Title: METHOD AND APPARATUS FOR THERMOFORMING HOLLOW BODIES OF THERMOPLASTIC MATERIAL

Abstract: A method and an apparatus for thermoforming bodies in plastic material by means of a mold (11). A sheet (115) of thermoformable plastic material is heated to a plasticization temperature, supporting it along its peripheral edges. The heated sheet (15) is pre-shaped to create an enrichment of material, performing a sag by relative movements for approaching, raising and/or rotating its peripheral edges, maintaining the plastic sheet (15) in a suspended condition. The pre-shaped sheet (15) is then brought into close contact with the mold (111) and vacuum-formed making it adhere to the shaping surface (12) of the mold (11).
Declarations under Rule 4.17:
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designation US
— of inventorship (Rule 4.17(iv)) for US only

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
FIELD OF THE INVENTION

This invention refers to the manufacture of hollow bodies in thermoformed plastic material, in particular it is directed to a method and an apparatus for thermoforming bodies of any shape and size, starting from a sheet of thermoformable plastic material which is appropriately supported and heated to a plasticizing temperature, and then shaped by making it adhere by vacuum to the cavity or to the shaping surface of a mold.

Thermoforming is a generally known technology widely used in several fields; thermoforming apparatuses or systems are described for example in EP 0 813 950 and EP 0 997 258.

Generally speaking, conventional thermoforming consists in placing a sheet of plastic material on a suitable supporting frame structure provided with clamping means for locking the plastic sheet in a position lying above or below a mold; the sheet of material is heated to a suitable plasticizing temperature, maintaining it in a substantially flat condition, or pneumatically supporting the sheet to control the formation of a sag and to prevent undesirable stretching.

Moreover, whenever molds with very deep cavities or with highly accentuated impressions are used, during the vacuum forming of the sheet, excessive and uncontrolled stretching can occur in certain areas of the sheet, which are liable to weaken the molded article and make it unsuitable for its intended use.

Consequently, with the conventional thermoforming technology it is
necessary to resort to particular arrangements, which make the production process and the apparatus highly complex, with consequent negative effects in terms of longer processing times and higher production costs.

In order to prevent the molded articles from presenting excessively stretched and weakened areas, having limited thicknesses not complying with certain regulations, for example in the manufacture of fuel tanks, the arrangement commonly used consists in using plastic sheets of greater thickness so that the latter, due to the inevitable stretching, does not drop below thickness values considered as dangerous.

However, the use of plastic sheets of greater thickness entails a greater consumption of material and consequently higher production costs for the finished product.

Another cause of waste of material, inherent in the usual thermoforming technology, consists in the excessive scraps produced for each individual molded article, due to the need to use sheets of material of considerably larger dimensions than those of the mold, necessary to support and lock the sheet to a window of a vacuum box containing the mold.

The problems of scraps and the excessive consumption of material, with the conventional thermoforming methods, are even more serious whenever particularly expensive layered materials are used.

Therefore, with the usual methods and the usual thermoforming apparatuses, in order to obviate the problems related to reduction of the thicknesses caused by stretching of the material, it is necessary to use sheets of plastic material of considerable thickness, and having considerably larger
dimensions than those theoretically necessary to produce the molded article; moreover, controlling the stretching and thicknesses of the material in the molded article proves to be extremely difficult in the case of articles having a complex or particular geometrical shape.

OBJECTS OF THE INVENTION

The main object of this invention is to provide a thermoforming method whereby it is possible to simplify the production process, and at the same time reduce consumption and waste of material.

A still further object of this invention is to provide a method and an apparatus for thermoforming hollow bodies in plastic material in a mold, capable of achieving the aforementioned advantages, which make use of a system for supporting the sheet which is integrated into the mold itself, whereby it is possible to pre-shape the plastic sheet in order to have a greater quantity of material in particular areas during the thermoforming, and at the same time allowing sufficient control of the thicknesses and the stretching degree.

