

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

B23C 3/12 (2006.01) **B23B 5/16** (2006.01) **B23D 79/00** (2006.01)

(21) 출원번호10-2013-0039036(22) 출원일자2013년04월10일

심사청구일자 **2013년04월10일** (65) 공개번호 **10-2014-0122412**

(43) 공개일자 **2014년10월20일**

(56) 선행기술조사문헌

JP07011201 U JP2011016180 A KR101282650 B1 KR100441223 B1 (45) 공고일자 2015년07월22일

(11) 등록번호 10-1537789

(24) 등록일자 2015년07월13일

(73) 특허권자

(주)티이엠

경상남도 양산시 산막공단북10길 113(산막동)

(72) 발명자

윤덕근

경남 양산시 평산로 95, 106동 902호 (평산동, 새 진흥6차아파트)

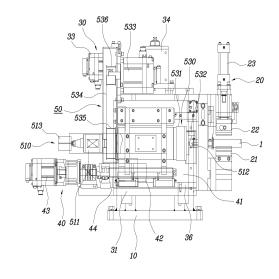
김기헌

부산 부산진구 동평로27번길 25-11, (당감동)

(74) 대리인

특허법인 신세기

전체 청구항 수 : 총 11 항


심사관 : 이정학

(54) 발명의 명칭 샤프트 가공장치

(57) 요 약

본 발명은 샤프트 가공장치에 관한 것으로, 샤프트(1)의 페이싱(1a) 가공과 면취(1b) 가공을 함께 수행할 수 있게 됨은 물론 샤프트(1)의 페이싱(1a) 가공시 페이싱 가공면에서 발생하는 버(1c)를 동시에 제거할 수 있도록 된 것이다.

대 표 도 - 도2

명세서

청구범위

청구항 1

베이스프레임(10)에 구비된 것으로 가공 대상물인 샤프트(1)를 고정할 수 있게 작동하는 클램프유니트(20);

상기 베이스프레임(10)에 구비된 수직가이드(11)를 따라 승하강 이동할 수 있게 설치된 수직이동블록(31);

상기 수직이동블록(31)에 연결되게 설치된 수직이동유니트(30);

상기 수직이동유니트(30)에 구비된 수평가이드(36)를 따라 클램프유니트(20)를 향한 전진이동과 반대방향으로의 후진이동이 가능하도록 설치된 수평이동블록(41);

상기 수평이동블록(41)과 연결되게 설치된 수평이동유니트(40); 및

상기 수평이동유니트(40)에 대해 축회전이 가능하면서 상기 클램프유니트(20)를 향하여 수평방향으로 전후진 이동이 가능하도록 설치됨은 물론 상기 샤프트(1)를 가공할 수 있는 페이싱툴(512)과 면취툴(532)이 일단에 동시에 구비된 툴유니트(50);를 포함하는 샤프트 가공장치.

청구항 2

청구항 1에 있어서,

상기 클램프유니트(20)는 상기 베이스프레임(10)에 고정되게 구비되고 윗면에 상기 샤프트(1)가 안착되도록 안착홈(21a)이 형성된 하부클램프(21);

상기 하부클램프(21)의 위쪽에서 상기 베이스프레임(10)에 대해 승하강 작동하면서 상기 하부클램프(21)에 안착 된 샤프트(1)를 클램핑 또는 언클램핑하는 상부클램프(22); 및

상기 베이스프레임(10)에 설치되어서 상기 상부클램프(22)를 승하강 작동시키도록 동작하는 클램프실린더(23); 를 포함하는 것을 특징으로 하는 샤프트 가공장치.

청구항 3

청구항 1에 있어서,

상기 수직이동유니트(30)는 상기 수직이동블록(31)에 결합된 수직볼스크루너트(32);

상기 베이스프레임(10)에 고정 설치된 수직이동모터(33); 및

상기 수직가이드(11)와 평행한 상태로 상기 수직볼스크루너트(32)를 관통해서 설치됨과 더불어 상기 수직이동모 터(33)의 동력을 감속기(34)를 통해 전달받아서 축회전 동작이 가능하도록 설치된 수직볼스크루(35);를 포함하 는 것을 특징으로 하는 샤프트 가공장치.

청구항 4

청구항 1에 있어서,

상기 수평이동유니트(40)는 상기 수평이동블록(41)에 결합된 수평볼스크루너트(42);

상기 수직이동유니트(30)에 고정 설치된 수평이동모터(43); 및

상기 수평가이드(36)와 평행한 상태로 상기 수평볼스크루너트(42)를 관통해서 설치됨과 더불어 상기 수평이동모 터(43)의 동력을 전달받아서 축회전 동작이 가능하도록 설치된 수평볼스크루(44);를 포함하는 것을 특징으로 하 는 샤프트 가공장치.

