wo 2012/018906 A1 I 0000 OO0 R O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(9) World Intelecua Property Organization /28552 WO 0L LA
International Bureau S,/ 0
Al . L
) . _ (10) International Publication Number
(43) International Publication Date \'{:/_?___/
9 February 2012 (09.02.2012) PCT WO 2012/018906 Al
(51) International Patent Classification: (72) Inventors; and
GO6F 9/50 (2006.01) GOGF 12/02 (2006.01) (75) Inventors/Applicants (for US only): CASPOLE, Eric,
21) Tnt tional Apolication Number: R. [US/US]; 311 Waverley Street #2, Menlo Park, Cali-
(21) International Application Num er'PCT US2011/046412 fornia 94025 (US). MORICHETTIL, Laurent [US/US];
377 S. 14th Street, San Jose, California 95112 (US).
(22) International Filing Date: .
(74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
3 August 2011 (03.08.2011) GOETZEL, P.C.; KIVLIN, B. Noel, P.O. Box 398,
(25) Filing Language: English Austin, Texas 78767-0398 (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L. kind of national protection available): AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
12/849,724 3 August 2010 (03.08.2010) us CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(71) Applicant (for all designated States except US): AD- DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

VANCED MICRO DEVICES, INC. [US/US]; One

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

AMD Place, P.O. Box 3453, Sunnyvale, California 94088
(US).

[Continued on next page]

(54) Title: PROCESSOR SUPPORT FOR FILLING MEMORY REGIONS

(57) Abstract: Techniques are disclosed relating to distributing workloads between pro-
cessors and/or processing elements. A computer system having at least first and second
processing elements may cause a request to initialize one or more memory regions to be
handled by the second processing element. Initialization may be accomplished by the
second processing element directly accessing a memory that includes the specitied
memory region to be initialized. Thus, while the second processing element is causing

400

R

Receive Indication

of Memory Region the memory region to be initialized, the first processing element is free to perform other
to be Initialized computational tasks. A cache associated with the first processing element may be undis-
410 turbed as a result of the second processing element performing the initialization, which

may avoid displacement ot data from the cache.

Y

Cause Initialization to be
Handled by Offloading
420

1 Processing Element |
1 Initializes Memory |
! Region !
! I

:_ Invalidate One or More
! Cache Portions
l 440

WO 2012/018906 A1 I 0000 Y 00T OO

84)

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2012/018906 PCT/US2011/046412

TITLE: PROCESSOR SUPPORT FOR FILLING MEMORY REGIONS

BACKGROUND

Technical Field
[0001] This disclosure relates to computer processors, and, more specifically, to processors that

receive requests to fill memory regions.

Description of the Related Art

[0002] During operation of a computer, regions of memory may need to be initialized (filled)
with certain values. Initializing a memory region takes certain computational resources—for
example, a processor performing the initialization may have to write values into a series of
memory locations, which can be time consuming. During such an initialization, the processor
may be unable to perform other computing tasks.

[0003] Further, memory initialization operations may be disruptive to a cache associated with the
processor. Cache performance may be negatively impacted by the processor as cache contents
are displaced during memory initialization. For example, it is possible that some or all of the
pre-existing contents of the cache (before initialization of the memory region began) will be
replaced by contents of the memory region being initialized. Such replacement may slow
program execution as other memory may be subsequently accessed to retrieve data that was

formerly present in the cache.

SUMMARY OF THE EMBODIMENTS

[0004] Various embodiments of methods and structures that allow a computer system or
computing device to distribute certain memory operations from a first processing element to a
second processing element are disclosed herein.

[0005] In one embodiment described, a computer readable medium is disclosed having program
instructions stored thereon that are executable by at least a first processing element of a
computing device to perform operations including receiving an indication of a memory region of
the computing device to be initialized, and in response to said receiving, causing initialization of
the memory region to be handled by a second processing element of the computing device. In a
further embodiment, the indication is received from a control program being executed by the first
processing element.

[0006] Another embodiment includes a method that comprises a first program receiving an

indication of a memory region of a computing device to be initialized, wherein the first program

1

WO 2012/018906 PCT/US2011/046412

is executing on a first processing element of the computing device, and in response to said
receiving, the first program causing initialization of the memory region to be handled by a
second processing clement of the computing device. In a further embodiment, the second
processing element uses direct memory access (DMA) to initialize the memory region without
the first processing element directly accessing the memory region,

[0007] Yet another embodiment is a computer system that comprises a memory subsystem
including a main memory, a secondary storage device, and at least first and second processing
clements, wherein the secondary storage device has program instructions stored thereon that are
executable by the first processing element to cause the computer system to receive an indication
of a memory region to be initialized, wherein the memory region is in the main memory, and in
response to said receiving, cause initialization of the memory region to be handled by the second
processing clement of the computing device. In a further embodiment, the computer system
comprises a cache associated with the first processing element, wherein the cache is configured
to store contents of the main memory in response to the first processing clement accessing the
main memory, and wherein causing initialization of the memory region does not result in the

cache storing post-initialization contents of the memory region.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 11s a block diagram illustrating one embodiment of a computer system configured to
distribute memory initialization from a first processing element to a second processing element is
depicted

[0009] Figs. 2A-2B are block diagrams depicting an exemplary memory region before and after
initialization.

[0010] Fig. 3A is a block diagram illustrating an embodiment of a memory subsystem that
includes a control program configured to perform memory initialization.

[0011] Fig. 3B is a block diagram illustrating an embodiment of a memory subsystem that
includes an operating system configured to perform memory initialization.

[0012] Fig. 3C is a block diagram illustrating an embodiment that includes a JAVA Virtual
Machine program configured to perform memory initialization.

[0013] Fig. 4 is a flow diagram illustrating one embodiment of a method in which a memory
initialization is distributed from a first processing element to a second processing element.
[0014] Fig. 5 is a block diagram illustrating another embodiment of a computer system in which
a memory initialization is distributed from a first processing element to a second processing

clement.

WO 2012/018906 PCT/US2011/046412

DETAILED DESCRIPTION

[0015] This specification includes references to “one embodiment” or “an embodiment.” The
appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer
to the same embodiment. Particular features, structures, or characteristics may be combined in
any suitable manner consistent with this disclosure.

