30%MeOH/C O ₂ , Fast eluting isomer
16		4-((2-[5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl]-3-phenylpropanoyl)amino)bicyclo[2.2.2]octane-1-carboxylic acid	541	OD-H column, 30%MeOH/C O ₂ , slow eluting isomer
17		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl}-1-oxidopyridin-2-yl)-3-phenylpropanoyl]amino)bicyclo[2.2.2]octane-1-carboxylic acid	573	AS-H column, fast eluting isomer
18		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl}-1-oxidopyridin-2-yl)-3-phenylpropanoyl]amino)bicyclo[2.2.2]octane-1-carboxylic acid	573	AS-H column, slow eluting isomer


19		methyl {4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl)amino]bicyclo[2.2.2]oct-1-yl} carbamate	602	AS-H column, fast eluting isomer
20		methyl {4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl)amino]bicyclo[2.2.2]oct-1-yl} carbamate	602	AS-H column, slow eluting isomer
21		4-[(2R)-2-{5-[5-chloro-2-(1,3-oxazol-5-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl]amino]benzoic acid	540	OD column, fast eluting isomer
22		4-[(2S)-2-{5-[5-chloro-2-(1,3-oxazol-5-yl)phenyl]-1-oxidopyridin-2-yl}-3-phenylpropanoyl]amino]benzoic acid	540	OD column, slow eluting isomer

EXAMPLES 23 & 24

2-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-cyanophenyl)-4-methoxypyridine 1-oxide (Examples 23 and 24)

Example 23

Example 24

Step 1. 2-Chloro-4-methoxy-5-nitropyridine (3-B) To a round bottom flask was added THF (200 mL) and sodium hydride (3.42 g, 85 mmol, 60% in oil). Then, methanol (2.490 g, 78 mmol) was added dropwise at 0°C. The reaction mixture was stirred at 0°C for 10 min. A solution of **3-A** (15 g, 78 mmol) in THF (50 mL) was added dropwise. The mixture was stirred at 0°C for 1 h. The mixture was quenched with water (300 mL) and extracted with EtOAc (150 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 80 g Agela Flash column, 0-20% EtOAc/PE, 60 min, dry loaded) to give the title compound.

10 **¹HNMR (CDCl₃, 400MHz):** δ 8.88 (s, 1H), 7.10 (s, 1H), 6.35 (s, 1 H), 4.10 (s, 3H), 4.05 (s, 1H). MS (ESI) *m/z* 189.2 (M+H).

Step 2. 1-*tert*-Butyl 3-ethyl 2-(4-methoxy-5-nitropyridin-2-yl)malonate (3-C) To a round bottom flask was added sodium hydride (2.316 g, 57.9 mmol, 60% in oil), DMF (200 mL) and *tert*-butyl ethyl malonate (10.90 g, 57.9 mmol). The reaction mixture was stirred at 0°C for 20 min. Then, **3-B** (9.1 g, 38.6 mmol) was added. The mixture was stirred at 50°C for 18 h. The mixture was quenched with water (500 mL), and extracted with EtOAc (200 mL x 3). The combined organic layers were washed with brine (200 mL x 3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (SiO₂, PE: EtOAc = 10: 1) to give the title compound.

20 **¹HNMR (CDCl₃, 400MHz):** δ 8.93 (s, 1H), 7.32 (s, 1H), 4.87 (s, 1 H), 4.25 (dd, *J* = 13.0, 6.9 Hz, 2H), 4.04 (s, 3H), 1.47 (s, 9H), 1.28 (t, *J* = 7.0 Hz, 3H). MS (ESI) *m/z* 341.2 (M+H).

Step 3. Ethyl 2-(4-methoxy-5-nitropyridin-2-yl)acetate (3-D) To a round bottom flask was added **3-C** (5.5 g, 16.16 mmol), DCM (60 mL) and 2,2,2-trifluoroacetic acid (7.37 g, 64.6 mmol). The reaction mixture was stirred at 45°C for 4 h. The mixture was concentrated, diluted with water and adjusted to pH 8-9 with sat. NaHCO₃ solution. The mixture was extracted with DCM (100 mL x 3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 40 g Agela Flash column, 0-20% EtOAc/PE, 60 min, dry loaded) to give the title compound.

¹HNMR (CDCl₃, 400MHz): δ 9.01 (s, 1 H), 7.13 (s, 1 H), 4.26 (q, *J*=7.1 Hz, 2 H), 4.09 (s, 3 H),

3.92 (s, 2 H), 1.33 (t, $J=7.0$ Hz, 3 H). MS (ESI) m/z 240.9 (M+H).

Step 4. Ethyl 2-(4-methoxy-5-nitro- pyridin-2-yl)-3-phenylpropanoate (3-E) To a solution of **3-D** (3.0 g, 12.5 mmol) in THF (40 mL) was added lithium diisopropylamide (2M in THF, 6.24 mL, 12.5 mmol) dropwise at -78°C. The mixture was stirred for 10 min and then

5 (bromomethyl)benzene (2.136 g, 12.49 mmol) was added. The mixture was further stirred at 14°C for 3 h. The mixture was quenched with sat. NH₄Cl solution (10 mL), diluted with water (60 mL) and extracted with EtOAc (40 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 40 g Agela Flash column, 0-20% EtOAc/PE, 30 min, dry loaded) to give the title compound.

10 **¹HNMR (CDCl₃, 400MHz):** δ 8.98 (s, 1 H), 7.17 - 7.30 (m, 4 H), 7.10 (d, $J=6.8$ Hz, 2 H), 6.82 (s, 1 H), 4.13 (dd, $J=12.7, 7.0$ Hz, 3 H), 3.91 (s, 3 H), 3.43 (dd, $J=13.7, 7.5$ Hz, 1 H), 3.24 (dd, $J=13.8, 8.1$ Hz, 1 H), 1.16 (t, $J=7.2$ Hz, 3 H). MS (ESI) m/z 331.2 (M+H).

Step 5. Ethyl 2-(5-amino-4-methoxypyridin-2-yl)-3-phenylpropanoate (3-F) To a round bottom flask was added **3-E** (3.2 g, 9.69 mmol), NH₄Cl (5.18 g, 97 mmol), EtOH (32 mL), water (8 mL) and iron (5.41 g, 97 mmol). The reaction mixture was stirred at 80 °C for 3 h, then was filtered and the filtrate was concentrated *in vacuo*. The residue was diluted with water (50 mL) and extracted with EtOAc (40 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound which was directly used for next step without further purification.

15 **¹HNMR (CDCl₃, 400MHz):** δ 7.95 (s, 1 H), 7.11 - 7.24 (m, 5 H), 6.64 (s, 1 H), 4.05 - 4.13 (m, 2 H), 3.97 (t, $J=7.8$ Hz, 1 H), 3.83 (s, 3 H), 3.37 (dd, $J=13.7, 8.6$ Hz, 1 H), 3.15 - 3.21 (m, 1 H), 1.12 (t, $J=7.1$ Hz, 3 H). MS (ESI) m/z 301.2 (M+H).

Step 6. Ethyl 2-(5-bromo-4- methoxypyridin-2-yl)-3-phenylpropanoate (3-G) To a round bottom flask was added copper (II) bromide (2.082 g, 9.32 mmol), lithium bromide (0.810 g, 9.32 mmol), acetonitrile (40 mL) and *tert*-butyl nitrite (1.442 g, 13.98 mmol). The resulting mixture was stirred at 45°C for 10 min. Then a solution of **3-F** (2.8 g, 9.32 mmol) in acetonitrile (20 mL) was added. The reaction mixture was stirred at 45°C for 30 min. The mixture was diluted with water (60 mL), and extracted with EtOAc (30 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 20 g Agela Flash column, 0-10% EtOAc/PE, 40 min, dry loaded) to give the title compound.

20 **¹HNMR (CDCl₃, 400MHz):** δ 8.51 (s, 1 H), 7.09 - 7.26 (m, 5 H), 6.68 (s, 1 H), 4.11 (dd, $J=7.1, 5.5$ Hz, 2 H), 4.02 (t, $J=7.8$ Hz, 1 H), 3.83 - 3.88 (m, 3 H), 3.37 - 3.44 (m, 1 H), 3.18 - 3.25 (m, 1

H), 1.14 (t, J =7.2 Hz, 3 H). MS (ESI) m/z 364.1 (M+H).

Step 7. Ethyl 2-(5-(5-chloro-2-cyanophenyl)-4-methoxypyridin-2-yl)-3-phenylpropanoate (3-I)

To a round bottom flask was added **3-G** (950 mg, 2.6 mmol), K_3PO_4 (1660 mg, 7.8 mmol), **3-H**

(825 mg, 3.13 mmol), dioxane (30 mL) and $Pd(dppf)Cl_2$ (170 mg, 0.26 mmol) at 55°C. The

5 reaction mixture was stirred at 55°C for 18 h. The mixture was filtered and the filtrate was concentrated. The residue was purified by normal phase chromatography (ISCO, SiO_2 , 20 g Agela Flash column, 0-10% EtOAc/PE, 40 min, dry loaded) to give the title compound.

1H NMR (CDCl₃, 400MHz): δ 8.32 (s, 1 H), 7.69 (d, J =8.4 Hz, 1 H), 7.38 - 7.52 (m, 2 H), 7.15 - 7.27 (m, 5 H), 6.83 (s, 1 H), 4.14 (dd, J =13.6, 7.0 Hz, 3 H), 3.82 (s, 3 H), 3.45 (dd, J =13.6, 8.5

10 Hz, 1 H), 3.28 (d, J =7.1 Hz, 1 H), 1.16 (t, J =7.1 Hz, 3 H). MS (ESI) m/z 421.1 (M+H).

Step 8. 2-(5-(5-Chloro-2-cyanophenyl)-4-methoxypyridin-2-yl)-3-phenylpropanoic acid (3-J)

To a round bottom flask was added **3-I** (420 mg, 1.0 mmol), MeOH (5 mL), water (1 mL) and

lithium hydroxide hydrate (50.3 mg, 1.2 mmol). The reaction mixture was stirred at 12°C for 18 h. LCMS showed 50% conversion. The temperature was raised to 50°C and the reaction

15 mixture was further stirred for 3.5 h. LCMS showed the reaction was complete. The mixture was concentrated, adjusted to pH 5-6 with HCl solution (1 M) and extracted with DCM (10 mL x 4). The combined organic extracts were dried over anhydrous sodium sulfate and filtered to give a crude solution which was directly used for next step. MS (ESI) m/z 393.2 (M+H).

Step 9. Ethyl 4-(2-(5-(5-chloro-2-cyanophenyl)-4-methoxypyridin-2-yl)-3-phenylpropan-

20 **amido)benzoate (3-K)** To a round bottom flask was added **3-J** (20 mL, 0.50 mmol) (about 0.025 M solution in DCM), HATU (228 mg, 0.60 mmol), ethyl 4-aminobenzoate (99 mg, 0.60 mmol) and Et_3N (0.209 mL, 1.5 mmol). The reaction mixture was stirred at 12°C for 1.5 h. The reaction mixture was diluted with water (50 mL) and extracted with DCM (20 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated.