청구항 5

청구항 4에 있어서,

상기 수평이동블록(41)과 상기 수평이동모터(43)는 상기 베이스프레임(10)에 대해 수직방향으로 승하강 이동하는 수직이동블록(31)에 고정 설치된 것을 특징으로 하는 샤프트 가공장치.

청구항 6

청구항 4에 있어서.

상기 툴유니트(50)는 상기 페이싱툴(512)을 구비한 페이싱툴유니트(510)와 상기 면취툴(532)을 구비한 면취툴유니트(530)로 구성되되;

상기 면취툴유니트(530)는 상기 수평가이드(36)와 평행한 상태로 상기 수평이동블록(41)을 관통해서 축회전이 가능하도록 설치된 면취툴샤프트(531);

상기 클램프유니트(20)와 대면하도록 상기 면취툴샤프트(531)의 일단에 구비된 면취툴(532);

상기 수평이동블록(41)에 고정 설치된 샤프트회전모터(533); 및

상기 샤프트회전모터(533)의 동력으로 상기 면취툴샤프트(531)가 회전할 수 있도록 상기 샤프트회전모터(533)와 상기 면취툴샤프트(531)를 동력전달이 가능하게 연결하는 동력전달벨트(534);를 포함하는 것을 특징으로 하는 샤프트 가공장치.

청구항 7

청구항 6에 있어서,

상기 페이싱툴유니트(510)는 상기 면취툴샤프트(531)의 길이방향을 따라 상기 면취툴샤프트(531)를 관통해서 설치되되 상기 면취툴샤프트(531)와 함께 회전하거나 또는 상기 면취툴샤프트(531)와는 별도로 상기 면취툴샤프트(531)의 길이방향을 따라 이동할 수 있도록 상기 면취툴샤프트(531)와 스플라인(511a) 결합으로 설치된 페이싱툴샤프트(511);

상기 클램프유니트(20)와 대면하도록 상기 페이싱툴샤프트(511)의 일단에 구비된 페이싱툴(512); 및

상기 수평이동블록(41)에 고정되고 상기 페이싱툴샤프트(511)와 연결되도록 설치되어서 상기 면취툴샤프트(53 1)의 길이방향을 따라 상기 페이싱툴샤프트(511)를 직선 이동시키도록 동력을 제공하는 샤프트실린더(513);를 포함하는 것을 특징으로 하는 샤프트 가공장치.

청구항 8

청구항 7에 있어서,

상기 페이싱툴(512)은 한 쌍으로 구성되어서 상기 페이싱툴샤프트(511)의 일단에 180도(°) 간격으로 설치되고; 상기 면취툴(532)은 2개의 페이싱툴(512)사이에 위치하도록 설치된 것을 특징으로 하는 샤프트 가공장치.

청구항 9

청구항 7에 있어서,

상기 면취툴샤프트(531)와 상기 페이싱툴샤프트(511)는 회전중심이 동심을 이루도록 설치된 것을 특징으로 하는 샤프트 가공장치.

청구항 10

청구항 7에 있어서,

상기 샤프트(1)의 페이싱 가공시에는 상기 페이싱툴(512)이 상기 면취툴(532)에 비해 상기 클램프유니트(20)쪽으로 더 많이 돌출되고 상기 샤프트(1)의 면취 가공시에는 상기 면취툴(532)이 상기 페이싱툴(512)에 비해 상기 클램프유니트(20)쪽으로 더 많이 돌출되어서 상기 샤프트(1)의 페이싱 가공과 면취 가공이 순차적으로 진행되는 것을 특징으로 하는 샤프트 가공장치.

청구항 11

청구항 3에 있어서,

상기 샤프트(1)의 페이싱 가공시 페이싱 가공면의 중심부에 발생된 버(1c)는 상기 수직이동블록(31)의 상승이동 시 상기 페이싱툴(512)에 의해 제거되는 것을 특징으로 하는 샤프트 가공장치.

발명의 설명

기술분야

[0001]

[0004]

[0006]

[0007]

본 발명은 샤프트 가공장치에 관한 것으로, 보다 상세하게는 샤프트 단부의 페이싱(facing) 가공과 면취(모따기) 가공을 같이 수행할 수 있는 샤프트 가공장치에 관한 기술이다.

배경기술

- [0002] 자동차 부품 중 샤프트류에 해당하는 부품은 랙바, 인풋샤프트, 조향축 등이 있으며, 이들 부품은 정밀성을 요하기 때문에 단부(일단 또는 양단)를 가공해서 사용하게 된다.
- [0003] 도 1에 도시된 바와 같이 샤프트(1) 단부의 가공은 단면을 가공하는 페이싱(1a) 가공과 모서리를 가공하는 면취 (모따기, 1b) 가공이 있는데, 종래에는 샤프트의 페이싱 가공과 면취 가공을 하나의 장치에서 동시에 행할 수 없었으며, 이로 인해 가공비용 상승, 가공시간 과다 소요, 생산성 감소 등 여러 문제점이 있었다.
 - 즉, 종래에는 페이싱 가공 전용 공작기계에서 샤프트의 페이싱 가공을 하고, 면취 가공 전용 공작기계에서 샤프 트의 면취 가공을 하였던 것이다.
- [0005] 또한, 페이싱 가공 후 샤프트의 단면을 보게 되면 센터부에 뾰족하게 돌출된 버(1c)가 발생하게 되는데, 종래의 페이싱 가공 공작기계에서는 센터부에 형성된 버(1c)를 제거할 수 없었으며, 이에 따라 샤프트의 페이싱 가공 후 상기 버(1c)를 제거하기 위해 센터드릴을 이용한 별도의 가공작업을 해야 하는 문제점도 있었다.
 - 상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.

