发明名称
一种高营养素复混硒肥及其制备方法

摘要
本发明公开了一种利用硒元素、无公害的有机物料—无机物料及中微量元素组成的高营养素复
混硒肥及其制备方法，包括按照重量配比组成的以下组分：有机物料45%—60%、无机物料55%—35%、
中微量元素1%—6%、硒元素0.011—0.025%纯硒。本发明系有机—无机复混硒肥，既能高效增产又能
使施用的作物蕴含对人体具保健作用的硒元素，采用多种内吸附保护硒，使硒肥的硒成为有效态，
具有良好的溶解性和可降解性，避免硒被固定，明显提高植物（包括茶树）对硒的生物吸收利用率。
1. 一种高营养素复混硒肥，其特征在于：包括按照重量配比组成的以下组分：
有机物料，含量45-55%；
无机物料，含量55-35%；
中微量元素，含量1%—6%；
硒元素，纯硒0.011—0.025%（1克纯硒相当于3.4克亚硒酸盐，约相当于1克硒的氧化物），或用含硒酸盐0.05mg/kg-0.50mg/kg；
所述成品的技术指标是：氮、磷、钾+硒+中微量元素约40%，有机质约55%，腐殖质约30%，粗蛋白（全蛋白）约16%，pH5.8—6.7。

2. 根据权利要求1所述的一种高营养素复混硒肥，其特征在于：所述的有机物料有作物秸秆、饼肥、禽畜粪便，按重量配比为20%—50%。
3. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：所述的有机物料中的作物秸秆由至少以下物料中的一种或者任意几种任意配比组成而成：
禾本科类：小麦秸秆，大麦秸秆，糯米秸秆，黑麦秸秆，紫苏秸秆，高粱秸秆，玉米秸秆；
豆科类：黄豆秸秆，蚕豆秸秆，豌豆秸秆，红豆秸秆，羽扇豆秸秆，花生藤蔓；
果类，蔬菜副产物，柑橘渣，菠萝废弃物，蔬菜副产物；
作物副产物：包括麦类糠麸，稻壳和米糠；
亚热带植物副产物：甘蔗渣，西沙尔麻渣，香蕉秆叶；
薯类藤蔓：红薯藤，土豆茎秆；
饲用牧草副产物：紫花苜蓿，紫云英，灌丛紫穗槐，籽粒草，皇竹草。
4. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：所述的有机物料中的饼肥由至少以下物料中的一种或者任意几种任意配比组成而成：大豆饼，花生饼，芝麻饼，菜籽饼，棉子饼，蓖麻饼，桐子饼，茶子饼，向日葵饼。
5. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：所述的有机物料中的禽畜粪便由至少以下物料中的一种或者任意几种任意配比组成而成：各类禽畜粪便及其垫草，禽畜粪及其垫草，以收集农家禽畜粪为主。
6. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：所述的无机物料至少包含以下组分：尿素（经转化），硫酸铵，磷酸铵，硫酸钾，氯化钾，过磷酸钙等，N、P、K营养三要素比例约5:2:3。
7. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：所述的中微量元素至少包含以下组分：碳酸钙或硫酸钙，碳酸镁，磷酸铵，硫酸锌，硫酸锰，硼酸，钼酸铵，
硫酸铜，亚硫酸铁等9种，其添加比例是：Ca 0.5%-1.0%:Mg 0.2%:S 0.6%；Zn 1.8%:Mn 0.05%:B 0.4%:Mo 0.01%:Cu 0.06%:Fe 0.2%-0.3%。
8. 根据权利要求1或2所述的一种高营养素复混硒肥，其特征在于：本发明是以亚硒酸盐、硒的氧化物，SeO₂（水溶性氧化硒）作硒源，其加入量为纯硒0.011—0.025%，或者亚硒酸盐0.05mg/kg-0.50mg/kg。
9. 根据权利要求1所述的一种高营养素复混硒肥，其特征在于：所述的一种高营养素复混硒肥的制备方法，其特征在于：
（1）将经过粉碎、发酵腐熟的有机物料、无机物料分别称重，按照有机物料和无机物料总量加入约10%水，混合均匀；
（2）在混合物中加入成粒助剂，所述的成粒助剂为聚乙烯醇（PVA）改性淀粉粘结剂，其加入量是按照有机物料和无机物料总量的 1.5%－1.8%；

（3）造粒：按国标粒度标准造粒，制粒时要求物料过 40 目筛，粘结剂粘度 30mPa’s，>1mm 成粒率达到 98%，有效成粒率（2~6mm）达到 72.0%。

10. 根据权利 2 所述的将硒、中微量元素制成螯合物，所使用的螯合剂为：氨基酸、黄腐酸、EDTA、EDDHA，4 种中任选用一种或二种，用两种的称双螯合。

11. 根据权利要求 1 所述的一种高营养素复混肥，其特征在于：所述的有机物料的制备方法是：

（1）粉碎
将有机物料中的作物秸秆、饼肥类等体积较大的物料，经过粉碎至 40 目；

（2）加入微生物扩大菌剂
在经过粉碎后的有机物料中加入预扩大处理的生物活性剂进行发酵；
所述的生物活性剂包括微生物制剂 EM 日本原液（菌种引自日本国，原液由留日博士在中国生产）和微生物秸秆速腐剂（登记号 2003-0095，专利号 9711992.6），EM 按有机物料重量的 0.1%～0.2% 加入，秸秆速腐剂按有机物料重量的 0.1% 加入；

（3）微生物菌剂的扩大
EM 菌群的扩大分别加入 0.4%的原液，0.1%的糖，0.2%的磷酸二氢钾，稀释、发酵，菌大量繁殖成为扩大菌剂；

秸秆速腐剂的扩大分三步：第一步，加入 5 倍于菌剂的米糠和饼肥（米糠：饼肥 1：1）于菌剂中，经短期发酵制成微生物扩大菌；第二步，加入 3 倍于发酵扩大菌量的鸡粪、骨粉、过磷酸钙（1：1：1）等，制成微生物活性有机肥；第三步，再与 2 倍于活性有机肥的氮磷钾无机肥混合（N：P：K 比为 5：2：3），经由菌大量繁殖成为扩大菌剂；加入的微生物速腐剂原生菌剂量为 0.1%；

（4）调整 C/N 比

预前扩大菌剂与有机物料混合后，再加入 0.5%尿素，或与尿素相当量的人粪尿，调节 C/N 比，其比例为 25～45：1；

（5）发酵

发酵成功的标准是，有芳香味或酒曲味，颜色浅褐或深褐或褐黄，视加入有机物料而定。
一种高营养素复混硒肥及其制备方法

技术领域
[0001] 本发明涉及一种人工增硒肥，特别一种由硒元素、无公害的有机物料-无机物料及微量化元素组成的高营养素复混硒肥，适用于茶叶生产，也适合于大宗粮食作物中水稻、小麦、玉米、薯类和果树、苏菜的用肥。

