wo 2013/072657 A1 [N N0F V000000 O 0 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/072657 Al

23 May 2013 (23.05.2013) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/30 (2006.01) HO04L 9/08 (2006.01) kind of national protection available): AE, AG, AL, AM,
GO6F 9/38 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) Int tional Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: PCT/GE012/0523 15 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
20 September 2012 (20.09.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
.) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(26) Publication Language: English ™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(30) Priority Data:
1119834.8 17 November 2011 (171 1.201 1) GB (84) Designated States (unless otherwise indicated, fO}" every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: ARM LIMITED [GB/GB]; 110 Fulbourn GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Road, Cherry Hinton, Cambridge CB1 9NJ (GB). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Tnventors: HORSNELL, Matthew James; ¢/o ARM Lim- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
: . ; EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
ited, 110 Fulbourn Road, Cherry Hinton, Cambridge CB1
. . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
9NJ (GB). GRISENTHWAITE, Richard Roy; c/o ARM
. . . TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Limited, 110 Fulbourn Road, Cherry Hinton, Cambridge ML MR. NE. SN. TD. TG
CB1 9NJ (GB). KERSHAW, Daniel; ¢/o ARM Limited, ’ - NE, SN, TD, TG).
110 Fulbourn Road, Cherry Hinton, Cambridge CB1 9NJ Published:
(GB). BILES, Stuart David; c/o ARM Limited, 110 P .
Fulbourn Road, Cherry Hinton, Cambridge CB1 9NJ (GB). with international search report (drt. 21(3))
(74) Agent: ROBINSON, Nigel; D Young & Co LLP, 120

Holborn, London ECIN 2DY (GB).

(54) Title: SIMD INSTRUCTIONS FOR SUPPORTING GENERATION OF HASH VALUES IN CRYPTOGRAPHIC AL-
GORITHMS

4
rJ

CPU g 16
- 2
Register
Renamer
Scoreboard

Lo

General
Purpose
Processing

12
~

SIMD
Register
File

18
~

SIMD Register
Renamer
Scoreboard

-]

14
~

SIMD
Processing and
Crypto Support

control
signals

f"—L—ﬁ
N

2
Decoder 2
]

(57) Abstract: A data processing system
(2) includes a single instruction multiple
data register file (12) and single instruction

multiple processing circuitry (14). The
single instruction multiple data processing
circuitry (14) supports execution of crypto-
graphic processing instructions for per-
forming parts of a hash algorithm. The op-

Memory

erands are stored within the single instruc-

Data tion multiple data register file (12). The

cryptographic support instructions do not
follow normal lane-based processing and
generate output operands in which the dif-
ferent portions of the output operand de-

pend upon multiple different elements
within the input operand.

Program

20 A Instruction Pipeline |

Interrupt Circuitry|—' 24

'

o~ int

FIG. 1

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

SIMD INSTRUCTIONS FOR SUPPORTING GENERATION OF HASH VALUES IN CRYPTOGRAPHIC

ALGORITHMS

This invention relates to the field of data processing systems. More particularly, this
invention relates to the provision of cryptographic support instructions within data processing
systems.

It is known to use data processing systems to perform cryptographic operations. Examples
of'such known cryptographic processing operations include the Secure Hash Algorithm (SHA).
The SHA has a variety of different known forms including SHA-1, SHA-2, SHA256 and SHAS512.
These algorithms are computationally intensive.

One known approach to supporting these algorithms is to use a general purpose processor
executing general purpose instruction with its general purpose register file. A problem with this
approach is that the large amounts of state data which has to be manipulated in performing these
algorithms, which typically can generate hash values of 160-bits and upwards, has the result that
the operations often have to be split down and performed by a long sequence of individual program
instructions operating on parts of the data at a time thereby resulting in a disadvantageous increase
in the amount of time required to execute the algorithms and the energy consumed in executing the
algorithms.

Another known approach is to provide a special purpose cryptographic support processor,
such as a cryptographic coprocessor, which has dedicated circuitry for performing the algorithms
and is typically initiated by passing a pointer to the start of the data to be hashed and then waiting
to receive the resulting hash value. A problem with this approach is that extra cost and complexity
is incurred by the provision of the special purpose cryptographic hardware. Furthermore, problems
arise in integrating the operation of the special purpose hardware with the other operations of the
device, such as interrupt handling, multitasking and the like, since the special purpose
cryptographic hardware is difficult and complex to incorporate within the mechanisms normally
provided within the data processing system to deal with such aspects of the operation with the data
processing system.

Viewed from one aspect the present invention provides a data processing apparatus
comprising:

a single instruction multiple data register file; and

single instruction multiple data processing circuitry coupled to said single instruction
multiple data register file and configured to be controlled by a single instruction multiple data
program instruction to perform a processing operation independently upon separate data elements
stored within separate lanes within an input operand register of said single instruction multiple data
register file; wherein

said single instruction multiple data processing circuitry is configured to be controlled by a

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

further program instruction to perform a further processing operation upon a vector data value
comprising a sequence of data elements held within an input operand register of said single
instruction multiple data register file to produce an output operand stored within and an output
operand register of said single instruction multiple data register file, said output operand having a
first portion with a value dependent upon all data elements within said sequence of data elements.

The present technique recognises that many data processing systems are already provided
with single instruction multiple data processing mechanisms. Such single instruction multiple data
processing mechanisms typically include a single instruction multiple data register file which has a
large storage capacity capable of storing and manipulating the large data width operands that are
typically involved in single instruction multiple data processing. It is normal in single instruction
multiple data processing that the separate lanes of data are independently processed under control
of a single program instruction. For example, the separate lanes of data may comprise component
values of a colour pixel value, or other vector value, all to be subject to the same processing
operation, such as scaling. The present technique recognises that the storage capabilities of the
single instruction multiple data register file can be reused with further program instruction that do
not follow the normal form of single instruction multiple data program instructions. In particular,
the processing of the lanes need not be independent and an output operand generated may have a
first portion with a value dependent upon all data elements within a vector data value forming an
nput.

The reuse of the single instruction multiple register file outside of the area of single
mstruction multiple data program instructions may be applied to a variety of areas, such as data
compression and data cryptography. The technique is particularly well suited to data cryptography.

In this context, the further program instruction may be arranged to perform an iterative
processing operation consuming successive words of data and at least portions of an intermediate
hash value in order to generate an output hash value. Hash value generation typically requires the
manipulation of large volumes of data and a register file with the capability to store and manipulate
unusually long operand values.

One form of the further program instruction is where said further program instruction has a
first input operand Qd[127:0] and a second input operand Sn[31:0] both read from said single
instruction multiple data register file and said vector data value comprises Vm[Index+31:Index]
where Index is 0 to 2~, where N is a positive integer, said further processing operation producing
said output operand Qdouypu[127:0] to have a value the same as given by the steps:

X[127:0] = Qd[127:0];
Y[31:0] = Sn[31:0];
for (I =0 to (2™-1));

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

Index = (1*32);

t1[31:0] = OP FUNC (X[63:32], X[95:64], X[127:96]);

Y[31:0] =Y[31:0] + ROL(X[31:1], 5) + T1[31:0] + Vm[Index+31:Index];
X[63:32] = ROL(X[63:32], 30);

T2[31:0] = Y[31:0];

Y[31:0] = X[127:96];

X[127:0] = {X[95:0]:T2[31:0]}

b
Qdoupu[127:0] = X[127:0];
where OP FUNC (B, C, D) is one of:

(((C XOR D) AND B) XOR D);

(B XOR C XOR D); and

(B AND C) OR ((B OR C) AND D); and

ROL (P, Q) is a left rotate of value P by Q bit positions.

This form of iterative program instruction is well suited to implementing the SHA-1
algorithm. It will be appreciated that the operations defined above are given in the form of psuedo
code and may be implemented in a variety of different hardware forms as will be well understood
by those skilled in this technical field. In particular, a low circuit overhead implementation may re-
circulate values to perform iterative operation where as a higher performance implementation may
seek to perform at least portions of different iterations in parallel.

Another form of the further program instruction has a first input operand Qd[127:0] and a

second input operand Sn[31:0] both read from said single instruction multiple data register file and

N
said vector data value comprises Vm[Index+31:Index] where Index is 0 to 2 , where N is a positive

integer, said further processing operation producing said output operand Qdoutpm[127:0] to have a

value the same as given by the steps:
X[127:0] = Qd[127:0];
Y[31:0] = Sn[31:0];
for (1= 0 to (2 -1));
{
Index =(I%*32);
T1[31:0] = OP_FUNC(X[63:32], X[95:64], X[127:96]);
Y =Y + ROL(X[31:0], 5) + T1[31:0] + Vm[(Index + 31):Index];
X[63:32] =ROL(X[63:32], 30);
T2[31:0] =Y;

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

Y = X[127:96];
X[127:0] = {X[95:0]:T2[31:0]};

b
Qdoutpm[127:0] = {0:Y[31:0]};
where OP FUNC (B, C, D) is one of:

(((C XOR D) AND B) XOR D);
(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and

ROL (P, Q) is a left rotate of value P by Q bit positions.

The choice of the function evaluated by OP FUNC may be made in dependence upon a
particular field within the further program instruction or may be made in dependence upon how
many iterations have been performed during the processing of a currently input block of data
values to be hashed.

In some embodiments the single instruction multiple data register file may not have the
capability to store all of the first input operand and the second input operand in a single register and
accordingly these may be stored within separate registers within the single instruction multiple data
register file. In other embodiments the first input operand and the second input operand may be
stored within a shared register and may be considered as a single input operand.