25 The residue was purified by normal phase chromatography (ISCO, SiO_2 , 12 g Agela Flash column, 0-10% EtOAc/PE, 30 min, dry loaded) to give the title compound.

1H NMR (CDCl₃, 400MHz): δ 10.35 (br. s., 1 H), 8.42 (s, 1 H), 8.01 (d, J =8.6 Hz, 2 H), 7.61 - 7.75 (m, 3 H), 7.44 - 7.52 (m, 2 H), 7.14 - 7.31 (m, 4 H), 7.04 (d, J =7.1 Hz, 2 H), 6.53 (s, 1 H), 4.36 (d, J =7.3 Hz, 2 H), 3.95 (dd, J =9.3, 6.2 Hz, 1 H), 3.71 (s, 3 H), 3.58 (dd, J =13.2, 6.0 Hz, 1

30 H), 3.29 (dd, J =13.0, 9.7 Hz, 1 H), 1.39 (t, J =7.1 Hz, 3 H). MS (ESI) m/z 540.2 (M+H).

Step 10. 5-(5-Chloro-2-cyanophenyl)-2-(1-((4-(ethoxycarbonyl)-phenyl)amino)-1-oxo-3-

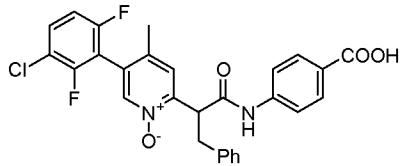
phenylpropan-2-yl)-4-methoxypyridine 1-oxide (3-L) To a round bottom flask was added **3-K** (50 mg, 0.093 mmol), DCM (3 mL) and *m*CPBA (25 mg, 0.11 mmol) at 14°C. The reaction mixture was stirred at 50°C for 18 h under nitrogen atmosphere. Sat. Na_2SO_3 solution (10 mL)

was added and the mixture was stirred for 5 min at room temperature. The mixture was extracted with DCM (10 mL x 3). The combined organic layers were washed with sat. NaHCO_3 solution (10 mL x 3), dried over anhydrous sodium sulfate, filtered and the concentrated to give the title compound which was directly used for next step without further purification.

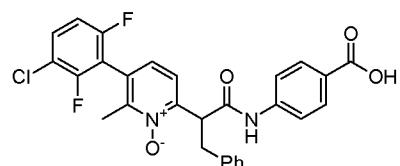
5 **^1H NMR (CDCl₃, 400MHz):** δ 8.17 (s, 1 H), 7.89 (d, $J=8.6$ Hz, 2 H), 7.65 (d, $J=8.4$ Hz, 1 H), 7.55 (d, $J=8.6$ Hz, 2 H), 7.47 (dd, $J=8.4$, 1.8 Hz, 1 H), 7.35 (d, $J=1.5$ Hz, 1 H), 7.20 - 7.29 (m, 4 H), 7.16 (d, $J=7.1$ Hz, 2 H), 6.93 (s, 1 H), 4.24 - 4.30 (m, 2 H), 3.86 (s, 4 H), 3.75 (dd, $J=13.9$, 9.0 Hz, 1 H), 3.16 (br. s., 1 H), 1.30 (t, $J=7.1$ Hz, 3 H). MS (ESI) m/z 556.2 (M+H).

10 **Step 11. 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-cyanophenyl)-4-methoxypyridine 1-oxide (3-M)** To a round bottom flask was added **3-L** (150 mg, 0.27 mmol), MeOH (3 mL), water (0.3 mL) and lithium hydroxide hydrate (13.6 mg, 0.32 mmol). The reaction mixture was stirred for 3 h at 50°C. The mixture was concentrated *in vacuo* and the residue was purified by prep-HPLC (neutral condition) to give the title compound. 15 **^1H NMR (CDCl₃, 400MHz):** δ 10.29 (br. s., 1 H), 8.33 (s, 1 H), 8.00 (d, $J=8.0$ Hz, 2 H), 7.78 (d, $J=8.2$ Hz, 2 H), 7.71 (d, $J=8.2$ Hz, 1 H), 7.53 (dd, $J=8.3$, 1.7 Hz, 1 H), 7.35 - 7.48 (m, 3 H), 7.24 - 7.31 (m, 3 H), 7.20 (d, $J=7.3$ Hz, 1 H), 5.40 (d, $J=6.8$ Hz, 1 H), 3.94 (s, 3 H), 3.51 - 3.60 (m, 1 H), 3.18 (d, $J=10.4$ Hz, 1 H). MS (ESI) m/z 528.2 (M+H).

15 **Step 12. 2-(1-((4-Carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-cyanophenyl)-4-methoxypyridine 1-oxide (Example 23 and 24)** **3-M** (80 mg, 0.15 mmol) was purified by SFC (condition: Instrument SFC-80-(8), Column AD(250mm*30mm,10um), Base-EtOH, FlowRate(mL/min) 80) to give 2-(1-((4-carboxyphenyl) amino)-1-oxo-3-phenylpropan-2-yl)-5-(5-chloro-2-cyanophenyl)-4-methoxypyridine 1-oxide (**Example 23**, first peak) and 2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenyl- propan-2-yl)-5-(5-chloro-2-cyanophenyl)-4-methoxypyridine 1-oxide (**Example 24**, second peak).


20 **Example 23 ^1H NMR (400MHz, CD₃OD):** δ 8.37 (s, 1 H), 7.92 (d, $J=8.6$ Hz, 2 H), 7.84 (d, $J=8.8$ Hz, 1 H), 7.57 - 7.66 (m, 4 H), 7.47 (s, 1 H), 7.35 (d, $J=7.3$ Hz, 2 H), 7.27 (t, $J=7.4$ Hz, 2 H), 7.15 - 7.21 (m, 1 H), 4.99 (t, $J=7.8$ Hz, 1 H), 3.96 (s, 3 H), 3.50 - 3.58 (m, 1 H), 3.38 - 3.45 (m, 1 H). MS (ESI) m/z 528.1 (M+H).

25 **Example 24 ^1H NMR (400MHz, CD₃OD):** δ 8.28 (s, 1 H), 7.82 (d, $J=8.4$ Hz, 2 H), 7.74 (d, $J=9.0$ Hz, 1 H), 7.44 - 7.58 (m, 4 H), 7.37 (s, 1 H), 7.25 (d, $J=7.3$ Hz, 2 H), 7.17 (t, $J=7.4$ Hz, 2 H), 7.04 - 7.11 (m, 1 H), 4.89 (t, $J=7.7$ Hz, 1 H), 3.86 (s, 3 H), 3.44 (dd, $J=13.5$, 8.8 Hz, 1 H), 3.28 - 3.35 (m, 1 H). MS (ESI) m/z 528.1 (M+H).


EXAMPLES 25 & 26

2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)-4-

methylpyridine 1-oxide (**Example 25**) and 6-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-3-(3-chloro-2,6-difluorophenyl)-2-methylpyridine 1-oxide (**Example 26**)

Example 25

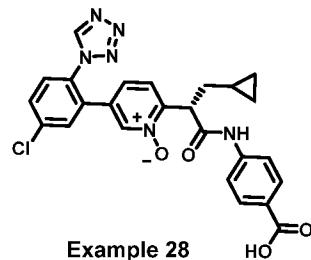
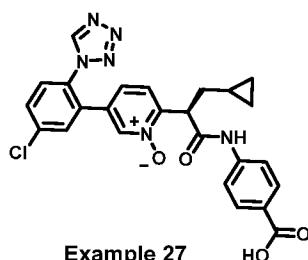
Example 26

Step 1. 4-(2-(5-(3-Chloro-2,6-difluorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoic acid,

5 **TFA** To a solution of *tert*-butyl 4-(2-(5-(3-chloro-2,6-difluorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoate (.4g, 0.73 mmol) in CH₂Cl₂ (2 ml) was added TFA (2 ml, 26.0 mmol). The resulting mixture was stirred at room temperature for 1 hour. The solvent and excess TFA were removed by rotavapor. The crude product was further dried by lyophilization. MS (ESI) *m/z* 493 (M+H).

10 **Step 2. 4-(2-(5-(3-chloro-2,6-difluorophenyl)-4-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid and 4-(2-(5-(3-chloro-2,6-difluorophenyl)-6-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid** In a glove box, to a solution of 4-(2-(5-(3-chloro-2,6-difluorophenyl)pyridin-2-yl)-3-phenylpropanamido)benzoic acid, TFA (410 mg, 0.676 mmol) in acetic acid (3378 μ l) and acetonitrile (3378 μ l) in a vial was added [Ir(dF-CF₃-ppy)2(dtbbpy)]PF₆ (37.9 mg, 0.034 mmol) followed by *tert*-butyl ethaneperoxoate in mineral spirits (431 μ l, 1.351 mmol). The reaction vial was sealed, and stirred under the LED blue light at room temperature overnight. The reaction mixture was then mixed with 0.3g Silica-DMT resin and stirred for 1 hour and then filtered. The sulution was concentrated, and the crude was purified by reverse phase prep HPLC on C-18 column and eluting with gradient acetonitrile/water (with 0.1% TFA) to give 4-(2-(5-(3-chloro-2,6-difluorophenyl)-4-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid and 4-(2-(5-(3-chloro-2,6-difluorophenyl)-6-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid MS (ESI) *m/z* 507 (M+H).

25 **Step 3. 2-(1-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-5-(3-chloro-2,6-difluorophenyl)-4-methylpyridine 1-oxide (Example 25)** To a solution of 4-(2-(5-(3-chloro-2,6-difluorophenyl)-4-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid (26 mg, 0.051 mmol) in MeOH (1 ml) was added H₂O₂ (0.022 ml, 0.256 mmol) and methyltrioxorhenium(VII) (6.39 mg, 0.026 mmol). The resulting mixture was stirred at room temperature for 1 hour. The reaction was quenched with NaHSO₃ (10% aq). The product was extracted with EtOAc, and 30 dried over anhydrous Na₂SO₄. After it was concentrated, the residue was purified by column



chromatography on silica gel Redi 12g gold, eluting with gradient EtOAc/hexane (0-60%) to give the desired product (**Example 25**). MS (ESI) m/z 523 (M+H).

Step 4. 6-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-3-(3-chloro-2,6-

difluorophenyl)-2-methylpyridine 1-oxide (Example 26) To a solution of 4-(2-(5-(3-chloro-2,6-difluorophenyl)-6-methylpyridin-2-yl)-3-phenylpropanamido)benzoic acid (18 mg, 0.036 mmol) in MeOH (1 ml) was added H₂O₂ (0.16 ml, 1.8 mmol) and methyltrioxorhenium(VII) (4.43 mg, 0.018 mmol). The resulting mixture was stirred at room temperature for 3 hours. The solvent was removed under reduced pressure, and the residue was purified by reverse phase prep HPLC on C-18 column and eluting with gradient acetonitrile/water (with 0.1% TFA) to give the 6-((4-carboxyphenyl)amino)-1-oxo-3-phenylpropan-2-yl)-3-(3-chloro-2,6-difluorophenyl)-2-methylpyridine 1-oxide (**Example 26**). MS (ESI) m/z 523 (M+H).

