(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 02/29573 A2

(51) International Patent Classification’: GO6F 11/14 VISWANATHAN, Srinivasan; 751 Saltillo Place, Fre-
mont, CA 94536 (US).

(43) International Publication Date
11 April 2002 (11.04.2002)

(21) International Application Number: PCT/US01/25763
(74) Agent: SWERNOFSKY, Steven, A.; Swernofsky Law

(22) International Fllll’lg Date: 17 AllgllSt 2001 (17082001) GI‘OLlp, P.O. Box 390013, Moutain View, CA 94039-0013
(25) Filing Language: English (US).
s . 84) Designated States (regional): European patent (AT, BE,

26) Publ L : English
(26) Publication Language nes CH, CY, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: NL, PT, SE, TR).

09/642,061 18 August 2000 (18.08.2000) US

Declaration under Rule 4.17:

(71) Applicant: NETWORK APPLIANCE, INC. [US/US]; — asfo the applicant’s entitlement to claim the priority of the

495 East Java Drive, Sunnyvale, CA 94089 (US). earlier application (Rule 4.17(iii)) for all designations
(72) Inventors: LEWIS, Blake; 2316 Greer Road, Palo Published:

Alto, CA 94303 (US). EDWARDS, John, K.; 1173 — without international search report and to be republished

Crandano Court, Sunnyvale, CA 94087-2076 (US). upon receipt of that report

[Continued on next page]

(54) Title: INSTANT SNAPSHOT

(57) Abstract: The invention provides an improved method and apparatus for creating a snapshot of a file system. In a first aspect
of the invention, a "copy-on-write" mechanism is used. An effective snapshot mechanism must be efficient both in its use of storage
space and in the time needed to create it because file systems are often large. The snapshot uses the same blocks as the active file
system until the active file system is modified. Whenever a modification occurs, the modified data is copied to a new block and the
old data is saved (henceforth called "copy-on-write". In this way, the snapshot only uses space where it differs from the active file
system, and the amount of work required to create the snapshot is small. In a second aspect of the invention, a record of which blocks
are being used by the snapshot is included in the snapshot itself, allowing effectively instantaneous snapshot creation and deletion. In
a third aspect of the invention, the state of the active file system is described by a set of metafiles; in particular, a bitmap henceforth
the "active map") describes which blocks are free and which are in use. The inode file describes which blocks are used by each
file, including the metafiles. The inode file itself is described by a special root inode, also known as the "fsinfo block". The system
begins creating a new snapshot by making a copy of the root inode. This copy of the root inode becomes the root of the snapshot.
) The root inode captures all required states for creating the snapshot such as the location of all files and directories in the file sysptem,
&\ it. During subsequent updates of the active file system, the system consults the bitmap included in the snapshot (the "snapmap") to
O\ determine whether a block is free for reuse or belongs to the snapshot. This mechanism allows the active file system to keep track
e of which blocks each snapshot uses without recording any additional bookkeeping information in the file system. In a fourth aspect
& of the invention, a snapshot can also be deleted instantaneously simply by discarding its root inode. Further bookkeeping is not
O required, because the snapshot includes its own description. In a fifth aspect of the invention, the performance overhead associated
with the search for free

g [Continued on next page]

A2

w0 02/29573 A2 D000 00 0O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

blocks is reduced by the inclusion of a summary file. The summary file identifies blocks that are used by at least one snapshot; it is
logical OR of all the snapmap files. The write location code decides whether a block is free by examining the active map and the
summary file. The active map indicates whether the block is currently in use in the active file system. The summary file indicates
whether the block is used by any snashot. In a sixth aspect of the invention, the summary file is updated in the background after
the creation or deletion of the snapshot. This occurs concurrently with other file system operations. Two bits are stored in the file
system "fsinfo block" for each snapshot. These two bits indicate whether the summary file needs to be updated using the snapshot’s
snapmap information as a consequence of its creation or deletion. When a block is freed in the active file system, the corresponding
block of the summary file is updated with the snapmap from the most recently created snapshot, if this has not already been done.
An in-core bit map records the completed updates to avoid repeating them unnecessarily. This ensures that the combination of the
active bitmap and the summary file will consistently identify all blocks that are currently in use. Additionally, the summary file is
updated to reflect the effect of any recent snapshot deletions when freeing a block in the active file system. This allows reuse of
blocks that are not entirely free. After updating the summary file following a snapshot creation or deletion, the corresponding bit in
the fsinfo block is adjusted. In a seventh a

WO 02/29573 PCT/US01/25763
INSTANT SNAPSHOT

Background of the Invention

1. Field of Invention
This invention relates to data storage systems.
2. Related Art

Snapshots of a file system capture the contents of the files and directories in a
file system at a particular point in time. Such snapshots have several uses. They allow the
users of the file system to recover earlier versions of a file following an unintended deletion
or modification. The contents of the snapshot can be copied to another storage device or
medium to provide a backup copy of the file system; a snapshot can also be copied to
another file server and used as a replica. The WAFL (Write Anywhere File Layout) file
system includes a copy-on-write snapshot mechanism. Snapshot block ownership in WAFL
has been recorded by updating the block's entry in a blockmap file, which is a bitmap

indicating which blocks are in-use and which are free for use.