In further embodiments, either in combination with the above further program instruction
or instead of the above further program instruction, the present technique may provide support for
the further program instruction having a first input operand Qd[127:0] and a second input operand
Qn[127:0] both read from said single instruction multiple data register file and said vector data
value comprises Vm[Index+31:Index] where Index is 0 to 2%, where N is a positive integer, said
further processing operation producing said output operand Qdouyu[127:0] to have a value the same
as given by the steps:

X[127:0] = Qd[127:0];
Y[127:0] = Qn[127:0];
for (I =0 to (2™-1));
{
Index = (1*32);
TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);
TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);
T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];
X[127:96] = T1[31:0] + X[127:96];
Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

T2[31:0] = Y[127:96];
Y[127:0] = {Y[95:0]:X[127:96]};
X[127:0] = {X[95:0]:T2[31:0]}

b
Qdoupu[127:0] = X[127:0];

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is ((B AND
C) OR ((B OR C) AND D)), Sigma0(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)),
Sigmal(B) is (ROR(B,6) XOR ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of
value P by Q bit positions.

In a similar way, the further program instruction may also have a form in which the further
program instruction a first input operand Qd[127:0] and a second input operand Qn[127:0] both
read from said single instruction multiple data register file and said vector data value comprises
Vm[Index+31:Index] where Index is 0 to 2, where N is a positive integer, said further processing
operation producing said output operand Qdoupw[127:0] to have a value the same as given by the
steps:

X[127:0] = Qn[127:0];

Y[127:0] = Qd[127:0];

for (1=0to (2™-1));

{

Index = (1*32);
TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);
TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);
T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];
X[127:96] = T1[31:0] + X[127:96];
Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]
T2[31:0] = Y[127:96]
Y[127:0] = {Y[95:0]:X[127:96]};
X[127:0] = {X[95:0]:T2[31:0]}

b

b
Qdoupw[127:0] = Y[127:0];
where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR
((B OR C) AND D)), Sigma(O(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is
(ROR(B,6) XOR ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q
bit positions.

The above two forms of further program instruction are well suited to supporting the SHA-

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

224 algorithm and the SHA256 algorithm.

The mechanism(s) for managing the processing of the further program instruction may
conveniently be combined with the single instruction multiple data processing circuitry. The
mechanism(s) for managing the processing of the further processing instruction use the single
instruction multiple data instruction register file and implementation can be simplified when the
mechanisms for managing the processing of the further program instruction (e.g. interrupt
handling, scheduling) is integrated with that of the single instruction multiple data processing
circuitry.

Aspects of managing the processing of the further program instruction which may be
integrated with that of the single instruction multiple data processing circuitry include register
renaming, instruction scheduling, instruction issue, instruction retirement and instruction interrupt.
The single instruction multiple data processing circuitry typically already includes circuit elements
which manage and support these operations and the further program instructions may be integrated
into this management support relatively readily. This provides the advantage that if an interrupt
occurs part way through the generation of a cryptographic hash value, then the normal interrupt
handling mechanisms may be used to service that interrupt and restart or continue the hash
calculation after the interrupt has been served with little addition overhead or complexity.

Support for hashing algorithms is further enhanced by the provision of a rotate instruction
having an input operand Sm[31:0] and generating an output operand Sd[31:0] with a value the
same as given by a right rotation of Sm[31:0] by two bit positions.

Another aspect of the processing of cryptographic hash algorithms that should be
performed in addition to the generation of the intermediate hash values is the updating of the
schedule of data elements within the file being processed. This updating of the schedule should be
balanced in terms of work load with the hash generation in order not to introduce a
disadvantageous bottleneck in the processing throughput. Accordingly, some embodiments of the
present invention provide that said single instruction multiple data processing circuitry is
configured to be controlled by a first schedule update instruction having a first input operand
Sp[127:0] and a second input operand Sq[127:0] and generating an output operand Sr[127:0] with a
value the same as given by the steps:

T[127:0] = {Sp[63:0]:8q[127:64]} and
Sr[127:0] = T[127:0] XOR S1[127:0] XOR Sq[127:0].

Furthermore, some embodiments provide that said single instruction multiple data
processing circuitry is configured to be controlled by a second schedule update instruction having
an input operand Ss[127:0] and generating an output operand St[127:0] with a value the same as

given by the steps:

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

T[127:0] = St[127:0] XOR {32{0}:Ss[127:32]};
St[95:0] = {T[94:64]:T[95]:T[62:32]:T[63]:T[30:0]:T[31]}; and
St[127:96] = ({T[126:96]:T[127]}) XOR ({T[29:0]:T[31:30]}).

The above two forms of program instruction are well suited to supporting the SHA-256 and
the SHA-224 algorithms.

In order to help support the schedule generation in other forms of hash algorithm, some
embodiments of such that said single instruction multiple data processing circuitry is configured to
be controlled by a first schedule update instruction having an input operand Sp[127:0] and
generating an output operand Sq[127:0] with a value the same as given by the steps:

T[127:0] = {Sp[31:0]:Sq[127:32]};

T[127:0] = VecROR32(T[127:0], 7) XOR VecROR32(T[127:0], 18) XOR VecROR32(T[127:0], 3);
and

Sq[127:0] = VecADD32(T[127:0], Sq[127:0]),

where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A
and VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit
word within B.

Further embodiments additionally provide said single instruction multiple data processing
circuitry is configured to be controlled by a first schedule update instruction having a first input
operand Sp[127:0] and a second input operand Sq[127:0] and generating an output operand
Sr[127:0] with a value the same as given by the steps:
TO[127:0] = {Sq[31:0]:Sp[127:32]};
T1[63:0] =Sq[127:64];
T1[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0],
10);
T3[63:0] = VecADD32(Sr[63:0], T0[63:0]);
T1[63:0] = VecADD32(T3[63:0], T1[63:0]);
T2[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0],
10);
T3[63:0] = VecADD32(Sr[127:64], TO[127:64]); and
S1[127:0] = {VecADD32(T3[63:0], T2[63:0]):T1[63:0]},
where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A
and VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit
word within B.

The above two forms of program instruction are well suited to supporting the SHA-256

algorithm.

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

Viewed from another aspect the present invention provides data processing apparatus
comprising:

single instruction multiple data register file means for storing single instruction multiple
data operands; and

single instruction multiple data processing means for performing a processing operation
under control of a single instruction multiple data program instruction, said single instruction
multiple data processing means being coupled to said single instruction multiple data register file
means and said processing operation being performed independently upon separate data elements
stored within separate lanes within an input operand register of said single instruction multiple data
register file means; wherein

said single instruction multiple data processing means is controlled by a further program
instruction to perform a further processing operation upon a vector data value comprising a
sequence of data elements held within an input operand register of said single instruction multiple
data register file means to produce an output operand stored within and an output operand register
of said single instruction multiple data register file means, said output operand having a first
portion with a value dependent upon all data elements within said sequence of data elements.

Viewed from a further aspect a present invention provides a method of processing data
comprising the steps of’

storing single instruction multiple data operands within a single instruction multiple data
register file;

under control of a single instruction multiple data program instruction performing a
processing operation independently upon separate data elements stored within separate lanes within
an input operand register of said single instruction multiple data register file; and

under control of a further program instruction performing a further processing operation
upon a vector data value comprising a sequence of data elements held within an input operand
register of said single instruction multiple data register file to produce an output operand stored
within and an output operand register of said single instruction multiple data register file, said
output operand having a first portion with a value dependent upon all data elements within said
sequence of data elements.

Another aspect of the invention is the provision of a virtual machine implementation which
provides an execution environment on a general purpose computer that permits program
instructions as detailed above to be executed as if they were executing upon the data processing
apparatus detailed above. Such virtual machine implementations of the present techniques are
encompassed here in.

Embodiments of the invention will now be described, by way of example only, with

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

reference to the accompanying drawings in which:

Figure 1 schematically illustrates a data processing apparatus including a single instruction
multiple data register file and single instruction multiple data processing circuitry including support
for execution of cryptographic processing instructions:

Figure 2 schematically illustrates the data flow within one example form of a hash
algorithm; and

Figure 3 schematically illustrates how the further processing instruction does not follow the
normal lane-based processing associated with single instruction multiple data processing circuitry.

Figure 1 schematically illustrates data processing apparatus 2 in the form of central
processing unit 4 couple to a memory 6 storing data to be manipulated and program instructions to
be executed. The central processing unit 4 includes a general purpose register file 8, general
purpose processing circuitry 10, a single instruction multiple data register file 12 and single
instruction multiple data processing circuitry 14. The general purpose register file 8 typically
contains low bit-width general purpose register (e.g. 32 or 64 bits), such as registers of the form
supported by the general purpose register file of processors produced by ARM Limited of
Cambridge, England. The single instruction multiple data register file 12 typically includes much
larger registers and the data storage within the single instruction multiple data register file 12 may
be divided in different ways to form different registers depending upon the register size specifiers
utilized. The form of the single instruction multiple data register file 12 may be that of the Neon
register file supported in some implementations of the processors produced by ARM Limited of
Cambridge, England.

General purpose register renaming and score boarding circuitry 16 is associated with the
general purpose register file 10 and single instruction multiple data register renaming and score
boarding circuitry 18 is associated with the single instruction multiple data register file 12.
Register renaming and score boarding are in themselves known techniques which will be familiar
to workers in this technical field and will not be described further herein. The register renaming
and score boarding may be applied to the registers utilized in the support of the cryptographic
processing instructions described further below in the same way that they are provided for normal
single instruction multiple data processing instructions. Thus, the mechanisms already provided for
supporting register renaming, instruction scheduling, instruction issue, instruction retirement and
instruction interrupt may be reused by the cryptographic support program instructions and
accordingly the operation of these cryptographic support instruction may be better integrated with
the overall operation of the central processing unit 4.