EXAMPLES 27 & 28

2-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (**Examples 27 and 28**)

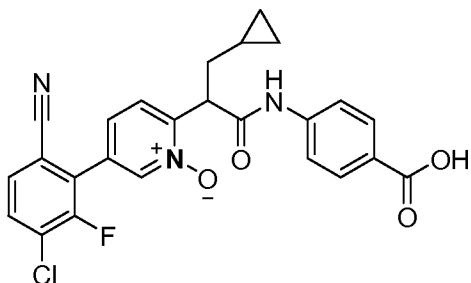
Step 1. Ethyl 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate Ethyl 2-(5-bromopyridin-2-yl)acetate (2.0 g, 8.2 mmol) in THF (25 ml) was cooled to -78°C. Lithium bis(trimethylsilyl)amide (1M in hexane, 8.2 ml, 8.2 mmol) was added. The mixture was stirred for 1.5 hours. (Iodomethyl)cyclopropane (0.795 ml, 8.19 mmol) was added slowly. The mixture was stirred at -78°C for one hour, then at room temperature overnight. The reaction was quenched with the addition of saturated NH₄Cl aq solution (7 mL). Product was extracted with ethyl acetate, and washed with brine. The organic layer was dried over anhydrous sodium sulfate. After it was filtered and concentrated, the crude was purified by column chromatography on silica gel Isolute Flash Si; 80 g prepacked, eluting with gradient 0 - 30% EtOAc/isohexane to give the product. MS (ESI) m/z 299.9 (M+H).

Step 2. Lithium 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate Ethyl 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate (1.7g, 5.70 mmol) in MeOH (19 ml) was mixed with LiOH solution (1M, 8.55 ml, 8.55 mmol) and heated to 50°C for 30 minutes. The mixture was concentrated to dryness, then further dried in a vacuum oven at 50°C overnight. The product was used directly in the next step without further treatment. MS (ESI) m/z 271.9 (M+H).

Step 3. tert-Butyl 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoate Lithium 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate (1570 mg, 5.7 mmol) in DMF (10 ml) was mixed with *tert*-butyl 4-aminobenzoate (1300 mg, 6.84 mmol) and HATU (2600 mg, 6.84 mmol), then heated to 50°C for 2 hours. After it was cooled to room temperature, the mixture 5 was slowly poured into 200 mL of water while stirring. The precipitate was collected by filtration, and washed with water, then dried in vacuum oven at 50°C overnight. The product was used in the next step without further purification.

Step 4. tert-Butyl 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoate (1000 mg, 2.245 mmol) was mixed with 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (570 mg, 10 2.245 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (329 mg, 0.449 mmol), and potassium acetate (661 mg, 6.74 mmol) in a microwave reaction vial. The vial was then capped. Air was removed by vacuum and back-filled with nitrogen (X3). 1,4-Dioxane (9 ml) was added. The mixture was heated to 120°C in a microwave reactor for 2 hours. The reaction mixture was used in the next step directly.

Step 5. tert-butyl 4-(2-(5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridin-2-yl)-3-cyclopropylpropanamido)benzoate 1-(4-Chloro-2-iodophenyl)-1H-tetrazole (690 mg, 2.250 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (165 mg, 0.225 mmol) were added to the reaction mixture from **Step 4**. The vial was capped, and air was removed by vacuum, and back-filled with nitrogen (X3). K₂CO₃ solution (1M, 6.75 ml, 6.75 mmol) was 20 added by syringe. The mixture was then heated to 85°C for 2 hours. After it was cooled to room temperature, the mixture was diluted with ethyl acetate. The mixture was filtered. The organic layer was separated, and dried over anhydrous sodium sulfate. After it was filtered and concentrated, the crude was purified by column chromatography on silica gel (100 g prepacked), eluting with gradient 0 ~ 70% EtOAc/hexane to give the product. MS (ESI) *m/z* 545 25 (M+H).


Step 6. 2-(1-((4-(*tert*-Butoxycarbonyl)phenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide *tert*-Butyl 4-(2-(5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridin-2-yl)-3-cyclopropylpropanamido)benzoate (1200 mg, 2.202 mmol) in DCM (12 ml) was mixed with methyltrioxorhenium (165 mg, 0.661 mmol) and hydrogen peroxide 30 (35%, 1.012 ml, 11.01 mmol), then stirred at room temperature overnight. The mixture was concentrated, and purified by column chromatography on silica gel Isolute Flash Si; 100 g prepacked, eluting with 0 ~ 80 % gradient EtOAc/isohexane to give the product. MS (ESI) *m/z* 561 (M+H).

Step 7 and 8. 2-(1-((4-(*tert*-butoxycarbonyl)phenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-

(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (500 mg, 0.891 mmol) in DCM (3 ml) was mixed with TFA (3.00 ml), then stirred at room temperature for 0.5 hours. Toluene (20 mL) was added. The mixture was concentrated by rotavapor. The crude was purified by column chromatography on silica gel Isolute Flash Si; 100 g prepacked, eluting with 0 ~ 8 % gradient 5 MeOH/DCM to give the product. The racemic product was separated by SFC on AS 21x250 mm column, eluting with 2:1 MeOH/MeCN/CO₂, 70 mL/min, 100 bar, 35°C, to give two enantiomers: slow eluting isomer (**Example 27**), MS (ESI) *m/z* 505 (M+H), and fast eluting isomer (**Example 28**), MS (ESI) *m/z* 505 (M+H).

EXAMPLE 29 & 30

10 2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(3-chloro-6-cyano-2-fluorophenyl)pyridine 1-oxide (**Examples 29 and 30**)

Ex-29 (fast eluting isomer)

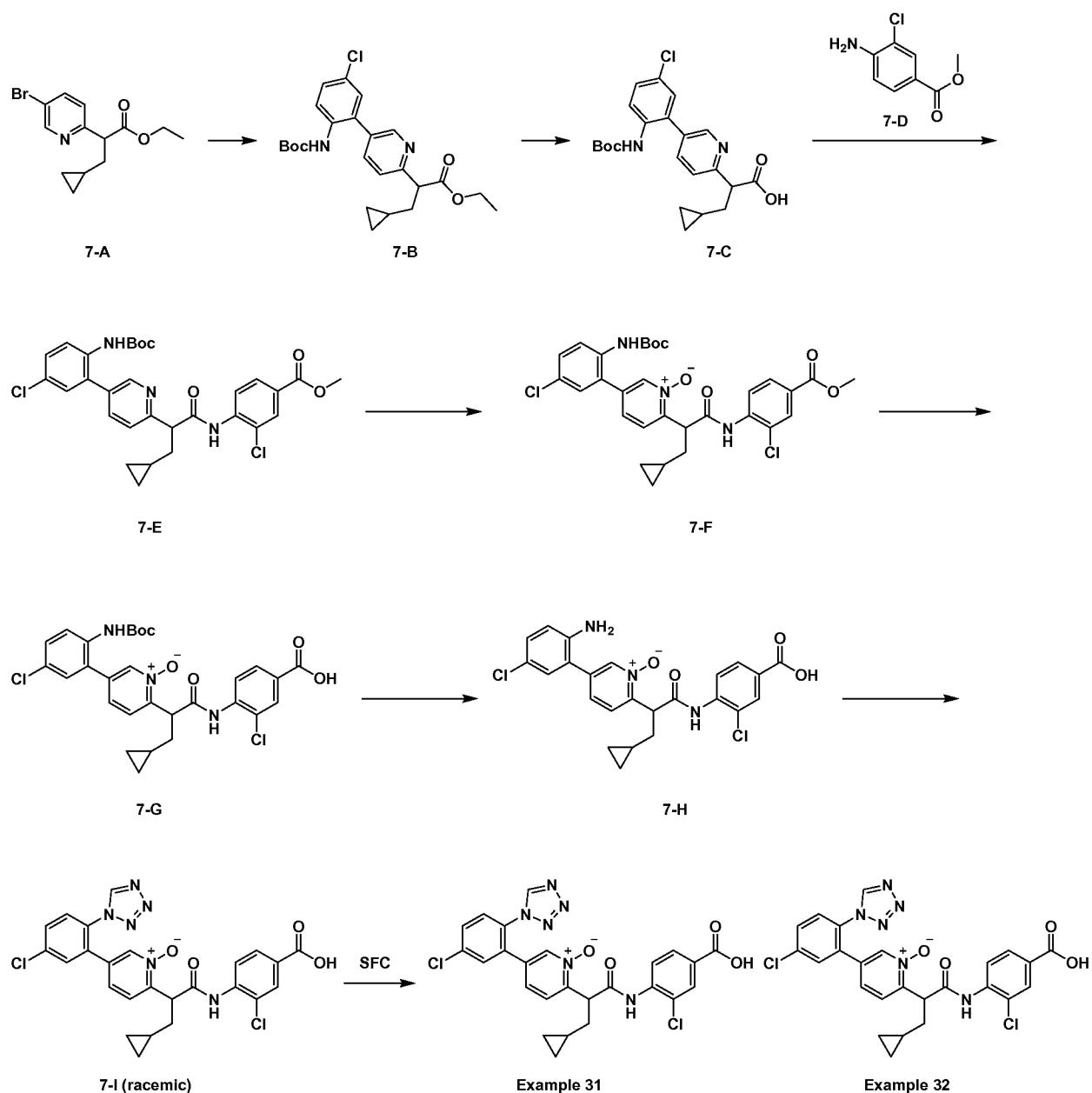
Ex-30 (slow eluting isomer)

15 **Step 1.** methyl 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoate (6-B) LiOH H₂O (0.44 g, 10.6 mmol) was added to a solution of methyl 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate (2.50 g, 8.8 mmol) in methanol (25 ml) and water (5 ml), followed by stirring at 50°C for 1h. The mixture was cooled down to room temperature, and concentrated under reduced pressure and the residue was dried at 50°C in a vacuum oven to give the intermediate without further purification.

20 The intermediate was dissolved in DMF (25 ml), followed by the addition of methyl 4-aminobenzoate (1.66 g, 11.0 mmol), HATU (4.18 g, 11.0 mmol) and Hunig's base (1.92 ml, 11.0 mmol). After it was stirred at room temperature for 4h, the mixture was diluted with CH₂Cl₂ and water. The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (2 X 20 ml). The combined organic phase was washed with brine, dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (Teledyne Isco Si; 120 g prepacked), eluting with 0-10% EtOAc/CH₂Cl₂ to give the title compound. MS (ESI) *m/z* 404.69 (M+H).