선행기술문헌

특허문헌

(특허문헌 0001) 대한민국공개특허공보 10-2010-0110601호

(특허문헌 0002) 대한민국등록실용신안공보 20-0422052호

발명의 내용

해결하려는 과제

- [0008] 이에 본 발명은 상기한 문제점들을 해소하기 위해 안출된 것으로서, 샤프트의 페이싱 가공과 면취 가공을 하나 의 장치에서 수행할 수 있는 샤프트 가공장치를 제공함으로써 가공비용 절감, 가공시간 단축, 생산성 향상 등을 도모할 수 있도록 하는 데에 그 목적이 있다.
- [0009] 또한, 본 발명은 샤프트의 페이싱 가공시 페이싱 가공면의 센터부에서 발생한 버도 함께 제거할 수 있도록 함으로써, 버 제거를 위한 별도의 작업을 했하지 않도록 하는 데에 다른 목적이 있다.

과제의 해결 수단

[0010] 상기한 바의 목적을 달성하기 위한 본 발명 샤프트 가공장치는, 베이스프레임에 구비된 것으로 가공 대상물인 샤프트를 고정할 수 있게 작동하는 클램프유니트; 상기 베이스프레임에 대해 승하강 이동할 수 있게 설치된 수 직이동유니트; 상기 클램프유니트를 향하여 전후진 이동할 수 있도록 상기 수직이동유니트에 설치된 수평이동유니트; 및 상기 수평이동유니트에 대해 축회전이 가능하면서 상기 클램프유니트를 향하여 수평방향으로 전후진 이동이 가능하도록 설치됨은 물론 상기 샤프트를 가공할 수 있는 페이싱툴과 면취툴이 일단에 동시에 구비된 툴유니트;를 포함하는 것을 특징으로 한다.