BRIEF DESCRIPTION OF THE INVENTION

These and further objects and advantages of this invention are achieved by means of a thermoforming method according to claim 1, respectively by means of a thermoforming apparatus according to claim 8.

In particular, according to the invention, a method for the production of thermoformed bodies in a mold has been provided, according to which a sheet of thermoformable plastic material is heated to a plasticizing temperature, making it subsequently adhere to male and/or female shaping surface of the mold, comprising the steps of:
- heating the sheet of material to a plasticizing temperature, maintaining the same sheet in a suspended condition, clamped along its peripheral edges;

- pre-shaping the heated sheet of material, to partially conform the same to the shaping surface of the mold so as to form an enrichment of material in pre-established positions, by causing relative movements of at least part of the peripheral edges of the sheet;

- bringing the heated and pre-shaped sheet into an aligned condition with the mold, and thermoforming said pre-shaped sheet making it adhere to the shaping surface of the mold.

In this way it is possible to obtain controlled and differentiated stretching of the sheet, in different areas of the mold, also with molds of complex configurations, using plastic sheets of reduced thickness to reduce the consumption of material and costs to a minimum.

According to a further feature of the invention, an apparatus for thermoforming bodies in plastic material has been provided according to which use is made of a thermoforming mold and a special clamping frame of variable configuration and geometry for supporting the plastic sheet, in the form of an integrated clamping and molding unit capable of achieving the aforementioned advantages.

In particular, the apparatus comprises:

- a thermoforming mold having a shaping surface corresponding to the shape of the body to be thermoformed;

- a movable frame for holding the plastic sheet, said frame peripherally extending around the mold; and
- clamping means for gripping the peripheral edges of the sheet provided along at least part of the sides of the holding frame;

- the apparatus also comprising means for supporting the sheet holding frame, said support means being arranged and conformed to move the holding frame between a raised position and a lowered position with respect to the mold;

- in which the holding frame for the plastic sheet comprises at least a first and a second frame portions movable in relation to each other; and

control means operatively connected to said movable frame portion, to selectively vary the disposition and geometrical shape and dimension of the frame in conformity with the shape of the mold.

Other features of the method and the apparatus according to the invention are defined in the dependent claims.

BRIEF DESCRIPTION OF THE FIGURES

These and further advantages of the method and the apparatus according to the invention, and some preferential embodiments will be more clearly evident from the accompanying drawings, in which:

Fig. 1 shows a top view of a first embodiment of the apparatus comprising a substantially flat shaped mold;

Fig. 2 shows a side view of the apparatus along the line 2-2 of Fig. 1;

Fig. 3 shows a cross-sectional view along the line 3-3 of Fig. 1, during the heating step;

Fig. 4 shows a view similar to that of Fig. 3, to show the formation of a sag, at the end of the heating step;

Fig. 5 shows a view similar to that of the preceding figures, to show the
pre-shaping step;

Fig. 6 again shows a view similar to that of the preceding figures, during the thermoforming in the mold;

Fig. 7 shows a top view of a second embodiment, which makes use of a substantially three-dimensional shaped mold;

Fig. 8 shows an enlarged view of a portion of the holding frame for gripping the sheet of material of Fig. 7;

Fig. 9 shows a cross-sectional view along the line 9-9 of Fig. 8;

Fig. 10 shows a cross-sectional view along the line 10-10 of Fig. 7, during the heating step;

Fig. 11 shows a view similar to that of Fig. 10 during the formation of the sag;

Fig. 12 shows a cross-sectional view similar to those of the preceding figures during the pre-shaping step;

Fig. 13 against shows a cross-sectional view similar to the preceding figures during the thermoforming step;

Fig. 14 shows an enlarged detail of the right-hand side of the mold of Fig. 13.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the figures from 1 to 6 a description will be now given of a first embodiment of the apparatus, as well as of the main steps of the thermoforming method according to this invention.

In the example shown, the apparatus as a whole indicated by reference 10, comprises a substantially flat mold 11, having a shaped cavity 12 consisting
of a deep cavity, which is joining to one edge 11' of the mold 11 by a slanting surface 13, or otherwise shaped surface. In the case shown, the mold 11 is of female type having a cavity 12, however the shaping surface of the mold may also be different from the one shown, resulting of male type, partially or totally in relief.