25 **Step 2.** 4-(2-(5-Bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoic acid (6-C) LiOH H₂O (0.08 g, 2.0 mmol) was added to the solution of methyl 4-(2-(5-bromopyridin-2-yl)-3-

cyclopropylpropanamido)benzoate (0.62 g, 1.54 mmol) in a mixture of MeOH (4 ml), THF (4 ml) and water (2 ml), followed by stirring at 50°C for 1.5h. After the reaction mixture was cooled down to room temperature, the solvent was removed under reduced pressure and the residue was taken up in EtOAc (20 ml). The mixture was neutralized with 1N HCl (2 ml, 2.0 mmol). The organic phase was separated and the aqueous was extracted with EtOAc (2 X 10 ml). The combined organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Teledyne Isco Si; 40 g prepacked), eluting with 0-30% EtOAc/ CH₂Cl₂ to give the title compound. MS (ESI) *m/z* 390.04 (M+H).


10 **Steps 3 and 4.** 4-(2-(5-(3-chloro-6-cyano-2-fluorophenyl)pyridin-2-yl)-3-cyclopropylpropanamido)-benzoic acid (6-F) A microwave vial was charged with 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido) benzoic acid (119 mg, 0.3 mmol), bis(pinacolato)diboron (84 mg, 0.33 mmol), potassium acetate (58.9 mg, 0.600 mmol), 1,1'-bis(diphenylphosphino)ferrocenedichloro palladium(II) dichloromethane complex (33 mg, 0.05 mmol) and capped. The air was exchanged with N₂ by vacuum/back-filling N₂ (X2). To the mixture was added dioxane (3 ml) and DMF (0.5 ml) and it was heated at 120°C for 1h. After cooling, 2-bromo-4-chloro-3-fluorobenzonitrile (63 mg, 0.27 mmol), 1,1'-bis(diphenylphosphino)ferrocenedichloro palladium(II) dichloromethane complex (33 mg, 0.05 mmol), potassium carbonate (83 mg, 0.60 mmol) and water (0.4 ml) were added to the mixture, 15 and it was degassed by freeze-vacuum-thaw and back-filling N₂. Then, the mixture was heated at 90°C for 2h. After cooling, the reaction mixture was diluted with EtOAc and water, filtered through celite and washed with EtOAc. The organic phase was separated and the aqueous phase was extracted with EtOAc. The combined organic phase was dried over MgSO₄, filtered, concentrated under reduced pressure and the residue was purified by column chromatography on 20 a silica-gel column (Teledyne Isco Si; 40 g prepacked), eluting with 0-50% EtOAc/hexane to give the title compound. MS (ESI) *m/z* 463.98 (M+H).

25 **Step 5.** 2-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(3-chloro-6-cyano-2-fluorophenyl)pyridine 1-oxide (Examples 29 and 30) mCPBA (47 mg, 0.28 mmol) was added to a mixture of 4-(2-(5-(3-chloro-6-cyano-2-fluorophenyl)pyridin-2-yl)-3-cyclopropylpropanamido)benzoic acid (6-F, 51 mg, 0.11 mmol) in CH₂Cl₂ (2 ml), followed by stirring at room temperature for 2h. Then, the solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (Teledyne Isco Si; 24 g prepacked), eluting with 0-10% MeOH/CH₂Cl₂ to give the title compound. MS (ESI) *m/z* 479.95 (M+H).

The racemic **6-F** was separated with the following condition: column IA (30X250mm), eluent 80% 2:1 MeOH:MeCN/CO₂, 70 ml/min, 100bar, 10 mg/ml in MeOH/CH₂Cl₂/NH₄OH, 35°C, 254 nm. to give 2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(3-chloro-6-cyano-2-fluorophenyl)pyridine 1-oxide (**Example 29**, fast eluting isomer) and 2-(1-((4-carboxyphenyl)-amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(3-chloro-6-cyano-2-fluorophenyl)pyridine 1-oxide (**Example 30**, slow eluting isomer).

EXAMPLES 31 & 32

2-(1-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (**Examples 31 and 32**)

(5.77 g, 27.2 mmol), *tert*-butyl (4-chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate (3.52 g, 9.96 mmol), THF (40 mL), water (8 mL) and Pd(dppf)Cl₂ (0.295 g, 0.453 mmol) at 13°C. The reaction mixture was stirred at 50°C for 2 h. The mixture was filtered and the filtrate was concentrated. The residue was diluted with water (60 mL) and extracted with 5 EtOAc (20 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 40 g Agela Flash column, 0-20% EtOAc/PE, 40 min, dry loaded) to give the title compound.

¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J*=1.5 Hz, 1 H), 8.03 (d, *J*=8.6 Hz, 1 H), 7.65 (dd, *J*=8.1, 10 2.1 Hz, 1 H), 7.47 (d, *J*=8.2 Hz, 1 H), 7.34 (dd, *J*=8.8, 2.2 Hz, 1 H), 7.17 (d, *J*=2.4 Hz, 1 H), 6.25 (br. s., 1 H), 4.21 (dd, *J*=9.8, 7.2 Hz, 2 H), 4.00 (t, *J*=7.6 Hz, 1 H), 2.01 - 2.09 (m, 1 H), 1.85 - 1.93 (m, 1 H), 1.44 (s, 9 H), 1.26 (t, *J*=7.1 Hz, 3 H), 0.66 - 0.74 (m, 1 H), 0.43 (td, *J*=8.5, 4.1 Hz, 2 H), 0.10 - 0.17 (m, 1 H), -0.03 - 0.07 (m, 1 H). MS (ESI) *m/z* 445.2 (M+H).

Step 2. 2-(5-(2-((*tert*-butoxycarbonyl)amino)-5-chlorophenyl)pyridin-2-yl)-3-cyclopropylpropanoic acid (7-C) To a round bottom flask was added **7-B** (2 g, 4.49 mmol), ethanol (40 mL), water (4 mL) and lithium hydroxide hydrate (0.207 g, 4.94 mmol). The reaction mixture was stirred at 15 °C for 18 h. The reaction mixture was stirred at 35°C for 24 h. LCMS showed the reaction was complete. The reaction mixture was concentrated, diluted with water (20 mL) and adjusted to pH 4-5 with sat. citric acid solution. The mixture was extracted 20 with DCM (15 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and the filtrate was directly used for next step without further purification. MS (ESI) *m/z* 417.2 (M+H).

Step 3. methyl 4-(2-(5-(2-((*tert*-butoxycarbonyl)amino)-5-chlorophenyl)pyridin-2-yl)-3-cyclopropylpropanamido)-3-chlorobenzoate (7-E) To a round bottom flask was added a crude 25 solution of **7-C** (15 mL, 1.440 mmol), **7-D** (267 mg, 1.440 mmol), HATU (657 mg, 1.728 mmol) and Et₃N (0.602 mL, 4.32 mmol) at 15°C. The reaction mixture was stirred at 15°C for 48 h. The mixture was concentrated and the residue was purified by normal phase chromatography (ISCO, SiO₂, 20 g Agela Flash column, 0-20% EtOAc/PE, 40 min, dry loaded) to give the title compound.

30 ¹H NMR (400 MHz, CDCl₃): δ 10.78 (s, 1 H), 8.68 (s, 1 H), 8.58 (d, *J*=8.8 Hz, 1 H), 8.05 (s, 1 H), 7.93 (d, *J*=8.6 Hz, 2 H), 7.69 - 7.75 (m, 1 H), 7.44 (d, *J*=7.7 Hz, 1 H), 7.37 (dd, *J*=8.9, 2.3 Hz, 1 H), 7.21 (d, *J*=2.2 Hz, 1 H), 6.19 (br. s., 1 H), 3.97 (t, *J*=7.5 Hz, 1 H), 3.90 (s, 3 H), 2.06 - 2.15 (m, 2 H), 1.43 (s, 10 H), 0.70 (br. s., 1 H), 0.34 - 0.52 (m, 2 H), 0.09 - 0.16 (m, 1 H), -0.08 - 0.01 (m, 1 H). MS (ESI) *m/z* 584.2 (M+H).

Step 4. 5-((2-((tert-butoxycarbonyl)amino)-5-chlorophenyl)-2-((2-chloro-4-methoxycarbonyl)phenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)pyridine 1-oxide (7-F) To a round bottom flask were added **7-E** (500 mg, 0.855 mmol), DCM (10 mL) and 3-chlorobenzoperoxoic acid (227 mg, 1.027 mmol) at 15°C. The reaction mixture was stirred at 5 15°C for 18 h. The mixture was quenched with sat. Na₂SO₃ solution (3 mL) and extracted with DCM (10 mL x 3). The combined organic layers were washed with sat. NaHCO₃ (10 mL x 3) solution, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO₂, 20 g Agela Flash column, 0-25% EtOAc/PE, 40 min, dry loaded) to give the title compound.

10 **¹H NMR** (400 MHz, CDCl₃): δ 10.74 (s, 1 H), 8.49 (d, *J*=8.6 Hz, 1 H), 8.40 (s, 1 H), 8.05 (s, 1 H), 7.90 (d, *J*=8.6 Hz, 2 H), 7.48 (d, *J*=8.2 Hz, 1 H), 7.34 - 7.42 (m, 2 H), 7.19 (d, *J*=2.2 Hz, 1 H), 6.19 (s, 1 H), 4.92 (dd, *J*=8.9, 5.8 Hz, 1 H), 3.89 (s, 3 H), 2.39 - 2.50 (m, 1 H), 1.65 - 1.74 (m, 1 H), 1.40 (s, 9 H), 0.84 (br. s., 1 H), 0.52 (d, *J*=7.9 Hz, 2 H), 0.12 - 0.29 (m, 2 H). MS (ESI) *m/z* 600.3 (M+H).

15 **Step 5. 5-((2-((tert-butoxycarbonyl)amino)-5-chlorophenyl)-2-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)pyridine 1-oxide (7-G)** To a round bottom flask was added **7-F** (440 mg, 0.733 mmol), MeOH (10 mL), DCM (2 mL), water (2 mL) and lithium hydroxide hydrate (30.7 mg, 0.733 mmol) at 15°C. The reaction mixture was stirred at 50°C for 18 h. The mixture was concentrated, adjusted to pH 4-5 with sat. citric acid solution 20 and extracted with DCM (10 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound which was directly used for next step without further purification.

25 **¹H NMR** (400 MHz, CDCl₃): δ 9.93 (br. s., 1 H), 8.48 (s, 1 H), 8.32 (d, *J*=8.6 Hz, 1 H), 7.82 - 7.91 (m, 2 H), 7.71 (d, *J*=8.8 Hz, 1 H), 7.55 - 7.60 (m, 1 H), 7.48 (d, *J*=8.4 Hz, 1 H), 7.38 (dd, *J*=8.8, 2.2 Hz, 1 H), 7.23 (d, *J*=2.2 Hz, 1 H), 6.64 (br. s., 1 H), 4.89 (dd, *J*=8.7, 6.1 Hz, 1 H), 2.37 - 2.46 (m, 1 H), 1.72 - 1.81 (m, 1 H), 1.39 (s, 10 H), 0.83 (br. s., 1 H), 0.53 (d, *J*=7.9 Hz, 2 H), 0.21 (d, *J*=19.4 Hz, 2 H). MS (ESI) *m/z* 586.0 (M+H).