One problem with the prior art of creating snapshots is that the requirement
for additional file system metadata in the active file system to keep track of which blocks
snapshots occupy. These methods are inefficient both in their use of storage space and in the

time needed to create the snapshots.

A second problem with earlier snapshot implementations, was the time
consuming steps of writing out a description of the snapshot state on creation and removing

it on deletion.

A third problem with earlier copy-on-write mechanisms, was the required
steps consumed a considerable amount of time and file system space. For example, some
systems, such as those supplied with DCE/DFS, include a copy-on-write mechanism for
creating snapshots (called "clones"). The copy-on-write mechanism.was used to record

which blocks each clone occupied. Such systems require a new copy of the inode file and
1

WO 02/29573 PCT/US01/25763

the indirect blocks for all files and directories are created when updating all of the original

inodes.

Accordingly, it would be advantageous to provide an improved technique for
more quickly and efficiently capturing the contents of the files and directories in the file
system at a particular point in time. This is achieved in an embodiment of the invention that

is not subject to the drawbacks of the related art.

Summary of the Invention

The invention provides an improved method and apparatus for creating a

snapshot of a file system.

In a first aspect of the invention, the file system uses the fact that each
snapshot includes a representation of the complete active file system as it was at the time the
snapshot was made, including the blockmap of disk blocks indicating which ones are free
and which ones are in use (herein called the "active map"). Because a record of which
blocks are being used by the snapshot is included in the shapshot itself, the file system can
create and delete snapshots very quickly. The file system uses those recorded blockmaps
(herein called "snapmaps") as a source of information to determine which blocks cannot be

reused because those blocks are being used by one or more snapshots.

In a second aspect of the invention, the file system uses that fact that it need
only maintain a more limited blockmap of those disk blocks in use by the active file system,
and a summary map of those disk blocks in use by one or more snapshots. The summary
map can be computed from the snapmaps as the logical inclusive-OR of all the snapmaps.
Because the file system need not maintain multiple bits of in-use/free data for each block, it
uses the active map in conjunction with the summary map to determine whether blocks are

in-use or free.

In a third aspect of the invention, the file system makes use of the fact that the
summary map need not be updated every time a block is allocated or freed. Accordingly, the
file system updates the summary map only (1) when a snapshot is deleted, and then only in a

background operation, (2) on demand for areas for which write allocation is about to be
2

WO 02/29573 PCT/US01/25763
performed, and (3) periodically in a background operation for selected portions of the
summary map. These background operations are preferably performed concurrently with

other file system operations.

Information is stored in a persistent storage medium accessible by the file
system, to provide for resumption of operation following a reboot operation. For example,
in a preferred embodiment, relevant information is stored in the file system "fsinfo block"
for each snapshot, to indicate whether the summary file needs to be updated using that
snapshot's snapmap information as a consequence of its creation or deletion. When a block
is freed in the active file system, the corresponding block of the summary file is updated
with the snapmap from the most recently created snapshot, if this has not already been done.
An in-core bit map records the completed updates to avoid repeating them unnecessarily.
This ensures that the combination of the active bitmap and the summary file will consistently
identify all blocks that are currently in use. Additionally, the summary file is updated to
reflect the effect of any recent snapshot deletions when freeing a block in the active file
system. This allows reuse of blocks that are now entirely free. After updating the summary
file following a snapshot creation or deletion, the corresponding bit in the fsinfo block is

adjusted.

In a fourth aspect of the invention, the algorithm for deleting a snapshot
involves examining the snapmaps of the deleted snapshot and the snapmaps of the next
oldest and next youngest snapshot. A block that was used by the deleted snapshot but is not
used by its neighbors can be marked free in the summary file, as no remaining snapshot is
using it. However, these freed blocks cannot be reused immediately, as the snapmap of the
deleted snapshot must be preserved until summary updating is complete. During a
snapdelete free blocks are found by using the logical OR of the active bitmap, the summary
file, and the snapmaps of all snapshots for which post-deletion updating is in progress. In
other words, the snapmap of the deleted snapshot protects the snapshot from reuse until it is

no longer needed for updating.

In the preferred embodiment, the invention is operative on WAFL file system.
However, it is still possible for the invention to be applied to any computer data storage
system such as a database system or a store and forward system such as cache or RAM if the

data is kept for a limited period of time.

WO 02/29573 PCT/US01/25763

Brief Description of the Drawings

Figure 1 shows a block diagram of a system for an instant snapshot.

Figure 2 shows a block diagram of an instant snapshot.

Figure 3 shows a flow diagram of a method for creating a snapshot.

Figure 4 shows a flow diagram of a method for updating a summary map.

Figure 5 shows a block diagram of copy-on-write maintenance of the active

map.