Program instructions I are received from the memory 6 and passed to an instruction

pipeline 20. An instruction decoder 22 decodes the program instructions and generates control

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

10

signal which control the operation of the register files 8, 12 and the processing circuitry 10, 14 as
well as other elements within the central processing unit 4. Interrupt circuitry 24 is responsive to
externally generated interrupt signals int to interrupt processing currently being performed by the
central processing unit 4 and initiate executing of interrupt handling code as will be familiar to
those in this technical field. It will be appreciated that the central processing unit 4 will typically
include many additional circuit elements and these have been omitted from Figure 1 for the sake of
clarity.

Figure 2 schematically illustrates the data flow within one form of hash generation
algorithm. A file 26 to be hashed is divided into 64-byte blocks 28 which are further divided into
input vectors of four 32-bit words supplied as one input to a hash algorithm 30. A hash seed value
32 is also provided at the start of the hashing operation. The hashing operation employs two main
program loops that are respectively responsible for the hash update 34 and the schedule update 36.
These main loops are balanced by the provision of special purpose program instructions supporting
both loops within the single instruction multiple data processing circuitry 14. Intermediate hash
values 38 are generated by the hash update loop 34 and are fedback as the hash algorithm continues
to process a block 28 of input data. When the block 28 has been processed (e.g. subject to 80 hash
updates iterations in the case of SHA-1), then the output hash value 40 is updated by adding into it
the current intermediate hash value 38. This process is repeated until all of the file 26 has been
consumed. This generates the result hash value for the file 26 as a whole.

The hash update loop 34 will be executed many times and itself executes instructions
which each have their own intra-instruction iterations as will be described below. The schedule
update 36 is performed so as to balance the hash update. The schedule update may be vectorized to
improve performance as will be described below.

Figure 3 schematically illustrates how a further processing instruction in accordance with
the present techniques receives a vector data value 42 comprising a plurality data elements. The
cryptographic support instruction then performs a processing operation upon this vector data value
42 to generate an output operand having a first portion 44 which depends both upon the first data
element of the vector data value 42 and two or more further data elements within the vector data
value. This behaviour contrasts with typical single instruction multiple data program instructions
in which the processing operations are lane-based and there is limited, if any interaction, between
the data values within different lanes.

One implementation of this technique is a set of instructions that target two algorithms
namely SHA-1 and SHA-256. The instructions also benefit the SHA-224 algorithm which requires
the same operations as SHA-256. The SHA algorithms are a family of secure hash algorithms
specified by the National Institute of Standards and Technology (NIST). The specifications of these

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

11

algorithms are openly available. The algorithms are typically used for authentication of data within
digital systems.

We start by describing the high-level operation of the SHA algorithms and including pseudo code
for the SHA-1 and SHA-256 algorithms.

High-level operation of the SHA algorithms (known; FIPS 180-4)

Each of the algorithms process 64-bytes of data, and produce a hash digest; in the case of SHA-1
this is 160-bits in length and SHA-256 this is 256-bits in length. Data streams of length greater than
64-bytes are split into 64-byte blocks. Where a stream or block is less than 64-bytes in length the
block is padded, as specified in FIPS (Federal Information Processing Standard) 180-4, to 64-bytes.
Unless otherwise stated, the following description of the algorithms assumes a word to be a 32-bit
unsigned integer value. Words are assumed to be composed of 4 contiguous bytes of data from the
block of 64-bytes in big endian form.

Both algorithms start by initializing a working hash digest. If the block of data is the first in a given
data stream then the hash digest is initialized to a fixed seed value. If the block is a continuation of
the data stream, the hash digest is initialized to the hash digest calculated from the previous block.
The seed values are specified in FIPS 180-4.

The algorithms expand the block using a schedule update operation. This expands the block from
an initial 16 words of data into 80 words for SHA-1, and 64 words for SHA-256. The schedule
update operation combines, using fixed xors, shifts and rotates, four words from the schedule to
generate the next word in the expanded schedule. The initial 16 words are left unchanged in the
expanded schedule.

Each word in the expanded schedule then has a key value added to it. In SHA-1 there are 4 key
constants each applied to a set of 20 words from the expanded block. In SHA-256 there are 64 key
constants one for each word of the expanded block. The key constants are defined in FIPS 180-4.
After the block has been expanded and key constants have been added, each word is processed
using a hash update function that incorporates that word, through a series of fixed xors, shifts and
rotates, into the hash digest.

Finally after each word from the expanded block has been processed using the hash update
function, the hash digest is added to the previous hash digest value.

As specified in FIPS 180-4, the schedule can be implemented as either a set of 80/64 words (SHA-
1/SHA-256) or as circular queue of 16 words.

For completeness pseudo-code algorithms for SHA-1 and SHA-256, assuming a circular queue, are
given below.

SHA-1 algorithm pseudo code

uint32 w[0:15] = 16 4-bytes (big-endian) input[];

10

15

20

25

30

35

WO 2013/072657
12

uint32 wk[0:15] = w[0:15] + k[0:15];

uint32 a:e = io->hashes[0:4];

for round=0:63 {
hash_update(round,wk[round]);

w[round] = schedule_update(round,w);
wk[round] = w[round] + k[round];

h

for round=64:79

hash update(round,w[round]);

i0->hashes[0:4] += a:e;

The SHA-1 hash update code being as follows:
hash_update(int round, uint32 wk) {

¢ += FN(round,b,c,d) + ROL(a,5) + wk;

b =ROL(b,30);

rotate (a,b,c,d,e) to (e,a,b,c,d)

h

where:

if round < 20, FN = choose(b,c,d);

else if round < 40, FN = parity(b,c,d);

else if round < 60, FN = majority(b,c,d);

else FN = Parity(b,c,d);

choose(b,c,d)=(((c " d) & b) ~ d)
parity(b,c,d)=(b "¢ " d)

majority(b,c,d) =(b &c) | ((b|c) & d)

The SHA-1 schedule update code being as follows:
uint32 schedule update(int round, uint32 *w) {
return ROR(w[round-3] * w[round-8] ~ w[round-14] * w[round-16], 31);
h

SHA-256 algorithm pseudo code

uint32 a:h = io->hashes[0:7];

uint32 w[0:15] = 16 4-bytes (big-endian) input[0:63];
uint32 wk[0:15] = w[0:15] + k[0:15];

for round=0:47 {

hash_update(wk[round]);

w[round] = schedule_update(round,w);

PCT/GB2012/052315

10

15

20

25

30

WO 2013/072657 PCT/GB2012/052315

13

wk[round] = w[round] + k[round];

b

for round=48:63

hash_update(wk[round]);

i0->hashes[0:7] += a:h;

The SHA-256 hash update code being as follows:

hash_update(uint32 wk) {

t=h + Sigmal(e) + Choose(e,f,g) + wk;

d+=t;

h =t + Sigma0(a) + Majority(a,b,c);

rotate (a,b,c,d,e.,f,g,h) to (h,a,b,c,de.f,g);

b

where:

Sigmal(x) = ror(x,2) ” ror(x,13) * ror(x,22);

Sigmal(x) = ror(x,6) " ror(x,11) * ror(x,25);

Choose(b,c,d) = (((c*d) & b) ~ d)

Majority(b,c,d)=((b & c) | ((b|c) & d)

Similarly the SHA-256 schedule update pseudo code is as follows:

uint32 schedule_update(int round, uint32 *w) {

return w[round] + sigmal(w[round-2]) + w[round-7] + sigma0(w[round-15]);

b

where:

sigma0(x) = ror(x,7) * ror(x,18) * shr(x,3);

sigmal (x) = ror(x,17) * ror(x,19) » shr(x,10);

SHA algorithm working state (can be derived from the FIPS 180-4 specification)

One aspect of the SHA algorithms that constrains the approach taken to accelerate them is the
amount of working state required to process a block of data (as described previously). The
capability of a single instruction multiple data register file to hold and manipulate this state
addresses this constraint.

The following table outlines the state requirements for SHA-1 and SHA-256.

SHA-1 state

Initial/previous hash digest 5 x 32-bit words
Working hash digest 5 x 32-bit words
Schedule 16 x 32-bit words

Key constants 4 x 32-bit words

10

15

20

25

30

WO 2013/072657 PCT/GB2012/052315

14

SHA-256 state
Initial/previous hash digest 8 x 32-bit words

Working hash digest 8 x 32-bit words
Schedule 16 x 32-bit words
Key constants 64 x 32-bit words

Building a dedicated SHA unit (e.g. as a coprocessor), capable of processing a block of data, using
cither the SHA-1 or SHA-256 algorithm, requires an investment in fixed purpose state. This state
could not easily be used by other operations on a RISC microprocessor.

Breaking the SHA algorithms into triadic form RISC instructions

In order to avoid fixed purpose state we have split the algorithms in such a way that they can be
processed on a RISC microprocessor observing the triadic instruction form and using a single
instruction multiple data processing circuitry and register file.

A typically constraint of the RISC triadic form is that only one of the three registers is defined as a
destination. The destination can however be used as a source.

We use SIMD registers so that we can process more data per instruction than it would be possible
using general purpose registers.

By observing the triadic instruction form, the instructions are able to use rename, scheduling, issue,
result and retire logic; common to modern microprocessors.