30 **Step 6. 5-((2-amino-5-chlorophenyl)-2-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)pyridine 1-oxide (7-H)** To a round bottom flask was added **7-G** (450 mg, 0.691 mmol), DCM (6 mL) and TFA (3 mL) at 15°C. The reaction mixture was stirred at 15°C for 2 h. The reaction mixture was concentrated to give the title compound which was directly used for next step without further purification. MS (ESI) *m/z* 486.2 (M+H).

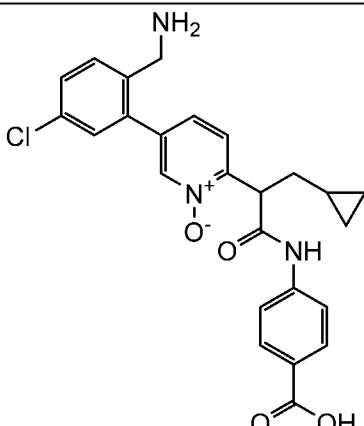
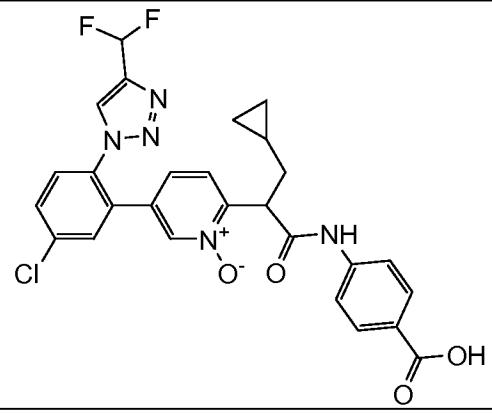
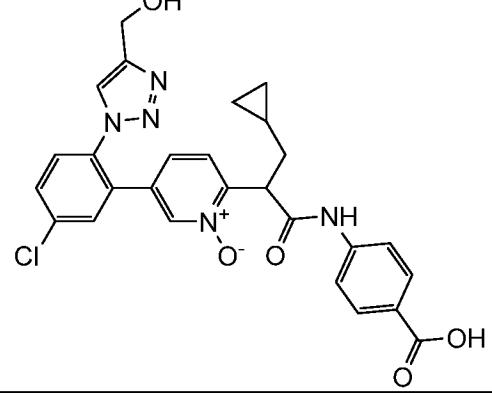
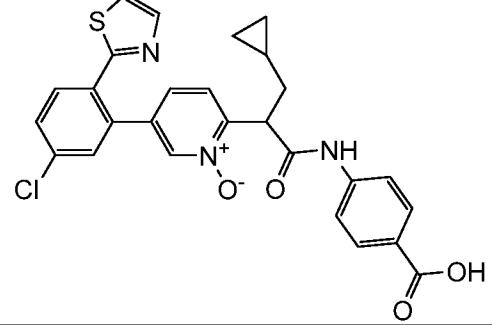
Step 7. 2-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (7-I) To a round bottom flask was added **7-H** (180

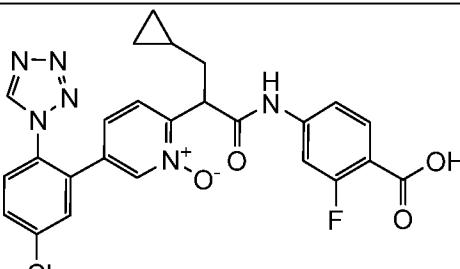
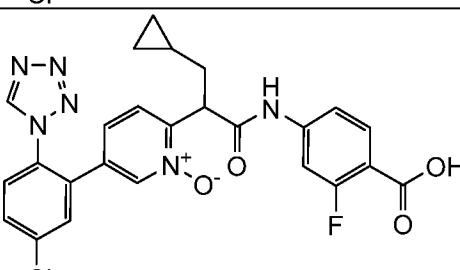
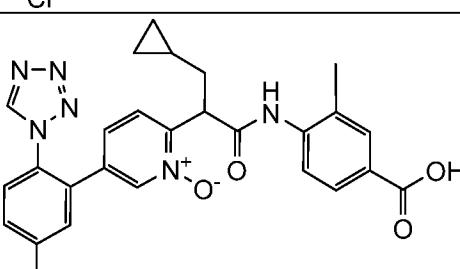
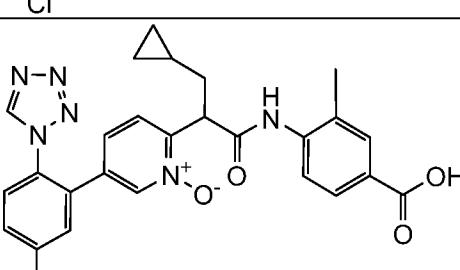
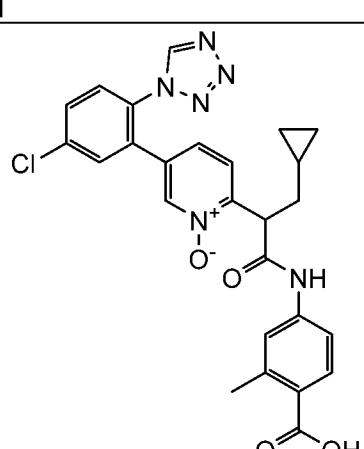
mg, 0.370 mmol), acetic acid (5 mL), trimethoxymethane (786 mg, 7.40 mmol) and sodium azide (481 mg, 7.40 mmol). The reaction mixture was stirred at 40°C for 18 h. The reaction mixture was quenched with sat. sodium nitrite solution (6 mL) at 0°C and extracted with EtOAc (15 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by prep-HPLC (TFA condition) to give the title compound. MS (ESI) *m/z* 539.1 (M+H).

5 **Step 8.** 2-(1-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (Example 31 and 32) **7-I** (100 mg, 0.185 mmol) was purified by SFC (condition:Instrument SFC-80-(8), AD(250mm*30mm,10um), Base-IPA, 10 Begin B 55%, FlowRate(mL/min) 80) to give 2-(1-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (Example 31, first peak) and 2-(1-((4-carboxy-2-chlorophenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-tetrazol-1-yl)phenyl)pyridine 1-oxide (Example 32, second peak).

15 **Example 31:** (400 MHz, CD₃OD): δ 9.24 (s, 1 H), 8.20 (d, *J*=1.3 Hz, 1 H), 8.04 (d, *J*=8.6 Hz, 1 H), 7.88 (s, 1 H), 7.75 (dd, *J*=8.6, 1.5 Hz, 1 H), 7.60 - 7.70 (m, 2 H), 7.54 - 7.59 (m, 1 H), 7.43 (d, *J*=8.4 Hz, 1 H), 7.08 (dd, *J*=8.3, 1.4 Hz, 1 H), 4.61 (dd, *J*=8.6, 6.6 Hz, 1 H), 1.98 - 2.07 (m, 1 H), 1.64 - 1.73 (m, 1 H), 0.64 - 0.73 (m, 1 H), 0.34 (d, *J*=8.16 Hz, 2 H), -0.04 - 0.07 (m, 2 H). MS (ESI) *m/z* 539.0 (M+H).

20 **Example 32:** (400 MHz, CD₃OD): δ 9.38 (s, 1 H), 8.34 (d, *J*=1.5 Hz, 1 H), 8.18 (d, *J*=8.6 Hz, 1 H), 8.02 (d, *J*=1.8 Hz, 1 H), 7.89 (dd, *J*=8.6, 2.0 Hz, 1 H), 7.75 - 7.84 (m, 2 H), 7.68 - 7.74 (m, 1 H), 7.57 (d, *J*=8.4 Hz, 1 H), 7.23 (dd, *J*=8.2, 1.5 Hz, 1 H), 4.75 (dd, *J*=8.6, 6.4 Hz, 1 H), 2.16 (dd, *J*=14.7, 7.6 Hz, 1 H), 1.79 - 1.87 (m, 1 H), 0.77 - 0.87 (m, 1 H), 0.44 - 0.54 (m, 2 H), 0.11 - 0.24 (m, 2 H). MS (ESI) *m/z* 539.1 (M+H).

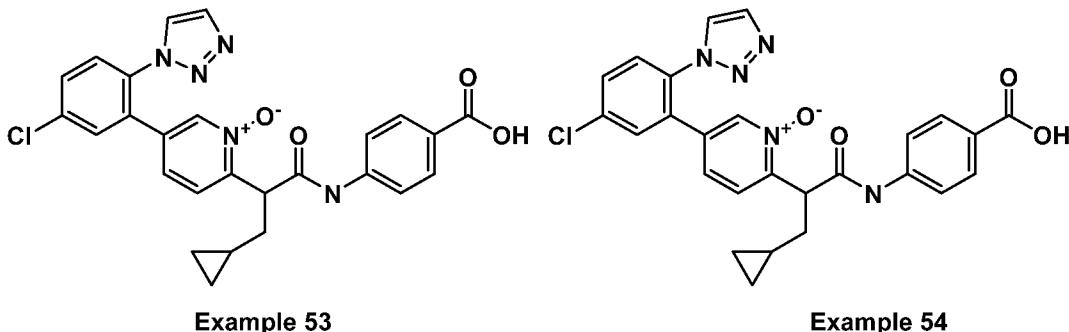




25






By using procedures similar to those described above and appropriate starting materials, the following compounds were synthesized and characterized by LCMS.

