
(19) United States
US 20080201522A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0201522 A1
Wu et al. (43) Pub. Date: Aug. 21, 2008

(54) BUFFERMANAGEMENT METHOD AND
OPTICAL DISC DRIVE

(75) Inventors: Tse-Hong Wu, Hsinchu City (TW);
Shih-Hsin Chen, Hsinchu County
(TW); Shih-Ta Hung, Taoyuan
County (TW); KuanYu Lai,
Changhua County (TW); Tai-Liang
Lin, Keelung City (TW);
Ping-Sheng Chen, Chiayi County
(TW)

Correspondence Address:
THOMAS, KAYDEN, HORSTEMEYER & RIS
LEY, LLP
600 GALLERIA PARKWAY, S.E., STE 1500
ATLANTA, GA 30339-5994

(73) Assignee: MEDIATEKINC., Hsin-Chu (TW)

(21) Appl. No.: 12/032.722

(22) Filed: Feb. 18, 2008
Related U.S. Application Data

(60) Provisional application No. 60/890,204, filed on Feb.
16, 2007.

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/112: 711/E12.001
(57) ABSTRACT

A buffer management method is provided, particularly adapt
able in an optical disc drive to access an optical disc. One or
more data blocks are recorded to the optical disc in response
to received write commands. Data blocks corresponding to
the write commands are first buffered in a buffer of the optical
disc drive. Thereafter, one or more write tasks may be orga
nized based on the buffered write commands, each associated
with a group of data blocks having consecutive destination
addresses. A recording operation can be scheduled based on
those write tasks, and the recording operation is performed to
record the data blocks to the optical disc.

Optical
disc drive 120

122 Processor

Host
computer

Memory device

110

#RHWHDw

126

US 2008/02O1522 A1 Aug. 21, 2008 Sheet 1 of 19 Patent Application Publication

(LHV CI?LVIERI) I "OIH
09. I

US 2008/0201522 A1 Aug. 21, 2008 Sheet 2 of 19 Patent Application Publication

BZ * OIH

JOSS900 IJZZI
0ZI

US 2008/02O1522 A1 Aug. 21, 2008 Sheet 3 of 19 Patent Application Publication

QZ "OIH

Patent Application Publication Aug. 21, 2008 Sheet 4 of 19 US 2008/02O1522 A1

i :

CN v - CN -
-- - -- - I -

Patent Application Publication Aug. 21, 2008 Sheet 5 of 19 US 2008/0201522 A1

s

to CN ym H | CN ()
---- -- -- -- sease:

s

Patent Application Publication Aug. 21, 2008 Sheet 6 of 19 US 2008/0201522 A1

M

.9
É
al

r

s
Z.

3.

Patent Application Publication Aug. 21, 2008 Sheet 7 of 19 US 2008/02O1522 A1

s

Patent Application Publication Aug. 21, 2008 Sheet 8 of 19 US 2008/02O1522 A1

s

Patent Application Publication Aug. 21, 2008 Sheet 9 of 19 US 2008/02O1522 A1

Initializing buffering
601 operation

Receiving a write 603
command FW

Block reception 605

y R 609

ode t- calculatio

More blocks
to receive 2

611

No

Exiting buffering 613
operation

FIG. 6a

Patent Application Publication Aug. 21, 2008 Sheet 10 of 19 US 2008/0201522 A1

621

Initializing
block reception

623 629

A buffered NNo Insufficient Cache release
Quffer capacity 2 procedure block hit?

Yes 62 5 No

Block allocation 631

633

635

Updating the Creating the
Write task Write task

639

Updating the latest list

Exiting the
block reception 640

FIG. 6b

Patent Application Publication Aug. 21, 2008 Sheet 11 of 19 US 2008/02O1522 A1

Initializing
mode detection

What
is current

641

Incoming
block has
continuity 2

Set random
mode

Exit mode
detection

FIG. 6C

653

Set sequential
mode

Patent Application Publication Aug. 21, 2008 Sheet 12 of 19 US 2008/0201522 A1

Initializing priority 661
detection

Counting hit rates 663

Counting total blocks in 665
the write tasks

Counting PUH distances 667

Calculating priority value
each Write task

FIG. 6d

669

Patent Application Publication Aug. 21, 2008 Sheet 13 of 19 US 2008/02O1522 A1

Hit rate Ox)

Wa

Number of s
data blocks (x) O Priority ralue

Wb

PUH distance (X)

WC

FIG. 6e

Patent Application Publication Aug. 21, 2008 Sheet 14 of 19 US 2008/02O1522 A1

701
Initializing

buffering operation

Receiving a read 703
command HR

713
Cache
release
procedure

Insufficient
buffer capacity2

Acquiring the Acquiring the
block from the block from the 715
buffer optical disc

7

Renewing the Updating the 717
latest list latest list

719
More

blocks to
read?

NO

Exiting the 721
buffering procedure

FIG. 7

Patent Application Publication Aug. 21, 2008 Sheet 15 of 19 US 2008/02O1522 A1

Initializing

803
Capacity <
capacity

threshold 2

Yes

Idle time D
idle

threshold 2

Duration >
duration

threshold 2

No

809
Number of

write tasks >
task threshold 2

Yes

No 811 813

Exit criteria

FIG. 8

Patent Application Publication Aug. 21, 2008 Sheet 16 of 19 US 2008/0201522 A1

Initializing the
recording operation

What mode
it is ?

901

905 913

Sequential mode
recording procedure

Picking a write
task by priority value

907

Copying to ring
buffer

909

Encoding and
recording

More
Write tasks to
be recorded?

915

Exiting the recording
operation

FIG. 9

Patent Application Publication Aug. 21, 2008 Sheet 17 of 19 US 2008/02O1522 A1

A01
Initializing the

recording procedure

Recording a block

s defect found 2

A03

Burning the
block to
spare area

A07

More blocks
to burn?