The apparatus also comprises a first sheet holding frame 14, having a variable geometry, for gripping a sheet 15 of thermoformable plastic material along its edges.

In the case shown, the sheet holding frame 14 for gripping the sheet 15 of plastic material is square shaped, with the sides of the frame 14 disposed outside to the peripheral edges of the mold 11; it is obvious however that the shape of the frame 14 may also differ from the one shown, to conform to the geometrical shape of the mold.

The sheet holding frame 14 is in turn supported by a second frame 16 vertically movable between a raised position and a lowered position with respect to the edge of the mold, as shown in the example of figure 2 and respectively in figures 3 and 6 of the accompanying drawings.

The rising and lowering movement of the frame 16, with the frame 14 for gripping the sheet 15, can be obtained by any control means, for example by hydraulic or pneumatic cylinders, or by a mechanical system suitable for the purpose.

In the example shown in figures 1-6, use is made of two pantograph systems 17 on opposite sides of the mold 11; each system 17 comprises articulated rods 18, 19, pivoted to the base of the mold 11 and to the frame 16;
the articulation points between the rods of each system 17 are connected by threaded bush and screw unit 20 operated by a reversible electric motor 21. By rotating the screws in one direction or in the opposite direction, acting on the rods 18 and 19, it is possible to raise and lower the two frames 14 and 16 with respect to the mold 11.

As mentioned previously, the holding frame 14 for gripping the edges of the plastic sheet 15, is provided with a variable geometry designed to allow a pre-shaping of the sheet 15 and the enrichment of material in one or more pre-established shaping areas of the mold, after its heating and before its deposition in the thermoforming mold.

According to the example of figures 1-6, the frame 14 for gripping the sheet is geometrically deformable starting from a flat configuration, which adapts to the shape of the mold itself. The initially flat shape of the frame 14 proves to be advantageous for supporting the sheet 15 during the heating step, or during the transfer of the sheet 15 from suitable gripping means and its conveyance along a processing line, to the frame 14 structurally and functionally integrated with the mold 11.

In the example shown, the frame 14 is substantially square-shaped; its outline and geometry can be modified by means of the relative movements between two frame portions, which can be approached or moved one in respect to the other.

More precisely, the frame 14 comprises a first stationary frame portion 14A secured to the supporting frame 16, and at least a second movable frame portion 14B, supported for sliding and being shifted towards and away from the
stationary frame portion 14A; hydraulic or pneumatic actuators 22 are secured to
the sides of the frame 16 and to the movable portion 14B of the frame 14 in
order to selectively vary, in a controlled manner, the geometry and the
configuration of the latter.

The frame 14 is also provided with clamping means 23 for gripping and
holding the plastic sheet 15 along its peripheral edges, or part thereof.

The clamping means 23 for gripping the plastic sheet 15 can be shaped in
any way and disposed at the sides of the frame portions 14A and 14B, to hold
the sheet 15 in pre-established points, along part or the entire edge of two or
more opposite sides.

The clamping means 23 can be of any suitable type, for example of the
mechanical, pneumatic, or vacuum type or their combination.

In the case of figure 1, the frame 14 for gripping the plastic sheet 15 has
been shown in the form of a flat frame comprising two telescopically sliding parts
14A and 14B, which maintain their flat disposition also in the geometrically
modified configuration. It is obvious however that within the scope of this
invention, other conformations and/or dispositions of the frame 14 for gripping
the plastic sheet are possible; for example the frame 14 may comprises different
numbers of relatively movable sections, capable of sliding in a longitudinal
direction, and/or to rotate in relation to one another, and to be angularly oriented,
without excluding the possibility of maintaining a flat or a different spatial
disposition of the various sections of the frame, according to characteristics,
shape of the mold and thermoforming requirements.

The figures from 3 to 6 show the main steps of the thermoforming method
according to the example under consideration.

