

DEUTSCHE DEMOKRATISCHE REPUBLIK AMT FÜR ERFINDUNGS- UND PATENTWESEN

PATENTS CHRIFT 149 314

Ausschließungspatent

Erteilt gemäß § 5 Absatz 1 des Änderungsgesetzes zum Patentgesetz

In der vom Anmelder eingereichten Fassung veröffentlicht

(11)	149 314	(44)	08.07.81		B 01 F 5/10 C 02 F 3/22
(21)	AP B 01 F / 219 303	(22)	25.02.80		
(31)	54~21054	(32)	24.02.79	(33)	JP

(71) siehe (72)

(72) Sugiura, Eiichi, JP

(73) siehe (72)

(74) Internationales Patentbüro Berlin, 1020 Berlin, Wallstraße 23/24

(54) Vorrichtung zur Injektion von Luft in eine Flüssigkeit

(57) Die Erfindung betrifft eine Vorrichtung zur Injektion von Luft in eine Flüssigkeit, insbesondere in Abwasser, die als Belüftungseinrichtung für eine Abwasseraufbereitungsanlage oder als Luftblasengenerator eingesetzt werden kann. Während es das Ziel der Erfindung ist, die Gebrauchswerteigenschaften von Belüftungseinrichtungen zu erhöhen und deren Betriebs- und Instandhaltungskosten zu senken, besteht die Aufgabe darin, eine konstruktiv einfache Vorrichtung zur Injektion von Luft in eine Flüssigkeit zu entwickeln, mit der eine hohe Sauerstoffverdrängung erreicht wird und die eine wesentliche Verbesserung des Verhältnisses von absorbiertem Sauerstoff zur Menge des eingeblasenen Sauerstoffs ermöglicht. Erfindungsgemäß wird die Aufgabe derart gelöst, daß eine in einem Tank befindliche Flüssigkeit durch eine Pumpe in Zirkulation versetzt und diese Flüssigkeit über einen Injektor mit definierten, luftgesättigten Wasserstrahlströmen beaufschlagt wird. - Fig. 1 -

Vorrichtung zur Injektion von Luft in eine Flüssigkeit

Anwendungsgebiet der Erfindung

Die Erfindung bezicht sich auf eine Vorrichtung zur Injektion von Luft in eine Flüssigkeit, insbesondere auf eine Belüftungseinrichtung, die bei der Herstellung von kurzzeitigen Luftblasen bei der Sauerstoffzuführung und in einem Flotationssystem fester Teilchen, das sowohl in einer Abwasseraufbereitungsanlage nach dem Prinzip des aktivierten Schlamms als auch in einem aeroben Lagunenverfahren angewandt werden kann.

Die Erfindung kann weiterhin auch als Luftblasengenerator in Abwasseraufbereitungsanlagen angewendet werden, die nach dem Prinzip der Festpartikelflotation arbeiten.

Charakteristik der bekannten technischen Lösungen

Bei einer Abwasseraufbereitungsanlage nach dem Prinzip des aktivierten Schlamms wird mit einer Kolonie gemischter Mikroorganismen ein kontinuierliches Verfahren durchgeführt, unter Anwesenheit aufgelösten Sauerstoffs und unter Verwendung organischer Substanzen (BOD), die im Abwasser als Medium enthalten sind. Nachdem die organischen Substanzen oxydiert und durch einen biochemischen Prozeß abgetrennt sind, wird durch die Sedimentation von einer bestimmten Menge Mikroorganismen gereinigtes Wasser abgetrennt, oder das Wasser wird von dem aktivierten Schlamm abgetrennt, der das Medium und gemischte Mikroorganismen enthält. Der aerobe Lagunenprozeß basiert auf einem ähnlichen Prinzip, aber er beinhaltet nicht einen Rückkopplungsprozeß des aktivierten Schlamms. Die Belüftung ist ein sehr wichtiger Faktor bei der biochemischen Behandlung des Abwassers, um

eine Auflösung des in der Luft befindlichen Sauerstoffes zu erreichen oder unnötige im Wasser enthaltene Gase oder. flüchtige Bestandteile zu entfernen oder zu zerstreuen. Normalerweise wird die Belüftung von einer Mischung oder einer Erschütterung des Abfallwassers begleitet. Die Sauerstoffzufuhr gestattet biochemische Reaktionen, wie z. B. die Oxydation organischer Substanzen, das Wachstum der Mikroorganismen oder das Fortschreiten der Selbstoxydation durch den aktivierten Schlamm, während die Mischung und Erschütterung die Aufschwämmung des aktivierten Schlamms zur Erreichung eines effektiven Kontakts zwischen absorbiertem Sauerstoff und dem Schlamm gewährleisten.