背景技术
[0002] 从上世纪 70 年代在立硒（Se）是人和动物生命活动中必不可少的微量元素之一，临床实验证明硒是“生命元素”，如果人体缺硒，将会造成重要器官功能失调，可引发 40 余种疾病，如癌症、冠心病、心肌病、动脉硬化、糖尿病、白血病、病毒性肝炎等。
[0003] 然而全世界约 42 个国家处于缺硒地位。我国同美国类似，从东北到西南有一条缺硒带，我国有 72% 的县是低硒或缺硒区。实践表明，在农作物种植过程中增硒是最直接、方便、价廉物美的方法。
[0004] 硒是一种有效的抗氧化剂，是谷胱甘肽过氧化物酶（GSH）的重要组成部分（硒与蛋白质结合发挥抗氧化作用），其抗氧化能力比 VE 高 500 倍。大量研究成果表明，硒具有抑制肿瘤发生与发展的作用，临床观察发现肿瘤患者血中硒含量低于正常者后，易复发及转移。硒对强致癌物——黄曲霉素 B1（AFB1）诱导的白细胞 DNA 非程序合成有阻断作用。硒可阻止乙肝患者发展成肝癌。美国医学家于 86 年发现了硒高硒地区人群血液中的硒含量均低于肝癌低硒区，肝癌发病率与血硒程度呈负相关；而在江苏启东补硒防癌实验，补硒可使肝癌发生率明显下降，使有肝癌家族史者发病率下降。美国、荷兰、芬兰及中国科学家发现，恶性肿瘤病人的血硒程度低于健康人。硒存在较强的抗氧化能力，能筛选性抑制和杀伤癌细胞，增强肌体免疫力，并能降低化疗和放疗引起的肌体损伤，提高对放疗、化疗的耐受性。硒制剂对肝、食管、胃、结肠、膀胱、乳腺、前列腺、子宫等脏器的癌症和白血病等均有明显的防止和治疗效果。硒被科学家称之为人体微量元素中的抗癌之王。
[0005] 硒对调节免疫功能，抗衰老及预防心脑血管疾病有良好作用。
[0006] 硒能调节免疫功能。VC、Zn 和 VE 调节免疫功能的作用是间接的，而硒调节人体免疫功能除间接作用外，还有一种特别功能：硒通过防止病毒基因突变，从而抑制病毒的致病性。这一功能是别的有免疫调节功能的微量元素所没有的，即硒是唯一能直接抑制病毒感染的营养素。
[0007] 衰老问题的“自由基学说”目前已被普遍认可，即细胞代谢过程中不断产生的具有很强生物活性的自由基及过氧化脂质，是引起组织细胞衰老的主要因素；而人体内的超氧化物歧化酶（SOD）和谷胱甘肽过氧化物酶（GSHP）等物质可以清除体内过多的自由基，降低体内的过氧化脂质。硒半胱氨酸是谷胱甘肽过氧化物酶的活动中心，参与氧化和能量代谢，在调节免疫、抵抗病毒突变等多方面起着十分重要的作用。没有硒，就没有过氧化酶；硒含量少，过氧化酶活性就下降，自由基就肆无忌惮。增硒强化清除自由基，从而达到延缓人体器官衰老的目的。研究表明，硒与其他元素联合作用，清除自由基的效力要高数百、几干倍。
缺硒是引起心脏病的主要因素之一。硒是连结心脏功能的重要因素，对心脏肌肉有保护和修复功能。人体血硒程度低，会导致体内清除自由基的功能减退，使血液中的脂肪酸过氧化物堆积，使心肌细胞膜的功能遭受损伤，血管壁变厚，血管弹性差，血流速率变慢，送氧功能下降，从而诱发心脑血管疾病。德国科学家曾对数百名患有冠状动脉硬化、心脏缺陷和高血压病人调研得出：这些病人体内的硒含量比健康人少得多，证明硒含量与心血管病呈负比。美国的一份调查显示，食品中缺硒地区死于心肌病、中风与其它有关高血压疾病的人数比富硒地区高三倍。科学补硒对防止心脑血管疾病、高血压、动脉硬化有较好效果。目前已采用硒医治某些心脏病，如用硒治疗心绞痛、心肌梗塞、冠心病等已取得良好疗效。

此外，克山病、大骨节、氨中毒、胃炎、白内障、高血压、高血脂症、肾炎、血虚、重大失眠、口腔溃疡、免疫功能低下与人体内缺硒直接相关，对这些患者服用有机硒治疗效果显著。

硒还是某些重金属的防御剂。实验发现，硒对镉、汞、砷等有抵抗作用，可拮抗这些重金属进入人体。

本发明是以增硒为中心，并添加农作物增产要素的中微量元素。

100多年来，N、P、K 肥料三要素在农作物增产上起着主导作用，但到了上世纪中后期，科学家和农户都发现，只大量使用 N、P、K 肥，不但不增产反而减产，进而发现，这些大量元素肥在过量使用下，其利用率仅达到 30%。科学家在探索中发现了微量元素的增产作用，继而发现了中量元素增产的重要作用，并得出“水桶效应”说。实际上，100多年来 N、P、K 的施用量急剧增加，而同时被植物不断带走的中微量元素却没有得到系统的补给。本世纪初中国首届中微量元素营养学术交流大会上一致认识到：21世纪钙、镁、硼、锌、铁等中微量元素的缺乏，已成为中国农业生产主要障碍之一。

由于中微量元素中的金属元素（Ca、Mg、Fe、Cu、Mn、Zn）易与土壤的碳酸根和磷酸根发生化学反应而失效，即便在肥料中配入足够的中微量元素，农作物也无法按配方配置比例吸收。另外，土壤 pH 值，气候等也影响中微量元素的有效性。因此，需对中微量元素进行螯合，以保护其有效性。螯合剂已有多种，效果好的有氨基酸、EDTA 和 EDDHA 等。因本发明有机物质丰富，有螯合效果，加之成粒的保护，构成了中微量元素的多重保护。

土壤中硒的赋存形态有 6 种：硒元素、氧化硒、硒酸钠、亚硒酸钠、有机硒，及挥发硒。硒的化学键有 Se⁺，Se₂⁻，Se₆⁻，有人用实验证明，茶叶中，Se⁺ 占总硒量的 3.89%～14.17%，Se²⁻ 含量为 87.13%～96.11%，Se₆⁻ 茶叶中不存在。

硒作为肥料的一个微量组份，必须为其设置一个充分释放的环境。硒进入土壤后，其生物有效性与腐殖质是紧密关联的。经测定，有机质含量高的土壤，水溶性硒与植物吸收的硒相关显著，而有机质含量低的土壤，植物毒性效很差。对茶叶增硒技术的研究证明，叶面硒与土壤有效硒呈显著正相关，与潜在活性态硒及缓效态硒也有较高的相关性。有效态硒同样受土壤有机质含量较大影响，也受到土壤粘粒含量的影响（粘粒主要影响土壤全硒及残渣态硒含量）。有人在硒肥配置的不同方案中，用腐殖质 + 硒 + 其它微量营养元素，能提高硒的有效性，测试表明，有腐殖质的参与，能形成稳定的复配溶液，避免了硒元素的被固定和沉淀，易被植物吸收转
化，克服了单施无机硒用量和农产品中硒含量无法控制以及对环境的副作用（无机硒直接进入土壤和水体，过量时则造成土壤和水体的污染）。用连续浸提分级技术对中国9种不同性质和硒水平土壤的研究发现，速效硒和缓效硒可用于衡量土壤硒的有效性，二者之和可用于评价土壤硒的状况和预防硒的缺乏程度。土壤中硒的贮存，经对云南、四川和浙江14个剖面42个土层中硒的形态分析结果表明，硒主要赋存在腐殖质和残余晶格中。土壤有机硒可分为与胡敏酸和富里酸结合的两部分。以平均计，胡敏酸结合态硒约占有机硒的34%，富里酸结合态硒占66%；在对美国加州和对中国湿润半湿润地区几种土壤中的有机硒的研究发现，有机硒也主要赋存在富里酸中。而缺硒土壤有机态硒中胡敏酸结合态硒的比例一般都较高。胡敏酸组份的硒和富里酸组份的硒都主要是以硒氨基酸的形式存在，有些类似。在土壤提取液中，有机硒可占到水溶性硒的50%左右，而且硒的这种分布在土壤中是稳定的。

本发明硒肥是人为增硒，是为缺硒土壤添加硒元素，为缺硒地区制造硒肥，为农作物（包括茶叶）增硒营养，以最方便、廉价、直接的方式为人体保健。而且，根据硒与土壤相关研究的已有成果，把硒与相互促进的微量元素、把硒与起保护作用的有机－无机物、与螯合物、与颗粒构造等结合成为目前高效态硒肥。

