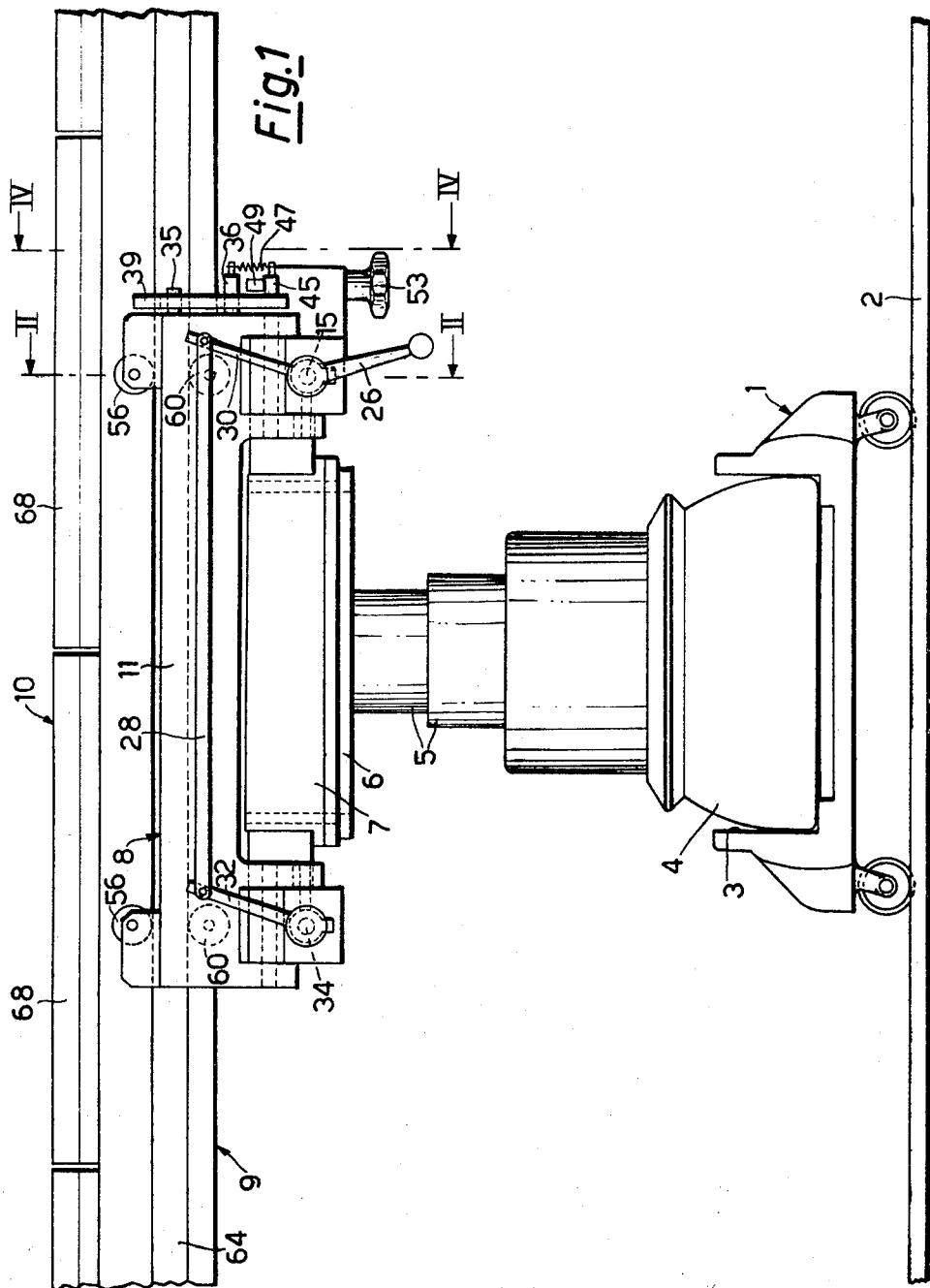


Aug. 20, 1968


G. ROSSI

3,397,411

PATIENT-SUPPORTING DEVICE FOR RADIOLOGICAL TREATMENTS

Filed Sept. 20, 1966

4 Sheets-Sheet 1

Aug. 20, 1968

G. ROSSI

3,397,411