[0016] Terminology. The following paragraphs provide definitions and/or context for terms
found in this disclosure (including the appended claims):

[0017] “Comprising” or “Including.” These terms are open-ended. As used in the appended
claims, these terms do not foreclose additional structure or steps. Consider a claim that recites:
“An apparatus comprising one or more processing elements” Such a claim does not foreclose
the apparatus from including additional components (e.g., a network interface unit, graphics
circuitry, etc.).

[0018] “Configured To.” Various units, circuits, or other components may be described or
claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/components include structure (e.g.,
circuitry) that performs those task or tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the specified unit/circuit/component
is not currently operational (e.g., is not on). The units/circuits/components used with the
“configured to” language include hardware—for example, circuits, memory storing program
instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112,
sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include
generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g.,
an FPGA or a general-purpose processor executing software) to operate in manner that is capable
of performing the task(s) at issue. Further, “configured to” may include adapting a
manufacturing process (e¢.g., a semiconductor fabrication facility) to fabricate devices (e.g.,
integrated circuits) that are adapted to implement or perform one or more tasks.

[0019] “Processing Element.” This term has its ordinary and accepted meaning in the art, and
includes a device (e.g., circuitry) or combination of devices that is capable of executing computer
instructions. A processing element may, in various embodiments, refer to a single-core
processor, a core of a multi-core processor, or a group of two or more cores of a multi-core
processor.

[0020] “Processor.” This term has its ordinary and accepted meaning in the art, and includes a

device that includes one or more processing elements. A processor may refer, without limitation,

WO 2012/018906 PCT/US2011/046412

to a central processing unit (CPU), a co-processor, an arithmetic processing unit, a graphics
processing unit, a digital signal processor (DSP), etc.

[0021] “First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they
precede, and do not imply any type of ordering (c.g., spatial, temporal, logical, ctc.). For
example, in a processor having eight processing elements or cores, the terms “first” and “second”
processing elements can be used to refer to any two of the eight processing elements. In other
words, the “first” and “second” processing clements are not limited to logical processing
clements 0 and 1.

[0022] “Computer” or “Computer System.” This term has its ordinary and accepted meaning in
the art, and includes one or more computing devices operating together and any software stored
thereon. A computing device includes one or more processing eclements and a memory
subsystem. A memory subsystem may store program instructions executable by the one or more
processing elements to perform various tasks.

[0023] “Computer-readable Medium.” As used herein, this term refers to a (nontransitory,
tangible) medium that is readable by a computer or computer system, and includes magnetic,
optical, and solid-state storage media such as hard drives, optical disks, DVDs, volatile or
nonvolatile RAM devices, holographic storage, programmable memory, etc. The term “non-
transitory” as applied to computer readable media herein is only intended to exclude from claim
scope any subject matter that is deemed to be ineligible under 35 U.S.C. § 101, such as transitory
(intangible) media (e.g., carrier waves), and is not intended to exclude any subject matter
otherwise considered to be statutory.

[0024] “Operating System.” This term has its ordinary and accepted meaning in the art, and
includes a program or set of program that control access to resources of a computer system (e.g.,
in response to requests from applications). In some embodiments, an operating system controls
access to I/0 devices such as communication devices, storage devices, etc. As described herein,
an operating system may, in certain embodiments, include instructions executable to cause a
second processing element to perform memory initialization.

[0025] “Cache.” This term has its ordinary and accepted meaning in the art, and includes
memory or other storage that stores data and may improve future requests for such data by
providing faster access relative to some other memory or storage.

[0026] “Causing a Computer System to Perform Operations.” The execution of program
instructions may be described or claimed as “causing a computer system to perform operations.”
The phrase is to be interpreted broadly, covering instructions that, when executed, perform the
operations in questions, as well as instructions that install or instantiate code that, when executed,

performs the operations. For example, a computer readable medium may include instructions

4

WO 2012/018906 PCT/US2011/046412

that are executable to cause the computer system to distribute memory initialization of a memory
region from a first processing element of the computer system to a second processing element of
the computer system.
[0027] “Execcutable.” This term has its ordinary and accepted meaning in the art, and includes
instructions in a format associated with one or more particular processing elements (i.e., a certain
instruction set architecture (ISA)), but also instructions that are in an intermediate format (e.g.,
JAVA bytecode) that can be interpreted by a control program (e.g., the JAVA virtual machine) to
produce instructions for an ISA of a processing element. In accordance with this definition, a
program that is “being executed” on a first processing clement is having at least some of its
instructions executed by that first element (though other instructions of that program may be
executed by another element). Execution of a program also includes interpretation of a program.
[0028] “Application Programming Interface (API).” This term has its ordinary and accepted
meaning in the art, and includes an interface that enables software to interact with other software.
A program may make an API call to use functionality of an application, library routine,
operating system, etc.

* * *
[0029] As described herein, a computer program may have a need to initialize (fill) computer
memory with certain data, thereby erasing the data previously stored by that memory. In some
embodiments, the need to initialize memory may occur in accordance with a request to receive an
allocation of (new) memory. In one embodiment, a JAVA virtual machine (JVM) program (used
to run other JAVA programs) may “zero out” memory regions so that JAVA programs can start
using these memory regions with blank (default) data. In another embodiment, an operating
system might overwrite memory with all zeros, for example, before allowing a user program to
access that memory. (In some embodiments, the data that was erased could have held a
password, a credit card number, or other data that the operating system does not wish a user
program to be able to access.) Many other kinds of memory initialization by other types of
programs arc contemplated as well, and this disclosure is not limited to JVM or operating system
software. The data that is filled into a memory region during initialization may, but need not be,
all zeros, as described further below.
[0030] In one embodiment, a computer system has a first processor, such as a central processing
unit (CPU), that is configured to execute, ¢.g., general-purpose instructions. The computer
system also has a second processor, such as a graphic processing unit (GPU), which is configured
to execute special-purpose instructions, such as graphics instructions. In other embodiments the
first processor (or processing element) may include functionality of both a CPU and a GPU in a

single device, package or integrated circuit. The computer system also has a memory subsystem.