Der Belüftungsprozeß findet in dem Tank statt, in den das Abwasser einfließt und aus dem der aktivierte Schlamm zurückgeführt wird. Bei dem Lagunenprozeß findet die Belüftung in einer Lagune statt, in der sich das Abwasser für einen relativ langen Zeitraum befindet. Das Verhältnis der biochemischen Reaktionen hängt von der Belüftungsperiode ab, der Menge der Mikroorganismen und der organischen Bestandteile. Im Vergleich zu anderen chemischen Reaktionen gehen diese Reaktionen sehr langsam von sich. Deshalb sind umfangreichere Behandlungsanlagen und entsprechend mehr Platz für ihre Installation erforderlich. Jedoch ist der Raum in Städten, in denen diese Behandlungsanlagen installiert werden sollen, begrenzt. Um den Raum für diese Anlagen so minimal wie möglich zu gestalten, insbesondere den Raum für den Belüftungstank, ist es notwendig, die Volumenkapazität des Belüftungstanks so maximal wie möglich zu gestalten. Die Volumenkapazität L, wird wie folgt ausgedrückt:

$$\mathbf{r}^{\mathbf{A}} = \partial \mathbf{s}^{\mathbf{o}}$$

Wobei V das Volumen des Belüftungstanks in m³, Q das Fließverhältnis des einfließenden Abwassers in m³ pro Tag und So die BOD-Konzentration in dem einfließenden Abwasser in mg pro Liter verkörpern.

Die größte technische Schwierigkeit, die bei einem Prozeß mit hoher Kapazität auftritt, besteht darin, die Kapazität der Sauerstoffzufuhr zu steigern.

Andererseits ist die Flotation fester Teilchen ein physikalischer Prozeß der Abwasserbehandlung, bei dem kurzzeitig gebildete Luftblasen sich gezwungenermaßen an den in der Flüssigkeit befindlichen festen Teilchen ablagern, die dadurch zusammen mit den Luftblasen an die Oberfläche der Flüssigkeit gelangen. Solche Anlagen werden vorzugsweise bei der Abwasseraufbereitung in der Industrie angewandt, weil damit anorganische und toxische Bestandteile enthaltende Abwässer behandelt werden können.

Dabei können die Belüftungseinrichtungen, die bei bekannten biochemischen Abwasseraufbereitungsverfahren angewandt werden, nach den folgenden drei Verfahren unterteilt werden:

- a) Luftblasenverfahren, bei dem die Injektion von Luft in Abwasser genutzt wird:
- b) kombinierte Nutzung der Luftinjektion und mechanische Bewegung mittels Unterwasserturbinen und
- c) Verfahren der Oberflächenbewegung.

Bei dem Luftblasen- und dem kombinierten Verfahren tritt eine Verschiebung des Sauerstoffs auf, wenn die Blasen gebildet oder zerstört werden. Der Grad der Verschiebung hängt von der Menge der zugeführten Luft, dem Durchmesser der Blasen, der Luftinjektionsrate und der Form des Belüfters ab. Bei dem Prozeß der Oberflächenbewegung findet eine Sauerstoffbewegung statt, wobei die die Bewegung erzeugenden Turbinen an dem Flüssigkeitsspiegel angrenzen. Diese Erscheinung ist auf die Oberfläche dünner Filme oder Flüssigkeitstropfen lokalisiert, die an den Aufprallpunkten zwischen der spritzenden Flüssigkeit und der flüssigen Oberfläche und an den Kontaktoberflächen zwischen der Luft und der flüssigen Oberfläche in einem negativen Druckbereich, der hinter den Turbinen entsteht, in die Atmosphäre ausgestoßen wird. Eine Belüftungsanlage nach dem Verfahren der Oberflächenbewegung hat den Nachteil, daß eine einheitliche Mischung innerhalb des Tanks schwer zu erreichen ist, und er bei Temperaturen nahe dem Gefrierpunkt unwirtschaftlich arbeitet. Während die Belüftungsvorrichtungen für die beiden ersten Verfahren diese Nachteile nicht aufweisen, erfordert das Luftblasenverfahren die Erzeugung von kurzzeitigen Luftblasen, um den Sauerstofffluß effektiv zu erhöhen. Bei diesem Verfahren besteht die Möglichkeit, daß die Luftablaßeinrichtung durch in der Luft befindlichen Staub verstopft wird. Um diesen Nachteil zu vermeiden, ist es erforderlich, zusätzlich einen Luftreiniger zu installieren.