与目前所公开的近50个硒肥配方（包括固态和液态）相比，对于硒的有效性被人为忽视。什么是硒的有效态？就是你的硒肥中的“硒”在土壤环境中获得保护，有活性，是有效的，能被植物吸收利用，有高的生物利用（>90%）。实际上，施入土壤中的硒，特别在酸性条件下，被二氧化硫等先氧化，其中Se²⁻的吸附固定强烈；另外，粘粒矿物、土壤有机质等也吸附硒或使其成为络合物（硒与土壤粘粒含量，有机质含量呈正相关）；还有土壤残留的无机硒、小分子有机硒和挥发硒等易损失。而在土壤ph值高的条件下（碱性条件），ph值越高，硒的活性越大，损失就越严重。总的是硒被固定了，流失了，使植物能吸收的硒量少而缓慢，使硒的生物利用率低。这就是一些硒肥，实际未看到增硒效果的原因。那么本发明专利创新性的用多层保护技术使施入土壤中的硒成为有效态。其一，本发明硒肥，配方中有有机硒，经发酵使硒变成小分子有机硒（Se²⁻）；其二，将硒制成螯合硒，或制成双螯合硒；硒有效的受到保护；其三，本发明硒肥是一种用包膜的颗粒硒，也是有效保护之一；其四，本发明硒肥中特添加了螯合的中微量元素，它们间存在相互促进作用，也改善了它们在土壤中的活性。对于硒的第一种保护，有学者称之为“内吸附”。其实，第二、三种保护也是一种“内吸附”！

增硒使茶叶增产和改品质是肯定的，仅个例减产或是其它原因。因硒的被固定而大量施入硒，则造成环境污染已有病例。

发明内容

本发明的目的是提供一种由硒元素、无公害的有机物料－无机物料及中微量元素组成的高营养素复混硒肥及其制备方法。本有机－无机复混硒肥既能高效增产又能使施用的作物含硒对人体具保健作用的硒元素。

本发明采用多种内吸附保护硒，使硒肥的硒成为有效态，具有良好的相溶性和可降解性，避免硒被固定，明显提高植物（包括茶树）对硒的生物吸收利用率。

本发明的具体技术方案如下：
说明书

一种高营养素复混硝肥，其特征在于：包括按照重量配比组成的以下组分：
有机物料 45%~60%
无机物料 55%~35%
中微量元素 1%~6%

硒元素 0.011~0.025%纯硒（1克纯硒相当于3.4克亚硒酸盐，约相当于1克硒的氧化物），或亚硒酸盐0.05mg/kg~0.50mg/kg。

【0021】所述成品的技术指标是：氮、磷、钾+硒+中微量元素约40%，有机质约50%，腐殖质约30%，粗蛋白（菌体蛋白）约16%，pH5.8~6.7。

【0022】本发明所述的有机物料包括作物秸秆、饼肥、禽畜粪便等按重量配比为20%—50%

本发明所述的有机物料中的作物秸秆由至少以下物料中的一种或任意几种任意配
比组成而成：
禾本科类：小麦秆，大麦秆，燕麦秆，黑麦秆，稻草秆，高粱秆，金米秆；
豆科类：黄豆秆，蚕豆秆，豌豆秆，豇豆秆，豆角秆，版秆高秆，花生秆秆；
果树、蔬菜剩余物：柑橘渣，菠萝废弃物，蔬菜剩余物；
作物副产物：包括麦杆糠麸，稻壳和米糠；
亚热带植物副产物：甘蔗渣，西沙尔麻渣，香蕉秆叶；
薯类秆秆：红薯秆，土豆茎秆；
饲用牧草剩余物：紫花苜蓿，紫云英，灌从紫穗槐，籽粒苋，苦竹草。

【0023】本发明所述的有机物料中的饼肥由至少以下物料中的一种或任意几种任意配
比组成而成：大豆饼，花生饼，芝麻饼，菜籽饼，棉籽饼，蓖麻饼，桐子饼，茶叶饼，向日葵饼。

【0024】本发明所述的有机物料中的禽畜粪便由至少以下物料中的一种或任意几种任意配
比组成而成：家禽畜禽粪便及其粪草。禽畜粪及其粪草，以收集农家禽畜粪便为主。

【0025】本发明所述的无机大量营养元素至少包括以下组分：尿素（经转化化）、硫酸亚铁、磷
酸铵，硫酸钾，氯化钾，及过磷酸钙等。即以氮、磷、钾营养三要素组成。

【0026】本发明所述的中微量元素至少包括以下组分：碳酸钾或硫酸钙，硫酸镁，硫酸钾，磷酸
钾，硫酸锌，硫酸锰，硼酸，钼酸铵，硫酸铜，亚硫酸铁，即由Ca、Mg、S、Zn、Mn、B、Mo、Cu、Fe等9
种元素所组成。其中碳酸钙用于酸性土壤配方，硫酸钙用于碱性土壤配方。

【0027】本发明所述的高营养素复混硝肥的制备方法，其特征在于：
1. 将经过粉碎、发酵腐熟的有机物料、无机物料分别称重，按照有机物料和无机物料总量
约10%加入水，混合均匀；
2. 在混合物中加入成粒助剂，所述的成粒助剂为聚乙烯醇（PVA）改性淀粉粘结剂，其
加入量按有机物料和无机物料总量的1.5%~1.8%；
3. 造粒：用造粒机按国标圆粒标准造粒，拉制时要求物料过40目筛，粘结剂粘度
30mPa’·s，1mm成粒率达到98%，有效成粒率（2~6mm）达到72.0%。

【0028】本发明所述的将硝、中微量元素制成螯合物，所使用的螯合剂为：氨基酸、黄腐
酸、EDTA（乙二胺四乙酸）、EDDHA（乙二胺四亚基苯乙酸）。4种螯合剂使用其中一种或
二种，使用两种的称为双螯合。
【0029】本发明所述的有机物料的制备方法是：
1. 粉碎：
将有机物料中的作物秸秆、饼肥类、禽畜肥类等体积较大的物料，经过粉碎至40目；

2. 发酵腐熟
在经过粉碎后的有机物料中加入生物活性剂进行发酵。

[0030] 所述的生物活性剂包括微生物制剂EM日本原液，（原液系引进日本国原菌种，由中国国内生产）和微生物秸秆速腐剂（登记号2003-0095，专利号9711992.6），微生物制剂EM按有机物料重量的0.1%～0.2%加入，秸秆速腐剂按有机物料重量的0.1%加入。

[0031] 3. 微生物菌剂的扩大：
EM菌群的预前扩大分别加入0.4%的原液、0.1%的糖、0.2%的磷酸二氢钾，稀释、发酵，菌大量繁殖成为扩大菌剂。

秸秆速腐剂的预前扩大分三步：第一步，加入5倍于菌剂的玉米和饼肥（玉米：饼肥1：1）于菌剂中，经短期发酵制成微生物扩大菌；第二步，加入3倍于发酵扩大菌量的鸡粪、骨粉、过磷酸钙（1：1：1）等，制成微生物活性有机肥；第三步，再与2倍于活性有机肥的氮磷钾无机肥混合（N：P：K比为5：2：3），经由菌大量繁殖成为扩大菌剂。加入的微生物速腐剂原生菌剂量为0.1%。

[0032] 所述两种菌剂可同时加或先EM，待第一次翻料时再加入速腐剂。

[0033] 4. 发酵腐熟处理
预前扩大菌剂与有机物料混合后，再加入5.0%氮素，或与尿素相等量的人畜粪，调节C/N比为25—45：1。发酵成功的标准是：有芳香味或酒曲味；颜色为亮褐或深褐或褐黄色，视发酵原料而定。