5

WO 2012/018906 PCT/US2011/046412

In an embodiment, the computer system is structured (i.e., programmed) such that certain
instruction sequences are performed by the second processor. These instruction sequences may
be generated by instructions executed by the first processor and can include memory
initialization routines. Accordingly, the first processor may be freed to perform other tasks while
the second processor performs initialization. (For example, the memory region to be initialized
may not be needed right away, so the first processor may be able to continue executing the
program while the second processor is performing the memory initialization). In addition to
improving the performance of the first processor, techniques disclosed herein may also improve
performance of a data cache associated with the first processor, for example, by avoiding
displacement of data from the cache.

[0031] Turning now to Fig. 1, one embodiment of a computer system 10 configured to distribute
memory initialization from a first processing clement to a second processing element is depicted.
Computer system 10 includes a first processing element 100A and a second processing element
100B linked by a bus 20. In one embodiment, bus 20 allows processing clements 100A and
100B to access one or more memory regions 64 within a memory subsystem 60. Memory
subsystem 60 may contain various programs 62, some of which are executable to request (or to
cause) memory be initialized using processing clement 100B. Additionally, although shown as a
visually distinct component in FIG. 1, a portion or all of memory subsystem 60 may form part of
circuitry of processing element 100A, processing element 100B, or be a part of a single device
which includes both processing elements 100A and 100B. In one embodiment, a cache 30 is
accessible to processing element 100A, and is configured to store data corresponding to data
stored in memory subsystem 60. In one embodiment, a memory access controller 75 may be
coupled to (or implemented within) any combination of processing element 100A, 100B,
memory subsystem 60, and may be coupled to bus 20. Computer system 10 may be configured
differently in various embodiments.

[0032] Processing clements 100A and 100B may correspond to (or be located within) any type of
processor (¢.g., central processing unit, arithmetic processing unit, graphics processing unit,
digital signal processing unit, etc.). In one embodiment, processing element 100A is a central
processing unit (or group of one or more cores) and processing element 100B is a different type
of processing unit, e.g., a graphics processing unit (that may have one or more cores). In some
embodiments, one or both of processing element 100A and 100B may include multiple cores. In
other embodiments, processing elements 100A and 100B may be different groups of one or more
processor cores located on the same chip. Processing elements 100A and 100B may, in some
embodiments, comprise a cluster or group of various processing elements (for example, element

100A could be a group of two quad-core processors).

6

WO 2012/018906 PCT/US2011/046412

[0033] In one embodiment, bus 20 coupling the processing elements to memory subsystem 60
may be a Northbridge bus, or any other processor bus or processor interconnect known to those
of skill in the art. Bus 20 is an interconnect, in one embodiment, between (groups of one or
more) processor cores, which may be located on the same chip. Bus 20 need not be limited to a
single bus or interconnect, however, and may be any combination of one or more busses, (point
to point) interconnects, or other communication pathways and devices suitable to convey data to
the structures described herein.

[0034] Memory subsystem 60 includes one or more memory devices. In various embodiments,
these memory devices may comprise RAM modules, embedded memory (¢.g., cDRAM), solid
state storage devices, secondary storage devices such as hard drives, or any other computer-
readable medium as that term is defined herein. In one embodiment, memory subsystem 60
includes one or more memory regions 64 within the one or more memory devices of memory
subsystem 60. A memory region 64 is not necessarily of fixed size or location, but may instead
refer to one or more portions of memory having arbitrary beginning and end locations (or
addresses). Thus, in one specific embodiment, a first memory region might be a series of
memory locations that is 4000KB in size while a second memory region is a series of memory
locations that is 32KB in size. In one embodiment, a memory region 64 may span multiple
memory devices (or even span types of memory device; for example, a single memory region
could include storage space on a RAM module and a hard drive). A memory region may or may
not be physically or logically contiguous.

[0035] Memory subsystem 60 and its memory regions are accessible by processing element
100A. For example, processing clement 100A may retrieve data from (and store data in)
memory subsystem 60 via bus 20. In various embodiments, as described herein and below,
memory subsystem 60 is also accessible by processing element 100B. In various embodiments,
memory subsystem 60 stores one or more programs 62. Program(s) 62 may be any program(s)
executable on computer system 10. Thus, in various embodiments, program 62 may be a JVM,
an operating system, an API library, a user program running on the JVM or operating system,
etc. In various embodiments, a program 62 may have the ability to distribute memory
initialization from processing element 100A to 100B, as further described herein.

[0036] Memory access controller 75 is coupled to memory subsystem 60 in one embodiment,
and is configured to control, manage, coordinate, and/or allow memory access by processing
clements 100 to memory subsystem 60 in various embodiments. Memory access controller 75 is
a direct memory access (DMA) controller in one embodiment, and may be located on a same
chip with processing elements 100A and/or 100B. In various embodiments, memory access

controller 75 may restrict processing eclement 100B from accessing memory regions 64 unless

7

WO 2012/018906 PCT/US2011/046412

alerted, notified, or granted permission by processing element 100A—in which case access
controller 75 may allow access to some (or all) regions of memory subsystem 60. Memory
access controller 75 may be configured to use (and/or couple to) bus 20 in one embodiment.
[0037] Cache 30 is accessible by processing element 100A, and comprises a cache configured to
hold data corresponding to memory subsystem 60. Cache 30 may thus be configured to hold a
subset of data stored in memory subsystem 60 in order to provide faster access to that data to
processing element 100A. In various embodiments, cache 30 may comprise a hierarchical cache
system, including L1, L2, L3, or other caches. Cache 30 may be partially or wholly located
within processing c¢lement 100A, or may be partially or wholly located outside of processing
element 100A in various embodiments (for example, in one embodiment, cache 30 comprises an
L1 cache that is within processing element 100A, and an L2 cache that is outside of element
100A). A cache that is “associated” with a given processing element is configured to be
accessed by that processing element.

[0038] In some instances, caching operations will cause data previously stored in cache 30 to be
replaced with (or displaced by) other data. In some embodiments, when processing element
100A directly accesses a memory region of memory subsystem 60, a portion of cache 30 will be
used to store accessed data. For example, if processing clement 100A were to directly access
memory subsystem 60 to initialize a memory region 64, pre-existing data in cache 30 might be
displaced by newly initialized data for that memory region. Data displaced from a cache may
take longer to access, which can result in longer execution times. For example, consider the

following C code:
int C = A + B;
int *Freespace = malloc(8192);
E = C;

This code (when compiled and executed) might first result in a data value for variable “C” being
cached. A call to malloc() might then cause 8192 bytes of memory to be initialized, displacing
the value for “C” from cache. Upon the next instruction being executed (which assigns the value
of “C” to variable E), the cache might encounter a “miss,” and thus have to retrieve variable C’s
value from a lower level of cache or more distant memory, resulting in a delay. If C’s value had
never been displaced from the cache in the first place, this delay could have been avoided,
possibly speeding performance. Data displacement/replacement for cache 30 may be governed
in various embodiments by replacement policies that include any number of hardware or
software schemes that would occur to those of skill in the art, including least recently used

(LRU) replacement.