As all state and dependencies are defined by the instructions, the pipeline mechanisms dealing with
out-of-order execution, interruption and speculation are still valid; no additional control logic is
required to maintain correct execution of the proposed instructions.

SHA-1 hash update instructions

The SHA-1 hash update function, as previously described, incorporates a 32-bit word into a 160-bit
hash digest. The function is composed of fixed shifts, fixed xors/and/ors and fixed rotates.
hash_update(int round, uint32 wk) {

¢ += FN(round,b,c,d) + ROL(a,5) + wk;

b =ROL(b,30);

rotate (a,b,c,d,e) to (¢,a,b,c,d)

b

where:

if round < 20, FN = choose(b,c,d);

else if round < 40, FN = parity(b,c,d);

else if round < 60, FN = majority(b,c,d);

else FN = Parity(b,c,d);

choose(b,c,d)=(((c " d) & b) ~ d)

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

15

parity(b,c,d) = (b~ c " d)

majority(b,c,d) =(b&c)|((b|c) & d)

The SHA-1 hash digest is 160-bits and therefore operations working on the whole digest plus the
32-bit word are not possible in 32-bit general purpose triadic RISC forms and would require
significant effort to realize in 64-bit general purpose triadic RISC form; more housekeeping would
be required to insert a 32-bit data value into the high 32-bits of the third 64-bit operand.

For this reason this example technique maps the SHA-1 hash function onto a set of four advanced
SIMD instructions; SHA1C, SHA1P, SHAIM and SHATH.

SHA1C Qd, Sn, Vm.4S [OP = C, OP_FUNC = choose¢]

SHAIP Qd, Sn, Vin.4S [OP = P, OP_FUNC = parity]

SHAIM Qd, Sn, Vn.4S [OP = M, OP_FUNC = majority]

SHA1H Sd, Sn

The instructions SHA1C, SHA1P and SHA1M take three operands. Qd holds the first 4 32-bit

words of the digest hash, with Sn holding the SIh. The third operand, Vm, is a vector which in the
initial embodiment holds four 32-bit words. This allows 4 iterations of the hash update function to
be processed by the instruction. Pseudo code define the operation of these instructions is given
below. It will be appreciated that defining the operation of an instruction in terms of pseudo code
will be familiar to those in this technical field and the realisation of circuitry to perform (execute)
the instruction defined by the pseudo code is routine once the pseudo code has been defined.

SHA 1<OP> Qd, Sn, Vm.4S

X =0Qd;

Y =Sn;

for i=0to3)

{
Index =(1%*32);
t1<31:0> = OP_FUNC(X<63:32>, X<95:64>, X<127:96>);
Y =Y + ROL(X<31:0>, 5) + t1<31:0> + Vm<(index + 31):index>;
X<63:32> =ROL(X<63:32>, 30);
// Rotate
12<31:0> =Y;
Y = X<127:96>;
X<127:0> = {X<95:0>:12<31:0>};

b

Qd=X;

Accordingly, in accordance with an example embodiment the single instruction multiple data

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

16

processing circuitry is configured to be controlled by a further program instruction that has a first
input operand Qd[127:0] and a second input operand Sn[31:0] both read from said single
instruction multiple data register file and said vector data value comprises Vm[Index+31:Index]
where Index is 0 to 2%, where N is a positive integer, said further processing operation producing
said output operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qd[127:0];
Y[31:0] = Sn[31:0];
for (1=0to (2™-1));
{
Index = (1*32);
t1[31:0] = OP FUNC (X[63:32], X[95:64], X[127:96]);
Y[31:0] =Y[31:0] + ROL(X[31:1], 5) + T1[31:0] + Vm[Index+31:Index];
X[63:32] = ROL(X[63:32], 30);
T2[31:0] = Y[31:0];
Y[31:0] = X[127:96];
X[127:0] = {X[95:0]:T2[31:0]}
h
Qdouput[127:0] = X[127:0];
where OP FUNC (B, C, D) is one of:
(((C XOR D) AND B) XOR D);
(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and
ROL (P, Q) is a left rotate of value P by Q bit positions.
Another realization of these instructions could involve a select for choosing amongst the choose(),
parity() and majority() functions:
SHATHASH Qd, Sn, Vm.4S, #OP // #OP where #1 selects C, #2 selects P, #3 selects M.
A constraint of the RISC instruction form is that only the first 4 words of the hash digest can be
returned by the SHA1C, SHA1P and SHA1M instructions, into the 128-bit register Qd. Therefore

an instruction SHA1H is proposed to return the SIh word of the hash digest.
In the initial realization SHA1H is implemented as:
SHA1H Sd, Sn
Sd =ROR(Sn, 2);
The follows the observation the Sth hash digest value after four iterations is a rotation on the initial
value of Qd[0].

SHA1 hash update instruction variants

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

17

Variants of the SHA1C, SHA1P and SHA1M instructions could be extended by other variants of
the present techniques to allow Vm.8S or Vmm.16S operands. These variant are included within the
present techniques. This would allow 8 and 16 iterations of the hash update function to be
processed within a single instruction. That said, the Vm.4S variant would still be required as the
hash update function is required to change after every 20 iterations.

As an example the SHA1<OP> Vm.8S variant:

SHA1<OP> Qd, Sn, Vm.8S

X=Qd;

Y = Sn;

fori=0to7)

{
Index =(1%*32);
t1<31:0> = OP_FUNC(X<63:32>, X<95:64>, X<127:96>);
Y =Y + ROL(X<31:0>, 5) + t1<31:0> + Vm<(index + 31):index>;
X<63:32> =ROL(X<63:32>, 30);
// Rotate
12<31:0> =Y;
Y = X<127:96>;
X<127:0> = {X<95:0>:12<31:0>};

b

Qd=X;

The variants operating over 8 and 16 iterations (Vm.8S and Vm.16S) would additionally require

SHA1C2, SHA1P2 and SHA1M? instructions. These would produce the appropriate value for the
th
5 word in the hash digest after § or 16 iterations. These new instructions, would be implemented

in a similar manner to the SHA1C, SHA1P and SHA1M instructions, but returning the Sth hash
digest word in the Qd register, for example:

SHA1<OP> 2 Qd, Sn, Vm.8S

X=0Qd;
Y = Sn;
for i=0to3)
{
Index =(1%*32);
t1<31:0> =0OP_FUNC(X<63:32>, X<95:64>, X<127:96>);
Y =Y + ROL(X<31:0>, 5) + t1<31:0> + Vm<(index + 31):index>;

X<63:32> =ROL(X<63:32>, 30);

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315
18

// Rotate

12<31:0> =Y;

Y =X<127:96>;

X<127:0> = {X<95:0>:12<31:0>};
b

Qd={0:Y<31:0>};

Accordingly, in accordance with an example embodiment the single instruction multiple
data processing circuitry is configured to be controlled by a further program instruction that has a
first input operand Qd[127:0] and a second input operand Sn[31:0] both read from said single

instruction multiple data register file and said vector data value comprises Vm[Index+31:Index]

where Index is 0 to 2N, where N is a positive integer, said further processing operation producing
said output operand Qdoutpm[127:0] to have a value the same as given by the steps:

X[127:0] = Qd[127:0];

Y[31:0] =Sn[31:0];

for (1= 010 (2 -1));

{
Index =(I%*32);
T1[31:0] = OP_FUNC(X[63:32], X[95:64], X[127:96]);
Y =Y + ROL(X[31:0], 5) + T1[31:0] + Vm[(Index + 31):Index];
X[63:32] =ROL(X[63:32], 30);
T2[31:0] =Y;
Y = X[127:96];
X[127:0] = {X[95:0]:T2[31:0]};
b

Qdoutpm[127:0] = {0:Y[31:0]};
where OP FUNC (B, C, D) is one of:

(((C XOR D) AND B) XOR D);

(B XOR C XOR D); and

(B AND C) OR ((B OR C) AND D); and

ROL (P, Q) is a left rotate of value P by Q bit positions.

Other variants of the instruction could be realized that return the whole hash digest into a oct-word
(8x32-bits) if'a wider SIMD datapath were available:
SHA1<OP> Od, Vn4S
SHA1<OP> 0Od, Vn.8S

These instructions would process 4 and 8 iterations of the hash function.

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

19

SHAT1 hash update micro-architecture options

Various options exist for the micro-architectural implementation of these instructions:

High performance realizations of these instructions may choose to build out some of iteration
logic and perform more parallelised execution.

The micro-architecture could choose to employ multi-cycle stages to reduce temporary pipeline
state and hence power consumption.

Intermediate arithmetic can be done in carry save form.

In wider variants, where explicit SHA1<OP>2 instructions may be required, it may be possible to
detect when a SHA1<OP>2 operation follows a corresponding SHA1<OP> function. In those cases
it should be possible to prevent the second calculation and simply forward the result from the
datapath. This will require some temporary state in the pipeline.

SHAI1 schedule update instructions

Realizing a speed-up from the SHA-1 algorithm requires a balance between the hash update and
schedule update functions.

The SHA-1 schedule update function, as previously described, combines four 32-bit words from
the data schedule into a single resulting word that expands the schedule, or in the case of a circular
queue, overwrites a word in the schedule.

The schedule update operation consists of xors and a fixed rotate.

uint32 schedule update(int round, uint32 *w) {

return ROR(w[round-3] * w[round+&] * w[round-14] * w[round-16], 31);

b

or in the circular queue form:

void schedule update(int round, uint32 w[0..15]) {

w[round] = ROR(w[round+13

}

The operation requires four input values, one of them being destructive. This does not fit the

~ wlround+8 ~ wlround+2 ~wlround], 31);

mod16] mod16] mod16]

general purpose 32- triadic RISC form.