Detailed Description of the Preferred Embodiment

In the following description, a preferred embodiment of the invention is
described with regard to preferred process steps and data structures. However, those skilled
in the art would recognize, after perusal of this application, that embodiments of the
invention might be implemented using a variety of other techniques without undue
experimentation or further invention, and that such other techniques would be within the

scope and spirit of the invention.
Lexicography

As used herein, use of the following terms refer or relate to aspects of the
invention as described below. The general meaning of these terms is intended to be illustory

and in no way limiting.

e fsinfo (File System Information Block) — In general, the phrase "file system
information block" refers to one or more copies of a block known as the "fsinfo

block". These blocks are located at fixed locations on the disks. The fsinfo block

WO 02/29573 PCT/US01/25763

includes data about the volume including the size of the volume, volume level

options, language and more.

e WAFL (Write Anywhere File Layout) — In general, the term "WAFL" refers to a
high level structure for a file system. Pointers are used for locating data. All the data
is included in files. These files can be written anywhere on the disk in chunks of file

blocks placed in data storage blocks.

e Consistency Point (CP) — In general, the term "CP" refers to a time that a file
system reaches a consistent state. When this state is reached, all the files have been
written to all the blocks and are safely on disk and the one or more copies of
redundant fsinfo blocks get written out. If the system crashes before the fsinfo
blocks go out, all other changes are lost and the system reverts back to the last CP.

The file system advances atomically from one CP to the next.

e Consistent State — In general, the phrase "consistent state" refers to the system

configuration of files in blocks after the CP is reached.

e Active file system — In general, the phrase "active file system" refers to the current
file system arrived at with the most recent CP. In the preferred embodiment, the
active file system includes the active map, the summary map and points to all
snapshots and other data storage blocks through a hierarchy of inodes, indirect data

storage blocks and more.

e Active map — In general, the phrase "active map" refers to a to a file including a

bitmap associated with the in-use or free status of blocks of the active file system.

e Snapshot — In general, the term "snapshot" refers to a copy of the file system. The
snapshot diverges from the active file system over time as the active file system is
modified. A snapshot can be used to return the file system to a particular CP

(cbnsistency point).

WO 02/29573 PCT/US01/25763

Snapmap — In general, the term "snapmap" refers to a file including a bitmap
associated with the vacancy of blocks of a snapshot. The active map diverges from a
snapmap over time as the blocks used by the active file system change during

consistency points.

Summary map — In general, the term "summary map" refers to a file including an

IOR (inclusive OR) bitmap of all the snapmaps.

Space map — In general, the term "space map" refers to a file including an array of

numbers which describe the number of storage blocks used in an allocation area.

Blockmap — In general, the term "blockmap" refers to a map describing the status of
the blocks in the file system.

Snapdelete — In general, the term "snapdelete” refers to an operation that removes a
particular snapshot from the file system. This command can allow a storage block to
be freed for reallocation provided no other snapshot or the active file system uses the

storage block.

Snapcreate — In general, the term "snapcreate" refers to the operation of retaining a

consistency point and preserving it as a snapshot.

As described herein, the scope and spirit of the invention is not limited to any

of the definitions or specific examples shown therein, but is intended to include the most

general concepts embodied by these and other terms.

System Elements

Figure 1 shows a block diagram of a system for an instant snapshot.

The root block 100 includes the inode of the inode file 105 plus other

information regarding the active file system 110, the active map 115, previous active file

WO 02/29573 PCT/US01/25763

systems known as snapshots 120, 125, 130 and 135 and their respective snapmaps 140, 145,
150 and 155.

The active map 115 of the active file system 110 is a bitmap associated with
the in-use or free status of blocks for the active file system 110. The respective snapmaps
140, 145, 150 and 155 are active maps can be associated with particular snapshots 120, 125,
130 and 135 and an inclusive OR summary map 160 of the snapmaps 140, 145, 150 and 155.
Also shown are other blocks 115 including double indirect blocks 130 and 132, indirect
blocks 165, 166 and 167 and data blocks 170, 171, 172 and 173. Finally, Figure 1 shows the
spacemap 180 including a collection of spacemap blocks of numbers 181, 182, 183, 184 and
190.

The root block 100 includes a collection of pointers that are written to the file
system when the system has reached a new CP (consistency point). The pointers are aimed
at a set of indirect (or triple indirect, or double indirect) inode blocks (not shown) or directly
to the inode file 105 consisting of a set of blocks known as inode blocks 191, 192, 193, 194
and 195.

The number of total blocks determines the number of indirect layers of blocks
in the file system. The root block 100 includes a standard quantity of data, such as 128
bytes. 64 of these 128 bytes describe file size and other properties; the remaining 64 bytes
are a collection of pointers to the inode blocks 191, 192, 193, 194 and 195 in the inode file
105. Each pointer in the preferred embodiment is made of 4 bytes. Thus, there are
approximately 16 pointer entries in the root block 100 aimed at 16 corresponding inode
blocks of the inode file 105 each including 4K bytes. If there are more than 16 inode blocks,

indirect inode blocks are used.

In a preferred embodiment, file blocks are 4096 bytes and inodes are 128
bytes. It follows that each block of the inode file contains 32 (i.e. 4,096/128) separate

inodes that point to other blocks 115 in the active file system.