WO 2012/018906 PCT/US2011/046412

[0039] Turning now to Fig. 2A, an example of a memory region 64 prior to initialization is
shown. As depicted, memory region 64 includes a plurality of memory locations (including
locations 212-216), each of which may be individually addressable and configured to store a
given amount of data in various embodiments. As shown, memory location 212 is storing data
205. Data 205 in memory location 212 may have been written previously by a program being
executed by computer system 10 in some embodiments, or may simply be arbitrary (random).
[0040] In Fig. 2B, an example of memory region 64 after initialization is shown. In this
embodiment, the data 205 in memory location 212 has been “zeroed out” by initializing it to a
sequence of bits having values of zero. As discussed further herein, this initialization may be
performed in certain embodiments by processing element 100B. “Zeroing out” is only one form
of initialization; other initialization may include writing data in a test pattern (e.g., values
corresponding to all negative ones, the hex value 0OxXDEADBEEF, etc.). Initialization may be
performed, in some embodiments, in accordance with an external specification, such as the
JAVA programming language specification. Initialization is not limited to the data types and
values described above and may, in various embodiments, include any data that fills one or more
memory regions.

[0041] In some embodiments, memory initialization may be limited to initializing memory
regions of a certain minimum size (possibly at the discretion of a control program that services
requests for initialization). For example, memory initialization could be limited to initializing
arcas of memory no smaller than a page (as defined by an operating system of computer system
10--for example, a page of 8KB), or the width of a cache line, or a given fixed size (such as 1024
bytes), etc. In these embodiments, a minimum size threshold for memory initialization might be
enacted to avoid possible performance penalties involved by using a second processing element
to initialize a small memory region, as using a second processing element rather than a first
processing element to perform initialization may involve certain unavoidable overhead costs in
various embodiments.

[0042] Turning now to Fig. 3A, a block diagram is shown illustrating an embodiment that
includes a user program 304 and a control program 310 within memory subsystem 60. In one
embodiment, programs 304 and 310 are both respective programs 62 as described above with
respect to Fig. 1. In various embodiments, user program 304 may lack privileges (or may not be
programmed and/or designed) to directly access memory and initialize memory region(s), while
control program 310 is executable to initialize memory regions (¢.g., using initialization routine
313). For example program 304 may be a JAVA process and/or user application, while program
310 may be a JVM or an operating system; see discussion of Figs 3B-3C below). In various

embodiments, user program 304 and control program 310 are stored within one or more memory

9

WO 2012/018906 PCT/US2011/046412

devices in subsystem 60 (for example, control program 310 may be stored on a hard drive, and
also be loaded (wholly or partially) into a RAM module during execution).

[0043] Control program 310 includes instructions, in various embodiments, that are executable
by processing clement 100A and/or processing clement 100B—that is, a given control program
310 may include instructions executable by processing element 100A, processing element 100B,
or some combination of 100A and 100B. For example, in one embodiment, control program 310
includes instructions in a single instruction set architecture (ISA) executable by both 100A and
100B, while in another embodiment, control program 310 includes instructions that are in a first
ISA executable by processing element 100A and also includes instructions in a second, different
ISA that is executable by processing element 100B. Memory initialization routine 313 may thus
include instructions in a different ISA than other portions of control program 310 in some
embodiments.

[0044] In one embodiment, control program 310 includes a set of program instructions
comprising initialization routine 313, which is executable to receive a memory request 305 from
user program 304. (In another embodiment, control program 310 generates a memory request
305 internally.) Memory initialization routine 313 is executable to cause processing clement
100B (rather than clement 100A) to initialize one or more memory regions 64 that may be
specified by initialization request 305. Memory initialization routine 313 may comprise
instructions, in various embodiments, that correspond to code that is written in a programming
language such as OPENCL, JAVA, C++, etc. The code corresponding to routine 313 may be
interpreted and/or compiled in order to perform the initialization routine 313 in various
embodiments.

[0045] An example of how OPENCL code may be used to generate instructions executable by
processing element 100B can be found in U.S. App. No. 12/785,052, entitled “DISTRIBUTING
WORKLOADS IN A COMPUTING PLATFORM,,” filed May 21, 2010, which is incorporated
herein by reference.

[0046] Memory initialization routine 313 may be executed, in various embodiments, to cause
processing element 100B to initialize memory region 64. In one embodiment, execution of
initialization routine 313 begins in response to initialization request 305, which may be generated
by user program 304. Initialization request 305 may take various forms in various embodiments,
and includes information usable to identify or determine one or more memory regions 64 to be
initialized. In one embodiment, request 305 specifies a name of a data object. In one
embodiment, initialization request 305 includes a memory base address and an offset value
(length) of memory space to be initialized. In other embodiments, initialization request 305

includes a memory base “start” address and a memory ceiling “stop” address to be initialized.

10

WO 2012/018906 PCT/US2011/046412

Memory request 305 is not thus limited, however, and may include any information usable to
determine one or more memory regions 64 to be initialized.

[0047] During execution, control program 310 is executed by processing elements 100A and/or
100B, but in at lcast one embodiment, exccution of initialization routine 313 is performed solely
by processing element 100B by means of initialization request 307. The execution of routine 313
by element 100B may proceed in different manners in various embodiments. In one
embodiment, portions of control program 310 may be executable by element 100A to “set up”
execution of routine 313 by eclement 100B. Processing eclement 100A may send a control
message, notification, or instruction to processing clement 100B that includes a reference to
routine 313. Upon receiving such a control message, processing element 100B could then
proceed to execute routine 313 (e.g., by directly accessing memory, and/or a cache, in which the
instructions of routine 313 are stored). In another embodiment, the instructions for initialization
routine 313 might simply be put out onto a bus (such as bus 20), at which time processing
element 100B would recognize and execute the instructions. In one embodiment, element 100A
may execute instructions (in an ISA of element 100A) to perform one or more configuration
operations for element 100B, including configuration operations that cause memory access
controller 75 to give processing element 100B direct access to memory region 64. Various other
techniques are also usable to cause processing element 100B to execute initialization routine 313,
as will occur to those skilled in the art.