The schedule update instructions may be provided by the ARM advanced SIMD architecture.

To avoid memory loads and stores we opted to implement instructions that efficiently execute the
circular queue form of the schedule update, described in FIPS 180-4.

For completeness we include the vectorization method for the schedule update.

SHA-1 schedule update vectorization and substitution

can be

This follows the observation that w[round], w[round+1 and w[round+2

mod 16] modl 6]

processed in parallel. There is a dependence on w(round] in the calculation of wlround +3 _]

that prevents a direct route to four-way vectorisation.

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

20

w[round | =ROR(w[round+13] * w[round+8 | * w[round+2] ~ w[round]), 31);

w[round+1] = ROR(w[round+14] *~ w[round+9 | ~ w[round+3] * w[round+1]), 31);

w[round+2] = ROR(w[round+15] * w[round+10] * w[round+4] * w[round+2]), 31);

w[round+3] = ROR(w[round] ” w[round+11] * w[round+5] * w[round+3]), 31);

This restriction can be overcome by substituting zero in for the value of w[round] in the calculation

of w[round+3 and fixing up the result with an additional xor and rotate step; this is illustrated

mod16]’
below.
w[round | =ROR(w[round+13] * w[round+8 | * w[round+2] ~ w[round]), 31);
w[round+1] = ROR(w[round+14] *~ w[round+9 | ~ w[round+3] * w[round+1]), 31);
w[round+2] = ROR(w[round+15] * w[round+10] * w[round+4] * w[round+2]), 31);
w[round+3] = ROR(0~ wlround+11] * w[round+5] * w[round+3]), 31);
w[round+3] = w[round+3] ~ ROR(w[round], 31);
The above block of code can be re-factored to make use of 4-lane vector operations on a SIMD
architecture with a datapath size of 4x32-bits.
SHA-1 schedule update and hash update balancing
To balance the schedule update operations with the hash update operations the schedule update is
processed as previously described, i.e. using four-way vectorisation. This allows a single schedule
update to produce sufficient data, 4x32-bit words, for the subsequent hash function instructions.
The vectorization technique will, in reasonable SIMD implementations, take more execution cycles
to compute the schedule data than those taken to execute the proposed SHA-1 hash functions.
There are a number of reasons for this:
The vector containing elements {round+2, round+3, round+4, round+5} will probably span two
vector registers.
The vector containing elements {round+13, round+14, round+15, 0} would need to be extracted
from one vector register and a zero vector.
SIMD vector rotates are not commonly found in SIMD instructions sets e.g. ARM advanced SIMD.
So a vector rotate requires a two vector shifts and an or instruction.
Due to Amdahl’s law, both parts of the SHA-1 algorithm should be balanced otherwise the slower
part will limit the amount of speed up achievable.
This observation led to the following SIMD instructions for accelerating the SHA-1 schedule
update function.
SHA1SUO0 Vd.4S, Vn.4S, Vm.4S

T<127:0> = Vn<63:0>:Vd<127:64>

vd =T XOR Vd XOR Vm
SHA1SU1 Vd4S, Vn4S

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

21

T<127:0> =Vd XOR {32{0}:Vn<127:32>};

Vd<95:0> =T<94:64>:T<95>:T<62:32>:T<63>:T<30:0>:T<31>;

Vd<127:96> = (T<126:96>:T<127>) XOR (T<29:0>:T<31:30>);
The instructions assume that the circular queue resides in four 4x32-bit vector registers.
The reordering of elements is pulled inside the instructions. This effectively makes the reordering
of elements free, they are just wires in the micro-architecture.
The fixed rotates are also just wires.
The instructions are balanced and may have very low cycle latencies in most micro-architectures;
they comprise two xors in serial and wiring.
Accordingly, in accordance with an example embodiment the single instruction multiple data
processing circuitry is configured to be controlled by a first schedule instruction having a first input
operand Sp[127:0] and a second input operand Sq[127:0] and generating an output operand
Sr[127:0] with a value the same as given by the steps:
T[127:0] = {Sp[63:0]:8q[127:64]} and
Sr[127:0] = T[127:0] XOR Sr[127:0] XOR Sq[127:0].
Instructions targeting the SHA-2 algorithms
Many of the features outlined in the discussion of the instructions proposed for the SHA-1
algorithms apply equally to the SHA-2 algorithms. This section will describe differences in the
instructions proposed for the SHA-2 algorithms.
SHA-2 hash update instructions
For the reasons outlined for SHA-1 the SHA-2 hash update functions are targeted by two hash
update instructions.
The working hash digest for SHA-2 algorithms is either 256- or 512-bits. The following focuses on
the algorithms SHA-256 and SHA-224 which have a working hash of 256-bits, as these are
included in the initial realization of the invention. In a later section it is discussed how the present
techniques apply to SHA-512, SHA-384, SHA-512/256 and SHA-512/224.
SHA-256 hash update instructions
The working hash digest of SHA-256 (and SHA-224) is 256-bits long. In a SIMD architecture with
a register width of 128-bits the result of any operation on the hash digest requires two instructions;
ong to return the first 4x32-bit words and the second to return the remaining 4x32-bit words.
The SHA-2 hash update functions, unlike SHA-1, are fixed and do not change after a given number
of iterations therefore we only need two instructions.
SHA256H Qd, On, Vm.4S

X=0Qd;

Y =Qn;

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

22
for i=0to3)
{
index =(1%*32);
tCh<31:0> = Choose(Y<31:0>, Y<63:32>, Y<95:64>);

tMaj<31:0> = Majority(X<31:0>, X<63:32>, X<95:64>);
t1<31:0> =Y<127:96> + Sigmal(Y<31:0>)
+tCh<31:0> + Vm<(index + 31):index>;
X<127:96> =11<31:0> + X<127:96>;
Y<127:96> =11<31:0> + Sigma0(X<31:0>) + tMaj<31:0>;

12<31:0> =Y<127:96>;
Y<127:0> =Y<95:0>:X<127:96>;
X<127:0> = X<95:0>:12<31:0>;

b

Qd=X;

Accordingly, in accordance with an example embodiment the single instruction multiple data
processing circuitry is configured to be controlled by a further program instruction that has a first
input operand Qd[127:0] and a second input operand Qn[127:0] both read from said single
instruction multiple data register file and said vector data value comprises Vm[Index+31:Index]
where Index is 0 to 2%, where N is a positive integer, said further processing operation producing
said output operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qd[127:0];
Y[127:0] = Qn[127:0];
for (1=0to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

X[127:96] = T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

T2[31:0] = Y[127:96]

Y[127:0] = {Y[95:0]:X[127:96]};

X[127:0] = {X[95:0]:T2[31:0]}

b

h
Qdoupu[127:0] = X[127:0];

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

23

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR
((B OR C) AND D)), Sigma0(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is
(ROR(B,6) XOR ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q

bit positions.
SHA256H2 Qd, Qn, Vmm.4S
X=0Qn;
Y=Qd;
for i=0to3)
{
index =({%*32);
tCh<31:0> = Choose(Y<31:0>, Y<63:32>, Y<95:64>);

tMaj<31:0> = Majority(X<31:0>, X<63:32>, X<95:64>);
t1<31:0> =Y<127:96> + Sigmal(Y<31:0>)
+tCh<31:0> + Vm<(index + 31):index>;
X<127:96> =11<31:0> + X<127:96>;
Y<127:96> =11<31:0> + Sigma0(X<31:0>) + tMaj<31:0>;

12<31:0> =Y<127:96>;
Y<127:0> =Y<95:0>:X<127:96>;
X<127:0> = X<95:0>:12<31:0>;

b

Qd=Y;

Accordingly, in accordance with an example embodiment the single instruction multiple data
processing circuitry is configured to be controlled by a further program instruction that has a first
input operand Qd[127:0] and a second input operand Qn[127:0] both read from said single
instruction multiple data register file and said vector data value comprises Vm[Index+31:Index]
where Index is 0 to 2~, where N is a positive integer, said further processing operation producing
said output operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qn[127:0];
Y[127:0] = Qd[127:0];
for (I =0 to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

24

X[127:96] = T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

T2[31:0] = Y[127:96];

Y[127:0] = {Y[95:0]:X[127:96]};

X[127:0] = {X[95:0]:T2[31:0]}

b

Qdoupw[127:0] = Y[127:0];
where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR
((B OR C) AND D)), Sigma0O(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is
(ROR(B,6) XOR ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q
bit positions.
SHA256H expects the first 4x32-bit words of the hash digest in Qd, the remaining 4x32-bit words
in Qn and the 4x32-bit words of schedule data in Vm.48S.
SHA256H?2 expects the second 4x32-bit words of the hash digest in Qd, the first 4x32-bit words in
Qn and the 4x32-bit words of schedule data in Vm.4S.
Note that as SHA256H destructs the first 4x32-bit words of the hash digest a copy must be taken
prior to executing SHA256H so that the correct values can be passed to SHA256H2 in Qn.
SHA-256 hash update instruction variants
As previously outlined for the SHA-1 hash update instructions, variants of the SHA-256
instructions for wider vector SIMD could include the following:
SHA256(H/H2) Qd, Qn, Vin.8S
SHA256(H/H2) Qd, Qn, Vm.16S
These instructions would process 8 and 16 iterations of the hash update function respectively. A
wider SIMD datapath may also allow:
SHA256H 0Od, Vmm.8S
SHA256H 0Od, Vin.16S
Where Od, is a 256-bit wide register, there is no need to provide SHA256H2 operations, the entire
hash digest will fit in a vector register.
SHA-256 schedule update
As outlined previously, for SHA-1, realizing a speed-up from the SHA-256 algorithm requires a
balance between the hash update and schedule update functions.
The SHA-256 schedule update function combines four 32-bit words from the data schedule into a
single resulting word that either expands the schedule, or in the case of a circular queue, overwrites
a word in the schedule.