No

Exiting the
recording procedure

FIG. 10

A11

Patent Application Publication Aug. 21, 2008 Sheet 18 of 19 US 2008/02O1522 A1

A01
Initializing the

recording procedure

Recording a block

Yes Updating a
Is defect found defect list

blocks to be
ecorded 2

No

Recording the
defect list

Exiting the
recording procedure

FIG 11

A08

A09

A10

A11

Patent Application Publication Aug. 21, 2008 Sheet 19 of 19 US 2008/02O1522 A1

r

r

n
-H

O

-H

--

a
g
< r

US 2008/0201522 A1

BUFFERMANAGEMENT METHOD AND
OPTICAL DISC DRIVE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Provi
sional Application No. 60/890,204 filed on Feb. 16, 2007.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The invention relates to optical disc drives, and in
particular, to buffer management in random access optical
discs.

0004 2. Description of the Related Art
0005 Writable optical disc technologies have been highly
developed, and there are various standards such as CD-R,
CD-RW, DVD-R, DVD+R, DVD-RW, DVD+RW,
DVDRAM, HDDVD and Blue-Ray that allow data to be
recorded onto a disc. FIG. 1 shows a conventional optical disc
drive 120 coupled to a host computer 110. The host computer
110 may issue certain read or write commands to access an
optical disc (not shown) installed in the optical disc drive 120.
A typical read command comprises one or more destination
addresses where data blocks are requested, and a write com
mand also comprises specific one or more destination
addresses where one or more data blocks are designated to be
recorded thereto. Data blocks to be recorded may be sent from
the host computer 110 in conjunction with the write com
mands. The optical disc drive 120 basically comprises a pro
cessor 122, a memory device 124 and a driving module 126.
The memory device 124 is usually separated into two areas, a
read buffer 130 and a write buffer 132. The read buffer 130
buffers data blocks acquired from the optical disc in response
to the read commands. On the other hand, the write buffer 132
buffers data blocks to be recorded onto the optical disc. The
driving module 126 include a mechanical unit comprising a
pickup head (PUH), a motor and other controlling means (not
shown) to perform physical data access of the optical disc.
0006 Due to the spinning nature of the optical disc, a
conventional recording operation can be performed easily in
sequential mode, whereby data blocks buffered in the write
buffer 132 are recorded sequentially according to their desti
nation addresses. Some random access technologies have
been proposed, allowing random recording of the optical disc.
However, random recording is very inefficient for the driving
module 126 because track seeking and locking consumes
significant time. To improve efficiency, various buffer man
agement methods are provided. For example, the write buffer
132 may be divided into a plurality of sections 134 each
corresponding to a destination address. Each section 134
serves as a ring buffer to cache data blocks of adjacent desti
nation addresses. In other word, it is better that buffered data
blocks should have continuous destination addresses. In this
way, data blocks with consecutive destination addresses have
higher probability to be gathered, so the mechanical opera
tions of track seeking andlocking can be reduced to Smoothen
randomness of PUH moves. Since the scale of disc address is
much larger than the buffer size, the effect is limited under

Aug. 21, 2008

very random and frequent disc access operations. It is there
fore desirable to propose an enhanced buffer management
method.

BRIEF SUMMARY OF THE INVENTION

0007 An embodiment of a buffer management method is
provided, particularly adaptable in an optical disc drive to
access an optical disc. One or more data blocks are recorded
to the optical disc in response to received write commands.
Data blocks corresponding to the write commands are first
buffered in a buffer of the optical disc drive. Thereafter, one or
more write tasks may be organized based on the buffered
write commands, each associated with a group of data blocks
having consecutive destination addresses. A recording opera
tion can be scheduled based on those write tasks, and the
recording operation is performed to record the data blocks to
the optical disc.
0008 To organizing the write commands, a write list is
provided, comprising entries of each data block allocated in
the buffer. Entries of data blocks having consecutive destina
tion addresses are linked to form at least one link list accord
ing to the write list, and write tasks are established from the
link list, each write task comprising allocation of a first data
block.
0009 Furthermore, a free list may also be provided to
maintain unallocated entries of the buffer. When buffering
data blocks, the write list is scanned to determine whether an
incoming data block has a previous copy in the buffer. If so,
the previous copy is overwritten by the incoming data block.
Otherwise, a free entry is acquired from the free list to store
the incoming data block. Thereafter, it is determined whether
the incoming data block has a destination address consecutive
to those contained in an existing write task. If so, the existing
write task associated with the incoming data block is updated.
Otherwise, a new write task is created for the incoming data
block.
0010 Furthermore, a latest list is provided to maintain
entries of data blocks associated with the latest certain
amount of read and write commands received by the optical
disc drive. While buffering the data blocks, a read command
may be received, and designated to read a data block from a
destination address of the optical disc. It is determined
whether the latest list is hit according to the destination
address. If the latest list is hit, the data block is output from the
buffer to respond to the read command, and the latest list is
renewed at the same time. On the contrary, if the latest list is
not hit, the optical disc is read to acquire the data block, and
the latest list is updated with an entry where the data block is
buffered.
0011. In a further embodiment, to schedule the write
operation, hit rates of each write task, numbers of data blocks
contained in each write task, and pick up head (PUH) load
ings according to first data blocks destination addresses of
each write task are counted. A priority order of the write tasks
is arranged based on their hit rates, number of data blocks and
PUH loadings. The write operation is performed by executing
the write tasks following the priority order. Execution of a
write task comprises steps of encoding data blocks into error
correction code (ECC) blocks and burning them onto a des
tination address on the optical disc. Upon completion of the
write operation, successfully burnt data blocks are flushed
from the buffer.
0012. In a further embodiment, when a write task is
executed, a defect list is provided, maintaining entries of data