[0048] The instructions of initialization routine 313 contain, in one embodiment, one or more
references to one or more memory regions 64 to be initialized, as well as instructions executable
by processing element 100B to cause the one or more memory regions to be initialized. The data
that fills initialized memory regions can be all zeros, all negative ones, patterned data, or any
other data, as noted above. In some embodiments, portions of (or the entirety of) initialization
routine 313 may be dynamically generated by control program 310. Dynamic generation may
occur in response to information in memory request 305 in one embodiment. For example, if
memory request 305 specifics that an 8MB portion of RAM is to be initialized, at least a portion
of initialization routine 313 may be dynamically modified to reflect this 8MB value.

[0049] Initialization routine 313 may be performed as part of various software programs—for
example, in one embodiment, routine 313 may be performed as part of a library routine, with
request 305 being made according to the specifications of an application programming interface
(API). In another embodiment, routine 313 may be performed as part of a JAVA garbage
collection process (as described below further with reference to Fig. 3C). Initialization routine

313 is not limited to the types of programs described above, however.

11

WO 2012/018906 PCT/US2011/046412

[0050] Turning now to Fig. 3B, a block diagram is shown depicting an embodiment in which an
operating system 320 of computer system 10 is configured to distribute memory initialization
from a first processing element to a second processing element. In one embodiment, operating
system 320 may operate wholly or in part to perform any and all of the operations described
above with respect to control program 310. In various embodiments, operating system 320 may
receive, generate, and/or handle one or more requests 305 to initialize one or more memory
regions 64. In one embodiment, request 305 may be received by libraries (or modules) within
operating system 320, which may be callable by a program such as program 62, program 304, or
even operating system 320 itself. These libraries may be stored, in various embodiments, as one
or more files in memory subsystem 60, and may include API interfaces for modules such as 322
and 324, which correspond to the C programming language functions malloc() and init(). For
example, a program 62 running on computer system 10 may request to have (more) memory
allocated to it by calling the malloc() routine. The operating system 320 may accordingly service
that request, in one embodiment, by loading and/or dynamically generating suitable instructions
(such as initialization routine 313), and then causing those loaded or generated instructions to be
executed by the second processing element 100B. Such an initialization may be desirable for
sccurity reasons, in order to avoid freshly allocated memory blocks leaking data from one
program to another, for example. Init module 324 may be used to load another process into
memory in one embodiment, and thus might internally generate a request for memory 305 (which
in turn may cause an initialization request 307 to be sent to processing element 100B).

[0051] Turning now to Fig. 3C, a block diagram is shown depicting an embodiment in which a
JAVA Virtual Machine (JVM) 330 is configured to cause memory initialization to be distributed
from a first processing element to a second processing element. JVM 330 may operate wholly or
in part to perform any and all of the operations described above with respect to control program
310, and may be stored in memory subsystem 60 (not depicted). In one embodiment, JVM 330 is
configured to execute JAVA bytecode of one or more JAVA programs stored in memory
subsystem 60 (accordingly, control program 310 may thus execute other programs, and is
furthermore not limited to JAVA programs in this respect). Execution of JAVA bytecode may
cause any number of JAVA objects 331 to be instantiated and/or destroyed. Default initial
values for JAVA objects may be set to all zeros in various embodiments of JVM 330. Such
initialization may be performed, in various embodiments, by garbage collection process 332
and/or constructor routine 334 (which may, in some¢ embodiments, and in whole or in part,
correspond to initialization routine 313). As the last step of garbage collection process 332, in
one embodiment, all of one or more memory regions may be made available for future object

allocation by zeroing the memory regions out (thus ensuring a store of alrcady-initialized

12

WO 2012/018906 PCT/US2011/046412

memory until a next garbage collection results in additional initialized memory). Or the zeroing
can be done, in various embodiments, on a one-at-a-time basis as new objects get allocated by
JAVA user programs.

[0052] In one embodiment, garbage collection process 332 determines what JAVA objects are no
longer being used and de-allocates memory for those unused objects. In the process of de-
allocating this memory, JVM 330 may initialize one or more corresponding memory regions to
contain values of zero. JVM 330 may also cause one or more constructor routine(s) 334 to be
run. Constructor routine(s) 334 may be default routines, and may require the allocation of free
memory to be made to one or more JAVA programs running on JVM 330, and may likewise
cause the initialization of one or more memory regions 64 during execution of those JAVA
programs (which may correspond to user program 304 in various embodiments). Various
techniques and permutations for optimizing the initialization of memory regions by JVM 330
will occur to those with skill in the art. For example, JVM 330 might be configured to “zero” a
larger amount of memory (¢.g., IMB) and parcel that memory out as needed to satisfy the
demands of newly created JAVA objects (rather than initializing memory every single time a
class is instantiated).

[0053] In various embodiments, numerous programs other than operating system 320 and JVM
330 may cause computer system 10 to distribute the task of initializing memory regions from
processing element 100A to processing element 100B. Different programming languages
designed to be compiled and executed (or interpreted) by processing elements of computer
system 10 may have libraries that include API routines designed to take advantage of memory
initialization distribution (or offloading) capabilitics. Further, a compiler could be designed to
cause distribution of memory initialization using techniques described herein when generating
executable code from high level source code. The compiler could employ heuristics, in one
embodiment, to determine when it would benefit program performs to distribute one or more
memory fill operations from a first processing element to a second (for example, factors that
could form the basis for such heuristics could include the size of a memory region (perhaps
offloading/distributing when the region was sufficiently large), how often and how soon the
memory region is to be accessed following initialization, the number of bytes of the initialized
region to be accessed in a given period following initialization being performed, the quantity of
cache misses anticipated as a result of cache displacement from not offloading a given memory
initialization, etc.). In some embodiments, the memory initialization techniques described herein
are transparent to a source code programmer in some cases—for example, a source code
programmer might program a call in the C programming language to malloc() according to the

specifications of that programming language without ever knowing that a library routine that

13

WO 2012/018906 PCT/US2011/046412

handles that call will cause initialization of memory to be distributed from a first element to a
second element.