The schedule update operation consists of xors, fixed shifts and fixed rotates (known).

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

25

uint32 schedule_update(int round, uint32 *w) {

return w[round] + sigmal(w[round-2]) + w[round-7] + sigmaO(w[round-15]);
b

where:

sigma0(x) = ror(x,7) * ror(x,18) * shr(x,3);

sigmal (x) = ror(x,17) * ror(x,19) » shr(x,10);

This can also be expressed in a circular queue (known):

void schedule update(int round, uint32 *w) {

w[round] = sigmal (w[round+14

}

SHA-256 schedule update vectorization and substitution

1) + w[round+9 + sigma0O(w[round+1

modl6 mod16] mod16]);

The SHA-256 schedule update function can also be vectorized, in a manner suitable for 4-way
SIMD.

w[round] =sigmal(w[round+14]) + w[round+9] + sigmaO(w[round+1]);

w[round+1] = sigmal(w[round+15]) + w[round+10] + sigmaO(w[round+2]);

w[round+2] = sigmal(w[round])+ w[round+11] + sigmaO(w[round—+3]);

w[round+3] = sigmal(w[round+1]) + w[round+12] + sigma0(w[round+4]);

Note that two dependencies exist, namely w[round] and w[round+1]. The substitution method for
the SHA-256 works as before by substituting in zero values and then fixing up the results. This
method is illustrated below:

w[round | = sigmal(w[round+14]) + w[round+9] + sigmaO(w[round+1]);

w[round+1] = sigmal(w[round+15]) + w[round+10] + sigmaO(w[round+2]);

w[round+2] = sigmal(w[0 1) + w[round+11] + sigmaO(w[round+3]);

w[round+3] = sigmal(w[0 1) + w[round+12] + sigmaO(w[round+4]);

]
]
]
w[round+2] += sigmal(w[round]);

w[round+3] += sigmal(w[round]);

The above block of code can be re-factored to make use of 4-lane vector operations on a SIMD
architecture with a datapath size of 4x32-bits.

SHA-256 schedule update and hash update balancing

To balance the schedule update operations with the hash update operations we propose processing
the schedule update as previously described, i.e. using four-way vectorisation. This allows a single
schedule update to produce sufficient data, 4x32-bit words, for the subsequent hash function
instructions.

The vectorization technique will, in reasonable SIMD implementations, take more execution cycles

to compute the schedule data than those taken to execute the proposed SHA-1 hash functions.

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

26

There are a number of reasons for this:

The vectors containing elements {round+1, round+2, round+3, round+4} and {round+9, round+10,
round+11, round+12} will span more than one vector register.

The register containing {round+14, round+15, 0, 0} will need to be composed using extraction.
The sigma operations contain rotates and SIMD vector rotates are not commonly found in SIMD
instructions sets e.g. ARM advanced SIMD. A vector rotate in such architectures requires two
vector shifts and an OR instruction.

The fix-up to account for the substitution will also require extraction of the registers.

The sigma0 and sigmal operation consist of around 7 vector operations.

Due to Amdahl’s law both parts of the SHA-256 algorithm need to be balanced in order to prevent
the slower part from limiting the amount of speed up achievable.

These observations led to the following SIMD instructions for accelerating the SHA-256 schedule
update function.

SHA256SU0 Vd.4S, Vn.4S

T<127:0> =Vn<31:0>:Vd<127:32>
T<127:0> = VecROR32(T, 7) XOR VecROR32(T, 18) XOR VecSHR32(T, 3)
vd = VecADD32(T, Vd)

SHA256SU1 Vd.4S, Vn.4S, Vim.4S

T0<127:0> =Vm<31:0>:Vn<127:32>

T1<63:0> = Vm<127:64>

T1<63:0> = VecROR32(T1<63:0>,17) XOR VecROR32(T1<63:0>,19) XOR
VecSHR32(T1<63:0>,10)

T3<63:0> = VecADD32(Vd<63:0>,T0<63:0>)

T1<63:0> = VecADD32(T3<63:0>, T1<63:0>)

T2<63:0> = VecROR32(T1<63:0>,17) XOR VecROR32(T1<63:0>,19) XOR
VecSHR32(T1<63:0>,10)

T3<63:0> = VecADD32(Vd<127:64>,T0<127:64>)

vd = VecADD32(T3<63:0>,T2<63:0>):T1<63:0>
The instructions assume that the circular queue resides in four 4x32-bit vector registers. The
instructions do not preclude the use of schedule expansion.
The reordering and extraction of elements is pulled inside the instructions. The micro-architecture
can then choose to implement these and the fixed shift and rotates as wiring.
The instructions may have low cycle latencies in most micro-architectures.
Accordingly, in accordance with an example embodiment the single instruction multiple data

processing circuitry is configured to be controlled by a first schedule instruction having an input

10

15

20

25

30

35

WO 2013/072657 PCT/GB2012/052315

27

operand Sp[127:0] and generating an output operand Sq[127:0] with a value the same as given by
the steps:

T[127:0] = {Sp[31:0]:Sq[127:32]};

T[127:0] = VecROR32(T[127:0], 7) XOR VecROR32(T[127:0], 18) XOR VecROR32(T[127:0], 3);
and

Sq[127:0] = VecADD32(T[127:0], Sq[127:0]),

where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A
and VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit
word within B.

Accordingly, in accordance with an example embodiment the single instruction multiple data
processing circuitry is configured to be controlled a second schedule instruction by having a first
input operand Sp[127:0] and a second input operand Sq[127:0] and generating an output operand
Sr[127:0] with a value the same as given by the steps:

TO[127:0] = {Sq[31:0]:Sp[127:32]};

T1[63:0] =Sq[127:64];

T1[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0],
10);

T3[63:0] = VecADD32(Sr[63:0], T0[63:0]);

T1[63:0] = VecADD32(T3[63:0], T1[63:0]);

T2[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0],
10);

T3[63:0] = VecADD32(Sr[127:64], TO[127:64]); and

S1[127:0] = {VecADD32(T3[63:0], T2[63:0]):T1[63:0]},

where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A
and VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit
word within B.

Differences between SHA-256 and SHA-512

The SHA-512 algorithms are very similar to the SHA-256 algorithm. The same approach, outlined
in the section describing support for SHA-256 can equally be applied to SHA-512, with the
following small differences:

The input data is split into blocks of 128-bytes, and processed as 16x64-bit words in big-endian
form.

SHA-512 works on 8x64-bit words

SHA-512 requires 80 iterations of the hash function.

The hash functions and schedule update work on 64-bit words and contain different fixed shifts,

10

15

20

WO 2013/072657 PCT/GB2012/052315

28

rotates, and xors.

For brevity we omit the SHA-512 algorithm.

Instructions targeting the SHA-512, SHA-384, SHA-512/256 and SHA-512/256 algorithms.
The motivation for the instructions targeting SHA-256 hold equally for the SHA-512 algorithms.
We list possible realizations of these instructions targeting SHA-512.

Where the SIMD registers are 128-bits, and assuming 4 iterations per hash and schedule
instructions:

SHAS12H {Qd, Qd+1}, {On, Qn+1}, {Vm.2D, Vin+1.2D}

SHAS512H2 {Qd, Qd+1}, {On, Qn+1}, {Vm.2D, Vin+1.2D}

SHA512SUO0 {Vd.2D, Vd+1.2D}, {Vn.2D, Vn+1.2D}

SHAS512SU1 {Vd.2D, Vd+1.2D}, {Vn.2D, Vn+1.2D}, {Vm.2D, Vm+1.2D}

Note that the above instruction would likely require register pinning; specifying one register and
implying a second register, within the micro-architecture. The instruction would no longer fall into
the typical RISC triadic form, however there is precedence for these type of operations, e.g. in the
Neon load/store multiple instructions of ARM Limited.

Where wider SIMD registers are available, possible variants of the instructions include:
SHAS12H 0Od, On, Vm.4D

SHAS512H2 Od, On, Vm.4D

SHAS512SUO0 Vd.4D, Vn4D

SHAS512SU1 Vd.4D, Vvn4D, Vm.4D

These also process for iterations of the hash and schedule update operations, but due to the wider
SIMD registers fit the triadic RISC form.

Using truncation, as described in FIPS 180-4, these instructions could equally target SHA-384,
SHA-512/256 and SHA-512/224.

WO 2013/072657 PCT/GB2012/052315
29

CLAIMS

1. Data processing apparatus comprising:

a single instruction multiple data register file; and

single instruction multiple data processing circuitry coupled to said single instruction multiple data
register file and configured to be controlled by a single instruction multiple data program instruction to
perform a processing operation independently upon separate data elements stored within separate lanes
within an input operand register of said single instruction multiple data register file; wherein

said single instruction multiple data processing circuitry is configured to be controlled by a further
program instruction to perform a further processing operation upon a vector data value comprising a
sequence of data elements held within an input operand register of said single instruction multiple data
register file to produce an output operand stored within and an output operand register of said single
instruction multiple data register file, said output operand having a first portion with a value dependent upon

all data elements within said sequence of data elements.