PATIENT-SUPPORTING DEVICE FOR RADILOGICAL TREATMENTS

Filed Sept. 20, 1966

4 Sheets-Sheet 2

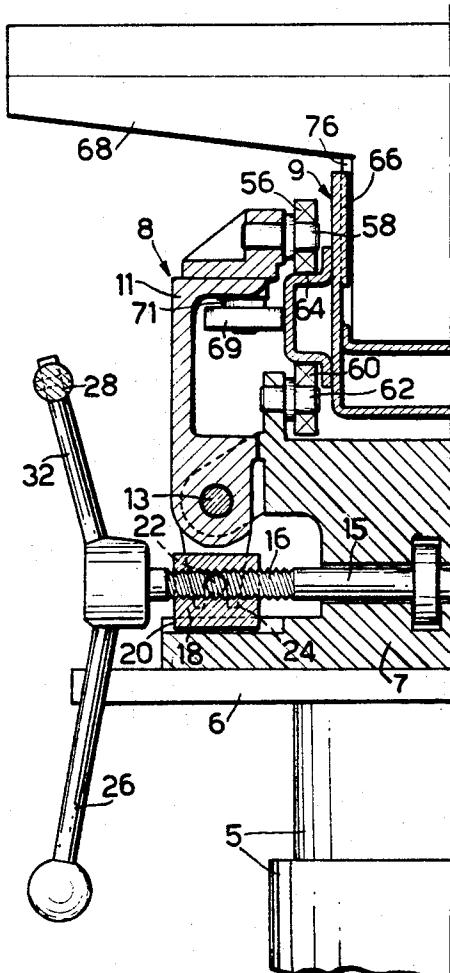


Fig. 2

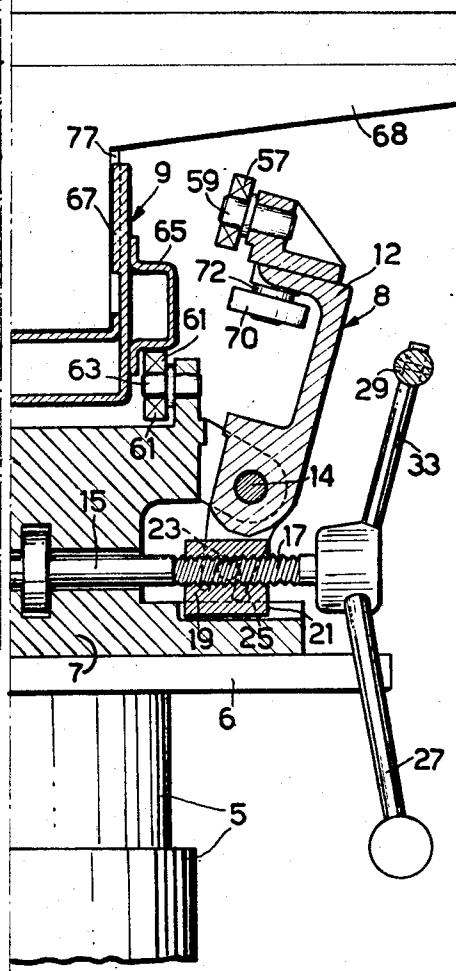
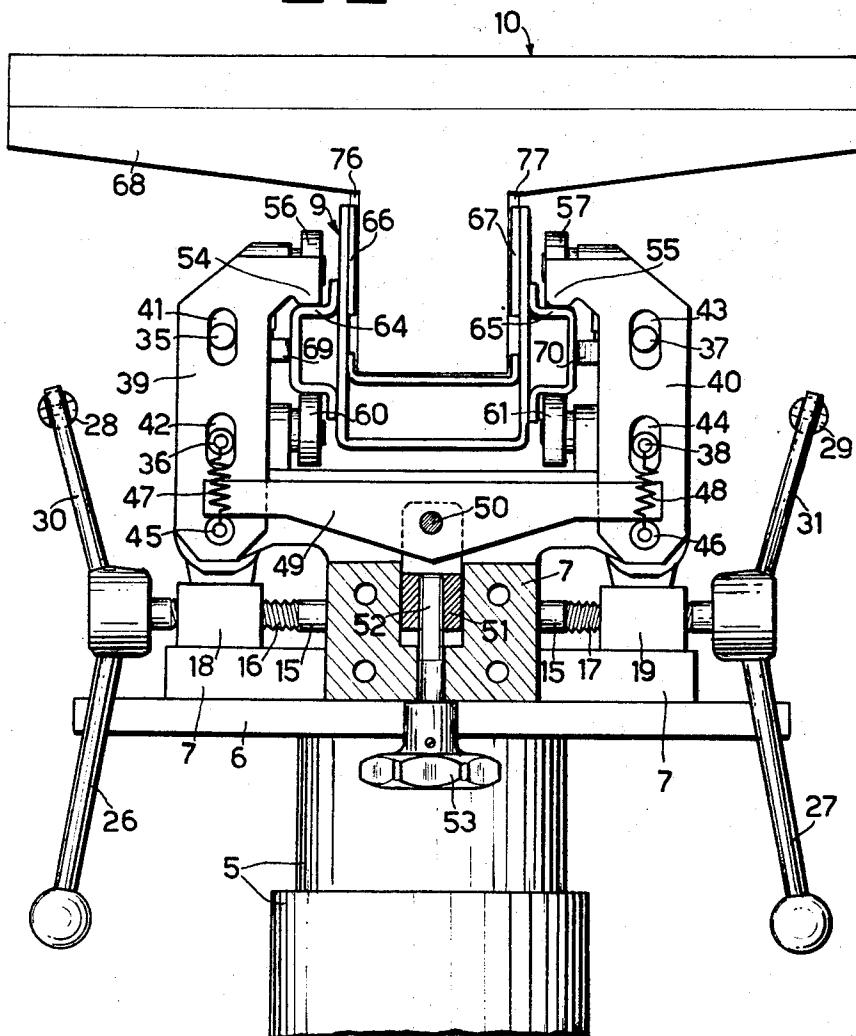