[0054] Turning now to Fig. 4, a flow diagram of one embodiment of a method 400 for to
offloading initialization of one or more memory regions by a first processing element to a second
processing element is shown. Method 400 may be performed, in whole or in part, by computer
system 10 or any other suitable computer system or computing device such as system 500
described below. In step 410, an indication of one or more memory regions to be initialized is
received. This step may be performed, in one embodiment, by processing element 100A
executing control program 310 to receive a request for memory, ¢.g., from program 304. In one
embodiment, step 410 includes receiving a request generated by a garbage collection process,
such as process 332 of JVM 330.

[0055] In step 420, in response to receiving the indication of step 410, computer system 10
causes initialization of the requested memory region to be offloaded from processing element
100A to processing clement 100B. In one embodiment, step 420 is performed by processing
element 100A and causes initialization of the requested memory region to be offloaded to
processing element 100B. Step 420 may also include, in various embodiments, processing
clement 100A performing configuration operations or otherwise interacting with processing
clement 100B in a manner that causes processing element 100B to initialize memory region 64
(e.g., setting up element 100B to execute an initialization routine 313).

[0056] In step 430, the processing element to which the initialization request of step 410 has
been offloaded (i.c., distributed) initializes the indicated one or more memory regions. In one
embodiment, this step is performed by processing element 100B using direct memory access (via
controller 75) to initialize the requested memory region. Thus in various embodiments of step
430, initialization is performed without processing element 100A directly altering values for the
memory region to be initialized. In certain embodiments, step 430 is performed according to one
or more predetermined rules, routines, etc., of control program 310. These rules could include
heuristics (¢.g., heuristics as described above.)

[0057] In step 440, one or more portions of a cache of computer system 10 may be invalidated.
In a system with multiple processing elements (such as computer system 10), a copy of the data
in memory region 64 may be stored in the memory hierarchy (including cache 30) in some
embodiments. If memory region 64 is initialized according to method 400, it may be necessary
in some instances and in some embodiments to perform a cache invalidation procedure in order
to make sure that there are no stale copies of data corresponding to initialized memory region 64
that remain in a cache of computer system 10 (e.g., cache 30). Step 440 may be initiated

variously by processing element 100A, processing clement 100B, and/or memory access

14

WO 2012/018906 PCT/US2011/046412

controller 75 in various embodiments, and may be performed using various techniques known to
those of skill in the art.

[0058] Turning now to Fig. 5, a block diagram is shown depicting an exemplary computer
system 500 capable of implementing various embodiments described above. Components of
computer system 500 may be identical or similar to components of computer system 10, in whole
or in part. For example, computer system 500 as depicted includes a memory subsystem 60,
processing elements 100A and 100B, cache 30, and memory access controller 75. Computer
system 500 may be any of various types of devices, including, but not limited to, a server system,
personal computer system, desktop computer, laptop or notebook computer, mainframe computer
system, handheld computer, workstation, network computer, a consumer device such as a mobile
phone, pager, or personal data assistant (PDA). Computer system 500 may also be any type of
networked peripheral device such as storage devices, switches, modems, routers, etc. Although a
single computer system 500 is shown in Figure 5 for convenience, system 500 may also be
implemented as two or more computer systems operating together.

[0059] In one embodiment of computer system 500, memory subsystem 60 includes a secondary
storage device 455 and RAM modules 444 and 446. In one embodiment, secondary storage
device 455 has program instructions stored thercon that are executable by first processing
clement 100A to cause the computer system to receive an indication of a memory region to be
initialized, wherein the memory region is in the memory of the computer system, and in response
to said receiving an indication, causing initialization of the memory region to be handled by
second processing clement 100B of the computing device. Processing elements 100A and 100B
may be heterogencous (i.c., of differing types) in certain embodiments—for example where
element 100A is a central processing unit (CPU) and 100B is a graphics processing unit (GPU).
Further, in one embodiment, cache 30 may be configured to store contents of one or more
memory devices in memory subsystem 60 in response to processing element 100A accessing the
memory, wherein causing the initialization of a memory region does not include causing the
cache to store post-initialization contents of that memory region (i.c., cache 30 may avoiding
displacement of other data within cache 30 by freshly initialized data corresponding to an
initialized memory region). Memory access controller 75 may be configured to provide
processing element 100B direct access to one or more memory devices in memory subsystem 60
in various embodiments, wherein causing initialization of a memory region includes processing
clement 100B accessing the memory region using memory access controller 75, and wherein
causing initialization does not include processing element 100A accessing (i.c., altering) the

memory region.

15

WO 2012/018906 PCT/US2011/046412

[0060] Additionally, in one embodiment, I/O devices 444 are coupled to memory subsystem 60
via a bus 20. In various embodiments, I/O devices may include other storage devices (hard drive,
optical drive, removable flash drive, storage array, SAN, or their associated controller), network
interface devices (e.g., to a local or wide-arca network), or other devices (e.g., graphics, user
interface devices, etc.). In one embodiment, computer system 500 is coupled to a network via a
network interface device. I/0 devices may include interfaces of various types, which may be
configured to couple to and communicate with other devices and their interfaces, according to
various embodiments. In one embodiment, an 1/O interface is a bridge chip (e.g., Southbridge)
from a front-side to one or more back-side buses.

[0061] Memory subsystem 60 includes memory usable by processing elements 100A and/or
100B in various embodiments. Memory in subsystem 60 may be implemented using different
physical memory media, such as hard disk storage, floppy disk storage, removable disk storage,
flash memory, random access memory (RAM—SRAM, EDO RAM, SDRAM, DDR SDRAM,
RAMBUS RAM, ctc.), read only memory (PROM, EEPROM, ctc.), and so on. Memory in
computer system 500 is not limited to storage such as RAM 444 and 446 and secondary storage
455; rather, computer system 500 may also include other forms of storage such as cache
memories not depicted, and secondary storage on 1/0 Devices 444 (¢.g., a hard drive, storage
array, etc.). In some embodiments, these other forms of storage may also store program
instructions executable by processing elements 100A and/or 100B.