2. Data processing apparatus as claimed in claim 1, wherein said further program instruction is a
cryptographic program instruction that operates to generate an output hash value as said output operand in

dependence upon a plurality of words of data forming said vector data value.

3. Data processing apparatus as claimed in claim 2, wherein said further program instruction performs
an iterative processing operation consuming successive words of data and at least portions of intermediate

hash values to generate said output hash value.

4. Data processing apparatus as claimed in any one of claims 1, 2 and 3, wherein said further program
instruction has a first input operand Qd[127:0] and a second input operand Sn[31:0] both read from said
single instruction multiple data register file and said vector data value comprises Vm[Index+31:Index] where
Index is 0 to 2%, where N is a positive integer, said further processing operation producing said output
operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qd[127:0];
Y[31:0] = Sn[31:0];
for (I =0 to (2™-1));
{
Index = (I1*32);
t1[31:0] = OP FUNC (X[63:32], X[95:64], X[127:96]);

WO 2013/072657 PCT/GB2012/052315
30

Y[31:0] = Y[31:0] + ROL(X[31:1], 5) + T1[31:0] + Vm[Index+31:Index];
X[63:32] = ROL(X[63:32], 30);
T2[31:0] = Y[31:0];
Y[31:0] = X[127:96];
X[127:0] = {X[95:0]:T2[31:0]}
}
Qdoupul127:0] = X[127:0];

where OP FUNC (B, C, D) is one of:
(((C XOR D) AND B) XOR D);
(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and
ROL (P, Q) is a left rotate of value P by Q bit positions.

5. Data processing apparatus as claimed in any one of claims 1, 2 and 3, wherein said further program
instruction has a first input operand Qd[127:0] and a second input operand Sn[31:0] both read from said
single instruction multiple data register file and said vector data value comprises Vm[Index+31:Index] where
Index is 0 to 2N, where N is a positive integer, said further processing operation producing said output
operand Qdoutpm[127:0] to have a value the same as given by the steps:

X[127:0] = Qd[127:0];

Y[31:0] = Sn[31:0];

for (1= 010 (2 -1));

{
Index =(I%*32);
T1[31:0] = OP_FUNC(X[63:32], X[95:64], X[127:96]);
Y =Y + ROL(X[31:0], 5) + T1[31:0] + Vm[(Index + 31):Index];
X[63:32] =ROL(X[63:32], 30);
T2[31:0] =Y;
Y =X[127:96];
X[127:0] = {X[95:0]:T2[31:0]};
b

Qd,, [127:0] = {0:Y[31:0]};

where OP FUNC (B, C, D) is one of:
(((C XOR D) AND B) XOR D);

WO 2013/072657 PCT/GB2012/052315
31

(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and
ROL (P, Q) is a left rotate of value P by Q bit positions.

6. Data processing apparatus as claimed in any one of claims 4 and 5, wherein said further program
instruction includes a field selecting as OP FUNC (B, C, D) one of:

(((C XOR D) AND B) XOR D);

(B XOR C XOR D); and

(BAND C) OR ((B OR C) AND D).

7. Data processing apparatus as claimed in any one of claims 4, 5 and 6, wherein said first input
operand Qd[127:0] and said second input operand Sn[31:0] are read from separate registers within said

single instruction multiple data register file.

8. Data processing apparatus as claimed in any one of claims 4, 5 and 6, wherein said first input
operand Qd[127:0] and said second input operand Sn[31:0] are read from a shared register within said single

instruction multiple data register file.

9. Data processing apparatus as claimed in any one of claims 1, 2 and 3, wherein said further program
instruction has a first input operand Qd[127:0] and a second input operand Qn[127:0] both read from said
single instruction multiple data register file and said vector data value comprises Vm[Index+31:Index] where
Index is 0 to 2%, where N is a positive integer, said further processing operation producing said output
operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qd[127:0];
Y[127:0] = Qn[127:0];
for (1=0to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

X[127:96] = T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

T2[31:0] = Y[127:96]

Y[127:0] = {Y[95:0]:X[127:96]};

b

WO 2013/072657 PCT/GB2012/052315
32

X[127:0] = {X[95:0]:T2[31:0]}

h
Qdoupu[127:0] = X[127:0];

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR ((B OR C)
AND D)), Sigma0O(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is (ROR(B,6) XOR
ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q bit positions.

10. Data processing apparatus as claimed in any one of claims 1, 2 and 3, wherein said further program
instruction has a first input operand Qd[127:0] and a second input operand Qn[127:0] both read from said
single instruction multiple data register file and said vector data value comprises Vm[Index+31:Index] where
Index is 0 to 2%, where N is a positive integer, said further processing operation producing said output
operand Qdouypu[127:0] to have a value the same as given by the steps:
X[127:0] = Qn[127:0];
Y[127:0] = Qd[127:0];
for (1=0to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64]);

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

X[127:96] =T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

T2[31:0] = Y[127:96]

Y[127:0] = {Y[95:0]:X[127:96]};

X[127:0] = {X[95:0]:T2[31:0]}

b

}
Qloupa[127:01 = Y[127:0];

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR ((B OR C)
AND D)), Sigma0O(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is (ROR(B,6) XOR
ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q bit positions.

11. Data processing apparatus as claimed in any one of claims 9 and 10, wherein said first input operand

Qd[127:0] and said second input operand Qn[127:0] are read from separate registers within said single

WO 2013/072657 PCT/GB2012/052315
33

instruction multiple data register file.

12. Data processing apparatus as claimed in any one of claims 9 and 10, wherein said first input operand
Qd[127:0] and said second input operand Qn[127:0] are read from a shared register within said single

instruction multiple data register file.

13. Data processing apparatus as claimed in any one of the preceding claims, wherein said single
instruction multiple data processing circuitry utilises common mechanism for managing processing of said

further program instruction and said single instruction multiple data program instruction.

14. Data processing apparatus as claimed in claim 13, wherein said managing processing includes one or
more of managing:

register renaming;

instruction scheduling;

instruction issue;

instruction retirement; and

instruction interrupt.

15. Data processing apparatus as claimed in any one of claims 4 and 5, wherein said single instruction
multiple data processing circuitry is configured to be controlled by a rotate instruction having an input
operand Sm[31:0] and generating an output operand Sd[31:0] with a value the same as given by a right

rotation of Sm[31:0] by two bit positions.

16. Data processing apparatus as claimed in any one of claims 4 and 5, wherein said single instruction
multiple data processing circuitry is configured to be controlled by a first schedule update instruction having
a first input operand Sp[127:0] and a second input operand Sq[127:0] and generating an output operand
Sr[127:0] with a value the same as given by the steps:

T[127:0] = {Sp[63:0]:8q[127:64]} and

Sr[127:0] = T[127:0] XOR Sr[127:0] XOR Sq[127:0].

17. Data processing apparatus as claimed in claim 14, wherein said single instruction multiple data
processing circuitry is configured to be controlled by a second schedule update instruction having an input
operand Ss[127:0] and generating an output operand St[127:0] with a value the same as given by the steps:
T[127:0] = St[127:0] XOR {32{0}:Ss[127:32]};

St[95:0] = {T[94:64]:T[95]:T[62:32]:T[63]:T[30:0]:T[31]}; and

WO 2013/072657 PCT/GB2012/052315
34

St[127:96] = ({T[126:96]:T[127]}) XOR ({T[29:0]:T[31:30]}).

18. Data processing apparatus as claimed in any one of claims 9 and 10, wherein said single instruction
multiple data processing circuitry is configured to be controlled by a first schedule update instruction having
an input operand Sp[127:0] and generating an output operand Sq[127:0] with a value the same as given by
the steps:

T[127:0] = {Sp[31:0]:Sq[127:32]};

T[127:0] = VecROR32(T[127:0], 7) XOR VecROR32(T[127:0], 18) XOR VecROR32(T[127:0], 3); and
Sq[127:0] = VecADD32(T[127:0], Sq[127:0]),

where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A and
VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit word within
B.

19. Data processing apparatus as claimed in claim 18, wherein said single instruction multiple data
processing circuitry is configured to be controlled by a second schedule update instruction having a first
input operand Sp[127:0] and a second input operand Sq[127:0] and generating an output operand Sr[127:0]
with a value the same as given by the steps:

TO[127:0] = {Sq[31:0]:Sp[127:32]};

T1[63:0] =Sq[127:64];

T1[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0], 10);
T3[63:0] = VecADD32(Sr[63:0], T0[63:0]);

T1[63:0] = VecADD32(T3[63:0], T1[63:0]);

T2[63:0] = VecROR32(T1[63:0], 17) XOR VecROR32(T1[63:0], 19) XOR VecROR32(T1[63:0], 10);
T3[63:0] = VecADD32(Sr[127:64], TO[127:64]); and

S1[127:0] = {VecADD32(T3[63:0], T2[63:0]):T1[63:0]},

where VecROR32(A, B) is a separate right rotate by B bit positions of each 32-bit word within A and
VecADD32(A, B) is a separate addition of each 32-bit word within A to a corresponding 32-bit word within
B.

20. Data processing apparatus as claimed in any one of the preceding claims, further comprising a
general purpose register file separate from said single instruction multiple data register file, said general
purpose register file having general purpose registers with a lower bit-width than registers within said single

instruction multiple data register file, and general purpose processing circuitry coupled to said general

WO 2013/072657 PCT/GB2012/052315
35

purpose register file and configured to be controlled by a general purpose processing instruction to perform a

processing operation upon an input operand stored within one of said general purpose registers.