Fig. 3

Aug. 20, 1968

G. ROSSI


3,397,411

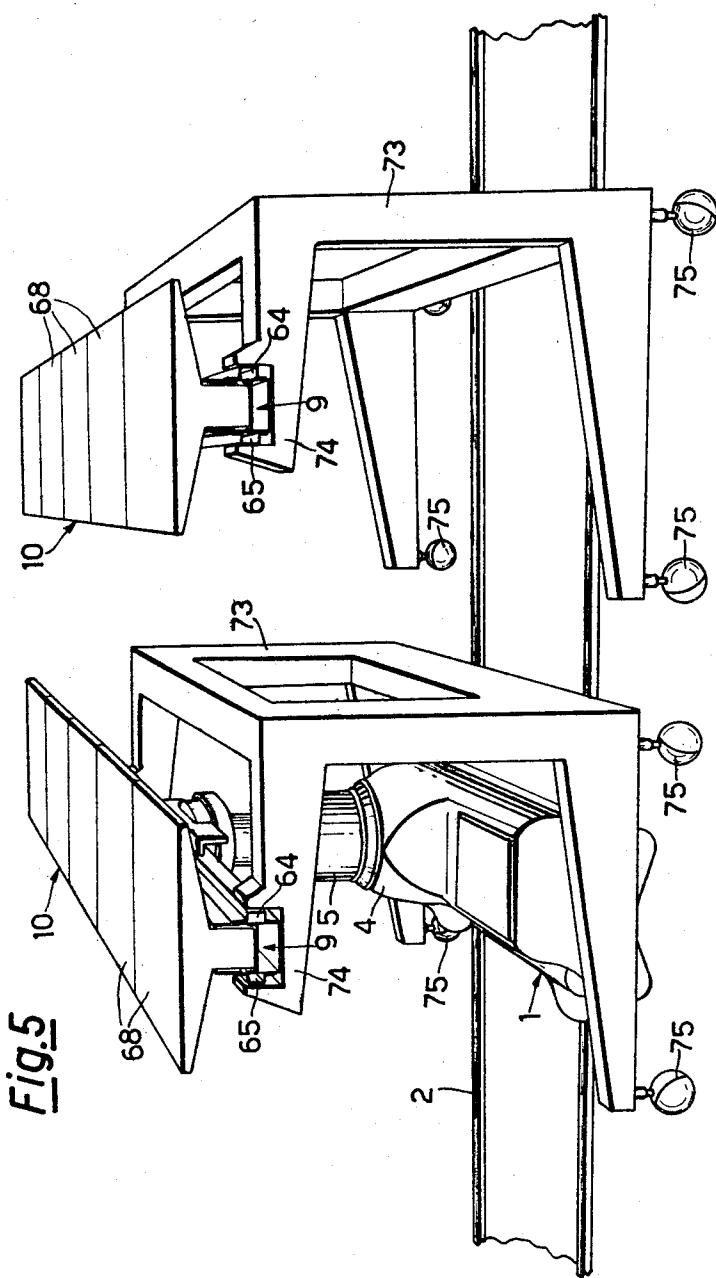
PATIENT-SUPPORTING DEVICE FOR RADIOLOGICAL TREATMENTS

Filed Sept. 20, 1966

4 Sheets-Sheet 3

Fig. 4

Aug. 20, 1968


G. ROSSI

3,397,411

PATIENT-SUPPORTING DEVICE FOR RADIOLOGICAL TREATMENTS

Filed Sept. 20, 1966

4 Sheets-Sheet 4

1

3,397,411

PATIENT-SUPPORTING DEVICE FOR RADIOLOGICAL TREATMENTS

Guido Rossi, Milan, Italy, assignor to Generay-Generale
Radiologica S.p.A., Monza, Milan, Italy, a company of
Italy

Filed Sept. 20, 1966, Ser. No. 580,760

Claims priority, application Italy, Sept. 21, 1965,
21,079/65

4 Claims. (Cl. 5—66)

ABSTRACT OF THE DISCLOSURE

A support table for a patient having a horizontally movable base carrying a slide which is movable horizontally in a direction perpendicular to the base, a telescopic pillar being mounted on the base and supporting a head adapted for receiving a slidable beam thereon, the beam being retained by an openable clamp which is pivotably connected to the head and which can either lock the beam on the head or permit guidable displacement of the beam on the head. A patient supporting member composed of individual component parts is interengagable with the beam.

An object of the present invention is to provide a supporting member for a patient, permitting positioning said patient for X-ray or gamma radiation, both for diagnostic and therapeutic purposes.

The conventional supporting devices, when they consist of articulated sections, do allow to position the patient in the desired posture, but exhibit an extended opacity area which disturbs both the diagnosis and the therapeutic treatment. When, conversely, the supporting device consists of longitudinally arranged members, thus offering a narrower opaque area, it does not allow, for example, to position in an inclined posture the patient's limbs, pelvis or trunk as required.

Furthermore, in the conventional patient-supporting devices, the supporting board is firmly affixed to the head of said supporting device.