- [0011] 상기 클램프유니트는 상기 베이스프레임에 고정되게 구비되고 윗면에 상기 샤프트가 안착되도록 안착홈이 형성 된 하부클램프; 상기 하부클램프의 위쪽에서 상기 베이스프레임에 대해 승하강 작동하면서 상기 하부클램프에 안착된 샤프트를 클램핑 또는 언클램핑하는 상부클램프; 및 상기 베이스프레임에 설치되어서 상기 상부클램프를 승하강 작동시키도록 동작하는 클램프실린더;를 포함하는 것을 특징으로 한다.
- [0012] 상기 수직이동유니트는 상기 베이스프레임에 구비된 수직가이드를 따라 승하강 이동할 수 있게 설치된 수직이동 블록; 상기 수직이동블록에 결합된 수직볼스크루너트; 상기 베이스프레임에 고정 설치된 수직이동모터; 및 상기 수직가이드와 평행한 상태로 상기 수직볼스크루너트를 관통해서 설치됨과 더불어 상기 수직이동모터의 동력을 감속기를 통해 전달받아서 축회전 동작이 가능하도록 설치된 수직볼스크루;를 포함하는 것을 특징으로 한다.
- [0013] 상기 수평이동유니트는 상기 수직이동유니트에 구비된 수평가이드를 따라 상기 클램프유니트를 향한 전진이동과 반대방향으로 후진이동이 가능하게 설치된 수평이동블록; 상기 수평이동블록에 결합된 수평볼스크루너트; 상기 수직이동유니트에 고정 설치된 수평이동모터; 및 상기 수평가이드와 평행한 상태로 상기 수평볼스크루너트를 관통해서 설치됨과 더불어 상기 수평이동모터의 동력을 전달받아서 축회전 동작이 가능하도록 설치된 수평볼스크루;를 포함하는 것을 특징으로 한다.
- [0014] 상기 수평이동블록과 상기 수평이동모터는 상기 베이스프레임에 대해 수직방향으로 승하강 이동하는 수직이동블 록에 고정 설치된 것을 특징으로 한다.
- [0015] 상기 툴유니트는 상기 페이싱툴을 구비한 페이싱툴유니트와 상기 면취툴을 구비한 면취툴유니트로 구성되되; 상 기 면취툴유니트는 상기 수평가이드와 평행한 상태로 상기 수평이동블록을 관통해서 축회전이 가능하도록 설치된 면취툴샤프트; 상기 클램프유니트와 대면하도록 상기 면취툴샤프트의 일단에 구비된 면취툴; 상기 수평이동블록에 고정 설치된 샤프트회전모터; 및 상기 샤프트회전모터의 동력으로 상기 면취툴샤프트가 회전할 수 있도록 상기 샤프트회전모터와 상기 면취툴샤프트를 동력전달이 가능하게 연결하는 동력전달벨트;를 포함하는 것을 특징으로 한다.
- [0016] 상기 페이싱툴유니트는 상기 면취툴샤프트의 길이방향을 따라 상기 면취툴샤프트를 관통해서 설치되되 상기 면취툴샤프트와 함께 회전하거나 또는 상기 면취툴샤프트와는 별도로 상기 면취툴샤프트의 길이방향을 따라 이동할 수 있도록 상기 면취툴샤프트와 스플라인 결합으로 설치된 페이싱툴샤프트; 상기 클램프유니트와 대면하도록 상기 페이싱툴샤프트의 일단에 구비된 페이싱툴; 및 상기 수평이동블록에 고정되고 상기 페이싱툴샤프트와 연결되도록 설치되어서 상기 면취툴샤프트의 길이방향을 따라 상기 페이싱툴샤프트를 직선 이동시키도록 동력을 제공하는 샤프트실린더;를 포함하는 것을 특징으로 한다.
- [0017] 상기 페이싱툴은 한 쌍으로 구성되어서 상기 페이싱툴샤프트의 일단에 180도(°) 간격으로 설치되고; 상기 면취 툴은 2개의 페이싱툴사이에 위치하도록 설치된 것을 특징으로 한다.
- [0018] 상기 면취툴샤프트와 상기 페이싱툴샤프트는 회전중심이 동심을 이루도록 설치된 것을 특징으로 한다.
- [0019] 상기 샤프트의 페이싱 가공시에는 상기 페이싱툴이 상기 면취툴에 비해 상기 클램프유니트쪽으로 더 많이 돌출되고 상기 샤프트의 면취 가공시에는 상기 면취툴이 상기 페이싱툴에 비해 상기 클램프유니트쪽으로 더 많이 돌출되어서 상기 샤프트의 페이싱 가공과 면취 가공이 순차적으로 진행되는 것을 특징으로 한다.
- [0020] 상기 샤프트의 페이싱 가공시 페이싱 가공면의 중심부에 발생된 버는 상기 수직이동블록의 상승이동시 상기 페이싱툴에 의해 제거되는 것을 특징으로 한다.

발명의 효과

[0021] 본 발명에 따른 샤프트 가공장치에 의하면, 샤프트의 페이싱 가공과 면취 가공을 같이 수행할 수 있게 되고, 샤 프트의 페이싱 가공시 페이싱 가공면에 발생하는 버를 페이싱툴을 이용해서 제거할 수 있게 됨으로써, 가공비용 절감과 가공시간 단축 및 생산성 향상을 도모할 수 있는 효과가 있다.

도면의 간단한 설명

[0022] 도 1은 종래 기술을 설명하기 위한 도면으로 페이싱 가공과 면취 가공이 된 샤프트에 대한 도면,

도 2와 도 3은 본 발명에 따른 샤프트 가공장치를 설명하기 위한 정면도,

도 4는 도 2의 좌측면도,

도 5는 본 발명에 따른 가공장치에서 수직이동모터와 감속기에 대한 도면,

도 6은 본 발명에 따른 가공장치에서 수평이동유니트에 대한 도면.

도 7은 본 발명에 따른 가공장치에서 동력전달벨트의 설치구조를 보여주기 우한 도면,

도 8은 본 발명에 따른 가공장치에서 툴유니트에 대한 도면,

도 9는 본 발명에 따른 가공장치에서 페이싱툴과 면취툴에 대한 도면,

도 10은 도 9의 정면도.

[0024]

[0025]

[0026]

[0027]

[0028]

[0029]

도 11은 도 10의 우측면도,

도 12는 본 발명에 따른 가공장치의 작동과정을 설명하기 위한 도면이다.

발명을 실시하기 위한 구체적인 내용

[0023] 이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 샤프트 가공장치에 대해 살펴보기로 한다

본 발명에 따른 샤프트 가공장치는 도 2 내지 도 12에 도시된 바와 같이 베이스프레임(10)에 구비된 것으로 가공 대상물인 샤프트(1)를 고정할 수 있게 작동하는 클램프유니트(20); 상기 베이스프레임(10)에 대해 승하강 이동할 수 있도록 상기 베이스프레임(10)에 설치된 수직이동유니트(30); 상기 클램프유니트(20)를 향하여 전후진 이동할 수 있도록 상기 수직이동유니트(30)에 설치된 수평이동유니트(40); 및 상기 수평이동유니트(40)에 대해축회전이 가능하면서 상기 클램프유니트(20)를 향하여 수평방향으로 전후진 이동이 가능하도록 상기 수평이동유니트(40)에 설치됨은 물론 상기 샤프트(1)를 가공할 수 있는 페이싱툴(512)과 면취툴(532)이 일단에 동시에 구비된 툴유니트(50);를 포함한다.