[0034] 本发明有机物料中，禁止直接使用集约化禽畜场排放的粪尿，因其含有禁止的难以降解的饲料添加剂部分，包括特殊激素类、抗生素、病毒、细菌、金属元素、过量氯化物等，必须经100%无害化处理后使用。

[0035] 本发明有机物料中，禁止直接使用受污染的工业有机废弃物，如骨粉、骨酸废渣、氨基酸残渣、家禽家畜加工废料、糖厂废料等，经无害化处理后可用。

[0036] 本发明有机物料中，禁止使用城市生活垃圾和污泥，其成分十分复杂，重金属及化学毒物含量难以控制，污染物常超标，后患无穷。

[0037] 本发明有机物料中，禁止使用医院粪便和垃圾，其中常含有病菌、病源微生物、重金属等。

[0038] 所述城市污泥、垃圾和医院粪便、垃圾，经无害化处理后仍可利用。

[0039] 本发明无机物料的配置及配置要求
1. 无机化肥：本发明不以尿素为氮源，是因尿素分解温度低、溶解度高，在与磷铵类等化肥相遇时析出游离水，无法进行正常混合，就难以正常生产复混肥。如采用转化方法也可用尿素作氮源。无机化肥要作粉碎处理，粒度达国标。

[0040] 无机化肥三要素比例N：P：K约等于5：2：3，其总量为35%—45%。

[0041] 无机化肥配置原则是加大氮营养和钾营养，控制磷营养。由于目前大部分菜园、果园、茶园、药园等土壤含磷量都较高，所以补充钾素、限磷素是必要的。加入的化学肥料有必要控制氮元素量和硝酸盐量的超标积累，最大限度减少对作物产品风味和环保的影响。
[0042] 2. 中微量元素：中微量元素是21世纪农作物增产和改善品质不可少的营养元素。本专利拟订由Ca、Mg、S、Zn、Mn、B、Mo、Cu、Fe等9种元素所组成。它们的组成比例是：Ca 0.5%～1.0%；Mg 0.2%～S 0.6%；Zn 1.8%；Mn 0.05%；B 0.4%；Mo 0.01%；Cu 0.06%；Fe 0.2%～0.3%。

[0043] 3. 硒元素：含硒量要求符合国标GB13105-1991《食品中硒限量卫生标准》。依据现有实践，在贫硒地区，前，本发明含硒量为0.011%～0.025%，或者用亚硒酸盐含量0.05mg/kg～0.50mg/kg。实验表明，当土壤施硒酸盐量不少于0.25mg/kg，茶叶含硒量明显增加，当用量达0.25mg/kg以上时，可使茶叶含硒量达到富硒茶标准（中华人民共和国农业部标准NY/T600-2002：0.25mg～4.0mg/kg；陈宗懋院士标准：0.5mg～2.0mg/kg，目前有多种标准，表明茶叶增硒和农作物增硒均在深入探索中）。实验还表明，土壤硒含量为1.0mg/kg时茶叶生长受阻。

[0044] 硒元素的配置量，如在贫硒区和自然富硒区交接处，必须进行土壤硒含量的检测。

[0045] 本发明产品一种高营养素复混硒肥的使用方法如下：

本高有效态复混硒肥中的硒在土壤中可持续5～6年。主要适合作底肥，最适合茶树施用作富硒茶肥，一次施用3年内可达富硒茶标准。因高营养，春茶作底肥后可不再另施追肥，夏秋茶可另追施一次壮芽肥。大田作物中生育期短的春、夏、秋作物，如水稻、玉米、蔬菜等作物只作底肥施一次；对生育期在200天以上的作物，如冬小麦、油菜等作底肥外，分别在抽穗期或在花蕾期，另施一次追肥，可省工、省时，提高劳动生产率。

[0046] 此外，无论在何种作物上作底肥施用，最重要的是必须深施，深施是保肥和缓释的关键。沟施、环施或穴施均可。

[0047] 本发明是严格按有机-无机复混肥的国标，规范有机-无机复混肥的无公害组成和无公害制造工艺，并着重添加硒元素和中微量元素，使其成为既能高效增产又能使施用作物蕴含对人体的增硒保健作用。

[0048] 本发明符合中华人民共和国国家标准规定的产品技术指标和卫生学、重金属等环境质量控制指标。

[0049] 与现有技术相比，如背景技术中所述本发明具有如下优点：

1. 本发明最突出的特征是思路创新，并运用多种现代技术使硒肥中的硒成为有效态，首先用了多种“内吸附”保护硒，如有机-无机复混肥中极丰富的腐殖质（腐殖酸）、优良的螯合剂、中微量元素与硒的互作、两种微生物参与的发酵过程，实际已将部分无机硒变成有机硒小分子供植物根部吸收，等等，高分子又将硒核包埋其中，深度改变得了硒的良好相溶性和可降解性，全方位防御了硒被固定，全面提高了植物（包括茶树）对硒的生物吸收利用率。

[0050] 2. 本发明的主要特征是：粒状，缓释，无公害。其技术指标是：氮、磷、钾+硒+中微量元素约40%，有机质约50%，腐殖酸约30%，粗蛋白（菌体蛋白）约16%，pH5.8～6.7。

[0051] 3. 本发明具有重要的生产性能：

（1）能生产富硒农产品，增硒保健。因含硒元素，能使茶叶、大米、小麦、玉米等增硒，食用后能提高对人体的保健作用。

（2）能向作物和土壤提供全面营养。其最重要特征是该复混肥不含对人体健康有害物质，能生产无公害产品，并保证作物的高产、稳产；因营养元素具有缓释性，能最大限度
提高养分的利用率，并减轻因施肥造成的环境污染。
[0053] (3) 具有较强的生态功能。主要表现为能大幅度增加土壤有机质，改善土壤物理性能，有效提高土壤微生物活性，提高土壤的保水、保肥、供水、供肥能力，有利于土壤难溶性养分向易于作物吸收的方向转化。
[0054] (4) 能保持农产品的自然风味。因营养配置以有机物为主，能有效改善茶叶、果蔬、大豆作物内在与外在的品质，提高其营养成分，保持原有风味。
[0055] (5) 能提高作物的抗逆性。因营养成分的生物活性，具有较强的生理生化效应，能影响作物的代谢过程，提高作物抗病、抗不良环境的能力。硒还能拮抗土壤中重金属超标对人、畜的危害。
[0056] (6) 能极大地提高化肥的利用率，经测定，该复混肥在土壤中氮的挥发，氮、钾的流失不到无机肥的 1/2；对蔬菜供氮量比无机肥多约 50%。这是本发明硒肥具高营养素的明显特质。