It is an object of the present invention to provide a supporting device for a patient to be subjected to radiological treatments, of the kind comprising a base-member displaceable in one direction, a slide displaceable on said base-member in a direction perpendicular to the former and a pillar-and-head assembly which can be vertically lowered or lifted with respect to said slide and which bears the patient-supporting board, characterized in that the head of the pillar carries a clamp rotatable about the vertical axis of said head so as to hold or to release a removable beam which supports the patient-carrying board. Preferably, the clamp has guiding means adapted to permit said beam to be translated along the direction of its own longitudinal axis, and locking means temporarily to affix the beam in a desired position.

An exemplary embodiment of the supporting device according to the invention, will be described in the following, reference being had to the accompanying drawing, wherein:

FIGURE 1 is a side elevational view of the supporting device, showing a portion of the beam which carries the patient-supporting board.

FIGURES 2 and 3 are cross-sectional views taken along the line II—II of FIG. 1, each showing one-half of the clamp in the beam-holding, and the beam-releasing position, respectively.

FIGURE 4 is a front view of the clamp with the beam-holding means taken along the line IV—IV of FIG. 1, and

FIGURE 5 is a perspective, diagrammatical view of

2

the supporting device and a carriage for inserting the beam in, and removing same from, the clamp.

The supporting device comprises a base 1 which can be wheeled on tracks 2 along a direction which is generally parallel to the wall (not shown) to which the apparatus for the X-ray (or gamma-ray) treatment is affixed. A slide 4 is mounted on guideways 3 on said base 1, so as to be displaceable in a direction which is perpendicular to the translational direction of the base 1. The slide 4 carries a pillar 5 having a vertical axis, and which can be telescopically extended by any conventional means (not shown) without, however, being permitted to rotate about its own axis. A head 6 of the pillar 5 rotatably supports in conventional manner (not shown) about its own vertical axis a structure 7 on which a clamp, generally indicated at 8, is positioned, which is adapted to hold, or release, a beam 9, a latter carrying the patient-supporting board, generally shown at 10.

The clamp 8 comprises two jaws, 11 and 12 (FIG. 2 shows only the jaw 11 in closed position, whereas FIG. 3 shows the jaw 12 only, in open position) said jaws being pivotal about pins 13 and 14, respectively, affixed to the structure 7.