또한, 본 발명에 따른 가공장치는 클램프유니트(20), 수직이동유니트(30), 수평이동유니트(40), 툴유니트(50)의 작동을 제어하는 컨트롤러(미도시)를 더 포함하는 구성이다.

상기 클램프유니트(20)는 상기 베이스프레임(10)에 고정되게 구비되고 윗면에 상기 샤프트(1)가 안착되도록 안착홈(21a)이 형성된 하부클램프(21); 상기 하부클램프(21)의 위쪽에서 상기 베이스프레임(10)에 대해 승하강 작동하면서 상기 하부클램프(21)에 안착된 샤프트(1)를 클램핑 또는 언클램핑하는 상부클램프(22); 및 상기 베이스프레임(10)에 설치되어서 상기 상부클램프(22)를 승하강 작동시키도록 동작하는 클램프실린더(23);를 포함한다.

상기 클램프실린더(23)는 컨트롤러의 제어에 의해 구동되는 것으로 보통 유압실린더인 것이 바람직하나, 필요에 따라 공압실린더를 사용할 수도 있다.

상기 수직이동유니트(30)는 상기 베이스프레임(10)에 구비된 수직가이드(11)를 따라 승하강 이동할 수 있게 설치된 수직이동블록(31); 상기 수직이동블록(31)에 결합된 수직볼스크루너트(32); 상기 베이스프레임(10)에 고정설치된 수직이동모터(33); 및 상기 수직가이드(11)와 평행한 상태로 상기 수직볼스크루너트(32)를 관통해서 설치됨과 더불어 상기 수직이동모터(33)의 동력을 감속기(34)를 통해 전달받아서 축회전 동작이 가능하도록 설치된 수직볼스크루(35);를 포함한다.

상기 수직가이드(11)는 수직이동블록(31)의 안정적인 승하강 이동을 위해 베이스프레임(10)에 다수개가 구비된다.

[0030] 상기 수평이동유니트(40)는 상기 수직이동블록(31)에 구비된 수평가이드(36)를 따라 상기 클램프유니트(20)를 향한 전진이동과 반대방향으로 후진이동이 가능하게 설치된 수평이동블록(41); 상기 수평이동블록(41)에 결합된

수평볼스크루너트(42); 상기 수직이동블록(31)에 고정 설치된 수평이동모터(43); 및 상기 수평가이드(36)와 평 행한 상태로 상기 수평볼스크루너트(42)를 관통해서 설치됨과 더불어 상기 수평이동모터(43)의 동력을 전달받아서 축회전 동작이 가능하도록 설치된 수평볼스크루(44);를 포함한다.