US 2008/0201522 A1

blocks having destination addresses where defects exist. It is
determined whether an error is found when burning an ECC
block. If an error is found, the entry where a data block
corresponding to the ECC block is buffered is added into the
defect list. Upon completion of all prioritized write tasks, a
further write task may be processed to burn the data blocks
listed in the defect list.
0013 Another embodiment is the optical disc drive imple
menting the buffer management method. A detailed descrip
tion is given in the following embodiments with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The invention can be more fully understood by read
ing the Subsequent detailed description and examples with
references made to the accompanying drawings, wherein:
0015 FIG. 1 shows a conventional optical disc drive;
0016 FIG. 2a shows an embodiment of an optical disc
drive according to the invention;
0017 FIG. 2b is a flowchart of an embodiment of buffer
management method according to the invention;
0.018 FIG. 3a shows an embodiment of a write list and a
free list;
0019 FIG. 3b shows another embodiment of a write list:
0020 FIG. 4 shows an embodiment of a link list;
0021 FIG. 5a show embodiments of a buffer using a for
ward type link list;
0022 FIG.5b shows another embodiment of a write list:
0023 FIG. 6a is a flowchart of an embodiment of a buff
ering operation;
0024 FIG. 6b is a flowchart of data block reception when
perform the buffering operation;
0025 FIG. 6c is a flowchart of mode detection when per
form the buffering operation;
0026 FIG. 6d is a flowchart of priority determination
when perform the buffering operation;
0027 FIG. 6e is an embodiment of calculating priority
value of the invention;
0028 FIG. 7 is a flowchart of a read command handling
process;
0029 FIG. 8 is a flowchart of recording start condition
determination;
0030 FIG. 9 is an exemplary flowchart of a recording
operation;
0031 FIG. 10 is a flowchart of a conventional defect han
dling process;
0032 FIG. 11 is a flowchart of an embodiment of a defect
handling process; and
0033 FIG. 12 shows and embodiment of a defect list.

DETAILED DESCRIPTION OF THE INVENTION

0034. The following description is of the best-contem
plated mode of carrying out the invention. This description is
made for the purpose of illustrating the general principles of
the invention and should not be taken in a limiting sense. The
scope of the invention is best determined by reference to the
appended claims.
0035 FIG. 2a shows an embodiment of an optical disc
drive according to the invention. While a processor 122 pro
cesses read and write commands #R and #W issued from the
host computer 110, a buffer 140 is deployed in the memory
device 124 to temporarily store associated data blocks. Data
blocks requested by the read command iR are referred to as

Aug. 21, 2008

read data block #D, whereas those associated with write
commands #W are write data blocks iD. The buffer 140 is
partitioned into several blocks. Each block serves as a unit for
data storage. And several blocks are collected as a section.
The buffer 140 serves as a cache to store the read data block
#D and the write data block HD, and in the embodiment, a
buffer management system and approach is disclosed to opti
mize a recording operation using management tables, such as
a write list 136, a latest list, a defect listanda free list 138. The
driving module 126 is accordingly controlled to perform the
recording operation. When a start recording condition is met,
the data blocks in the buffer 140 are transferred and recorded
to the optical disc.
0036. When the optical disc drive 120 receives a write
command #W designated to record one or more write data
blocks HD onto the optical disc, the write data blocks #Dr.
are first buffered in the memory device 124 before the physi
cal recording operation is performed. And the write list 136,
the latest list and free list 138 are updated accordingly. The
write list 136 serves as a lookup table for maintaining rela
tionship of all write data blocks iD, buffered in the buffer
140. Likewise, the free list 138 serves as another lookup table
containing unallocated blocks of the buffer 140 that direct to
free spaces or available spaces. Furthermore, a latest list 137
is provided to maintain blocks of latest accessed data blocks
in the buffer 140, and a defect list 139 is used to maintain
blocks of those failed to be recorded onto the optical disc. The
write list 136, latest list 137, free list 138 and defect list 139
may be established by tables, but other data structure such as
link list also adaptable. Implementations of the proposed
architecture of FIG. 2a are further described in the embodi
ments hereafter.

0037 FIG. 2b is a flowchart of an embodiment of buffer
management method according to the invention. The funda
mental steps are summarized into steps 201 to 207. In step
201, the optical disc drive 120 is initialized. After initializa
tion, a buffering operation is recursively processed in step
203. The buffering operation buffers write data blocks iD.
transferred from the host 110 according to the write command
#W. Meanwhile, the buffering operation also buffers read
data blocks #D transferred from the optical disc according to
the read commandiR. In step 205, a start recording condition
is checked. Only when the start recording condition is met,
the optical disc drive 120 enters a physical recording opera
tion in step 207. Otherwise the process loops back to step 203.
0038. While the buffering operation is being processed,
the host computer 110 may randomly issue read commands
iR or write commands #W designated to request certain read
data blocks iD from the optical disc, or to record write data
blocks #D onto the optical disc. The read and write data
blocks iD and iD may be buffered into buffer 140. And the
write list 136, latest list 137 and free list 138 are updated
accordingly for maintenance thereof. It is well known, con
tinuity of data blocks is excessively desirable when perform
ing the recording operation. In the embodiment, a recording
operation which Successively record at least one write data
blocks #D onto consecutive destination area of the optical
disc is defined as a disc write task. To minimize the seeking
operation and to maximize performance of a recording opera
tion, the processor 122 collects unrecorded data blocks hav
ing consecutive destination addresses and Successively
records those collected data blocks onto the optical disc in a
disc write task.