The jaw-opening and jaw-closing oscillatory motion for 25 11 and 12 is controlled by a shaft 15, freely rotatably supported by the structure 7, without being, however, displaced about its own axis. Said shaft 15 has a left-handed screw-thread 16 on one end and a right-handed screw-thread 17 on the opposite end, which threadably 30 engage respective bushings 18 and 19, guidably supported by special guideways 20 and 21 of the structure 7 so as to be displaced along the axis of the shaft 15 without being permitted to rotate about said axis. Each bushing has a pin, 22 and 23, respectively, for engaging a forked extension 24 (and 25, respectively) of the jaws 11, and 12, respectively. It is obvious that, by rotating the shaft 15 by means of a lever 26 (or 27) solid therewith, the two bushings 18 and 19 are axially displaced in opposite directions, thus giving rise to opposite oscillations of the two 35 jaws 11 and 12, and, consequently, the closure or opening of the clamp 8.

To obtain an even and balanced movement of the jaws, the drive of the shaft 15 at one end of said jaws, is transferred to the other end by means of articulated rods 45 28 and 29 universally connected at one of their ends to arms 30 and 31, respectively, solid with the shaft 15 and, at the opposite ends, to arms 32 and 33, respectively, solid with a shaft 34. Said shaft 34 is freely rotatably supported by the structure 7, no axial movement being 50 permitted, and is thus very much the same as the shaft 15. The axes of the shafts 15 and 34 are parallel to one another and the shaft 34 fulfills the same function as the shaft 15, that is to say, it displaces, when rotated, two bushings, to which two extensions of the jaws 11 and 12 55 are affixed, in opposite directions.

At one end, the jaws 11 and 12 carry, through pins 35, 36 and 37, 38, respectively, plates 39 and 40 which are mounted on said pins by slots 41, 42 and 43, 44, respectively, so as to allow restricted displacements in the 60 planes containing the axes of the pins 35, 36 and 37, 38, respectively. Each plate carries a rigid protruding pin 45 and 46, respectively, and, between said pins and the pins 36 and 38 rigid with the jaws, springs 47, 48 are interposed which bias the plates 39 and 40 upwards (see FIGS. 1 and 4). A cross-tie 49, articulated with a pivot 50 to the forked end of a displaceable block 51, rests with its ends on the pins 45 and 46 of the plates 39 and 40. The block 51 is guided in the structure 7 so as to be 65 axially displaced without rotation and, in a threaded bore of the block there is screwably engaged the pin 52 of a knob 53 which can be rotated without undergoing axial

movement. The plates 39 and 40 have detent teeth 54 and 55, respectively, adapted to cooperate with the beam 9 so as to lock it.

Each jaw carries a pair of rollers 56 and 57 respectively (in FIGS. 2 and 3 only a single roller can be seen) freely rotatable by means of bearings about pivots 58, 59 solidly affixed to said jaws. The axes of said pivots 58, 59 are all horizontal and lie on the same plane when the jaws are in the clamp-closing position (FIG. 2). Like pairs of rollers 60, 61 are freely rotatable about pivots 62, 63 having 10 horizontal axes and solidly affixed to the structure 7.

Each jaw has, moreover, a pair of rollers 69, 70, freely rotatable by means of bearings about pivots 71, 72 solid with said jaws, the axes of said pivots being vertical when the jaws are closed.

The beam 9 is channel-shaped in cross-section, with the opening facing upwards. Attached to the sides of the beam are supporting and guiding ribs 64, 65 longitudinally extending the entire length thereof. In the open space of the beam there are, positioned at regular intervals, confrontingly mounted guiding ribs 66, 67 which act as a guide and a stop for members 68 intended to form the patient-carrying board 10. Said members 68 have grooves 76 and the members 68, 77 and are inserted from above into the opening in the beam, by causing the grooves 76 and 77 to engage the guiding ribs 66, 67 which thus prevent the members 68 from being moved.

When the clamp 8 is open (FIG. 3) a beam 9 can be inserted between the jaws 11 and 12 by placing it with its ribs 64 and 65 over the pair of lower rollers 60 and 61 solid with the structure 7.