具体实施方式
[0057] 实施例 1
一种高营养素复混硒肥，其特征在于：包括按照重量配比组成的以下组分：
有机物料 55%
无机物料 42%
中微量元素 2.989%；
硒元素 0.011%纯硒（1 克纯硒相当于 3.4 克亚硒酸盐，约相当于 1 克硒的氧化物）。
[0058] 所述成分的技术指标是：氮、磷、钾 + 硒 + 中微量元素约 40%，有机质约 50%，腐殖酸约 30%，粗蛋白（菌体蛋白）约 16%，ph5.8～6.7。
[0059] 本发明所述的有机物料包括作物残渣、饼肥、禽畜粪素等按重量配比为 20%～50%。
[0060] 本发明所述的有机物料中作物残渣由至少以下物料中的一种或者任意几种任意配比组成：
禾本科料：小麦秸，大麦秸，燕麦秸，黑麦秸，稻草秸，高粱秸，玉米秸；
豆科料：黄豆秸，蚕豆秸，豌豆秸，豇豆秸，羽扁豆秸，花生藤蔓；
果树、蔬菜剩余物：柑橘渣，菠萝废弃物，蔬菜剩余物；
作物副产物：包括麦类糠麸，稻壳和米糠；
亚热带植物副产物：甘蔗渣，西沙尔麻渣，香蕉秆叶；
薯类藤蔓：红薯藤，土豆茎秆；
饲用牧草剩余物：紫花苜蓿，紫云英，灌丛紫穗槐，籽粒苋，亚竹草。
[0061] 本发明所述的有机物料中的饼肥由至少以下物料中的一种或者任意几种任意配比组成：
大豆饼，花生饼，芝麻饼，菜子饼，棉子饼，蓖麻饼，桐子饼，茶子饼，向日葵饼。
[0062] 本发明所述的有机物料中的各类禽畜粪便及其垫草由其中至少一种或任意几种任意配比组成而成。要注意的是，禽畜粪及其垫草，以收集农家禽畜粪为主。
[0063] 本发明所述的无机大量营养元素包括尿素（经转化）、硫酸铵，磷酸铵类，硫酸钾，氯化钾，过磷酸钙等。即以氮、磷、钾营养三要素组成。
本发明所述的中微量元素包括以下组分：碳酸钙或硫酸钙，硫酸镁，硫酸铵，硫酸锌，硫酸锰，硼酸，钼酸铵，硫酸铜，亚硫酸铁，即由 Ca、Mg、S、Zn、Mn、B、Mo、Cu、Fe 等 9 种元素所组成。其中碳酸钙用于酸性土壤配方，硫酸钙用于碱性土壤配方。

本发明所述的一种高营养素复混硝酸的制备方法，其特征在于：

1. 将经过粉碎，发酵腐熟的有机物料，无机物料分别称重，按有机物料和无机物料总量的约 10% 加入水，混合均匀；

2. 在混合物中加入成粒助剂，所述的成粒助剂为聚乙烯醇（PVA）改性淀粉粘结剂，其加入量按照有机物料和无机物料总量的 1.5 — 1.8%；

3. 肥粒：造粒机按国标粒级标准造粒，制粒时要求物料过 40 目筛，粘结剂粘度 30mPa’s，1mm 成粒率达到 98%，有效成粒率（2 - 6mm）达到 72.0%。

本发明所述的将硒、中微量元素成螯合物，所使用的螯合剂为：氨基酸，黄腐酸，EDTA（乙二胺四乙酸），EDDHA（乙二胺四乙酸二钠硬化）、4 种螯合使用其中一种或二种，使用两种的称为双螯合。

本发明所述的有机物料的制备方法是：

1. 粉碎：
 将有机物料中的作物秸秆，饼肥类，禽畜肥类等体积较大的物料，经过粉碎至 40 目；

2. 发酵腐熟
 在经过粉碎的有机物料中加入生物活性剂进行发酵。

所述的生物活性剂包括微生物制剂 EM 本原原液，原液系引进日本国原菌种，由留日博士国内生产，和微生态 virtues 速腐剂（登记号 2003-0095，专利号 9711992.6），微生物制剂 EM 按有机物料重量的 0.1% 加入，秸秆速腐剂按有机物料重量的 0.1% 加入。

微生物菌剂的扩大：

EM 菌群的预前扩大分别加入 0.4% 的原液 0.1% 的糖 0.2% 的磷酸二氢钾，稀释，发酵，菌大量繁殖成为扩大菌剂；

秸秆速腐剂的预前扩大分三步：第一步，加入 5 倍于菌剂的米糠和饼肥（米糠、饼肥 1：1）于菌剂中，经短期发酵制成微生物扩大菌剂；第二步，加入 3 倍于发酵扩大菌剂的鸡粪，骨粉，过磷酸钙（1：1：1）等，堆制成微生物活性有机肥；第三步，再与 2 倍于活性有机肥的氮磷钾无机肥混合（N：P：K 比为 5：2：3），经由菌大量繁殖成为扩大菌剂。加入的微生物速腐剂原生菌剂量为 0.1%。

所述两种菌剂可同时加或先 EM，待第一次翻料时再加入速腐剂。

发酵腐熟处理

预前扩大菌剂与有机物料混合后，再加入 0.5% 氮素，或与尿素相当量的人畜粪，调节 C/N 比，为 25 — 45：1。发酵成功的标准是：有芳香味或酒曲味，颜色为亮褐或深褐或褐黄色，视发酵原料而定。

本发明有机物料中，禁止直接使用集约化禽畜场排放的粪尿，因其含有禁止的难以降解的饲料添加剂部分，包括特殊激素类、抗生素、病毒、细菌、金属元素、过量氯化物等。必须经 100% 无害化处理后使用。

本发明有机物料中，禁止直接使用受污染的工业有机废弃物，如骨粉，骨酸废渣，氨基酸残留，家禽家畜加工废料，糖厂废料等。经无害化处理后可用。
本发明有机物料中，禁止使用城市生活垃圾和污泥，其成分十分复杂，重金属及化学毒物含量难以控制，污染物常超标，后患无穷。

本发明有机物料中，禁止使用医院粪便和垃圾，其中常含有毒气、病源微生物、重金属等。

所述城市污泥、垃圾和医院粪便、垃圾，如经无害化处理后仍可用。

本发明有机物料的配置及配置要求

1. 无机化肥：本发明不以尿素为氮源，是因尿素分解温度低、溶解度高，在与磷铵类等化肥相遇时析出游离水，无法进行正常混合，就难以正常生产复混肥。如采用转化方法也可用尿素作氮源。无机化肥要作粉碎处理，粒度达国标。

2. 无机化肥三要素比例 N:P:K 约等于 5:2:3，其总量为 35% 左右。

3. 无机化肥配置原则是加大氮营养和钾营养，控制磷营养。由于目前大部菜园、果园、茶园、药圃等土壤含磷量都较高，所以补充钾素、限量磷素是必要的。加入的化学肥料有必要控制氯元素含量和硝酸盐量的超标积累，最大限度减少对作物产品风味和环保的影响。

它们的组成比例是：

Ca 0.5%
Mg 0.2%
S 0.6%
Zn 1.8%
Mn 0.05%
B 0.4%
Mo 0.01%
Cu 0.06%
Fe 0.2%

3. 硒元素：含硒要求符合国标 GB13105-1991《食品中硒限量卫生标准》。依据现有实践，在贫硒地区，本发明拟纯硒含量为 0.011%－0.025%，或者用亚硒酸盐含量 0.05mg/kg－0.50mg/kg。

实施例 2

一种高营养素复混硒肥，包括按照重量配比组成的以下组分：

有机物料 60%
无机物料 45%
中微量元素 4.975%

硒元素 0.025% 纯硒（1 克纯硒相当于 3.4 克亚硒酸盐，约相当于 1 克硒的氧化物）。

所述成品的技术指标是：氯、磷、钾 + 硒 + 中微量元素约 44%，有机质约 50%，腐殖酸约 30%，粗蛋白（蛋白质）约 16%，pH5.8～6.7。

本发明所述的一种高营养素复混硒肥的制备方法，其特征在于：

1. 将经过粉碎、发酵腐熟的有机物料、无机物料分别称重，按照有机物料和无机物料总量约 10% 加入水，混合均匀；
2. 在混合物中加入成粒前剂，所述的成粒前剂为聚乙烯醇（PVA）改性淀粉粘结剂，其加入量按照有机物料和无机物料总量的1.5% - 1.8%；

3. 造粒：用造粒机按指标粒级标准造粒，制粒后要求物料过40目筛，粘结剂粘度30mPa’s, > 1mm 成粒率达到98%，有效成粒率（2-6mm）达到72.0%。