Inode block 193 in the inode file 105 points to a set of blocks (1, 2, 3, ..., P)
called the active map 115. Each block in the active map 115 is a bitmap where each bit

corresponds to a block in the entire volume. A "1" in a particular position in the bitmap
7

WO 02/29573 PCT/US01/25763
correlates with a particular allocated block in the active file system 110. Conversely, a "0"
correlates to the particular block being unused by the active file system 110. Since each
block in the active map 115 can describe up to 32K blocks or 128 MB, 8 blocks are required
per GB, 8K blocks per TB.

Another inode block in the inode file 105 is inode block N 212. This block
includes a set of pointers to a collection of snapshots 120, 125, 130 and 135 of the volume.
Each snapshot includes all the information of a root block and is equivalent to an older root
block from a previous active file system. The snapshot 120 may be created at any past CP.
Regardless when the snapshot is created, the snapshot is an exact copy of the active file
system at that time. The newest snapshot 120 includes a collection of pointers that are aimed
directly or indirectly to the same inode file 105 as the root block 100 of the active file system
110.

As the active file system 110 changes (generally from writing files, deleting
files, changing attributes of files, renaming file, modifying their contents and related
activities), the active file system and snapshot will diverge over time. Given the slow rate of
divergence of an active file system from a snapshot, any two snapshots will share many of
the same blocks. The newest snapshot 120 is associated with snapmap 140. Snapmap 140 is
a bit map that is initially identical to the active map 115. The older snapshots 125, 130 and
194 have a corresponding collection of snapmaps 145, 150 and 155. Like the active map
115, these snapmaps 145, 150 and 155 include a set of blocks including bitmaps that
correspond to allocated and free blocks for the particular CP when the particular snapmaps
145, 150 and 155 were created. Any active file system may have a structure that includes
pointers to one or more snapshots. Snapshots are identical to the active file system when
they are created. It follows that snapshots contain pointers to older snapshots. There can be
a large number of previous snapshots in any active file system or snapshot. In the event that

there are no snapshot, there will be no pointers in the active file system.

Blocks not used in the active file system 110 are not necessarily available for
allocation or reallocation because the blocks may be used by snapshots. Blocks used by
snapshots are freed by removing a snapshot using the snapdelete command. When a
snapshot is deleted any block used only by that snapshot and not by other snapshots nor by

the active file system becomes free for reuse by WAFL. If no other snapshot or active files
8

WO 02/29573 PCT/US01/25763

uses the block, then the block can be freed, and then written over during the next copy-on-

write operation by WAFL.

The system can relatively efficiently determine whether a block can be
removed using the "nearest neighbor rule". If the previous and next snapshot do not allocate
a particular block in their respective snapmaps, then the block can be freed for reuse by
WAFL. For WAFL to find free space to write new data or metadata, it could search the
active map 115 and the snapmaps (140, 145, 150 and 155) of the snapshots (120, 125, 130
and 135) to find blocks that are totally unused. This would be very inefficient; thus it is

preferable to use the active map and the summary map as described below

A summary map 160 is created by using an IOR (inclusive OR) operation 139
on the snapmaps 140, 145, 150 and 155. Like the active map 115 and the snapmaps 140,
145, 150 and 155, the summary map 160 is a file whose data blocks (1, 2, 3, ...Q) contained
a bit map. Each bit in each block of the summary map. describes the allocation status of one
block in the system with "1" being allocated and "0" being free. The summary map 160
describes the allocated and free blocks of the entire volume from all the snapshots 120, 125,
130 and 135 combined. The use of the summary file 160 is to avoid overwriting blocks in

use by snapshots.

An IOR operation on sets of blocks (such as 1,024 blocks) of the active map
115 and the summary map 160 produces a spacemap 180. Unlike the active map 115 and the
summary map 160, which are a set of blocks containing bitmaps, the spacemap 180 is a set
of blocks including 181, 182, 183, 184, and 190 containing arrays of binary numbers. The
binary numbers in the array represent the addition of all the vacant blocks in a region
containing a fixed number of blocks, such as 1,024 blocks. The array of binary numbers in
the single spacemap block 181 represents the allocation of all blocks for all snapshots and
the active file system in one range of 1,024 blocks. Each of the binary numbers 181, 182,
183, 184, and 190 in the array are a fixed length. In a preferred embodiment, the binary

numbers are 16 bit numbers, although only 10 bits are used.

In a preferred embodiment, the large spacemap array binary number 182
(0000001111111110=1,021 in decimal units) tells the file system that the corresponding

range is relatively full. In such embodiments, the largest binary number 00001111111111
9

WO 02/29573 PCT/US01/25763

(1,023 in decimal) represents a range containing at most one empty.. The small binary
number 184 (0000000000001110=13 in decimal units) instructs the file system that the
related range is relatively empty. The spacemap 180 is thus a representation in a very
compact form of the allocation of all the blocks in the volume broken into 1,024 block
sections. Each 16 bit number in the array of the spacemap 180 corresponds to the allocations
of blocks in the range containing 1,024 blocks or about 4 MB. Each spacemap block 180
has about 2,000 binary numbers in the array and they describe the allocation status for 8 GB.
Unlike the summary map 120, the spacemap block 180 needs to be determined whenever a

file needs to be written.