US 2008/0201522 A1

0039 Specifically, the write list 136 is created from the
buffer 140, and contents of write list 136 are utilized to
assistance in establishing the disc write tasks. FIG.3a shows
an embodiment of a write list 136a and a free list 142. In FIG.
3, a plurality of data blocks are stored in the buffer 140. The
labels of A, B and C in each block denotes destination
addresses of the certain write data blocks #Dr. As shown,
there are pluralities of write data blocks #D stored in the
buffer 140, in which those of consecutive destination
addresses are categorized into one disc write task. As an
example, addresses denoted as A, A+1 and A+2 are discov
ered and categorized into a first disc write task. Likewise, the
write data blocks #D of destination addresses denoted as B
and B+1, and C, C+1 and C+2 can construct two other disc
write tasks. It is shown that the write list 136a includes buffer
index and corresponding destination addresses of the write
data blocks #Dr. Although the write data blocks #D may be
distributed randomly in different blocks of the buffer 140.
With the write list 136a, when an incoming write data block
#D is received, it can be easily determined whether the
incoming write data block HD, corresponding to any of the
existed disc write tasks. As shown, free blocks or available
blocks of the buffer 140 denoted as “FREE are maintained
by the free list 138.
0040 FIG. 3b shows another embodiment of a write list
136b. The write list 136b is a sorted version of write list 136a
in FIG. 3a, in which elements are rearranged based on desti
nation addresses of the write data block #Dr. Since the write
list 136b is implemented in the memory device 124, the cost
of sorting the contents is ignorable while manageability of the
write list 136b is thereby increased. For example, if an incom
ing write data block #D-denoted as "A+3” is input, one of the
free entries in the free list 138, such as "FREE1’, is assigned
for storage of it, and in the write list 136b, an additional
column is appended to record its destination address "A+3”
and a pointer pointing to its newly assigned entry. In another
embodiment, the write list 136b with the newly added entry
“A+3” could be further sorted to be an updated write list.
0041 FIG. 4 shows an embodiment of a link list 400. In
practice, the data structure of the buffer 140 can be imple
mented with a link list. A link list has various types, basically
a forward type and a backward type. In a link list of forward
type, each element itself is associated with a next index point
ing to an address where the next element is located. Alterna
tively, in a link list of backward type, each element itself is
bound with a previous index to indicate where a previous
element is located. The advantage of link list is, there is no
need to sort the elements, and in addition, costs of adding or
removing an element is almost ignorable since only relative
indices need to be changed. Practically, the forward and back
ward types can be simultaneously implemented to form a
bi-directional link list.

0042. The architecture of the link list can be adapted to
enhance the embodiments in FIGS. 3a and 3b. FIG. 5a show
embodiments of a buffer 140 using a forward type link list.
The write list 150a maintains several disc write tasks by
recording their task entries. A task entry indicates where a
first write data blockiD of the disc write task is buffered. In
the buffer 140, each block is bound with a pointer linking to
another block. For example, for the disc write task A, its task
entry points to where write data block HD, with a beginning
designation addresses A locates, and the write data block HD,
A has a pointer linking to a Successive write data block HD,
with a designation addresses A+1. Likewise, the pointer in

Aug. 21, 2008

write data block #Dr. A+1 links to a following write data
block HD, with another designation addresses A+2. Free
spaces in the buffer 140 can also be managed in this way. The
free list 144 only records an entry indicating a first free block,
and through a pointer, its successions are linked. The link list
structure facilitates data additions and removals, while com
plexities of managing the write list 150a and free list 144 are
also reduced.
0043 FIG. 5b shows another embodiment of a write list
150b. A backward type link list is used, and the mechanism is
very similar to the embodiment of FIG. 5a except for the
pointer directions. The task entry in write list 150b indicates
where a last write data block HD, of the disc write task is
buffered. Taking disc write task Aas an example, the last write
data block HD, with destination address A+2 is located at
block index “2, and the write data block #Dr. A+2 has a
pointer linking to a previous write data block HD, A+1.
Likewise, the pointer in the write data block iDA+1 links to
write data block iD. A.
0044 FIG. 6a is a flowchart of an embodiment of a buff
ering operation. The buffering operation in step 203 of FIG.
2b, in detail, further comprises a plurality of steps. In step
601, when the buffering operation of step 203 is initialized,
write commands #W are randomly issued from the host com
puter 110 and handled in different procedures. Step 603 dis
cusses when a specific write command #W is received, a
block reception procedure is performed in step 605 to store its
corresponding write data blocks #D into the buffer 140. A
detailed embodiment of the block reception is described in
FIG. 6b.
0045. Upon completion of receiving a write data block
#D, a mode detection procedure is triggered in step 607. In
the embodiment, the optical disc drive 120 supports two
modes when buffering the write data block iD and the read
data blocks #Dr. One is the conventional sequential mode,
and the other is a random mode. Assume the arrangement of
all buffered write data block iD conforms to a conventional
sequential structure, it is more efficient to record the write
data blocks HD in sequential access mode. However, when
destination addresses of the buffered write data blocks #D.
are not continuous, the recording operation is more complex,
thus, it is processed in random mode in which various
approaches such as disc write tasks are used to optimize the
performance. The determination of the modes is described in
an embodiment in FIG. 6c.
0046. If random mode is set in step 607, a plurality of disc
write tasks will be established. To schedule the disc write
tasks, priorities of each disc write task are required. A priority
calculation process is therefore executed in step 609 to pri
oritize all disc write tasks. The priorities may be determined
by various buffer statuses of each disc write task, and a
detailed embodiment is described in FIG. 6d.
0047 One write command #W may be associated with
more than one write data block iD. In step 611, it is deter
mined whether write data block #D-corresponding to a write
command #W are pending buffered in the buffer 140. If yes,
the process loops back to step 605 for buffering another data
blocks. Otherwise, the buffering operation is concluded, fol
lowed by a start recording condition determination process as
described in step 205 of FIG.2b.
0048 FIG. 6b is a flowchart of data block reception when
performing the buffering operation. The block reception pro
cedure as described in step 605 of FIG. 6a is initialized in step
621 to handle an incoming write data block iD. In step 623,