As the clamp 8 (FIG. 2) is closed, the upper rollers 56, 57, movable with the jaws 11, 12 are brought onto the ribs 64 and 65 and the beam 9 whereas the rollers 71 and 72 come to rest laterally of the ribs 64 and 65. Under these conditions, the beam 9 is held by the clamp, while being axially movable on both the fixed and the movable rollers. The beam can be locked in any optional position by turning the knob 53 so as to lower, via the cross-tie 49, the plates 39 and 40 against the bias of the springs 47, 48. Thus, the teeth 54 and 55 of said plates press downwards against the ribs 64 and 65 of the beam, locking the latter against the lower rollers 60 and 61.

For the conveyance of a beam 9 with a patient-carrying board 10, a carriage 73, as shown FIG. 5, can be used, equipped with resting arms 74 for a beam and displaceable on wheels 75. FIGURE 5 shows in dash and dot outline, the position of the carriage 73 as a beam 9 is either inserted into, or removed from, the clamp 8 of the supporting device. The foregoing description clearly shows how the movability of the several component parts of the supporting device permits the beam 9 to be positioned in the desired posture, level and orientation, with the patient-carrying board 10, and how said beam can be either centrally positioned with respect to the clamp, or it can be mounted in a fully overhanging position on both sides, or, also in any intermediate position therebetween.

The cross-sectional area of the beam 9 is extremely small but it is sufficient to bear the patient's weight irrespective of his posture. By such an arrangement, the beam interferes only with a reduced portion of the rays from the radiation source, irrespective of the direction and orientation thereof.

The beam 9 could not be, by itself alone, a sufficient support for the patient, nor could it permit to place him in any "articulated" posture, either.

Therefore, the members 68 are used, which, being of a reduced length and in a greater number, can be placed wherever desired and can be dispensed with wherever no interference is desired between the rays and opaque areas.

The drawing shows flat and symmetrical members 68 which, assembled together, will form a centered, normal patient-supporting surface.

Instead of one or more of said members 68, asymmetrical members can be inserted (and thus the resting 75

surface is entirely on a side of the beam), or members whose surface can be tilted both with respect to the longitudinal axis of the beam 9 and to an axis perpendicular thereto.

The possibility is thus afforded of providing, for the patient, a supporting surface, either inclined or articulated, while still avoiding any possible presence of opaque structures in correspondence with the radiation-scanned area.

Special members can be furthermore provided, having articulated supports for the skull, the legs, the trunk, so as to hold said parts of the body in the position which is suitable for radiological diagnosis or treatments.

Another considerable practical advantage is the removability of the beam from its support.

As a matter of fact, to position the patient in the desired posture, often an intricate one, takes a long time, especially when it is intended to duplicate in an identical manner, a position already taken in a prior operation.

With the conventional supporting devices, the time taken for the preparation was wholly subtracted from the operational time proper of the radiological apparatus: said apparatus is expensive and thus a higher efficiency thereof would be desirable.

On the contrary, by adopting the inventive supporting device equipped with a removable beam it is possible to prepare, in separate rooms, one or more patients on one or more beams which, as soon as the apparatus is available, can be brought, for example with the carriage 73, to the radiological room, to be inserted in the clamp 8.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A supporting device for a patient who is to be subjected to radiological treatments, said device comprising a base adapted to be moved in a horizontal direction, a slide movable on said base in a horizontal direction perpendicular to the first said horizontal direction, a pillar with a head adapted to be vertically lowered or lifted with respect to said slide, a beam removably supported on said head for slidable displacement thereon, clamp means pivotably mounted on said head for movement between a first position in which the beam can be introduced on and removed from the head, and a second position in which the beam is retained on the head by the clamp means, guide means on said clamp means for enabling displacement of said beam relative to the head with said clamp means in said second position, and means for acting on said clamp means to cause the same to lock the beam relative to the head when the clamp means is in said second position, and a patient supporting member engageable with said beam.

2. A device as claimed in claim 1 wherein said beam has a channel shape which is open upwards, and said patient supporting member is insertable into said beam, said beam and patient supporting member including means for interengagement therebetween.

3. A device as claimed in claim 2 wherein said patient supporting member includes a plurality of individual elements which are engageable in said beam.

4. A device as claimed in claim 1 wherein said guide means on the clamp means comprises rollers arranged at right angles to one another to rollably engage the beam.

References Cited

UNITED STATES PATENTS

1,658,833	2/1928	Bucky	248—87 XR
2,881,038	4/1959	Gerneth	269—323
3,041,121	6/1962	Comper	

FOREIGN PATENTS

1,237,945	6/1960	France.
1,378,176	10/1964	France.

ROY D. FRAZIER, Primary Examiner.

R. P. SEITTER, Assistant Examiner.