EX	Structure	IUPAC Name	LCMS [M+1]	Chiral Separation
27		4-[(2R)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl]amino]benzoic acid	505	AS column, slow eluting isomer
28		4-[(2S)-2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl]amino]benzoic acid	505	AS column, fast eluting isomer
29		4-({2-[5-(3-chloro-6-cyano-2-fluorophenyl)-1-oxidopyridin-2-yl]-3-cyclopropylpropanoyl}amino)benzoic acid	480	IA column, fast eluting isomer
30		4-({2-[5-(3-chloro-6-cyano-2-fluorophenyl)-1-oxidopyridin-2-yl]-3-cyclopropylpropanoyl}amino)benzoic acid	480	IA column, slow eluting isomer
31		3-chloro-4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	539	AD column, fast eluting isomer

32		3-chloro-4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	539	AD column, slow eluting isomer
33		4-({2-[5-(3-chloro-2,6-difluorophenyl)-1-oxidopyridin-2-yl]-3-cyclopropylpropanoyl}amino)benzoic acid	473	racemic
34		4-[(2-{5-[5-chloro-2-(1,3-oxazol-5-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	504	AS column, fast eluting isomer
35		4-[(2-{5-[5-chloro-2-(1,3-oxazol-5-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	504	AS column, slow eluting isomer

36		4-[(2-{5-[5-chloro-2-(1,3-oxazol-5-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	518	racemic
37		4-[(2-{5-[2-(aminomethyl)-5-chlorophenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	480	racemic
38		4-[(2-{5-[5-chloro-2-(trifluoromethoxy)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	521	AS-H column, 15%EtOH/CO ₂ , fast eluting isomer
39		4-[(2-{5-[5-chloro-2-(trifluoromethoxy)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	521	AS-H column, 15%EtOH/CO ₂ , slow eluting isomer


40		4-[(2-{5-[2-(aminomethyl)-5-chlorophenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	466	racemic
41		4-[(2-{5-[5-chloro-2-[4-(difluoromethyl)-1H-1,2,3-triazol-1-yl]phenyl}-1-oxidopyridin-2-yl)-3-cyclopropylpropanoyl]amino]benzoic acid	554	racemic
42		4-[(2-{5-[5-chloro-2-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]phenyl}-1-oxidopyridin-2-yl)-3-cyclopropylpropanoyl]amino]benzoic acid	534	racemic
43		4-[(2-{5-[5-chloro-2-(1,3-thiazol-2-yl)phenyl}-1-oxidopyridin-2-yl)-3-cyclopropylpropanoyl]amino]benzoic acid	520	racemic

44		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-fluorobenzoic acid	523	AS-H column, MeOH/CO ₂ , fast eluting isomer
45		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-fluorobenzoic acid	523	AS-H column, MeOH/CO ₂ , slow eluting isomer
46		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-3-methylbenzoic acid	519	AD-3 column, Fast eluting isomer
47		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-3-methylbenzoic acid	519	AD-3 column, Slow eluting isomer
48		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	519	IC column, fast eluting isomer

49		4-[(2-{5-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-methylbenzoic acid	519	IC column, Slow eluting isomer
50		4-[(2-{5-[3-chloro-2-fluoro-6-(1H-tetrazol-1-yl)phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	523	racemic
51		4-[(2-{5-[5-chloro-2-[4-(difluoromethyl)-1H-1,2,3-triazol-1-yl]phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	554	AS column, fast eluting isomer
52		4-[(2-{5-[5-chloro-2-[4-(difluoromethyl)-1H-1,2,3-triazol-1-yl]phenyl]-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]-2-carboxyphenyl	554	AS column, slow eluting isomer

EXAMPLES 53 & 54

2-((4-Carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl)pyridine 1-oxide (Examples 53 and 54)

Step 1. 2-(5-Bromopyridin-2-yl)-3-cyclopropylpropanoic acid (8-B) To a round bottom flask was added ethyl 2-(5-bromopyridin-2-yl)-3-cyclopropylpropanoate (2 g, 6.7 mmol), MeOH (20 mL), water (2 mL) and sodium hydroxide (0.40 g, 10 mmol) at 10°C. The reaction mixture was stirred at 10°C for 18 h. The reaction mixture was concentrated, diluted with water (20 mL) and the mixture was adjusted to pH 4-5 with saturated citric acid solution. The mixture was extracted with DCM (10 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and the filtrate was directly used for next step without further purification. MS (ESI) m/z 270.0 (M+H). 5

10 **Step 2. Ethyl 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoate (8-C)** To a round bottom flask was added **8-B** (30 ml, 6.0 mmol), HATU (2.75 g, 7.2 mmol), ethyl 4-aminobenzoate (1.0 g, 6.0 mmol) and triethylamine (2.5 mL, 18 mmol) at 12°C. The reaction mixture was stirred at 12°C for 18 h. The mixture was concentrated and the residue was purified by normal phase chromatography (ISCO, SiO₂, 40 g Agela Flash column, 0-25% EtOAc/PE, 40 min, dry loaded) to give the title compound.

¹H NMR (CDCl₃, 400MHz): δ 9.60 (s, 1 H), 8.60 (d, *J*=2.3 Hz, 1 H), 7.89 (d, *J*=8.8 Hz, 2 H), 7.72 (dd, *J*=8.3, 2.26 Hz, 1 H), 7.51 (d, *J*=8.5 Hz, 2 H), 7.13 - 7.18 (m, 1 H), 4.25 (q, *J*=7.2 Hz, 2 H), 3.73 (dd, *J*=8.3, 7.0 Hz, 1 H), 1.88 (dt, *J*=18.2, 7.3 Hz, 2 H), 1.28 (t, *J*=7.2 Hz, 3 H), 0.45 - 0.57 (m, 1 H), 0.23 - 0.37 (m, 2 H), -0.05 - 0.04 (m, 1 H), -0.20 - -0.11 (m, 1 H). MS (ESI) *m/z* 417.1 (M⁺H). 20

Step 3. 5-Bromo-2-(3-cyclopropyl-1-((4-(ethoxycarbonyl)phenyl)amino)-1-oxopropan-2-yl)pyridine 1-oxide (8-D) To a round bottom flask was added **8-C** (300 mg, 0.719 mmol), DCM (6 mL) and 3-chlorobenzoperoxoic acid (207 mg, 0.935 mmol) at 12°C. The reaction mixture was stirred at 12°C for 18 h. The mixture was quenched with saturated Na_2SO_3 solution (3 mL), diluted with water (15 mL) and the mixture was extracted with DCM (10 mL x 3). The combined organic layers were washed with sat. NaHCO_3 (10 mL x 3) solution, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by normal phase chromatography (ISCO, SiO_2 , 20 g Agela Flash column, 0-25% EtOAc/PE , 40 min, dry loaded)

to give the title compound.

1H NMR (CDCl₃, 400MHz): δ 10.32 (br. s., 1 H), 8.30 (d, *J*=1.8 Hz, 1 H), 7.76 (d, *J*=8.8 Hz, 2 H), 7.39 (d, *J*=8.5 Hz, 2 H), 7.31 (dd, *J*=8.5, 1.8 Hz, 1 H), 7.06 (s, 1 H), 4.52 (dd, *J*=8.8, 6.3 Hz, 1 H), 4.14 (q, *J*=7.1 Hz, 2 H), 2.12 - 2.22 (m, 1 H), 1.43 (d, *J*=6.8 Hz, 1 H), 1.17 (t, *J*=7.0 Hz, 3 H), 0.57 (d, *J*=7.3 Hz, 1 H), 0.24 - 0.31 (m, 2 H), -0.01 (d, *J*=5.0 Hz, 1 H), -0.10 - -0.04 (m, 1 H).
5 MS (ESI) *m/z* 435.0 (M+H).

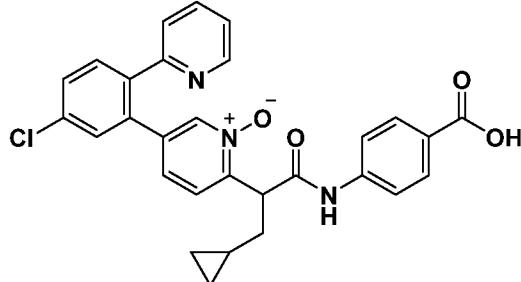
Step 4. 5-(5-Chloro-2-(1H-1,2,3-triazol-1-yl)phenyl)-2-(3-cyclopropyl-1-((4-(ethoxycarbonyl)phenyl)amino)-1-oxopropan-2-yl)pyridine 1-oxide (8-F) To a round bottom flask was added **8-D** (60 mg, 0.138 mmol), 1-(4-chloro-2-(trimethylstannyl) phenyl)-1H-1,2,3-triazole (47.4 mg, 10 0.138 mmol), toluene (2 mL) and Pd(Ph₃P)₄ (16.00 mg, 0.014 mmol) at 15°C. The reaction mixture was stirred at 110°C for 18 h, at 140°C and the mixture was stirred for 5 h. The mixture was filtered and concentrated. The residue was purified by preparative TLC (SiO₂, PE:EtOAc=1:1) to give the title compound. MS (ESI) *m/z* 532.3 (M+H).

Step 5. 2-(1-((4-Carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl)pyridine 1-oxide (8-G)

To a round bottom flask was added **8-F** (60 mg, 0.068 mmol), MeOH (3 mL), water (1 mL) and sodium hydroxide (5.41 mg, 0.135 mmol) at 13 °C. The reaction mixture was stirred at 13 °C for 18 h. The mixture was concentrated and the residue was purified by prep-HPLC (TFA buffer) to give the title compound.

20 1H NMR (CDCl₃, 400MHz): δ 7.96 - 8.09 (m, 2 H), 7.80 (d, *J*=8.4 Hz, 2 H), 7.40 - 7.65 (m, 7 H), 7.06 (d, *J*=8.5 Hz, 1 H), 4.41 - 4.51 (m, 1 H), 1.68 - 1.86 (m, 2 H), 0.68 (br. s., 1 H), 0.32 (d, *J*=7.5 Hz, 2 H), 0.00 (d, *J*=5.1 Hz, 2 H). MS (ESI) *m/z* 504.2 (M+H).

Step 6. 2-(1-((4-Carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl)pyridine 1-oxide (Example 53 and 54) Racemic compound 2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl)pyridine 1-oxide (25 mg, 0.050 mmol) was separated by SFC on a Chiraldak OD column, eluting with 50:50 Supercritical CO₂/MeOH(0.1%NH₃H₂O) at 50 mL/min, to afford **Example 53**(first peak) and **Example 54**(second peak).


Example 53: ¹H NMR (CD₃OD, 400MHz): δ 8.11 - 8.23 (m, 2 H), 7.96 (d, *J*=8.6 Hz, 2 H), 7.63 - 7.82 (m, 6 H), 7.58 (d, *J*=8.4 Hz, 1 H), 7.22 (d, *J*=8.2 Hz, 1 H), 4.58 - 4.65 (m, 1 H), 1.87 - 2.01 (m, 2 H), 0.83 (br. s., 1 H), 0.48 (d, *J*=7.7 Hz, 2 H), 0.16 (d, *J*=5.1 Hz, 2 H). MS (ESI) *m/z* 504.1 (M+H).

Example 54: ¹H NMR (CD₃OD, 400MHz): δ 8.15 (d, *J*=19.6 Hz, 2 H), 7.94 (d, *J*=8.2 Hz, 2 H),

7.61 - 7.79 (m, 6 H), 7.57 (d, $J=8.6$ Hz, 1 H), 7.20 (d, $J=7.4$ Hz, 1 H), 4.60 (dd, $J=8.6, 6.3$ Hz, 1 H), 1.85 - 1.98 (m, 2 H), 0.82 (d, $J=7.0$ Hz, 1 H), 0.46 (d, $J=7.4$ Hz, 2 H), 0.10 - 0.19 (m, 2 H). MS (ESI) m/z 504.1 (M+H).

EXAMPLE 55

5 2-((1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(pyridin-2-yl)phenyl)pyridine 1-oxide

Step 1. Ethyl 4-(3-cyclopropyl-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)propanamido)benzoate To a round bottom flask was added ethyl 4-(2-(5-bromopyridin-2-yl)-3-cyclopropylpropanamido)benzoate (100 mg, 0.240 mmol), potassium acetate (70.6 mg, 0.719 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (91 mg, 0.359 mmol), dioxane (2 mL) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium (35.1 mg, 0.048 mmol) at 15°C. The reaction mixture was stirred at 50°C for 18 h. The reaction mixture was directly used for next step without further purification. MS (ESI) m/z 383.2 (M+H).