[0085] 本发明所述的生物有机物为无机物，所述的生物有机物为；EDTA（乙二胺四乙酸）、EDDHA（乙二胺二邻羟基苯乙酸）。

[0086] 本发明所述的生物有机物的制备方法是：

1. 粉碎；
 将有机物料中的作物秸秆、饼肥类、禽畜类等体积较大的物料，经过粉碎至40目；

2. 发酵腐熟
 在经过粉碎后的有机物料中加入生物活性剂进行发酵。

[0087] 所述的生物活性剂包括微生物制备EM日本原液（原液系引进日本原菌种，由留日博士国内生产）和微生物秸秆速腐剂（登记号2003-0095，专利号9711992.6），微生物制备EM按有机物料质量的0.2%加入，秸秆速腐剂按有机物料质量的0.1%加入。

[0088] 3. 微生物菌剂的扩大：
 EM菌群的预前扩大分别加入0.4%的原液、0.1%的糖、0.2%的磷酸二氢钾，稀释、发酵，菌大量繁殖成为扩大菌剂。

 秸秆速腐剂的预前扩大分三步：第一步，加入5倍于菌剂的米糠和饼肥（米糠、饼肥1:1）于菌剂中，经短期发酵制成微生物扩大菌；第二步，加入3倍于发酵扩大菌量的鸡粪、骨粉、过磷酸钙（1:1:1）等，堆制成微生物活性有机肥；第三步，再与2倍于活性有机肥的氮磷钾无机肥合并（N:P:K比为5:2:3），经由菌大量繁殖成为扩大菌剂。加入的微生物速腐剂原生菌剂量为0.1%。

[0089] 所述两种菌剂可同时加或先EM，待第一次翻料时再加入速腐剂。

[0090] 4. 发酵腐熟处理
 预前扩大菌剂与有机物料混合后，再加入0.5%氮素，或与尿素相当量的人畜粪，调节C/N比，为25 - 45：1。发酵成功的标准是：有芳香味或酒曲味，颜色为亮褐或深褐或褐色，视发酵原料而定。

[0091] 5. 实施例3
 同前述，同样实现本发明目的。

[0092] 一种高营养素复混硒肥包括以下重量配比组成的以下组分：

 有机物料 45%
 无机物料 53%
 中微量元素 1.975%
 硒元素 0.025%纯硒

 本发明产品一种高营养素复混硒肥的使用方法如下：

 本高有效态硒肥中的硒在土壤中可持续5-6年。主要适合作底肥，最适合茶树施用作富硒茶肥，一次施用3年内可达富硒茶标准。因高营养，春茶作底肥后可不再另施追肥；夏秋茶可另追施一次壮芽肥。大田作物中生育期短的春、夏、秋作物，如水稻、玉米、蔬菜等作物只作底肥施一次；对生育期在200天以上的作物，如冬小麦、油菜等作底肥外，分别在抽
穗期或在花蕾期，另施一次追肥，可省工、省时，提高劳动生产率。

[0093] 此外，无论在何种作物上作底肥施用，最重要的是必须深施，深施是保肥和缓释的关键。沟施、环施或穴施均可。

[0094] 本发明是严格按有机-无机复混肥的国标，规范有机-无机复混肥的无公害组成和无公害制造工艺，并着重添加中微量元素和硒元素，使之成为既能高效增产又能使施用的作物蕴含对人体的增硒保健作用。

[0095] 本发明符合中华人民共和国国家标准规定的产品技术指标和卫生学、重金属等环境质量控制指标。

[0096] 实施例 4

同前述，同样实现本发明目的。

[0097] 一种高营养素复混硒肥，包括按照重量配比组成的以下组分：

有机物料 49%
无机物料 55%
中微量元素 5.989%
硒元素 0.011% 纯硒

实施例 5

同前述，同样实现本发明目的。

[0098] 一种高营养素复混硒肥，包括按照重量配比组成的以下组分：

有机物料 60%
无机物料 35%
中微量元素 4.975%
硒元素 0.025% 纯硒

实施例 6

同前述，同样实现本发明目的。

[0099] 一种高营养素复混硒肥，包括按照重量配比组成的以下组分：

有机物料 45.98%
无机物料 52%
中微量元素 2%
硒元素 0.02%

本发明所述的一种高营养素复混硒肥及其制备方法是按如下的技术方案来实施的：

1. 无公害有机物料配置及预处理

(1) 无公害有机物料组成

1）有机物料种类：本有机物料组成中不是所有有机物料都同时被收入，而是随生产季节不同而收集不同组合的有机物料。有机物料有如下种类：

作物副产物：包括麦类糠麸，稻壳和米糠等。

[0100] 豆科类：黄豆秸，蚕豆秸，豌豆秸，豇豆秸，羽扁豆秸，花生藤等。

[0101] 果树，蔬菜剩余物：柑橘渣，菠萝废弃物，蔬菜剩余物等。

[0102] 谷物副产物：包括麦类糠麸，稻壳和米糠等。

[0103] 亚热带植物副产物：甘蔗渣，西沙尔麻渣，香蕉秆叶等。
薯类藤蔓：红薯藤、土豆茎秆等。

饲用牧草剩余物：紫花苜蓿、紫云英、灌从紫穗槐、籽粒苋、皇竹草等。

饼肥类，包括大豆饼、花生饼、芝麻饼、菜子饼、棉子饼、蓖麻饼、桐子饼、茶子饼，向日葵饼等。

禽畜粪类包括各类禽畜粪便及其垫草。禽畜粪及其垫草，以收集农家禽畜粪为主。

禁止直接使用未经无害化处理的集约化禽畜场排放的粪尿。必须通过降解其饲料添加剂部分及饲料添加剂部分含有的激素类、抗维生素类，排除金属元素、过量氮化物及病毒，细菌等。达到GB7959-1987粪便无害化卫生标准，GB/T6274-1997肥料和土壤调配剂术语标准。

禁止直接使用受污染的工业有机废弃物，如骨粉、骨酸废渣、氨基酸废渣、家禽家畜加工废料、糖厂废料中含有重金属、病菌等。经无害化处理后用。

另外禁止使用城市生活垃圾和污泥，其重金属、化学毒物难以控制，降解难以清除；禁止使用医院粪便和垃圾，其中常含有病原微生物、毒气、重金属等。

但污泥、粪便、垃圾等，作无害化处理后可用。

在与化肥配制复混肥时要进行养分的计算。以下列出拟订的有机物料养分含量数据，供组合养分计算时参考。

几种秸秆养分含量

<table>
<thead>
<tr>
<th>种类</th>
<th>有机质%</th>
<th>氮%</th>
<th>磷%</th>
<th>钾%</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉米秆</td>
<td>80.5</td>
<td>0.71</td>
<td>0.40</td>
<td>0.90</td>
</tr>
<tr>
<td>麦秆</td>
<td>81.1</td>
<td>0.48</td>
<td>0.22</td>
<td>0.63</td>
</tr>
<tr>
<td>稻秆</td>
<td>73.6</td>
<td>0.63</td>
<td>0.11</td>
<td>0.85</td>
</tr>
<tr>
<td>大豆秆</td>
<td>82.8</td>
<td>1.31</td>
<td>0.31</td>
<td>0.50</td>
</tr>
<tr>
<td>油菜秆</td>
<td>91.34</td>
<td>0.656</td>
<td>0.344</td>
<td>2.109</td>
</tr>
</tbody>
</table>

其中：秸秆中玉米、小麦、稻秆是我国三大作物秸秆，占所有秸秆总量约76%。三大秸秆主副产品比例分别为1:1.3,1:1.2,1:1.0,大豆为1:1.6，薯类为1:2.5，其它杂粮为1:1.6。