- [0031] 상기 툴유니트(50)는 상기 페이싱툴(512)을 구비한 페이싱툴유니트(510)와 상기 면취툴(532)을 구비한 면취툴유 니트(530)로 구성되되;
- [0032] 상기 면취툴유니트(530)는 상기 수평가이드(36)와 평행한 상태로 상기 수평이동블록(41)을 관통해서 수평이동블록(41)에 대해 축회전이 가능하도록 설치된 면취툴샤프트(531); 상기 클램프유니트(20)와 대면하도록 상기 면취툴샤프트(531)의 일단에 구비된 면취툴(532); 상기 수평이동블록(41)에 고정 설치된 샤프트회전모터(533); 및 상기 샤프트회전모터(533)의 동력으로 상기 면취툴샤프트(531)가 회전할 수 있도록 상기 샤프트회전모터(533)와 상기 면취툴샤프트(531)를 동력전달이 가능하게 연결하는 동력전달벨트(534);를 포함한다.
- [0033] 여기서, 상기 면취툴샤프트(531)에는 샤프트풀리(535)가 일체로 결합되고, 상기 샤프트회전모터(533)의 축에도 모터풀리(536)가 일체로 결합되는 바, 상기 동력전달벨트(534)는 샤프트풀리(535)와 모터풀리(536)를 연결하도록 설치된 구조이다.
- [0034] 그리고, 상기 동력전달벨트(534)는 필요에 따라 동력전달이 가능한 체인으로 구성할 수도 있다.
- [0035] 상기 페이싱툴유니트(510)는 상기 면취툴샤프트(531)의 길이방향을 따라 상기 면취툴샤프트(531)를 관통해서 설치되되 상기 면취툴샤프트(531)와 함께 회전하거나 또는 상기 면취툴샤프트(531)와는 별도로 상기 면취툴샤프트(531)의 길이방향을 따라 이동할 수 있도록 상기 면취툴샤프트(531)와 스플라인(511a) 결합으로 설치된 페이싱툴샤프트(511); 상기 클램프유니트(20)와 대면하도록 상기 페이싱툴샤프트(511)의 일단에 구비된 페이싱툴(512); 및 상기 수평이동블록(41)에 고정되고 상기 페이싱툴샤프트(511)와 연결되도록 설치되어서 상기 면취툴샤프트(531)의 길이방향을 따라 상기 페이싱툴샤프트(511)를 직선 이동시키도록 동력을 제공하는 샤프트실린더(513);를 포함한다.
- [0036] 상기 샤프트실린더(513)는 컨트롤러의 제어에 의해 구동되는 것으로 보통 유압실린더인 것이 바람직하나, 필요에 따라 공압실린더를 사용할 수도 있다.
- [0037] 상기 컨트롤러는 클램프실린더(23), 수직이동모터(33), 수평이동모터(43), 샤프트실린더(513) 등의 동작을 제어하게 된다.
- [0038] 상기 페이싱툴(512)은 한 쌍으로 구성되어서 상기 페이싱툴샤프트(511)의 일단에 180도(°) 간격으로 설치되고; 상기 면취툴(532)은 2개의 페이싱툴(512)사이에 위치하도록 설치된 구조이다.
- [0039] 여기서, 2개의 페이싱툴(512)은 도 11에 도시된 바와 같이 페이싱툴샤프트(511)의 중심을 사이에 두고 서로 간에 일정 간격(c1)으로 이격되게 구비된 구조이다.
- [0040] 그리고, 상기 면취툴샤프트(531)와 상기 페이싱툴샤프트(511)는 회전중심이 동심을 이루도록 설치된 구조이다.
- [0041] 그리고, 본 발명에 따른 장치는 샤프트(1)의 페이싱 가공시에는 상기 페이싱툴(512)이 상기 면취툴(532)에 비해 상기 클램프유니트(20)쪽으로 더 많이 돌출되고 상기 샤프트(1)의 면취 가공시에는 상기 면취툴(532)이 상기 페이싱툴(512)에 비해 상기 클램프유니트(20)쪽으로 더 많이 돌출되어서 상기 샤프트(1)의 페이싱 가공과 면취 가공이 순차적으로 진행되는 것을 특징으로 한다.
- [0042] 또한, 상기 샤프트(1)의 페이싱 가공시 페이싱 가공면의 중심부에 버(1c)가 발생되는데, 상기 버(1c)는 수직이 동블록(31)의 상승이동시 상기 페이싱툴(512)에 의해 제거가 된다.
- [0043] 이하, 본 발명 실시예의 작용에 대해 설명한다.
- [0044] 샤프트회전모터(533)가 구동하고, 샤프트회전모터(533)의 동력이 동력전달벨트(534)를 통해 면취툴샤프트(531)로 전달되면, 면취툴샤프트(531)및 면취툴샤프트(531)와 스플라인(511a)으로 결합된 페이싱툴샤프트(511)는 수 평이동블록(41)에 대해서 동시에 축회전을 하게 된다.
- [0045] 상기 페이싱툴샤프트(511)가 회전하더라도 샤프트실린더(513)는 회전하지 않는 구조이다.
- [0046] 즉, 상기 페이싱툴샤프트(511)와 샤프트실린더(513)는 베어링부재(514)를 매개로 연결된 구조로서, 상기 페이싱 툴샤프트(511)는 베어링부재(514)의 인너레이스와 결합되고, 상기 샤프트실린더(513)는 베어링부재(514)의 아우

터레이스와 결합되며, 상기 인너레이스와 아우터레이스는 볼베어링을 매개로 연결된 구조이다.