As shown in figure 3, a sheet 15 of plastic material, arriving for example from a processing line along which it has been pre-heated to a first temperature, in this specific case is aligned to the mold 11 holding the sheet 15 along its peripheral edges by means of clamping members 23, or equivalent, supported by the variable geometry frame 14. In this condition, the two frame portions 14A and 14B are shifted apart from each other to maintain the sheet 15 in an initially flat condition, whilst it is brought to a suitable plasticizing temperature by heating means 24; the two frames 14 and 16 are also in their raised position above the mold 11.

During the heating step, as shown in figure 4, the sheet of plastic material 15 gradually tends to form, by gravity, a downwardly facing sag, indicated by reference 15A in figure 4.

If the heated sheet 15 in these conditions were to be immediately lowered against the mold 11, and subjected to vacuum, it is obvious that the sag 15A would first come into contact with the right-hand portion of the mold, undergoing stretching and uncontrolled local deformation in correspondence with the edges or the internal corners of the cavity 12 of the mold, where the thickness of the sheet 15 would tend to undergo the greatest stretching and thinning, compared to the remaining parts of the molded article.

Conversely, according to this invention, as shown in Fig. 5, after the heating and formation of the sag 15A, an enrichment step for the material is carried out in pre-established points or areas of the mold by adequately pre-shaping the sheet of material as indicated by reference 15B in Fig. 5. This can
be obtained by moving and approaching the peripheral edges of the sheet 15 in relation to one another, bringing them closer, raising, lowering and/or angularly rotating them. In the case of the example shown in Figures 1-6 this can be made by acting on the variable geometry frame 14, by bringing the movable frame portion 15B close to the stationary frame portion 15A.

Pre-shaping the sheet of material 15, by linearly and/or angularly moving, and/or rotating the various parts of the variable geometry frame 14, gives rise to a greater abundance of plastic material destined to be brought into contact with shaping surface areas or cavity 12 of the mold, without undergoing any substantial deformation during the lowering movement of the frames 14 and 16, as shown in the example of Fig. 6. The pre-shaped sheet 15 is then rested on the mold, partially adapting to its shaping surface, without undergoing substantial stretching.

At this point, it is possible to complete the thermoforming of the sheet by subjecting to vacuum, in a per se known way, causing it to adhere perfectly to the shaping surface of the mold.

It is obvious that, during the vacuum forming, the sheet 10 of material will undergo less stretching in the corners or in some critical parts of the mold; such stretching may be selectively controlled both by differentiating the movements between the various parts of the holding frame, and by controlling, in this specific case, the formation of the sag during the heating step.

The figures from 7 to 14 show a second embodiment and other characteristics of the apparatus according to the invention, which is particularly suitable for a mold having a complex, three-dimensional outline. In these figures
the same reference numbers have been used to indicate parts similar or
equivalent to those of the preceding example; moreover, the operating method
of the apparatus of figs. 7-14, is substantially identical to that of the previously
described apparatus, with the difference that in this second case the holding
frame 14 for gripping the sheet 15 is geometrically deformable in a three-
dimensional way to create an enrichment of material always in conformity with
the outline and shape of the mold.

Here again, the mold 11 is integrated with a system 17 for raising the
support frame 16 and the variable geometry frame 14. The frame 14 in turn, on
two opposing sides, is provided with a first stationery portion 14C, a second
movable portion 14D hinged in 25 to the stationery portion 14C to rotate
angularly upwards, in an anticlockwise direction as shown in Fig. 10, and also
comprises a third frame portion 14E hinged in 25' to the intermediate frame
portion 14D to angularly rotate in a direction opposite to the previous one.

In the case of Fig. 7, the frame 14 for gripping the edges of the plastic
sheet 15 is provided with vacuum-operated clamping means, which act around
the entire perimeter of the sheet.

In this connection, the frame 14 comprises an annular vacuum frame 26
having two top open slots 27, separated by an intermediate baffle 28; both the
slots 27 communicate with a tubular manifold 29 by means of a plurality of
suction holes 30 aligned in the longitudinal direction of the slots 27. The tubular
manifold 29 is also connected to a vacuum or air suction source, by means of a
flexible hose or in any other way.