[0062] The above-described techniques and methods may be implemented as computer-
readable instructions stored on any suitable computer-readable medium. These instructions may
be software that allows a computer system and/or computing device to operate in manners
described above, and may be stored in a computer readable medium within memory subsystem
60 (or on another computer readable medium that is not within memory subsystem 60). Library
routines, garbage collection processes, other software routines and objects, and any or all of
software 62, 304, 310, 313, 320, 322, 324, 330, 331, 332, 334 may thus be stored on such

computer readable media. (As noted above in paragraph 23, such media may be non-transitory.)

[0063] Further, the above-described techniques and methods may be implemented in hardware in
some embodiments. For example, one embodiment is a processing clement that includes
memory initialization circuitry configured to cause initialization of a memory region of a
memory device to be handled by a second processing element, wherein causing initialization is
performed in response to an indication that the memory region is to be initialized. Hardware
embodiments may use circuit logic to implement algorithms and techniques described above

(such as method 400, for example).

16

WO 2012/018906 PCT/US2011/046412

[0064] Hardware embodiments may be generated using hardware generation instructions. For
example, the hardware generation instructions may outline one or more data structures describing
a behavioral-level or register-transfer level (RTL) description of the hardware functionality in a
high level design language (HDL) such as Verilog or VHDL. The description may be read by a
synthesis tool, which may synthesize the description to produce a netlist. The netlist may
comprise a set of gates (e.g., defined in a synthesis library), which represent the functionality of a
processing element (such as 100A and/or 100B) that is configured to implement memory
initialization distribution/offloading. The netlist may then be placed and routed to produce a data
set describing geometric shapes to be applied to masks. The masks may then be used in various
semiconductor fabrication steps to produce a semiconductor circuit or circuits corresponding to
one or more processing elements (such as 100A and/or 100B). Alternatively, the database may
be the netlist (with or without the synthesis library) or the data set, as desired. Thus, hardware
generation instructions may be executed to cause processors and/or processing elements that
implement the above-described methods and techniques to be generated or created according to
techniques known to those with skill in the art of fabrication. Additionally, such hardware
generation instructions may be stored on any suitable computer-readable media (which may be
within a memory subsystem such as 60, or on other computer-readable media).

A computer-readable storage medium as described above can be used in some
embodiments to store instructions read by a program and used, directly or indirectly, to fabricate
the hardware comprising processing element 100A and/or 100B. For example, the instructions
may outline one or more data structures describing a behavioral-level or register-transfer level
(RTL) description of the hardware functionality in a high level design language (HDL) such as
Verilog or VHDL. The description may be read by a synthesis tool, which may synthesize the
description to produce a netlist. The netlist may comprise a set of gates (e.g., defined in a
synthesis library), which represent the functionality of a processing element 100, a memory
initialization unit, and/or memory initialization circuitry. The netlist may then be placed and
routed to produce a data set describing geometric shapes to be applied to masks. The masks may
then be used in various semiconductor fabrication steps to produce a semiconductor circuit or
circuits corresponding to hardware embodiments. Alternatively, the database may be the netlist
(with or without the synthesis library) or the data set, as desired. One embodiment is thus a (non-
transitory) computer readable storage medium comprising a data structure which is usable by a
program executable on a computer system to perform a portion of a process to fabricate an
integrated circuit including circuitry described by the data structure, wherein the circuitry
described in the data structure includes a memory initialization unit configured to cause

initialization of a memory region of a memory device to be handled by a second processing

17

WO 2012/018906 PCT/US2011/046412

element of a computing device rather than a first processing element of the computing device,
wherein said causing initialization is performed in response to an indication that the memory
region is to be initialized.
*® * *®

[0065] Although specific embodiments have been described above, these embodiments are not
intended to limit the scope of the present disclosure, even where only a single embodiment is
described with respect to a particular feature. Examples of features provided in the disclosure are
intended to be illustrative rather than restrictive unless stated otherwise. The above description is
intended to cover such alternatives, modifications, and equivalents as would be apparent to a
person skilled in the art having the benefit of this disclosure.

[0066] The scope of the present disclosure includes any feature or combination of features
disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accordingly, new claims may be
formulated during prosecution of this application (or an application claiming priority thereto) to
any such combination of features. In particular, with reference to the appended claims, features
from dependent claims may be combined with those of the independent claims and features from
respective independent claims may be combined in any appropriate manner and not merely in the

specific combinations enumerated in the appended claims.

18

WO 2012/018906 PCT/US2011/046412

WHAT IS CLAIMED IS:

1. A non-transitory computer readable medium having program instructions stored thereon
that are executable by at least a first processing element of a computing device to perform
operations including:

responsive to an indication of a memory region of the computing device to be initialized,
causing initialization of the memory region to be handled by a second processing element of the

computing device.

2. The non-transitory computer readable medium of claim 1, wherein the indication of the
memory region is received, from a first program, by a control program being executed by the first

processing element.

3. The non-transitory computer readable medium of claim 2, wherein the control program is

executing the first program.

4. The non-transitory computer readable medium of claim 2,

wherein the indication specifies one or more memory regions of memory corresponding
to one or more data objects operable with the control program; and

wherein the operations further include filling all contents of the one or more memory

regions.

5. The non-transitory computer readable medium of claim 4, wherein the operations further
include:

the control program, as part of a garbage collection process, generating a plurality of
indications of memory regions to be initialized; and

causing initialization of the plurality of memory regions to be handled by the second
processing element, wherein the initialization includes filling all contents of the plurality of
memory regions with default contents that are specified by a programming language

specification.

6. The non-transitory computer readable medium of claim 2, wherein the control program
includes one or more library files stored on the non-transitory computer readable medium, and
wherein the control program receiving the indication includes the control program receiving the

indication through an application programming interface (API).

19

WO 2012/018906 PCT/US2011/046412

7. The non-transitory computer readable medium of claim 1, wherein said causing
initialization includes dynamically generating at least portions of a set of one or more

instructions executable by the second processing element to alter contents of the memory region.

8. The non-transitory computer readable medium of claim 1, wherein causing initialization
of the memory region to be handled by the second processing element does not cause a cache of
the computer system to store post-initialization contents of the initialized memory region;
wherein the cache is configured, in response to the first processing clement accessing a
memory of the computer system that includes the memory region, to store contents of the

memory region.

9. The non-transitory computer readable medium of claim 1, further comprising program
instructions executable to cause generation of at least one of the first and second processing

elements.

