PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

HO3M 7/46, GO6F 17/22 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/24129

27 April 2000 (27.04.00)

(21) International Application Number: PCT/US99/24421

(22) International Filing Date: 18 October 1999 (18.10.99)

(30) Priority Data:

09/175,795 19 October 1998 (19.10.98) Us

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventor: KADYK, Don; 20022 - 34th Avenue SE, Bothell,
WA 98012 (US).

(74) Agents: MAGEE, Theodore, M. et al.; Westman, Champlin &
Kelly, P.A., International Center, Suite 1600, 900 Second
Avenue South, Minneapolis, MN 55402-3319 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND APPARATUS FOR COMPRESSION AND ENCODING OF UNICODE STRINGS

(57) Abstract

A method in a computer system (12, 16, 14, 18) examines a string (200) of two-byte
characters and determines if the first byte in each of the two-byte characters (212, 216) is
the same. If the first byte is the same in each of the two-byte characters (212, 216), the
method converts the string of two-byte characters into a string (202) of one-byte values -
by removing the first byte of each of the two-byte characters. A designation value (206,
208) is then concatenated to the string of one-byte values to indicate the value of the first

byte removed from each two-byte character.

RECORD YHENUMBER | :  SEPARATE HEX
OFUNICODE | ] CHARACTERS OF
CHARACTERSIN ™ LENGTHINTO
STRING ASLENGTH | | INDIVIDUAL M1BBLES
L
1

7
PREPEND 6 HEX TO "
ALL BUT THE LEAST
SIONTFICANT NIiBBLE

\LL CHARACTE!
FROM SAME
‘CODEPAGE?

PREPEND *4* HEX TO
LEAST SIONIFICANT
NIBBLE OF LENGTH

EPEND 1
HEXTOLEAST]
SIGNIFICANT |

LENOTH |

"

DIVIDE TWO-BYTE

TOSTEP IT4

(NY VALUES N TEMP BUFFE]
OUTSIDE OF PRINTABLE ASCIt
RANGE( 20 HEX- 7E HEX?

PACKAGE
1

SEND OUTPUT
SIGNIFICANT PACKAGE
LENOTH NIBBLE
WTTH *0° TO FORM

MARKERBYTE | §

e
REPLACE NIBBLE |
PREPENDEDYO |

SIONIFICANT
LENOTHNIBBLE |
WITH"S"HEX ¢




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Ccu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Repubtlic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SDb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 00/24129 PCT/US99/24421

METHOD AND APPARATUS FOR COMPRESSION AND

ENCODING OF UNICODE STRINGS
BACKGROUND OF THE INVENTION

The present invention relates to compression
and encoding. In particular, the present invention
relates to compression of Unicode strings;

In computing environments, it is desirable
to represent symbols and characters found in human
language as hexadecimal wvalues. The collection of
hexadecimal values needed to represent an entire
language is known as a character set. In order to
accommodate all of the symbols found in the various
languages  throughout the world, the computing
community developed the Unicode character set that
uses two bytes to represent any one character or
symbol.

In order to allow portability of computer
objects, it is preferred that computer programs that
manipulate language characters be written to
manipulate Unicode characters. Although this Unicode

standard increases the portability of computer

programs, it is incompatible with certain
communication channels that only allow the
transmission of certain values. In particular, it is

incompatible with channels that require that each byte
of channel information be within the range of
characters found in the printable American Standard
Code for Information Interchange (ASCII), which is
limited to values between 20 hexadecimal and 7E
hexadecimal.

To overcome this incompatibility, the art

has developed encoding methods for converting



10

15

20

25

30

WO 00/24129 PCT/US99/24421

hexadecimal bytes into printable “ASCII” characters.
One such method is known as UUencode and involves
dividing the stream of data into three-byte sequences
and then dividing each of the three-byte sequence into
four six-bit values. Two "0" bits are placed in front
of each of the four six-bit values to produce eight-
bit values that are added to "20" hexadecimal. This
produces four eight-bit wvalues that are between "20"
hexadecimal and "5F" hexadecimal. Note that under
UUencoding, each three-byte sequence is converted into
a four-byte sequence resulting in a thirty-three
percent increase in the size of the data. Thus, three
Unicode characters, which are together represented by
six bytes, would be converted into eight bytes of
UUencoded data.