- [0047] 따라서, 페이싱툴샤프트(511)가 회전하더라도 베어링부재(514)의 인너레이스만 회전할 뿐 샤프트실린더(513)와 결합된 아우터레이스는 회전하지 않게 되는 것이다.
- [0048] 그러나, 샤프트실린더(513)가 작동하면 샤프트실린더(513)의 작동력은 베어링부재(514)를 매개로 페이싱툴샤프트(511)로 원활히 전달되는 바, 이에 따라 상기 페이싱툴샤프트(511)는 샤프트실린더(513)의 작동력에 의해 클램프유니트(20)가 있는 방향으로 전진이동 및 반대방향으로 후퇴이동을 할 수 있게 된다.
- [0049] 한편, 샤프트회전모터(533)의 구동력으로 면취툴샤프트(531)와 페이싱툴샤프트(511)가 동시에 회전하고 있는 상 태를 기본 상태로 가정하고 설명한다.
- [0050] 상기와 같이 면취툴샤프트(531)와 페이싱툴샤프트(511)가 동시에 회전하고 있는 상태에서 가공대상물인 샤프트 (1)가 하부클램프(21)의 안착홈(21a)에 안착되고 나면, 클램프실린더(23)의 작동에 의해 상부틀램프(22)가 하강해서 안착홈(21a)에 안착된 샤프트(1)를 고정시키게 된다.
- [0051] 샤프트(1)가 클램프유니트(20)에 의해 고정되고 나면 수평이동모터(43)의 작동에 의해 수평이동블록(41)은 수평 가이드(36)를 따라 클램프유니트(20)쪽으로 전진이동하게 된다.
- [0052] 이때, 페이싱툴(512)은 면취툴(532)보다 클램프유니트(20)를 향해 도 12의 (A)와 같이 간격 L1만큼 더 많이 돌출된 상태이므로, 페이싱툴(512)이 먼저 파이프(1)의 일면에 접촉해서 페이싱(1a) 가공을 하게 된다.
- [0053] 그리고, 페이성(1a) 가공 후 샤프트(1)의 단면을 보게 되면 센터부에 뾰족하게 돌출된 버(1c)가 발생하게 되는데, 상기 버(1c)는 2개로 구성된 페이싱툴(512)사이의 간격(c1; 도11 참조)에 의해 발생이 된다.
- [0054] 따라서, 샤프트(1)의 페이싱(1a) 가공이 완료되고 나면 수직이동모터(33)가 작동하고, 상기 수직이동모터(33)의 동력은 감속기(34)를 통해서 수직볼스크루(35)로 전달되며, 상기 수직볼스크루(35)의 일방향 회전(일례로 시계 방향 회전)에 의해 수직이동블록(31)은 수직가이드(11)를 따라 베이스프레임(10)에 대해 상측으로 상승이동하게된다.
- [0055] 상기와 같이 수직이동블록(31)이 상승 이동하면 수직이동블록(31)과 결합된 수평이동블록(41)도 함께 상승 이동하게 되고, 상기 수평이동블록(41)의 상승 이동에 의해 페이싱툴(512)과 면취툴(432)도 함께 상승 이동하게 되며(도 12의 (B)에서 화살표 M1의 윗방향 이동), 이 과정에서 페이싱(1a) 가공면에 발생된 버(1c)는 페이싱툴(512)에 의해 제거된다.
- [0056] 그리고, 상승 이동한 수직이동블록(31)과 수평이동블록(41) 및 페이싱툴(512)과 면취툴(432)은 수직이동모터 (33)의 동력에 의한 수직볼스크루(35)의 타 방향 회전(일례로 반 시계방향 회전)에 의해 다시 하강해서(도 12의 (B)에서 화살표 M1의 아랫방향 이동)해서 원위치로 복귀하게 된다.
- [0057] 그리고, 페이싱툴(512)과 면취툴(432)의 하강이동 복귀시 샤프트실린더(513)의 작동에 의해 페이싱툴샤프트 (511)는 클램프유니트(20)로부터 멀어지는 후퇴이동을 하게 되고, 이로 인해 페이싱툴(512)도 클램프유니트(20)와 함께 후퇴이동하게 되는 바(도 12 (C)의 화살표 M2방향 이동), 이 결과 페이싱툴(512)은 샤프트(1)의 페이싱(1a) 가공면과 떨어져서 일정간격으로 이격된 상태가 된다.
- [0058] 상기와 같이 페이싱툴(512)이 후퇴이동하고 나면 이때부터는 페이싱툴(512)보다 면취툴(532)이 클램프유니트 (20)를 향하는 방향으로 더 많이 돌출된 상태가 된다.
- [0059] 그리고, 페이싱툴(512)의 후퇴이동이 완료되고 나면 수평이동모터(43)의 작동에 의해 수평이동블록(41)은 클램 프유니트(20)가 있는 방향으로 전진이동하게 되고(도 12 (D)의 화살표 M3방향 이동), 이로 인해 면취툴(532)이 샤프트(1)의 모서리부와 접촉해서 이때부터 면취(1b) 가공을 하게 된다.
- [0060] 그리고, 면취툴(532)에 의한 샤프트(1)의 면취(1b) 가공이 완료되고 나면, 수평이동모터(43)의 작동에 의해 수 평이동블록(41)은 클램프유니트(20)로부터 멀어지는 방향으로 후퇴이동을 하게 되고(도 12 (E)의 화살표 M4방향이동), 이로 인해 면취툴(532)은 샤프트(1)의 면취(1b) 가공면으로부터 떨어져서 이격된 상태가 된다.
- [0061] 한편, 상기와 같이 면취툴(532)이 샤프트(1)의 면취(1b) 가공면으로부터 떨어져서 이격된 상태가 되고 나면, 클램프실린더(23)의 작동에 의해 상부클램프(22)가 상승 이동해서 복귀됨에 따라 샤프트(1)는 언클램핑 상태가 되고, 언클램핑 상태의 샤프트(1)는 하부클램프(21)로부터 취출된 후 다음 공정으로 이동된다.
- [0062] 그리고, 가공 완료된 샤프트(1)가 하부클램프(21)로부터 취출이 완료되고 나면 샤프트실린더(513)의 작동에 의

해 페이싱툴샤프트(511)만이 클램프유니트(20)를 향하여 전진이동을 하게 되는 바(도 12 (F)의 화살표 M5방향이동), 상기 페이싱툴샤프트(511)의 전진이동에 의해 페이싱툴(512)은 면취툴(532)보다 클램프유니트(20)를 향하여 더 많이 돌출된 상태를 유지하게 되며, 이후에는 전술한 과정을 반복 수행하면서 새로운 샤프트(1)의 페이싱(1a) 가공과 면취(1b) 가공 및 버(1c) 제거작업을 하게 된다.