21. Data processing apparatus comprising:

single instruction multiple data register file means for storing single instruction multiple data
operands; and

single instruction multiple data processing means for performing a processing operation under
control of a single instruction multiple data program instruction, said single instruction multiple data
processing means being coupled to said single instruction multiple data register file means and said
processing operation being performed independently upon separate data elements stored within separate
lanes within an input operand register of said single instruction multiple data register file means; wherein

said single instruction multiple data processing means is controlled by a further program instruction
to perform a further processing operation upon a vector data value comprising a sequence of data elements
held within an input operand register of said single instruction multiple data register file means to produce an
output operand stored within and an output operand register of said single instruction multiple data register
file means, said output operand having a first portion with a value dependent upon all data elements within

said sequence of data elements.

22. A method of processing data comprising the steps of:

storing single instruction multiple data operands within a single instruction multiple data register file;

under control of a single instruction multiple data program instruction performing a processing
operation independently upon separate data elements stored within separate lanes within an input operand
register of said single instruction multiple data register file; and

under control of a further program instruction performing a further processing operation upon a
vector data value comprising a sequence of data elements held within an input operand register of said single
instruction multiple data register file to produce an output operand stored within and an output operand
register of said single instruction multiple data register file, said output operand having a first portion with a

value dependent upon all data elements within said sequence of data elements.

23. A method as claimed in claim 22, wherein said further program instruction has a first input operand
Qd[127:0] and a second input operand Sn[31:0] both read from said single instruction multiple data register
file and said vector data value comprises Vm[Index+31:Index] where Index is 0 to 2, where N is a positive
integer, said further processing operation producing said output operand Qdouypu[127:0] to have a value the
same as given by the steps:

X[127:0] = Qd[127:0];

WO 2013/072657 PCT/GB2012/052315
36

Y[31:0] =Sn[31:0];
for (I =0 to (2™-1));
{
Index = (1*32);
t1[31:0] = OP FUNC (X[63:32], X[95:64], X[127:96]);
Y[31:0] =Y[31:0] + ROL(X[31:1], 5) + T1[31:0] + Vm[Index+31:Index];
X[63:32] = ROL(X[63:32], 30);
T2[31:0] =Y[31:0];
Y[31:0] = X[127:96];
X[127:0] = {X[95:0]:T2[31:0]}
b
Qdoupu[127:0] = X[127:0];

where OP FUNC (B, C, D) is one of:
(((C XOR D) AND B) XOR D);
(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and
ROL (P, Q) is a left rotate of value P by Q bit positions.

24. A method is claimed in claim 22, wherein said further program instruction has a first input operand

Qd[127:0] and a second input operand Sn[31:0] both read from said single instruction multiple data register

N
file and said vector data value comprises Vm[Index+31:Index] where Index is 0 to 2 , where N is a positive

integer, said further processing operation producing said output operand Qdoutpm[127:0] to have a value the

same as given by the steps:
X[127:0] = Qd[127:0];
Y[31:0] = Sn[31:0];
for (1= 0 to (2 -1));
{
Index =(I%*32);
T1[31:0] = OP_FUNC(X[63:32], X[95:64], X[127:96]);
Y =Y + ROL(X[31:0], 5) + T1[31:0] + Vm[(Index + 31):Index];
X[63:32] =ROL(X[63:32], 30);
T2[31:0] =Y;
Y =X[127:96];
X[127:0] = {X[95:0]:T2[31:0]};

WO 2013/072657 PCT/GB2012/052315
37

h
Qd,, [127:0] = {0:Y[31:0]};

where OP FUNC (B, C, D) is one of:
(((C XOR D) AND B) XOR D);
(B XOR C XOR D); and
(B AND C) OR ((B OR C) AND D); and
ROL (P, Q) is a left rotate of value P by Q bit positions.

25. A method as claimed in claim 22, wherein said further program instruction has a first input operand
Qd[127:0] and a second input operand Qn[127:0] both read from said single instruction multiple data register
file and said vector data value comprises Vm[Index+31:Index] where Index is 0 to 2, where N is a positive
integer, said further processing operation producing said output operand Qdouypu[127:0] to have a value the
same as given by the steps:
X[127:0] = Qd[127:0];
Y[127:0] = Qn[127:0];
for (I =0 to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64));

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

X[127:96] = T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMa;j[31:0]

T2[31:0] = Y[127:96]

Y[127:0] = {Y[95:0]:X[127:96]};

X[127:0] = {X[95:0]:T2[31:0]}

b

h
Qdoupu[127:0] = X[127:0];

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR ((B OR C)
AND D)), Sigma0(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is (ROR(B,6) XOR

ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q bit positions.

26. A method as claimed in claim 22, wherein said further program instruction has a first input operand

WO 2013/072657 PCT/GB2012/052315
38

Qd[127:0] and a second input operand Qn[127:0] both read from said single instruction multiple data register
file and said vector data value comprises Vm[Index+31:Index] where Index is 0 to 2, where N is a positive
integer, said further processing operation producing said output operand Qdouypu[127:0] to have a value the
same as given by the steps:
X[127:0] = Qn[127:0];
Y[127:0] = Qd[127:0];
for (I =0 to (2™-1));
{

Index = (1*32);

TCh[31:0] = Choose(Y[31:0], Y[63:32], Y[95:64));

TMaj[31:0] = Majority(X[31:0], Y[63:32], Y[95:64]);

T1[31:0] =Y[127:96] + Sigmal(Y[31:0]) + TCh[31:0] + Vm[Index+31:Index];

X[127:96] = T1[31:0] + X[127:96];

Y[127:96] = T1[31:0] + Sigma0(X[31:0]) + TMaj[31:0]

T2[31:0] = Y[127:96]

Y[127:0] = {Y[95:0]:X[127:96]};

X[127:0] = {X[95:0]:T2[31:0]}

b

h
Qdoupu[127:0] = Y[127:0];

where Choose(B, C, D) is (((C XOR D) AND B) XOR D), Majority(B, C, D) is (B AND C) OR ((B OR C)
AND D)), Sigma0O(B) is (ROR(B,2) XOR ROR(B, 13) XOR ROR(B, 22)), Sigmal(B) is (ROR(B,6) XOR
ROR(B, 11) XOR ROR(B, 25)) and ROR (P, Q) is a right rotate of value P by Q bit positions.

27, A computer program stored on an computer storage medium for controlling a computer to provide a
virtual machine execution environment corresponding to data processing apparatus as claimed in any one of

claims 1 to 21.

WO 2013/072657 PCT/GB2012/052315
4
~
CPU g 16 12 18 9
c = c c
Register SIMD SIMD Register Memory
< Renamer Register =1 Renamer
Scoreboard File Scoreboard
[
A ,:'J 0 ,1 4
 J y
General SIMD Data
Purpose Processing and
Processing control | Crypto Support
signals
——
Q (\ ﬁ ﬂ Program
2
Decoder | 2
I
20 Instructioxl Pipeline
Interrupt Circuitry 24
oA int

FIG. 1

WO 2013/072657 PCT/GB2012/052315

2/3
Fileto |26
be hashed
Hash seed 160-bits |~ 32 64-byteblocks P 28
N—
! 4 * 32-bit words
SHA-1
Hash
Update Schedule
> () Update | I
r'" 7 |r30
34 36
160-bit intermediate hash | >0
| ®
40

160-bit output hash

WO 2013/072657 PCT/GB2012/052315

3/3

First Portion Generation

first
data
element
Vector
Data
Value
—
T all further
data
! { elements
Cryptographic
Support
Instruction
44
Yy -
Output
Operand
1St
portion

FIG. 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2012/052315

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38 HO4L9/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X "AltiVec (TM) Technology Programming 1-3,13,
Interface Manual", 14,

, 20-22,27
1 June 1999 (1999-06-01), XP055019778,
Retrieved from the Internet:
URL:http://www.freescale.com/files/32bit/d
oc/ref _manual/ALTIVECPIM.pdf

[retrieved on 2012-02-20]

A page 19 4-12,
pages 58-60 15-19,
page 172 23-26

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

3 December 2012 18/12/2012

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040
éx%ﬂ1#&34&ﬁh6 Kamps, Stefan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2012/052315

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Ian Rickards:
"http://www.stanford.edu/class/ee282/10 ha
ndouts/lect.10.arm_soc.pdf",

28 April 2010 (2010-04-28), XP055045606,
Retrieved from the Internet:
URL:http://www.stanford.edu/class/ee?282/10
handouts/lect.10.arm soc.pdf

Tretrieved on 2012-11-26]

* slides 16-46 *

US 7 599 489 B1 (SPRACKLEN LAWRENCE A
[US]) 6 October 2009 (2009-10-06)

column 6, line 7 - column 7, line 26;
figures 7, 8a

THOMAZ OLIVEIRA ET AL: "Improving the
performance of Luffa Hash Algorithm",
INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC
RESEARCH, ,

vol. 20100831:061404,

25 August 2010 (2010-08-25), pages 1-15,
XP061004492,

[retrieved on 2010-08-25]

* section 5.2 *

Onur Aciicmez: "Fast Hashing on Pentium
SIMD Architecture",

11 May 2004 (2004-05-11), XP055045733,
Retrieved from the Internet:
URL:http://ir.Tlibrary.oregonstate.edu/xmlu
i/bitstream/handle/1957/11799/Aciicmez_Onu
r_2005.pdf?sequence=1

[retrieved on 2012-11-27]

abstract

1,21,22,
27

1,21,22,
27

1,21,22,
27

1,21,22,
27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/GB2012/052315
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 7599489 Bl 06-10-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report
	Page 45 - wo-search-report