Figure 2 shows a block diagram of an instant snapshot.

The old root block 200 of snapshot #1 201 includes the inode of the inode file
202 plus other information regarding the previous active file system known as snapshot #1
201, the snapmap 205, earlier active file systems known as snapshot #2 210, snapshot #3 215
and snapshot #4 220, and their respective snapmaps 225, 230 and 235.

The snapmap 205 of the previous active file system, snapshot #1 201, is a
bitmap associated with the vacancy of blocks for snapshot #1 201. The respective snapmaps
225, 230 and 235 are earlier active maps that can be associated with particular snapshots
210, 215 and 220 and an inclusive OR summary map 245 of the snapmaps 225, 230 and 235.
Also shown are other blocks 211 including double indirect blocks 240 and 332, indirect
blocks 250, 251 and 252 and data blocks 260, 262, 263 and 264. Finally, Figure 2 shows the
spacemap 270 of snapshot #1 201 including a collection of spacemap blocks of binary
numbers 272, 273, 274, 275 and 276.

The old root block 200 includes a collection of pointers that are written to the
previous active file system when the system had reached the previous CP. The pointers are
aimed at a set of indirect (or triple indirect, or double indirect) inode blocks (not shown) or
directly to the inode file 202 consisting of a set of blocks known as inode blocks 281, 282,
283,284 and 285.

An inode block 281 in the inode file 202 points to other blocks 328 in the old

root block 201 starting with double indirect blocks 240 and 332 (there could also be triple
10

WO 02/29573 PCT/US01/25763

indirect blocks). The double indirect blocks 240 and 332 include pointers to indirect blocks
250, 251 and 252. The indirect blocks 250, 251 and 252 include pointers that are directed to
data leaf blocks 260, 262, 263 and 264 of the active file system 201.

Inode block 283 in the inode file 202 points to a set of blocks (1, 2, 3, ..., P)
called the snapmap 205. Each block in the snapmap 205 is a bitmap where each bit
corresponds to a block in the entire volume. A "1" in a particular position in the bitmap
correlates with a particular allocated block in the active file system 201. Conversely, a "0"
correlates to the particular block being free for allocation in the old root block 201. Each
block in the snapmap 205 can describe up to 32K blocks or 128 MB.

Inode file 202 also includes inode block N 285. This block includes a set of
pointers to a collection of earlier snapshots, snapshot #2 210, shapshot #3 215 and snapshot
#4 220 of the volume. Each snapshot includes all the information of a root block and is

equivalent to an older root block from a previous active file system.

Snapshot #1 201 also includes an old summary map 245 and old spacemap
blocks 270. Although these blocks of data are included in snapshot #1 201 and previous
snapshots, in a preferred embodiment, this data is not used by the active file system of figure

2.
Method of Use

Figure 3 shows a flow diagram of a method for using a system as shown in

figure 1.

A method 300 is performed by the file system 100. Although the method 300
is described serially, the steps of the method 300 can be performed by separate elements in
conjunction or in parallel, whether asynchronously, in a pipelined manner, or otherwise.
There is no particular requirement that the method 300 be performed in the same order in

which this description lists the steps, except where so indicated.

At a flow point 305, the file system 100 is ready to perform a method 300.

11

WO 02/29573 PCT/US01/25763

At a step 310, a user will request a snapshot of the file system 100.

At a step 315, a timer associated with the file system 100 initiates the creation

of a new snapshot.

At a step 320, the file system 100 receives a request to make a snapshot.

At a step 325, the file system 100 creates a new file.

At a step 330, the root node of the new file points to the root node of the

current active file system.

At a step 335, the file system 100 makes the file read only.

At a step 340, the file system 100 updates the new summary map by using an
inclusive OR of the most recent snapmap and the existing summary file. This step must be
done before any blocks are freed in the corresponding active map block. If multiple
snapshots are created such that the processing overlaps in time, the update in step 340 need

only be done for the most recently created snapshot.

At a flow point 345, the snapshot create and the summary file update is

completed and the snapshot creation is done.

An analogous method may be performed for snapshot delete.

Figure 4 shows a flow diagram of a method for updating a summary map.

A method 400 is performed by the file system 100. Although the method 400
is described serially, the steps of the method 400 can be performed by separate elements in
conjunction or in parallel, whether asynchronously, in a pipelined manner, or otherwise.
There is no particular requirement that the method 400 be performed in the same order in

which this description lists the steps, except where so indicated.

At a flow point 410, the file system 100 is ready to update the summary map.
12

WO 02/29573 PCT/US01/25763

At a step 411, update of the summary map is triggered by a "snapdelete"
command from an operator or user. As part of this step, the file system 100 receives and

recognizes the "snapdelete" command.

At a step 412, the file system 100 responds immediately to the operator or
user, and is ready to receive another operator or user command. However, while the
operator or user sees a substantially immediate response, the file system 100 continues with

the method 400 to process the "snapdelete" command.