Provided close to the bottom of each slot 27, in a position slightly spaced
apart from the suction holes 30, is a rectangular bar 31 having a width smaller than the same slot so as to form with the bottom wall of the slot, a narrow flow-pass 32 communicating with the holes 30, which creates a strong air suction effect; such solution has proved to be extremely advantageous in that it creates a double pneumatic force for retaining the sheet along the entire peripheral edge.

Fig. 7 of the drawings more clearly shows another feature of the apparatus, capable of achieving the advantages of the invention.

As can be seen in this figure, the mold 11 has a trapezoidal shape, or more in general, a wholly irregular shape.

In the case of a mold of this kind, when using a thermoforming apparatus of conventional type, it would be necessary to use square or rectangularly-shaped sheets of material 15, that is to say, having a shape and size different and considerably greater than those of the mold; this would give rise to a greater amount of scraps and loss of costly material.

According to another feature of the invention, the mold 11 and the frame 14 for gripping the plastic sheet 15, together with the means for supporting and raising the frame itself, constitute an integrated unit in which the frame 14 for gripping the sheet of material is disposed peripherically in a close vicinity, adapting to the shape of the mold.

Likewise, sheets of material 15 of corresponding shape may be used, resulting in a substantial saving of material.

The figures from 10 to 13 again show the basic steps of the thermoforming method according to the invention. After the plastic sheet 15 has
been aligned with the mold 11, holding it by vacuum along the edges by means of the variable geometry frame 14, the heating step is carried out until a sag 15A is formed, in a controlled way as shown in fig. 10.

After the formation of the sag 15A fig. 11, the pre-shaping and enrichment step is carried out by modifying the geometry of the frame 14, as shown in Fig. 12, by operating the cylinders 22 which, by means of the system of articulated rods control the upward rotation of the two frame portions 16D, which are slanted in a way substantially conforming to the inclination of the surface 13 of the mold; the frame portions 16E, which remain in this case parallel to the edge of the mold 11, simultaneously undergo a back rotation, in the opposite direction to the previous one.

Upon completion of the pre-shaping and enrichment step, as indicated by reference 15B in Fig. 12, the pre-shaped sheet of plastic material is brought down over the mold 11, Fig. 13, so as to exploit the maximum enrichment of material during the subsequent vacuum forming step.

Also in the case of the example of figures 10-14, the variable geometry frame 14 can comprise several frame portions, with the various frame portions capable of sliding and/or rotating in relation to one another according to pre-established pivoting axes, or differently moving to obtain a pre-shaping and enrichment which are as similar as possible to the pattern of the mold.

Figs. 10-14 show a vacuum-operated gripping device for clamping the sheets 15 by the variable geometry frame 14, which proves to be extremely advantageous compared to a mechanical type, in that it enables the plastic sheet 15 to be pneumatically held on one side face, along the peripheral edges,
while leaving the other side face completely free.

This solution proves to be advantageous in that it enables the sheets of plastic material to be picked up and transferred, supporting them by vacuum, in a controlled way, along a pre-heating and feeding line, thereby contributing to simplify the production process.

In the preceding examples, the enrichment of the sheet 15 above the mold 11 is obtained by firstly forming, by gravity, a downwardly pending sag, in a position above the mold 11.

Within the scope of the invention, other solutions are possible: for example, the position of the mold and of the sheet 15 of plastic material could be reversed compared to that shown, contemplating an aligned disposition of the sheet 15 of material, in a position beneath the mold 11.

Moreover, by suitably pneumatically supporting the sheet 15 of material during the heating step, the sag could be formed upwards, or be totally absent, in relation to the thermoforming requirements and the characteristics of the mold, or of the article to be produced.

Prior to the vacuum forming, and after the enrichment step, an intermediate pre-shaping phase can be carried out by means of a suitable shaping plug.