US 2008/0201522 A1

the processor checks the write list 136 to determine whether
the incoming write data block HD, has a previous copy in the
buffer 140. If so, overwriting is required, so step 625 is
processed, whereby the processor overwrites the previous
copy by the incoming write data block #Dr. Otherwise, a free
block should be allocated to store the incoming write data
block iD. Before allocating the free entry, capacity of the
memory device 124 is checked in step 627. If there is not
enough space left for further storage, a release procedure is
triggered in Step 629 to release more spaces for storing data.
A cache policy may be previously defined, whereby the pro
cessor releases a certain blocks accordingly to acquire addi
tional capacity. There already exist various algorithms to
release cached data depending on usages such as hit rates or
idle time, so detailed example is not introduced herein. After
the capacity is assured available, step 627 is followed by step
631, the block allocation step. In step 631, the processor 122
acquires a free block from the free list 138 to store the incom
ing write data block #Dr.
0049. In step 633, it is determined whether the incoming
write data block #D-hits an existing disc write task. Accord
ing to the write command #W transmitted with the incoming
write data block HD, a particular destination address where
the write data block iD. is bound to can be deduced. By
checking the write list 136, the processor 122 can identify
whether the particular destination address Successive to or
precedes whatever previously was buffered in the buffer 140.
For example, if the incoming write data block HD, has a
destination address consecutive to those contained in an exist
ing disc write task, step 637 is processed, in which the exist
ing disc write task should be updated to include the incoming
write data block iD.
0050. If the incoming write data block iD having desti
nation address allocated between the end of one existing disc
task and the beginning of another existing disc write task, the
two disc write tasks are therefore merged into one new disc
write task. On the other hand, in step 635, if there is no
adjacency detected, a new disc write task may be created in
the write list 136 to handle the incoming write data block
#Dr. As a Supplement example, in step 625, the write list may
not need an update, though, but its last access time may be
refreshed in order to count tasks Such as time-outs or hit rate
of the disc write task. Upon completion of buffering the
incoming write data block HD, a latest list 137 is also
updated in step 639.
0051 Similar to maintenance of the write list 136 and free

list 138, a latest list 137 is established as a read cache, record
ing entries of data blocks associated with latest certain
amount of received read and write commands HR and #W. As
an example, the latest list 137 may utilize the described link
list architecture in FIG. 5a, with additional pointers imple
mented in the buffer 140 to link certain write data blocks iD.
and read data blocks iD. Therefore, the write list 136 and the
latest list 137 are both deployed on the basis of the buffer 140.
In other words, the architecture allows one buffer 140 to
function as read and write caches at the same time. In step
640, the block reception is concluded.
0052 FIG. 6c is a flowchart of mode detection when per
forming the buffering operation. In step 641, the mode detec
tion procedure as described in step 607 of FIG. 6a is initial
ized. Various conditions are considered to decide which mode
to set. In step 643, the processor 122 determines the current
mode. If the current mode is the sequential mode, the process
jumps to step 649. Otherwise, step 645 is processed, in which

Aug. 21, 2008

a total of disc write tasks are counted. If there are more than
one disc write tasks, random mode is set in step 651. In step
647, if there is no disc write tasks left in the buffer 140, the
sequential mode is set in step 653. In step 649, if there is only
one disc write task left, the last write data block #D-buffered
in the block reception procedure is checked whether the block
belongs to the only one disc write task. If not, a new disc write
task is created, so the mode should be set to random mode in
step 651. In step 651, if the previous mode is sequential mode,
the processor 122 creates the write list 136, the latest list 137.
the free list 138 accordingly. Otherwise, step 649 is still
followed by step 653. However, the buffer reception may be a
continuous process, so steps 605 and 607 may be executed in
parallel. In this case, whether the mode is set, should be
dependent on the latest status of the buffer 140. Steps 651 and
653 are followed by step 655, in which the mode detection
procedure is concluded after the mode is set. In another
embodiment, in step 645, if there are one or more disc write
tasks, then goes to step 651, random mode is set in step 651.
0053 FIG. 6d is a flowchart of priority determination
when performing the buffering operation. As described in
step 609 of FIG. 6a, priority calculation is required for sched
uling all of the disc write tasks to determine the sequence of
recording of those disc write tasks. In step 661, the priority
calculation procedure is initialized. In step 663, hit rates of
each disc write task are counted. Any action involved in any
write data block HD, in a disc write task shall count as a hit,
Such as overwriting, reading or adding a write data block
#Dr. A buffered write data block #D may be requested by a
read command HR before it being recorded, so the reading
operation is also counted in the hit rate. In one embodiment,
the hit rates can further be categorized into write and read
types. In the write list 136, write hit rates are counted per disc
write task, and for latest list 137, read hit rates may be counted
per read data block #D.
0054. In step 665, for each disc write task, the total number
of data blocks is considered as a factor to determine the
priority. Physically, one disc write task corresponds to one
sequential recording operation for the driving module 126, in
which track seeking and locking are performed once, so it is
more preferable and efficient to have more data blocks
recorded at one time. The counted numbers can directly indi
cate potential performance of a disc write task, thus is taken as
a factor for establishing priority.
0055. In step 667, distances between the currently position
of the PUH and task destination area on the optical disc are
also considered as a factor of their priorities. A task destina
tion area is exactly the destination physical address of the first
write data block iD. in a disc write task. When a disc write
task is to be recorded, the distance the PUH moves also affects
the performance. It is desirable to schedule an optimized
recording operation so that the PUH moves as less as possible
to complete all disc write tasks. Thus, the PUH distances are
factors of their priorities. In step 669, priority value of each
disc write task are calculated based on hit rates, number of
data blocks iD, and PUH distances. The method to calculate
these factors can be dependent on predetermined perfor
mance policies defined in firmware of the optical disc drive
120, and the implementation is not limited as described in the
embodiment.