At a step 413, the file system 100 marks an entry in the fsinfo block to show
that the selected snapshot (designated by the "snapdelete" command) has been deleted.

At a step 414, the file system 100 examines the snapmap for the selected
snapshot for blocks that were in use by the selected snapshot, but might now be eligible to be
freed.

At a step 415, the file system 100 examines the snapmaps for (A) a snapshot
just prior to the selected snapshot, and (B) a snapshot just after the selected snapshot. For
blocks that were in use by the selected snapshot, the file system 100 sets the associated bit to
indicate the block is FREE, only if both of those snapmaps show that the block was free for

those snapshots as well.
The method 400 continues with the flow point 440.

At a step 421, update of the summary map is triggered by a write allocation
operation by the file system 100. In a preferred embodiment, a write allocation operation
occurs for a selected section of the mass storage. The "write allocation" operation refers to
selection of free blocks to be seized and written to, as part of flushing data from a set of
memory buffers to mass storage. As part of this step, the file system 100 determines a

portion of the summary map corresponding to the selected section of the mass storage.

At a step 422, the file system 100 recalculates the summary map for the

portion of the summary map corresponding to the selected section of the mass storage.
13

WO 02/29573 PCT/US01/25763
The method 400 continues with the flow point 440.

At a step 431, update of the summary map is triggered by a background
operation. In a preferred embodiment, the file system 100 updates about one 4K data block

of the summary map.

At a step 432, the file system 100 recalculates the summary map for the

portion of the summary map selected to be updated.
The method 400 continues with the flow point 440.

At a flow point 440, the file system 110 has updated at least a portion of the

summary map, and is ready to be triggered for further updates later.

Figure 5 shows a block diagram of copy-on-write maintenance of the active

map.

When blocks are freed in the active map, the file system 110 is careful to not
reuse those blocks until after a consistency point has passed (and thus that the newly free
status of the block has been recorded in a snapshot). Accordingly, the file system 110

maintains two copies of the active map, a "true" copy 501 and a "safe" copy 502.

In normal operation 510 (outside a time when a consistency point is being
generated), the file system 110 maintains both the "true" copy 501 and the "safe" copy 502
of the active map. Since in normal operation 510 blocks can only be freed, not allocated,
only changes from IN-USE to FREE are allowed. The file system 110 makes all such
changes in the "true" copy 501, but does not make them to the "safe" copy 502. The "safe"
copy 502 therefore indicates those blocks which can be safely allocated at the next

consistency point.

While generating a consistency point, during a write allocation interval 520,

blocks can be either freed (by continued operation of the file system 110) or allocated (by the

14

WO 02/29573 PCT/US01/25763
write allocation operation). Both types of change are made to both the "true" copy 501 and
the "safe" copy 502.

While still generating a consistency point, during a flush data to disk interval
530, blocks can again only be freed (by continued operation of the file system 110); they
cannot be allocated because the write allocation interval 520 is finished for that consistency
point. The file system 110 makes all such changes in the "safe" copy 502, but does not make
them to the "true" copy 501. At the end of the flush data to disk interval 530, the file system
110 switches the roles of the "true" copy 501 and the "safe" copy 502, so that all such

changes were in fact made to the new "true" copy 501 only.
Alternative Embodiments
Although preferred embodiments are disclosed herein, many variations are

possible which remain within the concept, scope, and spirit of the invention, and these

variations would become clear to those skilled in the art after perusal of this application.

15

WO 02/29573 PCT/US01/25763

Claims

1. A method for capturing the contents of the files and directories in a
file system, said file system comprising a set of storage blocks in a mass storage system
including steps for

recording an active map in said file system of said storage blocks not
available for writing data;

recording a consistency point in said file system including a consistent
version of said file system at a previous time, said consistency point including a copy of said
active map at said previous time; and

refraining from writing data to storage blocks in response to said active map,

and at least one of said copy of said active map at said previous time.

2. A method as in claim 1, wherein said step for refraining includes
determining a logical union of said storage blocks used by one or more of said copies of said

active map at said previous time.
3. A method as in claim 1, wherein said step for refraining includes
determining a subset of said storage blocks used by one or more of said copies of said active

map at said previous time.

4. A method as in claim 1, wherein said file system is a WAFL file

system.

5. A method as in claim 1, wherein said active map at said previous time

i3 a snapmap.

6. A method as in claim 1 and 5, including removing a root inode of said

snapmap using a snap delete.

7. A method as in claim 6, including steps for determining not to write to

a block after said step, provided the previous or next snapmap uses said block.

16

WO 02/29573 PCT/US01/25763

8. A method as in claim 1, including a copy-on-write mechanism for

copying modified data to a new block and saving old data in a current data block.

9. A method for capturing the contents of the files and directories in a
file system, said file system comprising a set of storage blocks in a mass storage system
including

recording a consistency point in said file system including a consistent
version of said file system at a previous time, said consistency point including a copy of said
active map at said previous time; and

returning to said file system at a previous time using said consistent version

of said file system following an unintended deletion or modification.