15 **Step 2.** Ethyl 4-(2-(5-(2-bromo-5-chlorophenyl)pyridin-2-yl)-3-cyclopropylpropanamido)benzoate (9-B) To a round bottom flask was added **9-A** from step 1, 1-bromo-4-chloro-2-iodobenzene (66.0 mg, 0.208 mmol), K_2CO_3 (43.1 mg, 0.312 mmol) and [1,1'-bis(diphenyl phosphino)ferrocene]dichloropalladium (15.22 mg, 0.021 mmol) at 13°C. The reaction mixture was stirred at 50°C for 18 h. The mixture was filtered and concentrated. The residue was purified by preparative TLC (SiO_2 , PE:EtOAc=2:1) to give the title compound.

20 **¹H NMR** ($CDCl_3$, 400MHz): δ 10.21 (s, 1 H), 8.71 (d, $J=2.0$ Hz, 1 H), 8.06 (d, $J=8.8$ Hz, 2 H), 7.76 - 7.88 (m, 2 H), 7.71 (d, $J=8.6$ Hz, 2 H), 7.43 - 7.50 (m, 2 H), 7.33 (d, $J=8.2$ Hz, 1 H), 4.41 (q, $J=7.1$ Hz, 2 H), 3.98 (t, $J=7.5$ Hz, 1 H), 2.03 - 2.20 (m, 2 H), 1.44 (t, $J=7.1$ Hz, 2 H), 0.69 - 0.81 (m, 1 H), 0.42 - 0.56 (m, 2 H), 0.19 (dd, $J=9.2, 4.5$ Hz, 1 H), -0.02 - 0.06 (m, 1 H). MS (ESI) m/z 529.2 (M+H).

25 **Step 3.** 5-(2-Bromo-5-chlorophenyl)-2-(3-cyclopropyl-1-((4-(ethoxycarbonyl)phenyl)amino)-1-oxopropan-2-yl)pyridine 1-oxide (9-C) To a round bottom flask was added **9-B** (80 mg, 0.129 mmol), DCM (4 mL) and 3-chlorobenzoperoxoic acid (42.8 mg, 0.193 mmol) at 15°C. The reaction mixture was stirred at 15°C for 18 h. The mixture was quenched with saturated Na_2SO_3

solution (3 mL), diluted with water (10 mL) and extracted with DCM (10 mL x 3). The combined organic layers were washed with saturated NaHCO_3 (10 mL x 3) solution, dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound, which was directly used for next step without further purification.

5 **¹H NMR** (CDCl_3 , 400MHz): δ 10.86 (br. s., 1 H), 8.33 (s, 1 H), 7.91 (d, J =8.6 Hz, 2 H), 7.66 (d, J =1.5 Hz, 1 H), 7.58 (d, J =8.6 Hz, 2 H), 7.35 - 7.39 (m, 2 H), 7.17 - 7.20 (m, 2 H), 4.74 - 4.83 (m, 1 H), 4.27 (q, J =7.1 Hz, 2 H), 2.36 - 2.47 (m, 1 H), 1.56 - 1.60 (m, 1 H), 1.31 (t, J =7.2 Hz, 3 H), 0.80 (d, J =10.1 Hz, 1 H), 0.44 (d, J =7.1 Hz, 2 H), 0.04 - 0.23 (m, 2 H). MS (ESI) m/z 545.2 (M+H).

10 **Step 4. 5-(5-Chloro-2-(pyridin-2-yl)phenyl)-2-(3-cyclopropyl-1-((4-(ethoxycarbonyl)phenyl)amino)-1-oxopropan-2-yl)pyridine 1-oxide (9-D)** To a microwave tube was added **9-C** (35 mg, 0.064 mmol), 2-(tributylstannylyl)pyridine (28.4 mg, 0.077 mmol), toluene (2 mL) and $\text{Pd}(\text{PPh}_3)_4$ (14.87 mg, 0.013 mmol). The reaction mixture was stirred at 140°C for 40 min under microwave. The mixture was filtered and concentrated. The residue was purified by preparative 15 TLC (SiO_2 , PE:EtOAc=1:2) to give the title compound. MS (ESI) m/z 542.3 (M+H).

15 **Step 5. 2-(1-((4-Carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(pyridin-2-yl)phenyl)pyridine 1-oxide (Example 55)** To a round bottom flask was added **9-D** (15 mg, 0.028 mmol), MeOH (3 mL), water (1 mL) and sodium hydroxide (2.214 mg, 0.055 mmol) at 15°C. The reaction mixture was stirred at 15°C for 18 h. LCMS showed reaction was 20 complete. The mixture was concentrated and the residue was purified by prep-HPLC (TFA buffer) to give the title compound.

20 **¹H NMR** (CD_3OD , 400MHz): δ 8.44 (d, J =4.7 Hz, 1 H), 8.04 (s, 1 H), 7.83 (d, J =8.6 Hz, 3 H), 7.51 - 7.63 (m, 4 H), 7.35 - 7.48 (m, 4 H), 7.14 (d, J =7.4 Hz, 1 H), 4.44 - 4.51 (m, 1 H), 1.74 - 1.86 (m, 2 H), 0.70 (br. s., 1 H), 0.33 (dt, J =7.2, 3.8 Hz, 2 H), -0.03 - 0.07 (m, 2 H). MS (ESI) 25 m/z 514.1 (M+H).

By using the procedures described above and appropriate starting materials, the following compounds were synthesized. These compounds were characterized by LC/MS.

EX	Structure	IUPAC Name	LCMS [M+1]	Chiral Separation
53		4-[(2-{5-[5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl}-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	504	OD column, Fast eluting isomer
54		4-[(2-{5-[5-chloro-2-(1H-1,2,3-triazol-1-yl)phenyl}-1-oxidopyridin-2-yl}-3-cyclopropylpropanoyl)amino]benzoic acid	504	OD column, slow eluting isomer
55		2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(pyridin-2-yl)phenyl)pyridine 1-oxide	514.1	racemic
56		2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-1,2,4-triazol-1-yl)phenyl)pyridine 1-oxide	504.1	racemic
57		2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1,2,3-thiadiazol-4-yl)phenyl)pyridine 1-oxide	521.1	racemic
58		2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(pyrazin-2-yl)phenyl)pyridine 1-oxide	515.1	racemic
59		2-(1-((4-carboxyphenyl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-5-(5-chloro-2-(1H-pyrazol-1-yl)phenyl)pyridine 1-oxide	503.1	racemic

Factor XIa assay

The effectiveness of a compound of the present invention as an inhibitor of Coagulation Factor XIa can be determined using a relevant purified serine protease, and an appropriate synthetic substrate. The rate of hydrolysis of the chromogenic or fluorogenic substrate by the relevant serine protease was measured both in the absence and presence of compounds of the present invention. Assays were conducted at room temperature or at 37°C. Hydrolysis of the substrate resulted in release of amino trifluoromethylcoumarin (AFC), which was monitored spectrofluorometrically by measuring the increase in emission at 510 nm with excitation at 405 nm. A decrease in the rate of fluorescence change in the presence of inhibitor is indicative of enzyme inhibition. Such methods are known to one skilled in the art. The results of this assay are expressed as the inhibitory constant, K_i .

Factor XIa determinations were made in 50mM HEPES buffer at pH 7.4 containing 150 mM NaCl, 5 mM CaCl₂, and 0.1% PEG 8000 (polyethylene glycol; JT Baker or Fisher Scientific). Determinations were made using purified human Factor XIa at a final concentration of 40 pM (Sekisui Diagnostics) and he synthetic substrate, Z-Gly-Pro-Arg-AFC, TFA salt (Sigma #C0980) at a concentration of 100 μ M.

Activity assays were performed by diluting a stock solution of substrate at least tenfold to a final concentration $\leq 0.1 K_m$ into a solution containing enzyme or enzyme equilibrated with inhibitor. Times required to achieve equilibration between enzyme and inhibitor were determined in control experiments. Initial velocities of product formation in the absence (V_0) or presence of inhibitor (V_i) were measured. Assuming competitive inhibition, and that unity is negligible compared $K_m/[S]$, $[I]/e$, and $[I]/e$ (where $[S]$, $[I]$, and e respectively represent the total concentrations, of substrate, inhibitor and enzyme), the equilibrium constant (K_i) for dissociation of the inhibitor from the enzyme can be obtained from the dependence of V_0/V_i on $[I]$ shown in the following equation.

$$V_0/V_i = 1 + [I]/K_i$$

The activities shown by this assay indicate that the compounds of the invention may be therapeutically useful for treating or preventing various cardiovascular and/or cerebrovascular thromboembolic conditions in patients suffering from unstable angina, acute coronary syndrome, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, stroke such as thrombotic stroke or embolic stroke, venous thrombosis, coronary and cerebral arterial thrombosis, cerebral and pulmonary embolism, atherosclerosis, deep vein

thrombosis, disseminated intravascular coagulation, and reocclusion or restenosis of recanalized vessels.

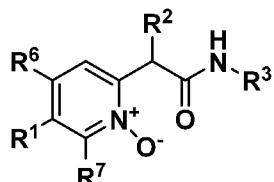
Kallikrein assay

The effectiveness of a compound of the present invention as an inhibitor of Kallikrein can be determined using a relevant purified serine protease, and an appropriate synthetic substrate. The rate of hydrolysis of the chromogenic or fluorogenic substrate by the relevant serine protease was measured both in the absence and presence of compounds of the present invention. Assays were conducted at room temperature or at 37 °C. Hydrolysis of the substrate resulted in release of amino trifluoromethylcoumarin (AFC), which was monitored spectrofluorometrically by measuring the increase in emission at 510 nm with excitation at 405 nm. A decrease in the rate of fluorescence change in the presence of inhibitor is indicative of enzyme inhibition. Such methods are known to one skilled in the art. The results of this assay are expressed as the inhibitory constant, K_i .

Kallikrein determinations were made in 50 mM HEPES buffer at pH 7.4 containing 150 mM NaCl, 5 mM CaCl₂, and 0.1% PEG 8000 (polyethylene glycol; Fisher Scientific). Determinations were made using purified Human plasma kallikrein at a final concentration of 0.5 nM (Enzyme Research Laboratories) and the synthetic substrate, Acetyl-K-P-R-AFC (Sigma # C6608) at a concentration of 100mM.

Activity assays were performed by diluting a stock solution of substrate at least tenfold to a final concentration $\leq 0.2 K_m$ into a solution containing enzyme or enzyme equilibrated with inhibitor. Times required to achieve equilibration between enzyme and inhibitor were determined in control experiments. The reactions were performed under linear progress curve conditions and fluorescence increase measured at 405 Ex/510 Em nm. Values were converted to percent inhibition of the control reaction (after subtracting 100% Inhibition value). IC₅₀ was determined by inflection point from a four parameter logistic curve fit. K_i was calculated using the Cheng Prusoff equation, $K_i = IC_{50}/(1+([S]/K_m))$.