0056 FIG. 6e is an embodiment of calculating priority
value of the invention. The factors of hit rates, task length and
PUH distances are respectively multiplied with weighting
factors Wa, Wb, WC, and then summed together to generate

US 2008/0201522 A1

the priority value. The weighting factors Wa, Wb. We are
adjustable depending on the actions of host computer 110.
For example, if host computer 110 issues lots of write com
mands #W with consecutive destination addresses whereby
number of data blocks #D of a disc write task is big enough,
the weighting factor Wb could be set up to equal to weighting
factor WC, and the weighting factor Wb may greater than
weighting factor Wa. In another embodiment, the weighting
factors Wa, Wb, We can be modified by processor 122. And
the weighting factors Wa, Wb, We can be optimized via
checking the data throughput of the optical pick head.
0057 FIG. 7 is a flowchart of a read command handling
process. In step 203 of FIG. 2b, the buffering operation is
introduced, and step 603 of FIG. 6a already discussed a write
command #W handling process. Alternatively the buffering
operation corresponding to the read command HR is intro
duced in step 701. The buffering operation as step 203 is
initialized in step 701. In step 703, a read command iR is
received by the optical disc drive 120, requesting for a certain
read data block HD from a specific address on the optical
disc. In step 705, the processor 122 first checks whether the
read data block #D is already cached in the buffer 140. Items
maintained in the latest list 137 are checked, in which the read
data block #D is acquired from the buffer 140 and transferred
to the host computer 110. Generally, hit rates and time-outs
are factors used by cache policies. When a block is hit, its
usage history Such as last access time or access frequency is
renewed. Therefore, after step 707, the entry corresponding to
the read data block #D in the latest list 137 is renewed in step
T09.

0058. On the other hand, if the read data block iD is not
hit in the buffer 140, it shall be directly acquired from the
optical disc. In step 715, a reading operation is performed to
acquire the read data block HD from the optical disc, and
stored in the buffer 140. Then in step 717, the latest list 137 is
updated accordingly. Before buffering the accessed read data
blocks iD, the capacity of the buffer 140 may be checked in
step 711. If capacity is not enough, a cache release procedure
is performed in step 713. In other word, if capacity is not
enough for buffering current reading data blocks from the
disc, the processor 122 would search the blocks according to
the latest list 137 and the write list 136 to release the blocks
that is not write data blocks. A read command HR may request
more than one read data block #D, so in step 719, it is
determined whether all requested read data block #D are
acquired. If not, the process loops back to step 705. Upon
completion of the read data blocks acquiring read data block
iD, the buffering operation is concluded in step 721.
0059 FIG. 8 is a flowchart of recording start condition
determination. As described in FIG.2b, step 205 determines
whether a recording operation can be initialized. The record
ing start condition comprises considerations of various fac
tors, such as capacity usages of the buffer 140, an idle time
since last activity of the buffer 140, duration since the last
recording operation, and total number of disc write tasks.
0060. In step 801, the recording start condition determi
nation of step 205 is triggered. In step 803, the available
capacity of the buffer 140 is compared with a capacity thresh
old. A recording operation may be triggered if the write data
block #D.buffered therein are sufficient for recording, so the
start recording condition is deemed satisfactory when the
available capacity of buffer 140 is smaller than the capacity
threshold, and the process jumps to step 813. In step 813, the
processor determines that disc drive 120 is ready to perform

Aug. 21, 2008

the recording operation. The capacity threshold varies with
mode. Generally, in random mode, it is desirable to gather
more write data blocks iD, before recording because the
consecutiveness may be thereby increased, so the capacity
threshold is set to a smaller value in random mode than that in
sequential mode.
0061. In step 805, the idle time is compared with an idle
threshold. The idle time may be specifically referred to as a
period from last activity of the buffer 140, such as data buff
ering and data output, is conducted. In sequential mode, logi
cally there is only one disc write task, so that the buffered
write data blocks #Dare ready to be recorded at any time. In
random mode, however, since the complexity of a recording
operation is higher, it is desirable to wait longer to allow more
write data blocks iDito be collected. Thus, the idle threshold
is set to a higher value in random mode than that in sequential
mode.
0062. In step 807, the duration since the last recording
operation compares with a duration threshold. Normally, the
buffered write data blocks #D are periodically flushed into
the optical disc if no other specific event occurs. The duration
threshold value is also dependent on the mode. In the embodi
ment, the duration threshold is set to a higher value in random
mode than that in sequential mode.
0063. In step 809, the numbers of disc write tasks are
counted. The number is irrelevant in sequential mode because
there is only one disc write task. In random mode, however,
the tasks number is proportional to randomness of the buffer
140. Also, the capacity of write list 136 may be limited to
manage a certain number of disc write tasks, so a task thresh
old is set. When the number of disc write tasks exceeds the
task threshold, the recording operation is triggered in step
813.

0064. If all of the criterions from step 803 to 809 are not
met, the processor 122, in step 811, determines that disc drive
120 is not yet ready to perform the recording operation. Then,
step 815 concludes the criterion determination step.
0065 FIG. 9 is an exemplary flowchart of a recording
operation. When the buffering operation is complete, and at
least one of the recording start conditions is met, the record
ing operation of step 203 is initialized in step 901. In step 903,
the mode is detected. For sequential mode, the case is simpler,
whereby a conventional sequential recording operation is
performed in step 913. The buffered write data blocks iD. in
the buffer 140 are recorded and flushed if no erroris detected.
0066. If the mode is random mode, the disc write tasks are
handled one by one in steps 905 to 911. In step 905, a disc
write task having the highest priority value is first selected for
recording. In another embodiment, disc write tasks having
priority value exceeding a threshold are selected for record
ing. And the threshold is adjustable according to the status of
the buffer 140, such as available capacity of buffer 140, and/or
total numbers of existing disc write tasks. If the available
capacity of buffer 140 is low, the threshold should be adjusted
to be lower. If the total numbers of existing disc write tasks is
high, the threshold should be adjusted to below. Step 907 is an
optional step, in which a ring buffer may be provided in the
memory device 124 as a second level cache. Write data blocks
iD of the selected disc write task to be recorded may be
copied to the ring buffer whereby further steps are processed.
Alternatively, the ring buffer may not be necessary, and the
write data blocks iD, are directly processed in the buffer
140. In step 909, the write data blocks #D are individually
encoded into error correction code (ECC) blocks and sequen