我国秸秆年产量5亿吨左右，三大秸秆4.4亿吨。（《中国农业统计年鉴》1989，郭庭双1996报道）

主要绿肥作物养分含量
<table>
<thead>
<tr>
<th>种类</th>
<th>鲜草成分（占绿色体的％）</th>
<th>干草成分（占干物质重的％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水分</td>
<td>N</td>
</tr>
<tr>
<td>紫云英</td>
<td>88.0</td>
<td>0.33</td>
</tr>
<tr>
<td>光叶紫花苜蓿</td>
<td>84.4</td>
<td>0.50</td>
</tr>
<tr>
<td>毛叶苕子</td>
<td>-</td>
<td>0.47</td>
</tr>
<tr>
<td>窄豌豆</td>
<td>-</td>
<td>0.54</td>
</tr>
<tr>
<td>黄花苜蓿</td>
<td>83.3</td>
<td>0.54</td>
</tr>
<tr>
<td>草木栖</td>
<td>80.0</td>
<td>0.48</td>
</tr>
<tr>
<td>肥田萝卜</td>
<td>90.8</td>
<td>0.27</td>
</tr>
<tr>
<td>油菜</td>
<td>82.84</td>
<td>0.43</td>
</tr>
<tr>
<td>田菁</td>
<td>80.0</td>
<td>0.52</td>
</tr>
<tr>
<td>剪麻</td>
<td>82.7</td>
<td>0.56</td>
</tr>
<tr>
<td>紫花苜蓿</td>
<td>-</td>
<td>0.56</td>
</tr>
<tr>
<td>紫穗槐</td>
<td>-</td>
<td>1.32</td>
</tr>
<tr>
<td>沙打旺</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>红三叶</td>
<td>73.0</td>
<td>0.36</td>
</tr>
</tbody>
</table>

引自《中国肥料》1994

几种饼肥养分含量

<table>
<thead>
<tr>
<th>种类</th>
<th>氮％</th>
<th>磷％</th>
<th>钾％</th>
<th>有机质％</th>
</tr>
</thead>
<tbody>
<tr>
<td>大豆饼</td>
<td>7.00</td>
<td>1.32</td>
<td>2.13</td>
<td>75～86</td>
</tr>
<tr>
<td>花生饼</td>
<td>6.32</td>
<td>1.17</td>
<td>1.34</td>
<td>下同</td>
</tr>
<tr>
<td>芝麻饼</td>
<td>5.80</td>
<td>3.00</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>菜子饼</td>
<td>4.60</td>
<td>2.48</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>棉子饼</td>
<td>3.41</td>
<td>1.63</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>蛇麻饼</td>
<td>5.00</td>
<td>2.00</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>桐子饼</td>
<td>3.60</td>
<td>1.30</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>苦子饼</td>
<td>1.11</td>
<td>0.37</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>马柏饼</td>
<td>5.2</td>
<td>1.9</td>
<td>1.2</td>
<td>85</td>
</tr>
</tbody>
</table>

自《化学肥料学》, 吴振邦, 科学出版社, 1994; 马柏饼来自原北农大《肥料学》
原料处理过程的损失

<table>
<thead>
<tr>
<th>处理内容</th>
<th>有机质</th>
<th>氮素</th>
</tr>
</thead>
<tbody>
<tr>
<td>纯厩肥</td>
<td>58.1%</td>
<td>19.6%</td>
</tr>
<tr>
<td>厩肥+3%磷矿粉</td>
<td>42.6%</td>
<td>5.4%</td>
</tr>
<tr>
<td>厩肥+2%过磷酸钙</td>
<td>41.4%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

自《化学肥料学》，吴振邦，科学出版社，1994

腐熟家畜粪有机组成（%）

<table>
<thead>
<tr>
<th>种类</th>
<th>腐质</th>
<th>总腐殖质</th>
<th>胡敏酸</th>
<th>富里酸</th>
<th>阳离子交换量（mol/kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>猪粪</td>
<td>11.42</td>
<td>25.98</td>
<td>10.22</td>
<td>15.78</td>
<td>468~494</td>
</tr>
<tr>
<td>羊粪</td>
<td>11.35</td>
<td>24.79</td>
<td>7.54</td>
<td>17.25</td>
<td>438~441</td>
</tr>
<tr>
<td>马粪</td>
<td>6.05</td>
<td>23.80</td>
<td>9.05</td>
<td>14.74</td>
<td>380~394</td>
</tr>
<tr>
<td>牛粪</td>
<td>8.00</td>
<td>23.60</td>
<td>13.95</td>
<td>9.88</td>
<td>402~423</td>
</tr>
</tbody>
</table>

自《中国有机肥料资源》，1999

我国部分地区泥炭的养分

<table>
<thead>
<tr>
<th>产地</th>
<th>P'</th>
<th>有机质%</th>
<th>灰分%</th>
<th>氮%</th>
<th>磷%</th>
<th>钾%</th>
</tr>
</thead>
<tbody>
<tr>
<td>吉林</td>
<td>5.4</td>
<td>60.0%</td>
<td>4.0%</td>
<td>1.80%</td>
<td>0.30</td>
<td>0.27%</td>
</tr>
<tr>
<td>北京</td>
<td>6.3</td>
<td>57.4%</td>
<td>4.26%</td>
<td>1.94%</td>
<td>0.09%</td>
<td>0.24%</td>
</tr>
<tr>
<td>莱阳</td>
<td>5.6</td>
<td>44.8%</td>
<td>5.52%</td>
<td>1.46%</td>
<td>0.02%</td>
<td>0.50%</td>
</tr>
<tr>
<td>江阴</td>
<td>3.0</td>
<td>62.0%</td>
<td>3.80%</td>
<td>3.27%</td>
<td>0.08%</td>
<td>0.59%</td>
</tr>
<tr>
<td>宁波</td>
<td>4.0</td>
<td>68.2%</td>
<td>3.18%</td>
<td>1.96%</td>
<td>0.10%</td>
<td>0.20%</td>
</tr>
<tr>
<td>陆川</td>
<td>4.6</td>
<td>40.2%</td>
<td>5.98%</td>
<td>1.21%</td>
<td>0.12%</td>
<td>0.42%</td>
</tr>
<tr>
<td>昆明</td>
<td>5.2</td>
<td>64.1%</td>
<td>3.59%</td>
<td>2.39%</td>
<td>0.18%</td>
<td>—</td>
</tr>
<tr>
<td>四川</td>
<td>—</td>
<td>50~87</td>
<td>腐植酸30~50</td>
<td>1.0~2.5</td>
<td>0.060.31.0</td>
<td>0.55</td>
</tr>
<tr>
<td>黑龙江</td>
<td>—</td>
<td>64</td>
<td>腐植酸35~50</td>
<td>2.8</td>
<td>0.51</td>
<td>0.31</td>
</tr>
<tr>
<td>中低位</td>
<td>—</td>
<td>75~90</td>
<td>腐植酸28~36</td>
<td>1.5~2.2</td>
<td>0.480.250.20</td>
<td>0.30</td>
</tr>
</tbody>
</table>

自《化学肥料学》，吴振邦，科学出版社，1994；四川、黑龙江来自各省的开发资料
注：泥炭是一类不完全分解和炭化死亡植物体堆积层。因含氧不同，分为高分解泥炭和低分解泥炭两类。泥炭含水40%～50%，有机质40%～50%，灰分1%～2%。

0113 我国泥炭主要分布在东北地区的三江平原，川西北高原的松潘草地及西藏高原的
部分地区。

0114 2) 有机物料组成比例：本发明拟定有机物有秸秆类、泥炭类、废物类等，所占比例
为20%－50%。

0115 (2) 有机物料前处理及发酵腐熟

1) 粉碎处理：有机物料中的秸秆、饼肥等体积较大的物料都必须经过粉碎处理，缩小
体积，增大接触面，以加速发酵腐熟进程。需用秸秆粉碎机处理。

0116 2) 加入生物活性剂：本发明拟加入微生物制剂EM日本原液（日本国引进菌种，
由中国博士在生产）和微生物秸秆速腐剂（登记号 2003-0095，专利号 9711992.6）。其
比例是：EM原液用量占有机物料总量的0.1%～0.2%；微生物秸秆速腐剂用量占有机物料
总量的0.1%。