Bei der Belüftungseinrichtung des kombinierten Verfahrens werden über der Luftablaßeinrichtung Turbinenschaufeln angebracht, um die Luftblasen zu atomisieren, die dann von der Einrichtung entladen und verteilt werden. Wenn jedoch die Luftmenge erhöht wird, kann der Bewegungseffekt reduziert werden, da die Turbinenschaufeln von Luftblasen umgeben sind. Bei dem kombinierten Verfahren ist zusätzliche Energie erforderlich, um sowohl den Luftkompressor als auch die Bewegungseinrichtung zu speisen. Das erfordert erhöhte Betriebskosten. Die bekannte Belüftungseinrichtung ist in der Kapazität der Sauerstoffzufuhr begrenzt. Um diese Schwierigkeit zu überwinden, ist ein reines Sauerstoffbe-lüftungsverfahren entwickelt worden. Dieses Verfahren ist mittels einem geschlossenen und einem offenen Belüftungstank durchführbar, wobei diese in ihrem Aufbau recht kompliziert sind und somit erhöhte Betriebskosten erfordern. Außerdem besteht die Gefahr der Explosion für den Fall, daß Hydrokarbon in das Abwasser eingemischt wird.

Ziel der Erfindung

Ziel der Erfindung ist es, die Gebrauchswerteigenschaften von Belüftungseinrichtungen zu erhöhen und deren Betriebsund Instandhaltungskosten zu senken.

Darlegung des Wesens der Erfindung

Aufgabe der Erfindung ist es, eine konstruktiv einfache Vorrichtung zur Injektion von Luft in eine Flüssigkeit zu entwickeln, mit der eine hohe Sauerstoffverdrängung erreicht wird und die eine wesentliche Verbesserung des Verhältnisses von absorbiertem Sauerstoff zur Menge des eingeblasenen Sauerstoffs ermöglicht.

Erfindungsgemäß wird die Aufgabe derart gelöst, daß die Vorrichtung eine mit einer Antriebsquelle verbundene Pumpe, eine Saugpumpe zur Zuführung der Flüssigkeit in den Tank der Pumpe, ein Ableitungsrohr zur Rückführung der Flüssigkeit von der Pumpa zum Tank, eine Luftaufnahmevorrichtung, die sich im Saugrohr befindet, und einen mit einem Luftdurchlaß versehenen Körper, durch den eine Verbindung zwischen dem Inneren des Saugrohrs und der Atmosphäre hergestellt wird, ein in dem Luftdurchlaß angeordnetes Ventil und eine Leitung zur Verbindung des Ventils mit dem Ableitungsrohr zwischen seinen Enden, wobei die Größe des Luftdurchlasses von der Übereinstimmung mit dem Entladungsdruck. der Pumpe bestimmt wird, einen Injektor innerhalb des Tanks, wobei der Injektor mit dem Ausgangs des Ableitungsrohrs verbunden ist, ein Gehäuse, das einen ringförmigen Durchgang aufweist und ermöglicht, daß das Ende des Ableitungsrohres mit dem ringförmigen Durchlaß verbunden ist, und eine Vielzahl von Injektionseingängen, die um das Geläuse herum angeordnet sind, und mit dem ringförmigen Durchlaß in Verbindung stehen, umfaßt.

Vorteilhafterweise ist sie so zu gestalten, daß der Tank einen Einlaß für organische Substanzen enthaltendes Abwasser und einen Einlaß für eine aktivierte Masse besitzt, bei der die Pumpe ein Rühren und ein Bewegen der Luft bewirken kann, die von der Lufteinlaßeinrichtung mit dem Abwasser und dem aktivierten Schlamm zurückgesaugt wird. Empfehlenswerterweise sollten die Injektionseingänge des Injektors in horizontaler Richtung geöffnet sein. Weiterhin hat es sich als günstig erwiesen, daß der Einlaß der Saugpumpe mit einem Sieb versehen ist, welches sich unterhalb des Injektors befindet.