10. A method, comprising:

in response to an indication of a memory region to be initialized, a first program that is
executing on a first processing element causing initialization of the memory region to be handled
by a second processing element, wherein a computing device comprises the first and second

processing elements and a memory including the memory region.
11. The method of claim 10, further comprising the second processing element using direct
memory access (DMA) to initialize the memory region without the first processing element

directly accessing the memory region.

12. The method of claim 10, further comprising a garbage collection process within the first

program generating the indication.
13. The method of claim 10, wherein the first program is a control program, the method
further comprising the second processing element initializing the memory region according to

one or more heuristic rules of the control program.

14. The method of claim 10, further comprising;:

20

WO 2012/018906 PCT/US2011/046412

in response to the memory region being initialized, the computing device invalidating one
or more portions of a data cache of the computing device;
wherein the one or more invalidated portions correspond to contents of the memory

region prior to initialization of the memory region.

15. A computer system, comprising:

a memory subsystem including main memory;

a secondary storage device; and

at least first and second processing elements;

wherein the secondary storage device has program instructions stored thereon that are
executable by the first processing element to cause the computer system to:

in response to an indication of a memory region of the main memory to be

initialized, cause initialization of the memory region to be handled by the second processing

element.

16. The computer system of claim 15, wherein the first and second processing elements are

heterogeneous.

17. The computer system of claim 15, further comprising:

a cache associated with the first processing element, wherein the cache is configured to
store contents of the main memory in response to the first processing element accessing the main
memory; and

wherein said causing initialization of the memory region does not result in the cache

storing post-initialization contents of the memory region.

18. The computer system of claim 15, further comprising:

a memory access controller configured to provide the second processing element direct
access to the main memory;

wherein causing initialization of the memory region includes the second processing
clement accessing the memory region using the memory access controller, and wherein causing

initialization does not include the first processing element accessing the memory region.

21

WO 2012/018906 PCT/US2011/046412

19. A processing element, wherein the processing element includes memory initialization
circuitry configured to cause initialization of a memory region of a memory device to be handled
by a second processing element, wherein said causing initialization is performed in response to

an indication that the memory region is to be initialized.

20. A non-transitory computer readable storage medium comprising a data structure which is
usable by a program executable on a computer system to perform a portion of a process to
fabricate an integrated circuit including circuitry described by the data structure, the circuitry
described in the data structure including:

a memory initialization unit configured to cause initialization of a memory region of a
memory device to be handled by a second processing element of a computing device rather than
a first processing clement of the computing device, wherein said causing initialization is

performed in response to an indication that the memory region is to be initialized.

21. The non-transitory computer readable storage medium of claim 20, wherein the storage

medium stores at least one of HDL, Verilog, or GDSII data.

22

WO 2012/018906 PCT/US2011/046412

1/6
Computer System 10
Processing 20 Processing
Element Bus H Element
100A F~————77 I T ————— 100B
|
| " Memory |
Cahe | Access !
= ! | Controller
| <
!
Memory Subsystem 60 :
|
|
o _
=) Memory
roggazm (s) Region(s)
T 64

FIG. 1

WO 2012/018906 PCT/US2011/046412

2/6
Memory
Regégln(S) Data 205
””” 0100 1101 0001 1001
212 0101 1111 0000 1101
214 ‘\\ 1100 1101 0111 1001
216
Perior to Initialization
FIG. 2A
Memory
Regégln(S) Data 205
””” 0000 0000 0000 0000
212 0000 0000 0000 0000
214 S~a. - 0000 0000 0000 0000
216

After Initialization

FIG. 2B

WO 2012/018906 PCT/US2011/046412

3/6

Memory Subsystem 60
User Program 304
|
I Memory
: Request 305
|
Control Program |
310 |
| Memory
¥ Region
64
Initialization
Routine I
313 |
|
- |
| |
| !
; |
| Initialization :
| Request 307 Processing
e e) Element
1008
Processing
Element
100A

FIG. 3A

WO 2012/018906 PCT/US2011/046412

4/6
Memory Subsystem 60
Operating System 320
Malloc() Init()
Module Module
322 324
FIG. 3B
Java Virtual Machine 330
- - - - "=-"=-—-=-= 1 - - - - "=-"=-—-=-= 1
________ | | | |
| Object | | . |
, o S31A ! : | Garbage :
"""""" | Constructor ' | Collection |
| Routine334 | | Process
TTo T | 332 |
| Object 1 | . 22L& |
! 331B : i | i |
_________ | L |

FIG. 3C

WO 2012/018906 PCT/US2011/046412

5/6

400

R‘

Receive Indication
of Memory Region
to be Initialized
410

Y

Cause Initialization to be
Handled by Offloading
420

Processing Element |
| Initializes Memory |
: Region |
! |

:_ Invalidate One or More |
| Cache Portions [
: 440 |

—_——— e e e e e e e ——

WO 2012/018906 PCT/US2011/046412
6/6
Computer System 500
Processing 20 Processing
Element Bus H Element
100A 100B
" Memory !
Cache | Acces,:sy :
30 | Controller
| 75 :
Memory Subsystem 60
RAM Module
444
Secondary
Storage
Device RAM Module
499 446
20
I/0 Devices
444

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/046412

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOD6F9/50
ADD. GO6F12/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched {classification system followed by classification symbols)

GO6F

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, COMPENDEX, INSPEC, IBM-TDB

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X "NVIDIA CUDA Compute Unified Device
Architecture, programming guide",

27 November 2007 (2007-11-27), pages
I-XI1I,1-128, XP008139068,

Retrieved from the Internet:
URL:http://developer.download.nvidia.com/c
ompute/cuda/1_1/NVIDIA_CUDA Pro
gramming Guide 1.1.pdf

[retrieved on 2007-11-29]

in particular appendices D.5 and E.8;

the whole document

1-21

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or
which is cited to establish the publication date of ancther
citation or other special reason {(as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

invention

"T" later document published after the international filing date
or priority date and notin conflict with the application but
cited to understand the principle or theory underlying the

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

"P" document published prior to the international filing date but
later than the priority date claimed

inthe art.
'&" document member of the same patent family

Date of the actual completion of the international search

12 October 2011

Date of mailing of the international search report

25/10/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Steinmetz, Christof

Form PCT/ISA/210 (second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report