이상 설명한 바와 같이 본 발명에 따른 가공장치는 샤프트(1)의 페이싱(1a) 가공과 면취(1b) 가공을 같이 수행할 수 있는 것으로서, 샤프트의 페이싱 가공과 면취 가공을 각각 별도의 공작기계에서 가공하던 종래에 비해 가공비용 절감, 가공시간 단축, 생산성 향상 등을 도모할 수 있는 장점이 있다.

또한, 본 발명에 따른 가공장치는 샤프트의 페이싱 가공시 발생하는 버(1c)를 페이싱툴(512)을 이용해서 제거할 수 있게 됨으로써, 종래와 같이 버를 제거하기 위해 별도의 센터드릴을 사용할 필요가 없게 되고, 이로 인해 가공비용 절감, 가공시간 단축, 생산성 향상 등을 도모할 수 있는 장점이 있다.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.

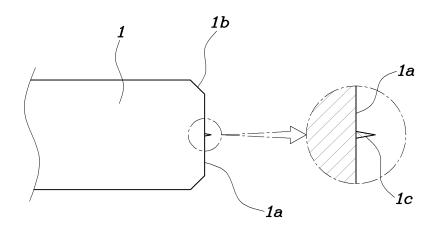
부호의 설명

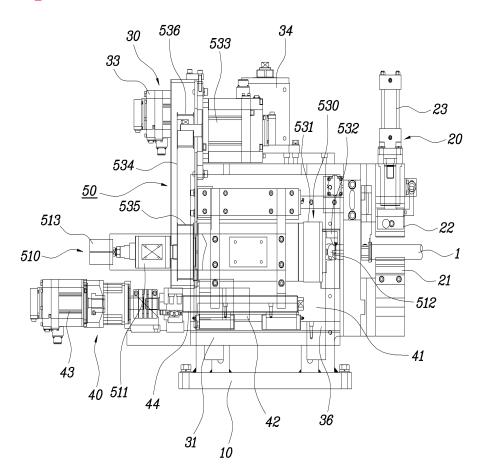
[0063]

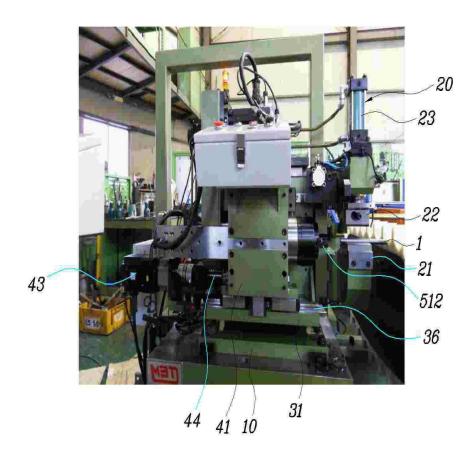
[0064]

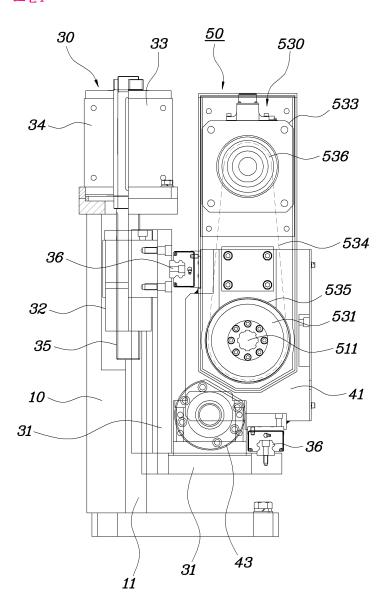
[0065]

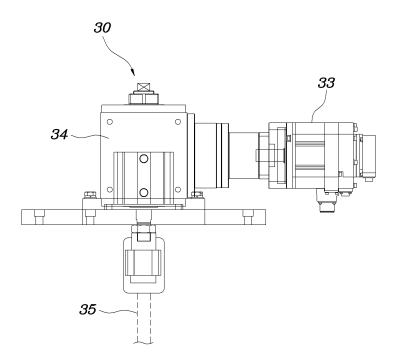
[0066]


1 - 샤프트 10 - 베이스프레임


20 - 클램프유니트 30 - 수직이동유니트


40 - 수평이동유니트 50 - 툴유니트


512 - 페이싱툴 532 - 면취툴


도면