Fin weiteres erfindungsgemäßes Merkmal ist darin zu sehen, daß das Sieb ein ausgespartes zylindrisches Teil enthält und mit dem Injektor in koaxialem Verhältnis steht, und bei dem der Einlaß der Saugpumpe durch eine zentrale Öffnung in dem Injektor mit dem Sieb verbunden ist.

Ebenso ist es vorteilhaft, daß ein Abwasser enthaltender Tank mit einem Einlaß für organische Substanzen versehen ist sowie eine Pumpeinrichtung für die Zirkulation des Abfallwassers im Tank, wobei die Pumpeinrichtung mit dem Saugrohr und dem Ableitungsrohr, die beide am Tank angeschlossen sind, verbunden ist; eine Lufteinlaßeinrichtung, die sich im Saugrohr zwischen den Enden befindet, und einen Injektor, der sich innerhalb des Tanks befindet und mit dem Ausgang des Ableitungsrohrs verbunden ist, aufweist.

Eine Weitere Ausgestaltungsmöglichkeit besteht darin, daß die Lufteinlaßeinrichtung ein Ventil enthält, über welches die Menge der abgesaugten Luft in Übereinstimmung mit dem Entlastungsdruck der Pumpe regulierbar ist. Gegebenenfalls sollte der Tank mit einem Einlaß für die aktivierte Masse versehen sein.

Die Erfindung ist - wie ausgeführt - durch das Vorhandensein einer Luftzuführungsvorrichtung gekennzeichnet, welche sich an einem mit einer Pumpe verbundenen Saugrohr befindet, wodurch die Flüssigkeit im Tank in Zirkulation versetzt wird. Die von der Einlaßeinrichtung zugeführte Luft wird umfassend mit der Flüssigkeit in der Pumpe vermischt, um innerhalb der Flüssigkeit die Luftblasen zu verteilen, die dann in Form eines Strahlenstroms aus dem im Tank befindlië chen Injektor ausgestoßen werden. Die Lufteinlaßeinrichtung ist so regelbar, daß sie eine bestimmte Luftmenge, die dem Entladungsdruck der Pumpe entspricht, zurückzieht.

Die Erfindung verfügt dementsprechend über eine Vorrichtung, die Luft in die Flüssigkeit des Tankes führt. Diese Vorrichtung besitzt eine mit einer Antriebsquelle verbundene Pumpe. ein Saugrohr zur Zuführung der Flüssigkeit in den Tank der Pumpe, ein Abflußrohr zur Rückführung der Flüssigkeit von der Pumpe zu dem Tank, eine in dem Saugrohr befindliche Lufteinlaßeinrichtung einschließlich eines mit einem Luftdurchlaß versehenen Körpers, der eine Verbindung zwischen dem Inneren des Saugrohres und der Atmosphäre herstellt, ein in dem Luftdurchlaß befindliches Ventil und eine Leitung, die das Ventil mit dem Abflußrohr verbindet. Die Größe des Luftdurchlasses wird in Übereinstimmung mit dem Entladungsdruck der Pumpe geregelt. Des weiteren besitzt die Vorrichtung einen mit dem Ausgang des Abflußrohres verbundenen Injektor innerhalb des Tankes und ein Gehäuse, das einen ringförmigen Durchlaß bildet, Teile, die den ringförmigen Durchlaß mit dem Ausgang des Abflußrohres verbinden und eine Vielzahl von Injektionsstellen, die in entsprechendem Abstand um das Gehäuse herum angeordnet sind.

Ausführungsbeispiel

Die Erfindung wird in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung näher dargestellt. Es zeigen:

- Fig. 1: eine Seiteransicht der Vorrichtung zur Injektion von Luft in eine Flüssigkeit;
- Fig. 2: einen Querschnitt eines Lufteinlaßventils nach Fig. 1;
- Fig. 3: einen vergrößerten Querschnitt eines Flüssigkeitsinjektors nach Fig. 1;
- Fig. 4: einen Grundriß des Flüssigkeitsinjektors nach Fig. 3.

In Fig. 1 ist eine Vorrichtung zur Injektion von Luft in eine Flüssigkeit entsprechend der Erfindung gezeigt, die als Belüftungseinrichtung in einer biochemischen Abwasseraufbereitungsanlage benutzt wird. Einfachheitshalber ist der Tank 1 in der Zeichnung verkleinert dargestellt worden, aber selbstverständlich hat dieser das gewünschte Volumen, das den Erfordernissen entspricht. Der Tank 1 ist mit einer Einlaßöffnung für das Abwasser und einer Einlaßöffnung für den aktivierten Schlamm versehen, was aber in der Zeichnung nicht gezeigt ist. Das Innere des Tanks ist mit Abwasser 2 gefüllt, das aktivierten Schlamm enthält. Dieses Abwasser wird im folgenden einfach nur als "Abwasser" bezeichnet werden.