Fig. 14 of the drawings shows a further feature of the mold, forming part of the integrated apparatus according to the invention.

As shown, the mold 11 has a raised edge 11' which can be shaped to improve the seal against the sheet material 15 during the vacuum forming. In fact, it can be seen that on the outer side of the raised edge 11' of the mold, the
latter is peripherally provided with a lowered step, which enables the frame 14 to be lowered or shifted into a backward position with respect to the edge 11' of the mold.

The vacuum seal can be improved by providing a cavity 31 along the raised edge 11' of the mold, which can be connected to a vacuum or source air intake by means of a plurality of suction holes 32 longitudinally aligned with the slot, or in any other way.

It is understood therefore that what has been described and shown with reference to the accompanying drawings, has been given purely in order to illustrate the general features of the method and the thermoforming apparatus according to this invention; modifications or variations may be made both to the method and to the apparatus itself, without thereby departing from the scope of the accompanying claims.
- 17 -

CLAIMS

1. Method for the manufacture of thermoformed bodies, according to which a sheet (15) of thermoformable plastic material is heated to a plasticizing temperature, subsequently causing it to adhere to a shaping surface of a mold (11), comprising the steps of:

 - heating the sheet material (15) to a plasticizing temperature, maintaining it in a suspended condition, held along its peripheral edges;
 - causing an enrichment of material by pre-shaping the heated sheet (15) of plastic material, at least partially conforming it to a shaping of the mold (11), by performing relative movements of at least part of the peripheral edges of the sheet (15);
 - bringing the heated and pre-shaped sheet (15) into an aligned condition with the mold (11), and vacuum forming said pre-shaped sheet (15), making it adhere to the shaping surface of the mold (11).

2. Method for the manufacture of thermoformed bodies according to claim 1, characterised by carrying out an enrichment step of the plastic sheet material (15), causing the formation of a sag (15A) in a controlled way, during the heating step.

3. Method for the manufacture of thermoformed bodies according to claim 2, characterised by forming, by gravity, a downwardly facing sag (15A), during the heating step.

4. Method for the manufacture of thermoformed bodies according to claim 2, characterised by forming an upwardly facing sag (15A), pneumatically supporting the sheet of material during the heating step.
5. Method for the manufacture of thermoformed bodies according to claim 1, characterised by pre-shaping the sheet material (15), after the enrichment step, by a shaping plug.

6. Method for the manufacture of thermoformed bodies according to claim 1, characterised by holding the sheet material 15 along the peripheral edges by a variable geometry clamping frame (14) comprising articulated and/or longitudinally sliding frame portions (14A, 14B; 14C, 14D, 14E), and causing an enrichment of the sheet material (15) by a relative movement between the frame portions (14A, 14B; 14C, 14D, 14E) of the clamping frame (14).

7. Method for the manufacture of thermoformed bodies according to claim 1, characterised by carrying out the enrichment step of the heated sheet material (15), by a combination of sliding and/or rotational movements for approaching, raising and/or lowering the edges of the plastic sheet (15).

8. Apparatus for the manufacture of thermoformed bodies, from a sheet of plastic material (15), comprising:
 - a thermoforming mold (11) having a sheet shaping surface (12);
 - a movable sheet clamping frame (14) for holding the sheet (15), said clamping frame (14) peripherally extending around the mold (11), and
 - clamping means (23, 26) for gripping the peripheral edges of the sheet (15) along at least part of the sides of the clamping frame (14);
 - the apparatus also comprises support means (16) for supporting the clamping frame (14), said support means (16) being positioned and conformed to move the clamping frame (14) between a raised and a lowered position with respect to the mold (11);
- and in which the clamping frame (14) has a geometrically variable shape providing at least a first and a second frame portion (14A, 14B; 14C, 14D, 14E), movable in relation to each other;

- control means being operatively connected to said movable frame portions (14B; 14D), to selectively vary their disposition in conformity with the shaping surface (12) of the mold (11).

9. Apparatus according to claim 8, characterised in that the variable geometry clamping frame (14) comprises clamping means (23, 26) for gripping the plastic sheet (15) along at least part of the peripheral edges.