US 2008/0201522 A1

tially recorded onto destination area of the optical disc. The
encoding of the ECC blocks varies with standards, and
detailed information is well know for the person skilled in the
art, so the embodiments are not described herein.
0067. In step 911, upon completion of a disc write task, the
processor 122 determines whether more disc write tasks are
to be processed. If so, the process loops to step 905 to select
and process a disc write task of highest priority among the
unprocessed ones. If all disc write tasks are done, the record
ing operation is concluded in step 915.
0068. In step 909, when recording the write data blocks
#D, defects may be found on the optical disc where data
could not be correctly recorded. Conventionally, write data
blocks #Dare written one by one. When a defect is found at
where a write data block iD. should be recorded, the PUH
moves to a spare area to record the write data block HD, and
moves back to an address Successive to the defected address
to recorded further write data blocks iD. Alternatively,
when defects are detected, the write data blocks #D are
copied to another buffer, and another disc write task should be
scheduled to rewrite them.

0069 FIG. 10 is a flowchart of a conventional defect han
dling process. In step A01, a recording procedure for a disc
write task is initialized. Write data blocks #Dofa disc write
task are sequentially processed through steps A03 to A09. In
step A03, one write data block #D is recorded to the optical
disc, and in step A05, the recorded write data block iD are
checked. If an error is found, step A07 is processed, in which
the PUH moves to a spare area to rewrite the write data block
#Dr. Alternatively, the write data block iD may be copied
to another buffer and wait for rewriting. The spare area is
preserved space for defect management during recording pro
cedure, and the implementation varies with standards. When
the write data block iD is successfully recorded onto the
spare area, the PUH moves back to a successive address
where the defect is detected to process a next write data block
iD. In step A09, it is determined whether all write data
blocks #D in the disc write task are recorded. If not, the
process loops to step A03. Otherwise, the recording proce
dure is concluded in step A11.
0070. Obviously, step A07 becomes a performance bottle
neck because when the PUH moves to and from the spare
area. If defects are multiple, complex mechanical burdens are
induced by frequent track seeking and locking, therefore seri
ously degrade the performance. Alternatively, additional
bufferspaces may be consumed to buffer the write data blocks
#D in need of rewriting.
(0071. To improve inefficient design, a defect list 139 is
provided in the invention to maintain blocks of failed to be
recorded onto the optical disc. FIG. 11 is a flowchart of an
embodiment of a defect handling process. Steps A01, A03
and A05 are similar to those in FIG. 10, whereby a write data
block #D is recorded and verified. In step A08, if a defect is
found on the destination area, the PUH is not moved to the
spare area. On the contrary, the processor 122 adds the block
of the write data block HD to the defect list 139. Thereafter,
steps A09 is proceeded, continuing to process all of the write
data block iD. in the disc write task. In this way, the PUH
continuously processes all write data blocks #D of a disc
write task without interruption and overheads induced by
moving to and from the spare area. All the write data blocks
#D, failing to be recorded due to defects are collected in the
defect list 139 to form an extra disc write task. The write data
blocks iD. failed to record on their destination area are

Aug. 21, 2008

reallocated to the spare area with continuity. In step A10, an
additional recording operation as step 909 can be triggered to
record the write data blocks HD to the spare area according
to the extra disc write task. Thereafter, the recording proce
dure is concluded in step A11. In this way, no matter how bad
the optical disc is damaged, continuity of the recording opera
tion is almost unaffected.
0072 FIG. 12 shows and embodiment of a defect list 139.
The link list structure may also be used to construct the defect
list 139. Whena defect is found at address A+1, the defect list
139 creates an entry pointing to the write data block iD of
A+1. Thereafter, another defect is found when recording a
write data block iD, to C+1, and the defect list 139 links the
write data block iD of address A+1 to the write data block
#D of address C+1. Yet, C+2 is found defective, so the link
list is further extended. Although the concept of a link list is
visualized as FIG. 12, a practical implementation may not
need to be identical to what is shown.
0073. In the embodiments, a so called data block may have
a basic unit in sectors or clusters, which are not exactly
limited. The write list 136, latest list 137, free list 138 and
defect list 139 may be stored in the memory device 124 or
other devices. While the invention has been described by way
of example and in terms of preferred embodiment, it is to be
understood that the invention is not limited thereto. To the
contrary, it is intended to cover various modifications and
similar arrangements (as would be apparent to those skilled in
the art). Therefore, the scope of the appended claims should
be accorded the broadest interpretation so as to encompass all
Such modifications and similar arrangements.
What is claimed is:
1. A buffer management method adaptable in an optical

disc drive to access an optical disc, comprising:
receiving write commands designated to record one or
more data blocks onto the optical disc;

buffering the data blocks in a buffer of the optical disc
drive;

organizing the write commands to establish at least one
write task each associated with a group of the buffered
data blocks, the group having consecutive destination
addresses;

scheduling a recording operation according to the write
tasks:

performing the recording operation to record the group of
data blocks onto the optical disc.

2. The buffer management method as claimed in claim 1,
wherein the step of organizing the write commands comprise:

maintaining a write list of the buffer comprising entries of
where each data block are allocated;

scanning the write list to link entries of data blocks having
consecutive destination addresses into at least one link
list; and

establishing write tasks from the link lists, each write task
comprising allocation of a first data block.

3. The buffer management method as claimed in claim 2,
further comprising maintaining a free list containing entries
of free spaces in the buffer.

4. The buffer management method as claimed in claim 2,
wherein the step of buffering data blocks comprises:

scanning the write list to determine whether an incoming
data block has a previous copy in the buffer;

if so, overwriting the previous copy by the incoming data
block; and

US 2008/0201522 A1

if not, acquiring a free entry from the free list to store the
incoming data block.

5. The buffer management method as claimed in claim 4,
further comprising, when buffering the data blocks, releasing
a certainamount data blocks from the buffer based on a cache
policy if capacity of the buffer runs out.