0117 3) 微生物菌剂的预前扩大；

EM菌群的预前扩大按常规加原液 EM (0.4%)，加糖 (0.1%)，加磷酸二氢钾 (0.2%)，稀
释，发酵，菌大量繁殖成为扩大菌剂。

0118 秸秆速腐剂的预前扩大三步；第一步，加入5倍于菌剂的米糠和饼肥（米糠、饼
肥 1:1）于菌剂中，经短期发酵制成微生物扩大菌；第二步，加入3倍于发酵扩大菌量的大
颗粒，粉碎，过磷酸钙（1:1:1）等，制成微生物活性有机肥；第三步，再与2倍于活性有机肥
的氮磷钾无机肥混合（N:P:K 比为 5:2:3），经由菌大量繁殖成为扩大菌剂。加入的微生物速
腐剂原生菌剂为 0.1%。

0119 4) 发酵腐熟处理

预前扩大菌剂与有机物料混合后还要添加0.5%尿素，或与尿素相当量的氮肥调节
C/N 比，其比例为 25～45:1，为微生物繁殖创造一个优良环境，加大微生物的数量与活性，
加快发酵腐熟进程。

0120 发酵成功的标准是：有香味或酸曲味；颜色为浅褐、深褐或褐黄，视加入的有机
物而定。

0121 无机物料的配置与配置要求

（1）无机化肥：化肥三要素的配置是，氮素为硫酸铵和磷酸铵，钾素为硫酸钾、氯化钾，
磷素，除磷铵外，为过磷酸钙等。无机化肥三要素N:P:K 的比例，本专利拟订为 5:2:3。按
传统方法，氮素不以尿素为氮源，因尿素分解温度低，溶解度高，在与磷铵类化肥相遇时析
出游离水无法进行正常混合。如果采用转化技术，尿素是作为氮源的。无机化肥三要
素的总量为 40% 左右。

0122 无机化肥的重点是加大氨、钾的含量，近年对果树、蔬菜、茶园、药圃等的调查表
明，土壤磷素含量较高，故对磷肥有针对性限量。

0123 按国家无害化的要求，加入的化肥必须控制氯元素量、硝酸盐量和磷肥中重金属
量，均不得超标。对磷肥中的重金属有必要进行检测。

0124 无机化肥必须作前处理，主要是粉碎使粒度达标（国标）。

0125 （2）微量元素：本发明拟用 Ca（碳酸钙或硫酸钙）、Mg（硫酸镁）、S（硫酸铵）、Zn
硫酸锌、Mn（硫酸锰）、B（硼酸）、Mo（钼酸铵）、Cu（硫酸铜）、Fe（亚硫酸铁）等9种。其比例为Ca 0.5—1.0%；Mg 0.2—0.6%；Zn 1.8%；Mo 0.05%；B 0.4%；Mo 0.01%；Cu 0.06%；Fe 0.2—0.3%。其中亚硫酸钙用于酸性土壤配方，亚硫酸钙用于碱性土壤配方。

【0126】中微量元素要符合国家“无公害农产品肥料安全要求”关于《微肥安全技术指标》表2、《中量元素肥料安全技术指标》表3的要求。

【0127】（3）硒元素：拟定以亚硒酸盐或硒氧化物作硒源，最好以SeO₃⁻（水溶性二价硒）作硒源。其含硒量要求符合GB13105—1991《食品中硒限量卫生标准》。依据现有实践，在贫硒地区，如前述，本发明含量为纯硒 0.011％—0.025％，或亚硒酸盐 0.05mg/kg—0.50mg/kg。

【0128】本发明所述将硒、中微量元素做成螯合物，所用螯合剂是氨基酸、黄腐酸、EDTA、EDDHA。4种螯合剂可使用其中一种或二种，使用两种的称为双螯合。

【0129】有机物发酵物与无机物料预处理后的混合

（1）混合时加成粒助剂：随有机物与无机物的混合加入成粒助剂，拟以聚乙烯醇（PVA）改性淀粉粘结剂作为成粒助剂，其用量占物料量 1.5%—1.8%。

【0130】（2）混合比例：有机腐熟物 45%，水分约 10%，无机肥 + 中微量元素 + 硅化合物共计 45%。

【0131】（3）造粒：按国标粒级标准造粒。制粒要求料物粒 <0.37mm，粘结剂粘度 30mPa.s，1mm 成粒率达到 98%，有效成粒率（2—6mm）达到 72.0%。

【0132】本发明一种高营养素复混硒肥具有如下成品特征：粒状，缓释，无公害。其技术指标是：氮、磷、钾 + 硒 + 中微量元素之和约 40%，有机质约 50%，腐殖质约 30%，粗蛋白（菌体蛋白）约 16%，pH 5.8—6.7。并符合中华人民共和国国家标准表1 有机、无机复混肥技术指标关于总养分、水分、有机质、粒度、酸碱度（pH）、蝇虫卵死亡率、大肠菌值、氯离子（Cl⁻）含量等项要求；表5 关于镉（Cd）、铬（Cr）、砷（As）、铅（Pb）、汞（Hg）、三氯化铝（As）等安全技术指标的要求。

【0133】本发明具有如下重要生产性能

（1）能生产富硒农产品，增硒保健。因含硒元素，能使茶叶、大米、小麦、玉米等增硒，食用后能提高对人体的保健作用。

【0134】（2）能向作物和土壤提供全面营养。其最重要特征是该复混肥不含对人体有害物质，能生产无公害产品，并保证作物的高产、稳产；因营养元素具有缓释性，能最大限度提高养分的利用率，并减轻因施肥造成的环境污染。

【0135】（3）具有较强的生态功能。主要表现为能大幅度增加土壤有机质，改善土壤物理性能，有效提高土壤微生物活性，提高土壤的保水、保肥、供水、供肥能力，有利于土壤难溶性养分向易于作物吸收的方向转化。

【0136】（4）能保持农产品的自然风味。因营养配置以有机物为主，能有效改善茶叶、果蔬、大田作物内在与外在的品质，提高其营养成分，保持原味风味。

【0137】（5）能提高作物的抗逆性。因营养成分的生物活性，具有较强的生理生化效应，能影响作物的代谢过程，提高作物抗病、抗不良环境的能力。硒还能拮抗土壤中重金属超标对人、畜的危害。

【0138】（6）能极大地提高化肥的利用率，经测定，该复混肥在土壤中氨的挥发，氮、钾的流失不到无机肥的 1/2；对蔬菜供氮量比无机肥多约 50%。这是本硒肥具高营养素的最显著的
特质。
[0139] 本发明一种高营养素复混硒肥及其制备方法的使用方法
 （1）本硒肥是通过土壤施用，一次施用硒肥的硒可持续 5~6 年，3 年内茶树可保持富硒水平。
[0140] （2）本硒肥主要适合作底肥施用。对茶树特别适用，可作富硒茶。对春茶可不再施追肥；夏、秋茶可另追施一次壮芽肥。
[0141] （3）本硒肥因具高营养、全营养，用量小、肥效高的特点，大田作物中对生育期比较短的春、夏、秋作物，如水稻、玉米、果树、蔬菜等作物用作底肥就能一次到位；对生育期在 200 天以上的作物，如冬小麦、油菜作底肥后，分别在抽穗期或在花蕾期另补施一次追肥，可省工、省时，提高劳动生产率。
[0142] （4）本硒肥无论在何种作物上作底肥施用，最重要的是必须深施，深施是保肥和缓释的关键。沟施、环施或穴施均可。
[0143] 说明：追肥可用另外的速效肥（非硒肥）。