10. Apparatus according to claim 9, characterised in that the clamping means (23) for gripping the plastic sheet (15), are of mechanical type.

11. Apparatus according to claim 9, characterised in that the clamping means (26) for gripping the plastic sheet (15) are of vacuum operated type.

12. Apparatus according to claim 8, characterised in that the variable geometry frame (14) for holding the plastic sheet (15), comprises slidable and/or pivotally connected frame portions (14A, 14B; 14C, 14D, 14E) disposable on a same plane.

13. Apparatus according to claim 11, characterised in that said vacuum-operated clamping means comprise at least one top open slot (27) along a front side of the clamping frame (14), said slot (27) being connected to a manifold (29) by a plurality of air suction holes (30).

14. Apparatus according to claim 8, characterised in that the variable geometry clamping frame (14) has peripheral edges provided with longitudinal slots (27) connectable to an air suction source.
15. Apparatus according to claim 8, characterised in that the variable geometry clamping frame conforms to the geometrical pattern of the peripheral edges of the mold (11).

16. Apparatus according to claim 13, characterised in that the variable geometry clamping frame (14) comprises a first and a second top-open suction slots parallelely extending along opposite sides, and in that a bar (31) having a smaller width than the slots (27) is provided slightly spaced apart and above the bottom wall of each slot, said bar (31) defining together with said bottom wall a narrow air flow passage communicating with said air suction holes (30).
Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B29C51/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 25 08 529 A (DAIMLER BENZ AG) 9 September 1976 (1976-09-09) page 2 - page 3; figures</td>
<td>1-10, 12, 15</td>
</tr>
<tr>
<td>Y</td>
<td>DE 24 18 445 A (DAIMLER BENZ AG) 30 October 1975 (1975-10-30) page 1 - page 3; figures</td>
<td>11, 13, 14</td>
</tr>
<tr>
<td>X</td>
<td>DE 21 38 112 A (SIEMAG SIEGNER MASCH BAU) 8 February 1973 (1973-02-08) page 2, paragraph 2 - page 3, paragraph 1 page 7, paragraph 2 - page 8, paragraph 1 page 8, paragraph 3 - page 9, paragraph 1</td>
<td>1-11, 15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search: 7 October 2004

Date of mailing of the international search report: 14/10/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HN Rijswijk
Tel. (+31-70) 340-2340, Tx. 31 621 epo nl, Fax. (+31-70) 340-3016

Authorized officer
Kosicki, T
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 99/64221 A (VAUGHAN STEWART ; FISCHER & PAYKEI LTD (NZ); WITTEN HANNAH DANIEL (NZ)) 16 December 1999 (1999-12-16) page 4, paragraph 4; figures 1-4 page 5, paragraph 1 - page 6, paragraph 1</td>
<td>11,13,14</td>
</tr>
<tr>
<td>A</td>
<td>DE 17 79 858 A (ROEHM GMBH) 9 September 1971 (1971-09-09) figures</td>
<td>1,8</td>
</tr>
<tr>
<td>A</td>
<td>DE 26 30 021 B (WAGNER MASCHF HEINRICH) 10 November 1977 (1977-11-10) column 3 - column 4; figure 2</td>
<td>16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 2508529</td>
<td>09-09-1976</td>
<td>DE 2508529 A1</td>
</tr>
<tr>
<td>DE 2418445</td>
<td>30-10-1975</td>
<td>DE 2418445 A1</td>
</tr>
<tr>
<td>DE 2138112</td>
<td>08-02-1973</td>
<td>DE 2138112 A1</td>
</tr>
<tr>
<td>WO 9964221</td>
<td>16-12-1999</td>
<td>AU 744880 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4535499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9911139 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2334663 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1107583 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002517333 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9964221 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 508553 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 407105 B</td>
</tr>
<tr>
<td>DE 1779858</td>
<td>09-09-1971</td>
<td>DE 1779858 A1</td>
</tr>
</tbody>
</table>