6. The buffer management method as claimed in claim 3,
wherein the step of buffering data blocks further comprises:

determining whether the incoming data block has a desti
nation address consecutive to those contained in an
existing write task;

if so, updating the existing write task; and
if not, creating a new write task for the incoming data

block.
7. The buffer management method as claimed in claim 2,

further comprising maintaining a latest list comprising entries
of data blocks associated with the latest certain amount of
received read and write commands.

8. The buffer management method as claimed in claim 7.
wherein the step of buffering data blocks further comprises:

receiving a read command designated to acquire a data
block from a destination address of the optical disc;

determining whether the latest list is hit according to the
destination address;

if the latest list is hit, outputting the data block from the
buffer to respond to the read command, and renewing the
latest list;

if the latest list is not hit, outputting the data block from the
optical disc to respond to the read command, allocating
an entry to buffer the data block, and adding the entry to
the latest list.

9. The buffer management method as claimed in claim 2,
wherein the step of scheduling the recording operation com
prises:

counting hit rates of each write task:
counting numbers of data blocks contained in each write

task:
counting pick up head (PUH) distance to destination

addresses of each write task; and
prioritizing the write tasks based on their hit rates, number

of data blocks and PUH distances.
10. The buffer management method as claimed in claim 9.

wherein:
the recording operation comprises processing the write

tasks by their priorities, the processing of a write task
comprising encoding data blocks into error correction
code (ECC) blocks and burning them onto their destina
tion addresses of the optical disc; and

upon completion of the recording operation, flushing Suc
cessfully burnt data blocks from the buffer.

11. The buffer management method as claimed in claim 10,
wherein the execution of the write task further comprises:

maintaining a defect list comprising entries of data blocks
having destination addresses where defects are found;

detecting whether an error is found when burning a data
block; and

if the error is found, adding entry of the data block into the
defect list.

12. The buffer management method as claimed in claim 11,
wherein the recording operation further comprises, upon
completion of all prioritized write tasks, executing a further
write task to burn up data blocks listed in the defect list.

13. An optical disc drive operative to access an optical disc,
comprising:

Aug. 21, 2008

a memory device, comprising a buffer for storing data
blocks associated with incoming read or write com
mands;

a processor, processing the read and write commands and
Scheduling a recording operation;

a driver unit, controlled by the processor to perform the
recording operation to record the data blocks to the
optical disc; wherein:

the optical disc drive receives write commands designated
to record one or more data blocks on the optical disc, and
buffers data blocks corresponding to the write com
mands in the buffer;

the processor organizes the write commands to establish at
least one write task each associated with a group of data
blocks having consecutive destination addresses, and
Schedules the recording operation based on the write
tasks.

14. The optical disc drive as claimed in claim 13, wherein:
the processor maintains a write list in the memory device,

and the write list comprises entries of each data block
allocated in the buffer; and

the processor links entries of data blocks having consecu
tive destination addresses to form at least one link list
according to the write list, Such that one or more write
tasks are established from the link lists, each write task
comprising allocation of a first data block, and.

15. The optical disc drive as claimed in claim 14, wherein
the processor further maintains a free list in the memory
device, and the free list contains unallocated entries of the
buffer.

16. The optical disc drive as claimed in claim 15, wherein
when buffering the data blocks:

the processor scans the write list to determine whether an
incoming data block has a previous copy in the buffer,

if so, the processor overwrites the previous copy by the
incoming data block, and if not, the processor acquires a
free entry from the free list to store the incoming data
block.

17. The optical disc drive as claimed in claim 16, wherein
when buffering the data blocks, the processor releases a cer
tain amount data blocks from the buffer based on a cache
policy if capacity of the buffer runs out.

18. The optical disc drive as claimed in claim 15, wherein
when buffering data blocks, the processor determines
whether the incoming data block has a destination address
consecutive to those in an existing write task: if so, the pro
cessor updates the existing write task associated with the
incoming data block; and if not, the processor creates a new
write task in the memory device for the incoming data block.

19. The optical disc drive as claimed in claim 14, the
processor further maintains a latest list in the memory device,
and the latest list comprises entries of data blocks associated
with the latest certain amount of read and write commands.

20. The optical disc drive as claimed in claim 19, wherein
when buffering data blocks:

the processor receives a read command designated to read
a data block from a destination address of the optical
disc, and determines whether the latest list is hit accord
ing to the destination address;

if the latest list is hit, the processor outputs the data block
from the buffer to respond to the read command, and
renews the latest list;

if the latest list is not hit, the driver unit acquires the data
block from the optical disc to respond to the read com

US 2008/0201522 A1

mand and stores it in the buffer, and the processor
updates the latest list with an entry where the data block
is buffered.

21. The optical disc drive as claimed in claim 14, wherein
when scheduling the recording operation:

the processor counts hit rates of each write task, numbers of
data blocks contained in each write task, and pick up
head (PUH) distances according to first data blocks
destination addresses of each write task; and

the processor calculates a priority order the write tasks
based on their hit rates, number of data blocks and PUH
distances.

22. The optical disc drive as claimed in claim 21, wherein
when performing the recording operation:

the processor follows the priority order to execute the write
tasks, whereby data blocks corresponding to a write task
are encoded into errorcorrection code (ECC) blocks and
burnt onto a destination address on the optical disc; and

Aug. 21, 2008

upon completion of the recording operation, the processor
successfully flushes burnt data blocks from the buffer.

23. The optical disc drive as claimed in claim 22, wherein
when executing the write task:

the processor maintains a defect list in the memory device,
and the defect list comprises entries of data blocks hav
ing destination addresses where defects exist;

the processor detects whether an error is found when burn
ing an ECC block; and

if an error is found, the processor adds the entry where a
data block corresponding to the ECC block is buffered
into the defect list.

24. The optical disc drive as claimed in claim 23, wherein
when performing the recording operation, the processor
executes a further write task to burn the data blocks listed in
the defect list upon completion of all prioritized write tasks.

c c c c c