Entsprechend der Erfindung wird das Abwasser 2 in Tank 1 mittels der Pumpe 3 zirkuliert, was von außen durch den Tank 1 bewirkt wird, der an das Saugrohr 4 und das Abflußrohr 5 angeschlossen ist. Das Saugrohr 4 hat eine Einlaßöffnung 6, die mit einem Sieb 9 versehen ist, welches vollständig den Injektor 8, der sich am Ausgangsende 7 des Abflußrohres 5 befindet, umgibt. Das Sieb 9 beinhaltet einen geöffneten Zylinder und befindet sich auf dem Boden des Tanks 1. Der Injektor 8 befindet sich an der Spitze des Siebes 9 und beinhaltet ein Gehäuse 11, das eine ringförmige Passage 10 bildet (Fig. 3 und 4). Das Gehäuse 11 befindet sich auf einer Grundplatte 12, die an der Spitze des Siebes 9 befestigt ist. Um das Ausgangsende 7 des Abflußrohres mit der ringförmigen Passage 10 des Injektors 8 zu verbinden, ist das Gehäuse mit einem Zwischenverbindungsrohr 13 ausgerüstet. welches das Abflußrohr in Betriebsstellung hält. Eine Abschlußwand 14 der ringförmigen Passage 10 befindet sich angrenzend an dem Zwischenverbindungsrohr 13. Eine Vielzahl von Injektionsöffnungen 15, die mit der ringförmigen Passage 10 in Verbindung stehen, befinden sich an der Außenwand des Gehäuses 11. In dem gezeigten Beispiel ist jede Injektionsöffnung 15 so geformt, daß sie sich horizontal an dem Kreuzungspunkt zwischen dem Gehäuse 11 und der Grundplatte 12 ausdehnt und einen gleichen Injektionswinkel besitzt. Es ist jedoch selbstverständlich, daß jeder gewünschte Winkel ausgewählt werden kann. Die Injektionsrichtung kann auch willkürlich ausgewählt werden. Die Injektionsrichtung und der Injektionswinkel können so bestimmt werden, daß die aus den aneinandergrenzenden Öffnungen ausdringende Flüssigkeit sich überschneidet. Der Einlaß 6 des Saugrohres 4 steht mit dem geöffneten, zylindrischen Sieb 9 durch eine

Öffnung 16, die sich in der Mitte der ringförmigen Grundplatte des Injektors 8 befindet, in Verbindung. Die Öffnung 16 ist von einer zylindrischen Wand 17 umgeben, um die sich eine Vielzahl sich radial ausdehnender Rippen 18 befinden, die zwischeneinander Saugöffnungen 19 bilden.

In Fig. 1 ist ein Lufteinlaßventil 21, das sich in dem Saugrohr befindet, gezeigt, welches Luft in das Abwasser injiziert, das entsprechend der Erfindung von der Pumpe 3 zirkuliert wird. Das Einlaßventil 21 beinhaltet ein druckempfindliches Rohr 22, welches mit dem Abflußrohr 5 verbunden ist,
um die Luftmenge zu kontrollieren, die in Übereinstimmung
mit dem Abflußdruck der Pumpe 3 von der Saugseite abgesogen
wird.

In Fig. 2 ist das Lufteinlaßrohr im Detail gezeigt. Es beinhaltet einen Körper 23. der eine Zylinderkammer 24 bildet. in die der Druckkolben eingepaßt ist. Ein Ende des Druckkolbens befindet sich gegenüber dem Ventil 27, welches in der Luftpassage angeordnet ist. Die Luftpassage ist in dem Körper 23 vorgesehen. Dadurch kann der Luftfluß durch die Passage 26 gesteuert werden. Die Passage 26 hat einen Einlaß 28, welcher sich gegenüber der Atmosphäre mittels eines Lufthahnes 29 öffnen läßt. Der Ausgang 30 ist mit dem Saugrohr 4 verbunden. Der Lufthahn 29 besitzt einen Griff 31. Mit dem Griff 31 kann die Querschnittsfläche der Luftpassage reguliert werden. Ein Ende der Zylinderkammer 24 steht mit der unter Druck gesetzten Flüssigkeitspassage 32 in Verbindung, das wiederum mit dem Abflußrohr 5 durch das druckempfindliche Rohr 22 verbunden ist. Ein Verbinder wird dazu benutzt, um das Rohr 22 zum Körper 23 zu sichern. Der Druckkolben 25 wird von einer Feder 34 betrieben, so daß die