10. A method as in claim 9, wherein said consistent version includes a

pointer to a previous root block of the inode file.

11. A method as in claim 9, wherein said file system is a WAFL file

system.

12. A method as in claim 9, wherein said active map at said previous time
1S a snapmap.
13. A method as in claim 9 and 12, including a snapdelete method for

removing a root inode of said snapmap.

14. A method as in claim 13, including steps for determining not to write

to a block after said snapdelete method provided a previous or next snapmap uses said block.

15. A method as in claim 9, including a copy-on-write mechanism for

copying modified data to a new block and saving old data in a current data block.

16. A method for saving previous versions of an active file system
including the contents of the files and directories in a file system, said file system comprising
a set of storage blocks in a mass storage system including steps for

writing modified files to unused data blocks;

keeping previous files in currently occupied blocks; and
17

WO 02/29573 PCT/US01/25763

recording a consistency point in said file system including a consistent
version of said file system at a previous time, said consistency point including a copy of said

active map at said previous time;

17. A method as in claim 16, including retrieving said file system at a

previous time using a pointer.

18. A method as in claim 16, wherein said pointer corresponds to a root

block.of said file system at a previous time.

19. A method as in claim 16, wherein said file system is a WAFL file

system.

20. A method as in claim 16, wherein said active map at said previous

time 1s a snapmap.

21. A method as in claim 16 and 20, including a snapdelete method for

removing a root inode of said snapmap.

22. A method as in claim 20, including not writing to a block after said

snapdelete method provided a previous or next snapmap uses said block.

23. A method as in claim 16, including a copy-on-write mechanism for

copying modified data to a new block and saving old data in \a current data block..

24. A method of operating a file system, said file system including an
active map of information indicating in-use and free blocks, said file system maintaining a
set of snapshots, each snapshot including a representation of said file system as it was at an
earlier time, said method including

making write allocation decisions in response to a copy of an earlier active

map included in at least one of said snapshots.

25. A method of operating a file system, said file system including an

active map of information indicating in-use and free blocks, said file system maintaining a
18

WO 02/29573 PCT/US01/25763
set of snapshots, each snapshot including a representation of said file system as it was at an
earlier time, said method including

computing a summary map in response to at least one copy of an earlier

active map included in at least one of said snapshots.

26. A method as in claim 25, including

making write allocation decisions in response to said summary map.

27. A method as in claim 25, wherein
said set of snapshots includes at least two said snapshots; and
a result of said computing includes an indicator of a union of all blocks

indicated by at least two said copies of earlier active maps included in said-set of snapshots.

28. A method as in claim 25, wherein
said set of snapshots includes at least two said snapshots; and
said computing includes performing a bitwise logical operation on at least

two said copies of earlier active maps included in said set of snapshots.

29. A method as in claim 25, including
making write allocation decisions both in response to a current active map

and in response to said summary map.
30. A method as in claim 25, including
computing a combination of a current active map and said summary map; and

making write allocation decisions in response to a result of said computing.

31. A method as in claim 25, including, for a selected portion of said

summary map

identifying a set of snapshots created since a recent update of said selected
portion; and

updating said selected portion in response to only a most recent one of said
snapshots.

19

WO 02/29573 PCT/US01/25763
32. In a file system including an active map of information indicating in-
use and free blocks, said file system maintaining a set of snapshots, each snapshot including
a representation of said file system as it was at an earlier time, said file system maintaining a
summary map in response to at least one copy of an earlier active map included in at least
one of said snapshots, a method of updating said summary map, said method including
receiving a request to delete a selected snapshot;
for a block used by said selected snapshot, indicating said block is free in said
summary map only in response to a snapshot just prior to said selected snapshot and in

response to a snapshot just after said selected snapshot.

33. A method as in claim 32, wherein said indicating frees said block only
when both
said block is unused by said snapshot just prior to said selected snapshot; and

said block is unused by said snapshot just after said selected snapshot.

34. A method as in claim 32, wherein said snapshot just after said selected

snapshot corresponds to an active file system.

35. In a file system including an active map of information indicating in-
use and free blocks, said file system maintaining a set of snapshots, each snapshot including
arepresentation of said file system as it was at an earlier time, said file system maintaining a
summary map in response to at least one copy of an earlier active map included in at least
one of said snapshots, a method of updating said summary map, said method including

selecting a set of blocks maintained by said file system for which to perform a
write allocation operation;

updating only a portion of said summary map corresponding to said set of
blocks, in response to said selecting; and

performing said write allocation operation in response to said updated

summary map.

36. In a file system including an active map of information indicating in-
use and free blocks, and said file system maintaining a set of snapshots, each snapshot
including a representation of said file system as it was at an earlier time, said file system

maintaining a summary map in response to at least one copy of an earlier active map
20

WO 02/29573 PCT/US01/25763
included in at least one of said snapshots, a method of updating said summary map, said
method including

while generating a consistency point, selecting a set of blocks maintained by

said file system and updating only a portion of said summary map corresponding to said set
of blocks.