The activities shown by this assay indicate that the compounds of the invention may be therapeutically useful for treating or preventing various cardiovascular and/or cerebrovascular thromboembolic conditions in patients suffering from unstable angina, acute coronary syndrome, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, stroke such as thrombotic stroke or embolic stroke, venous thrombosis, coronary and cerebral arterial thrombosis, cerebral and pulmonary embolism, atherosclerosis, deep vein thrombosis, disseminated intravascular coagulation, and reocclusion or restenosis of recanalized vessels.


Factor XIa (FXIa) and Plasma Kallikrein (P. KLK) data for selected compounds is as follows:

EX	FXIa IC50 (nM)	P. KLK IC50 (nM)
1	32.70	83.1
2	0.16	1.2
3	824.90	
4	3.63	18.2
5	108.80	91.4
6	0.24	1.9
7	14.16	67.1
8	0.26	3.4
9	89.15	1573.0
10	2187	
11	2508	
12	711.30	
13	388.10	
14	18.55	1352.0
15	111.50	45.0
16	10000	
17	0.76	143.6
18	270.90	
19	4.10	9.2
20	1000	
21	0.52	
22	364.40	
23	9.39	24.6
24	0.29	0.7
25	8.32	42.3
26	693.10	
27	0.14	23.8

EX	FXIa IC50 (nM)	P. KLK IC50 (nM)
28	37	5823.0
29	457.90	
30	4.24	80.4
31	751.70	
32	3.37	692.3
33	134.50	
34	443.10	
35	5.65	407.9
36	94.52	
37	227.50	
38	1000	
39	18.94	829.7
40	30.57	1881.0
41	2.12	363.0
42	8.45	1610.0
43	53.63	
44	18	3263.0
45	0.07	17.6
46	1000	
47	15.10	2351.0
48	0.46	83.1
49	57	
50	0.19	25.1
51	181	
52	0.68	85.6
54	4.7	677.5

WHAT IS CLAIMED IS:

1. A compound of the formula:

5 wherein R¹ is aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, (C₁₋₃ alkyl)NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵, C₃₋₆ cycloalkyl and heteroaryl (which is optionally substituted with halo, cyano, (C=O)NR⁴R⁵ or R⁴);

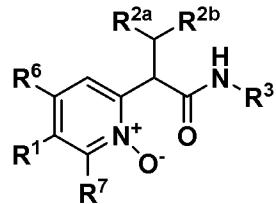
10 R² is hydrogen, hydroxy or CH(R^{2a})(R^{2b});

R^{2a} is C₁₋₆ alkyl, aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said alkyl group is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano, and wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴ and OR⁴;

15 R^{2b} is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano;

R³ is aryl, heteroaryl, C₃₋₁₀ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵ and heteroaryl;

20 R⁴ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;


R⁵ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;

25 R⁶ is hydrogen, cyano, halo, R⁴ or OR⁴;

R⁷ is hydrogen, cyano, halo, R⁴ or OR⁴;

or a pharmaceutically acceptable salt thereof.

30 2. The compound of Claim 1 of the formula:

wherein R¹ is aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴,

5 (C=O)OR⁴, NR⁴R⁵, (C₁₋₃ alkyl)NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵, C₃₋₆ cycloalkyl and heteroaryl (which is optionally substituted with R⁴);

R^{2a} is C₁₋₆ alkyl, aryl, heteroaryl, C₃₋₆ cycloalkyl or heteroalkyl, wherein said alkyl group is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano, and wherein said aryl, heteroaryl, cycloalkyl and

10 heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴ and OR⁴;

R^{2b} is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three substituents independently selected from the group consisting of halo, hydroxy and cyano;

R³ is aryl, heteroaryl, C₃₋₁₀ cycloalkyl or heteroalkyl, wherein said aryl, heteroaryl, cycloalkyl

15 and heterocyclyl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, nitro, cyano, oxo, R⁴, OR⁴, (C=O)R⁴, (C=O)OR⁴, NR⁴R⁵, NH(C=O)R⁴, NH(C=O)OR⁴, C(NH)NR⁴R⁵ and heteroaryl;

R⁴ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;

20 R⁵ is hydrogen or C₁₋₆ alkyl, which is optionally substituted with one to three groups independently selected from the group consisting of halo and hydroxy;

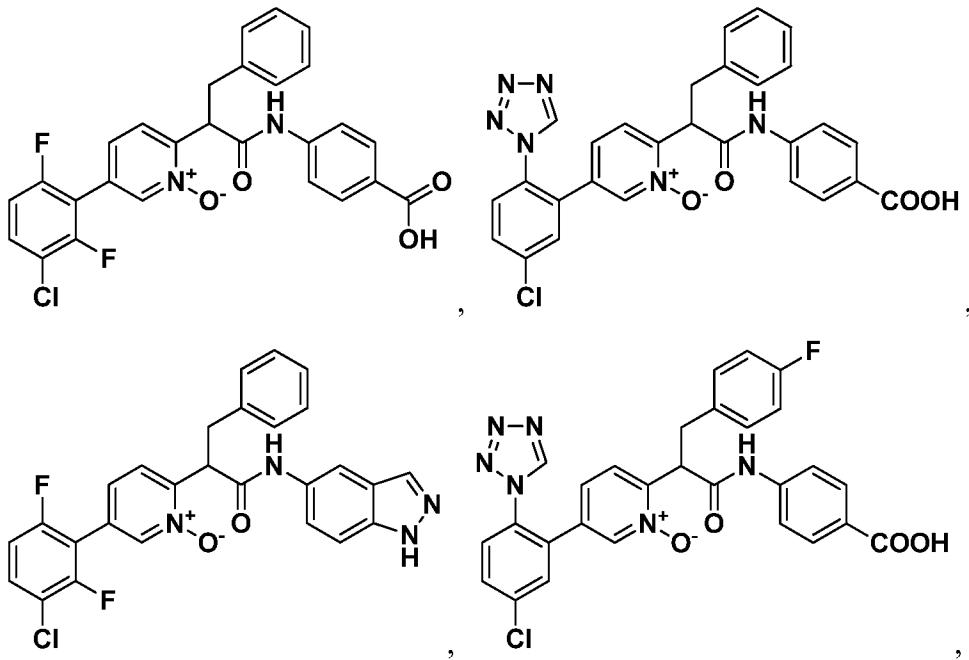
R⁶ is hydrogen, halo, R⁴ or OR⁴;

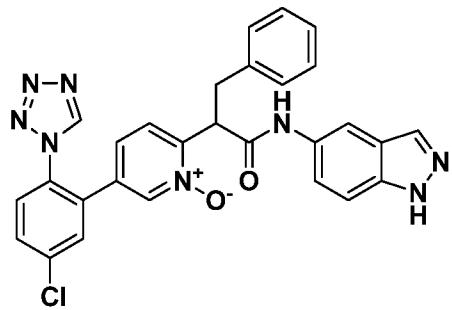
R⁷ is hydrogen, halo, R⁴ or OR⁴;

or a pharmaceutically acceptable salt thereof.

25

3. The compound of Claims 1 or 2 wherein R¹ is aryl, which optionally is substituted with one to three substituents independently selected from the group consisting of chloro, fluoro, C₃₋₆ cycloalkyl and heteroaryl (which is optionally substituted with R⁴); or a pharmaceutically acceptable salt thereof.


4. The compound of any of Claims 1 to 3 wherein R¹ is phenyl, which optionally is substituted with one to three substituents independently selected from the group consisting of halo, C₃₋₆ cycloalkyl and tetrazolyl; or a pharmaceutically acceptable salt thereof.


5 5. The compound of any of Claims 1 to 4 wherein R^{2a} is aryl, which optionally is substituted with one to three halo, and R^{2b} is hydrogen; or a pharmaceutically acceptable salt thereof.

10 6. The compound of any of Claims 1 to 5 wherein R^{2a} is cyclopropyl and R^{2b} is hydrogen; or a pharmaceutically acceptable salt thereof.

15 7. The compound of any of Claims 1 to 6 wherein R³ is aryl or heteroaryl, wherein said aryl and heteroaryl groups are optionally substituted with one to three substituents independently selected from the group consisting of halo, R⁴ and (C=O)OR⁴; or a pharmaceutically acceptable salt thereof.

8. The compound of Claim 1 selected from:

,
or a pharmaceutically acceptable salt thereof.

9. A pharmaceutical composition comprising a compound of any of Claims 1 to 8

5 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.

10. A method for inhibiting thrombus formation in blood or treating thrombus formation in blood comprising administering a composition of Claim 9 to a mammal in need of thereof.

10

11. A method for preventing thrombus formation in blood comprising administering a composition of Claim 9 to a mammal in need thereof.

15

12. A method of treating venous thromboembolism and pulmonary embolism in a mammal comprising administering a composition of Claim 9 to a mammal in need thereof.

13. A method of treating deep vein thrombosis in a mammal comprising administering a composition of Claim 9 to a mammal in need thereof.

20

14. A method of treating thromboembolic stroke in a human comprising administering a composition of Claim 9 to a mammal in need thereof.

25

15. The use of a compound of any of Claims 1 to 8, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for inhibiting thrombin, inhibiting thrombus formation, treating thrombus formation or preventing thrombus formation in a mammal.

16. A compound according to any of Claims 1 to 8 for use in therapy.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 15/32091

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 31/44; A61K 31/4192; A61K 31/167 (2015.01)

CPC - A61K 31/167; A61K 31/41

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): A61K 31/44; A61K 31/4192; A61K 31/167 (2015.01)

CPC: A61K 31/167; A61K 31/41

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 514/358; 514/613; 514/359; 548/255

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Scholar, PubWEST

factor Xla inhibitor, pyridine-1-oxide, propanoylamino benzoic acid, tetrazolyl, indazol-6-ylamino

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2010/0173899 A1 (PINTO et al.) 08 July 2010 (08.07.2010) para [0005], [0465], Example 15; para [0491], Example 28; para [1172], Table 1	1-3, 8
A	US 7,829,584 B2 (PLAYER et al.) 09 November 2010 (09.11.2010) col 10, ln 56 to col 11, ln 15	1-3, 8
A	US 7,262,210 B2 (KREUTTER et al.) 28 August 2007 (28.08.2007) col 2, ln 55- col 3, ln 10	1-3, 8

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

- “A” document defining the general state of the art which is not considered to be of particular relevance
- “E” earlier application or patent but published on or after the international filing date
- “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- “O” document referring to an oral disclosure, use, exhibition or other means
- “P” document published prior to the international filing date but later than the priority date claimed

- “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- “&” document member of the same patent family

Date of the actual completion of the international search

18 August 2015 (18.08.2015)

Date of mailing of the international search report

15 SEP 2015

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
 P.O. Box 1450, Alexandria, Virginia 22313-1450
 Facsimile No. 571-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
 PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 15/32091

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-7 and 9-16 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.