Passage 26 normalerweise geschlossen wird. Um die Feder 34 zu installieren, ist der Körper 23 mit einem Ventildeckel 35 versehen, der mit einem Gewinde von einer Reglerschraube 37 betrieben werden kann, die ein Federwiderlager 36 besitzt. Ein Ende der Feder 34 befindet sich in einer axialen Vertiefung 38 des Druckkolbens 25, während ihr anderes Ende gegen das Federwiderlager 36 drückt. Der Druckkolben 25 beinhaltet ein Schulterteil 39. Dieses Schulterteil 39 befindet sich innerhalb der Zylinderkammer 24 und reguliert den Abflußdruck der Pumpe 3, welcher durch die Passage der unter Druck gesetzten Flüssigkeit 32 in die Zylinderkammer 24 entsteht. Der Abflußdruck ist entgegen der Federwirkung der Feder 34 gerichtet. Dadurch bestimmt der Druckkelben 25 die wesentliche Querschnittsfläche.der Passage 26, die dem Abflußdruck der Pumpe 3 entspricht. Selbstverständlich kann die Ventilöffnung durch den Druckkolben 25 von der Reglerschraube 37 geregelt werden, die die Kompression der Feder 34 regelt. Es ist zu bemerken, daß das Lufteinlaßventil nur eine Möglichkeit der Gestaltung darstellt und durch jedes andere herkömmliche Ventil ersetzt werden kann. Wenn die Passage 26 des Lufteinlaßventils 21 geöffnet ist, fließt die Luft in das Saugrohr 4. Während die Pumpe 3 in Betrieb ist, entsteht am Ausgang der Passage 26 ein Unterdruck. Dadurch kann die Luft durch den Einlaß aus der Atmosphäre abgesaugt werden, ohne daß dazu ein Ventilator notwendig ist. Die durch das Saugrohr abgesaugte Luft wird zusammen mit dem Abwasser stark gemischt in der Pumpe 3. Dabei wird eine große Menge kurzzeitiger Luftblasen in dem Abwasser gebildet. Das solche Luftblasen enthaltende Abwasser wird durch das Abflußrohr 5 zu dem Injektor 8 befördert, der sich innerhalb des Tankes 1 befindet, der es dann mit Kraft ausstößt. Dieses Ausstoßen bewirkt eine vollständige Mischung des in Tank 1 enthaltenen Abwassers.

Es ist vorteilhaft, wenn sich die Injektionsöffnungen 15 des Injektors in horizontaler Richtung ausdehnen. Damit erhöht sich die Aufenthaltsdauer der Luftblasen im Tank. Die Pumpe 3 ist durch eine Kupplung 41 am elektrischen Motor 43 angeschlossen. In der bevorzugten Darstellung der Erfindung ist eine Zentrifugalpumpe benutzt worden. Wie zu erkennen ist, wird die Effektivität der Zentrifugalpumpe in erheblichem Maße herabgesetzt, wenn die im Wasser enthaltene Luft unter Druck gesetzt wird, weil sich die Luft im Laufrad ausdehnt und dabei die Einlässe der Räder blockiert, wobei eine ähnliche Situation wie eine Hohlraumbildung auftritt. Es sind auch Zentrifugalrampen, die mit einer verbesserten Radstruktur ausgerüstet sind und die in einer Flüssigkeit verwendet werden können, die eine große Luftmenge enthält, ohne daß dabei Komplikationen auftreten. Einzelheiten dieser Zentrifugalpumpe sind z. B. in der DE-OS 2 835 762 dargelegt. Es können auch andere Pumpentypen verwendet werden.