37. In a file system including an active map of information indicating in-
use and free blocks, and said file system maintaining a set of snapshots, each snapshot
including a representation of said file system as it was at an earlier time, said file system
maintaining a summary map in response to at least one copy of an earlier active map
included in at least one of said snapshots, a method of updating said summary map, said
method including

refraining from indicating a selected block as free in response to whether said

selected block is included in said copy of an earlier active map.

38. In a file system including an active map of information indicating in-
use and free blocks, a method of updating said active map, said method including
maintaining a plurality of copies of said active map, at least a first said copy
being a substantially true representation of in-use and free blocks, and at least a second said
copy being a representation of in-use and free blocks which reflects fewer free blocks than
said first copy; and
| wherein said second copy refrains from indicating a selected block as free

until after a next consistency point is completed..
39. A method as in claim 38, including

swapping said second copy with said first copy after said consistency point is

completed.

21

WO 02/29573

ACTIVE FILE SYSTEM

191

1/5

fsinfo
ROOT BLOCK
INODE OF INCDE FILE

100

[

192 k 193

PCT/US01/25763

202
INODE FILE

INODE BLOCK 1

INODE BLOCK 2

INODE 8LOCK 3

INODE BLOCK ...

INODE BLOCK N

115
OTHER BLOCKS

UBL! DOUBLE
INDIRECT INDIRECT

130 132

| NDIReCT | [INDIRECT | [INDIRECT

165 166

DATA || DATA |[DATA DATA
BLOCK | [BLOCK || BLOCK || BLOCK
170 171 172 173

|

160

OERBEGEE

ACTIVE MAP

OEREMEOE

SUMMARY MAP

IOR OPERATION

180

SPACEMAP BLOCK S
182 | 0000001001101101

184 | 0000001111111101
186 | 0000001001111111

188 | 0000000000001101

190 | 0000101101101

Fig. 1

120

SNAPSHOT #1

[SrReAF J140

125

SNAPSHOT #2

(we]ies

130

SNAPSHOT #3

135

SNAPSHOT #4

EXGIa

I0R
{INCLUSIVE OR)
ALL SNAPMAPS
139

WO 02/29573 PCT/US01/25763

2/5

SNAPSHOT #1
201

OLD ROOT BLOCK
FOR SNAPSHOT #1

[

J 283

INODE BLOCK1 INODE BLOCK?2 INODE BLOCK3 INODE BLOCK .. INODE BLOCKN

202
INOOE FILE

OTHER BLOCKS

INDIRECT I I INDIRECT '
240

[nowrect | | oIReCT |
24

INDIRECT

210
SNAPSHOT#2

SNAPMAP | 225

215
SNAPSHOT#3

SNAPMAP {230

245
OomnoE | | [oomon

SNAP MAP OLD SUMMARY MAP

420
SNAPSHOT#4

SNAPMAP |235

AND OPERATION

IOR
(INCLUSIVE OR)
ALL SNAPMAPS

270

OLD SPACEMAP BLOCKS
0000001001101101

0000001111111101

0000001001111111

0000000000001101

0000001011101101

IHI

Fig. 2

WO 02/29573

PCT/US01/25763

3/5
METHOD
300 305
310 315
USER REQUESTS TIMER INITIATES
SNAPSHOT SNAPSHOT
320

RECEIVE REQUEST
TO MAKE SNAPSHOT

i 325

MAKE A
NEW FILE

330

"ROOT NODE

ROOT NODE
OF NEW FILE
POINTS TO

OF ACTIVE
FILE SYSTEM

335

MAKE NEW
FILE
READ ONLY

340

F

SUMMARY MAP
IN THE ACTIVE

MAKE NEW

ILE SYSTEM

345

Fig. 3

PCT/US01/25763

WO 02/29573

4/5

cey uoposjes dew
Arewwns Joy dew
Alewwins sjenojesay

SLy joysdeus
Jsye/aiojeq 2oy
S)00|q 98] Sk Yie\

%

AR joysdeus Aq
asn uj Jabuoj ou

$300]g 40} %09YD

»

ey 390|q
oju|s} 01 psjsjsp
joysdeus Jojug

%

%

LS dew Alewwns
10 a)epdn s1abb1)
suopesado punoibyoeg

444 obe.o)s Ly
Joj dew Alewwins Apeal waj)sAs
ajenojeosy Jasn 0} puodsay
f ki
L2y dew Arewwins LLp
10 a)epdn siab61) puewIwod
uoledojje |l a)ojepdeus

8]0}

Fig. 4

PCT/US01/25763

WO 02/29573

5/5

(.o0uep MO2D.)

paddems
‘ysnyj Jeyy

AdOD MMOD ULAUD 0« |

0eg

3sig < eleq ysni4

4

o<1
Aluo

[eubuO

:

MQOD

02g
aseld Uoneoso|y Sl
L <0
0«1
yiod
/X
Yioq
/X
yroq

Adoo jeuibuo ul AUO 0« |

0Lg

uojjesadQ [ewioN

0«1

Auo

R
0«1 MOD

L5

/x| [euBuQ
0¢)

c0s Adoo

«OJES,,

HOS (4o

LN,

006G WalsAg

Fig. 5.

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