Entsprechend der Erfindung werden das Abwasser und die Luft in der Belüftungsanlage innerhalb der Pumpe 3 gemischt, so daß die Luft Gegenstand einer starken Abscherwirkung ist. Das die Luftblasen enthaltende Wasser wird im Inneren des Abflußrohres 5 und gleichzeitig im Injektor 8 nach dem Abfluß aus der Pumpe 3 weiter gemischt. Wenn die Luftblasen in Form von Luftströmen aus den entsprechenden Injektions-öffnungen des Injektors ausgestoßen werden, ruft das eine Vermischung der gesamten Flüssigkeit innerhalb des Tankes 1 hervor. Bei diesem Belüftungsverfahren erhöht sich der Teil-

druck des Sauerstoffs in der Luft und damit der Antrieb, den der in der Luft enthaltene Sauerstoff in die Flüssigkeit ausstößt. Im Ergebnis verbessert sich die Sauerstoffabsorption relativ zur Menge des injizierten Sauerstoffs, bzw. die Sauerstoffabsorptionseffektivität wird in hohem Maße verbessert.

Demzufolge kann die erforderliche Belüftungsperiode reduziert, oder es kann ein kompakter Belüftungstank mit hoher Volumenkapazität eingesetzt werden. Die detaillierte Darstellung der Erfindung, die auf die Belüftung in einer Abwasseraufbereitungsanlage nach dem Verfahren des aktivierten Schlamms bezogen ist, kann selbstverständlich auch als Belüftungsanlage für ein aerobes Lagunenverfahren benutzt werden. Ebenfalls ist es möglich, daß die Erfindung auch als Luftblasengenerator für ein Flotationssystem für feste Teilchen benutzt werden kann.

Erfindungsanspruch

- 1. Vorrichtung zur Injektion von Luft in eine Flüssigkeit. insbesondere in eine in einem Tank befindliche Flüssigkeit, wie Abwasser, gekennzeichnet dadurch, daß sie eine mit einer Antriebsquelle verbundene Pumpe, eine Saugpumpe zur Zuführung der Flüssigkeit in den Tank der Pumpe, ein Ableitungsrohr zur Rückführung der Flüssigkeit von der Pumpe zum Tank, eine Luftaufnahmevorrichtung, die sich im Saugrohr befindet, und einen mit einem Luftdurchlaß versehenen Körper, durch den eine Verbindung zwischen dem Inneren des Saugrohres und der Atmosphäre hergestellt wird, ein in dem Luftdurchlaß angeordnetes Ventil und eine Leitung zur Verbindung des Ventils mit dem Ableitungsrohr zwischen seinen Enden, wobei die Größe des Luftdurchlasses von der Übereinstimmung mit dem Entladungsdruck der Pumpe bestimmt wird, einen Injektor innerhalb des Tanks, wobei der Injektor mit dem Ausgang des Ableitungsrohres verbunden ist, ein Gehäuse, das einen ringförmigen Durchgang aufweist und ermöglicht, daß das Ende des Ableitungsrohres mit dem ringförmigen Durchlaß verbunden ist, und eine Vielzahl von Injektionseingängen, die um das Gehäuse herum angeordnet sind, und mit dem ringförmigen Durchlaß in Verbindung stehen, umfaßt.
- 2. Vorrichtung nach Punkt 1, gekennzeichnet dadurch, daß der Tank einen Einlaß für organische Substanzen enthaltendes Abwasser und einen Einlaß für eine aktivierte Masse besitzt, bei der die Pumpe ein Rühren und ein Bewegen der Luft bewirken kann, die von der Lufteinlaßeinrichtung mit dem Abwasser und dem aktivierten Schlamm zurückgesaugt wird.

- 3. Vorrichtung nach Punkt 1, gekennzeichnet dadurch, daß die Injektionseingänge des Injektors in horizontaler Richtung geöffnet sind.
- 4. Vorrichtung nach Punkt 1, gekennzeichnet dadurch, daß der Einlaß der Saugpumpe mit einem Sieb versehen ist, welches sich unterhalb des Injektors befindet.
- 5. Vorrichtung nach Punkt 4, gekennzeichnet dadurch, daß das Sieb ein ausgespartes zylindrisches Teil enthält und mit dem Injektor in koaxialem Verhältnis steht, und bei dem der Einlaß der Saugpumpe durch eine zentrale Öffnung in dem Injektor mit dem Sieb verbunden ist.
- 6. Vorrichtung nach Punkt 1, gekennzeichnet dadurch, daß ein Abwasser enthaltender Tank mit einem Einlaß für organische Substanzen versehen ist sowie eine Pumpeinrichtung für die Zirkulation des Abfallwassers im Tank, wobei die Pumpeinrichtung mit dem Saugrohr und dem Ableitungsrohr, die beide am Tank angeschlossen sind, verbunden ist; eine Lufteinlaßeinrichtung, die sich im Saugrohr zwischen den Enden befindet, und einen Injektor, der sich innerhalb des Tanks befindet und mit dem Ausgang des Ableitungsrohres verbunden ist, aufweist.
- 7. Vorrichtung nach Punkt 6, gekennzeichnet dadurch, daß die Lufteinlaßeinrichtung ein Ventil enthält, über welches die Menge der abgesaugten Luft in Übereinstimmung mit dem Entlastungsdruck der Pumpe regulierbar ist.
- 8. Vorrichtung nach Punkt 6, gekennzeichnet dadurch, daß der Tank mit einem Einlaß für die aktivierte Masse versehen ist.

FIG. I

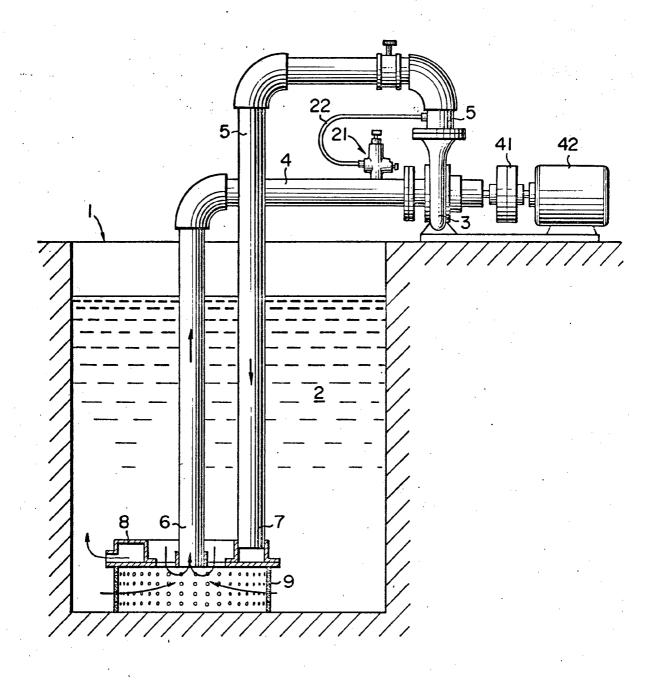
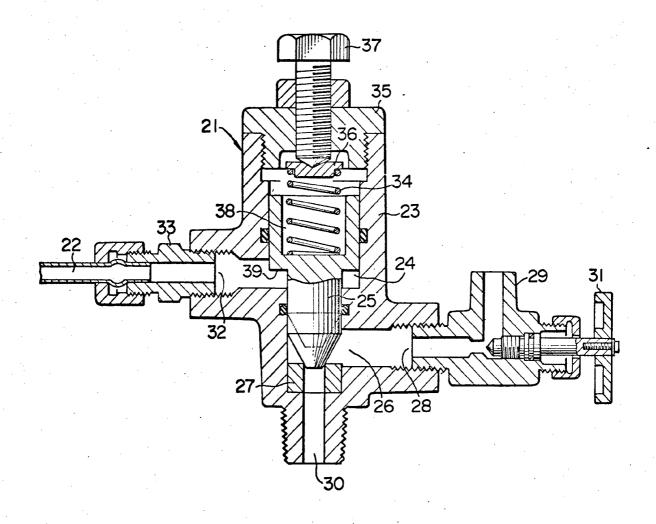
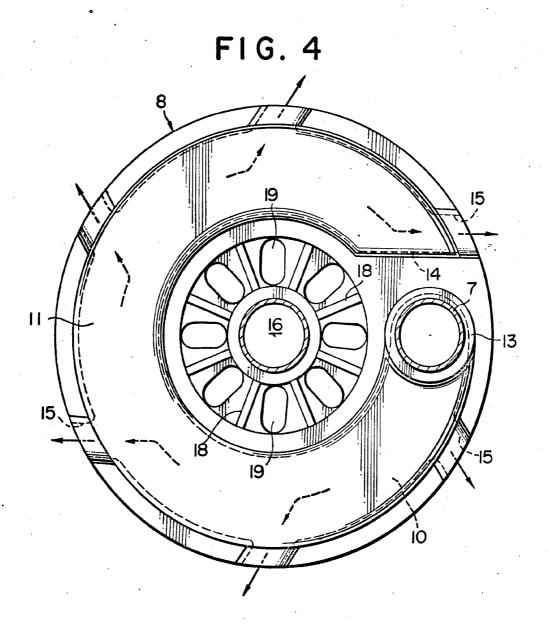




FIG. 2