To overcome this increase in data size, some
prior art systems have used compression algorithms to
compress the UUencoded data. Typically, the
compression algorithms reduce the size of the data by
finding identical bit sequences in the data. For each
set of identical Dbit sequences, the compression
algorithm keeps the first bit sequence and replaces
the other matching sequences with a value indicating
the 1length of the replaced sequence and a value
indicating the location of the first bit sequence that
matches the replaced sequence.

Although such compression algorithms work
well with large strings of data, they do not work well
with short data strings because the redundancy of
short data strings is low. In fact, in some cases,
compression algorithms can cause the data to increase

in size due to overhead data that must be added to the



10

15

20

25

30

WO 00/24129 PCT/US99/24421

compressed data string to indicate the type of

compression that was performed.

SUMMARY OF THE INVENTION

A method in a computer system examines a
string of two-byte characters and determines if the
first byte in each of the two-byte characters is the
same. If the first byte is the same in each of the
two-byte characters, the method converts the string of
two-byte characters into a string of one-byte values
by removing the first byte of each of the two-byte
characters. A designation value is then concatenated
to the string of one-byte values to indicate the wvalue
of the first Dbyte removed from each two-byte
character.

In one embodiment of the invention, if the
first byte in each of the two-byte characters is not
the same, the two-byte characters are divided into
one-byte characters. In other embodiments of the
invention, the string of one-byte characters 1is
examined to determine if every character in the string
is within the printable “ASCII” range. If a character
is not within the printable “ASCII” range, the entire
string is UUencoded.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1is a block diagram of a computer
system including a wireless device.

FIG. 2 1is a block diagram of a computer of
FIG. 1.

FIGS. 3A and 3B are flow diagrams of a
method of an embodiment of the present invention.

FIGS 4A and 4B show the conversion of a



10

15

20

25

30

WO 00/24129 PCT/US99/24421

first Unicode string under an embodiment of the
present invention. _

FIGS 5A and 5B show the conversion of a
second Unicode string under an embodiment of the
present invention.

FIGS. 6A and 6B show the encoding of a third
Unicode string under an embodiment of the present
invention.

FIGS 7A and 7B show the encoding of a forth
Unicode string under an embodiment of the present
invention.

FIGS. 8A and 8B are flow diagrams of a
method of reconstructing a Unicode string from a data
packet of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

FIG. 1 illustrates a system 10 in which the

present invention 1is illustratively implemented.

System 10 includes content provider 12, wireless
carrier 14, desktop computer 16 and mobile device 18.

Content provider 12 provides any suitable type of
data from a database or other data source. For
example, under the present invention content provider
12 can provide Internet World Wide Web content or
current event information such as news, sports,
weather, traffic, and stock information. Wireless
carrier 14 is configured to receive content from the
content provider 12 via dial-up or direct Internet
connection, or a network connection. Wireless carrier
14 also includes a wireless push server 20. Server 20
packages the content received from content provider 12
so that it is compatible with the particular type of

transport being used by wireless carrier 14. Under



10

15

20

25

30

WO 00/24129 PCT/US§9/24421

the method of the present invention, discussed further
below, this includes compressing Unicode character
strings before transport. It may also include
encrypting and encoding the data before transport.

Once the data is properly formatted, it is
transmitted over the air through a wireless network
(such as through a paging channel) to be received
directly on mobile device 18. The transmitted data is
received by a wireless receiver and driver component
22 on mobile device 18 where the data is prepared for
use by mobile device 18. ‘

Mobile device 18 also preferably includes a
modem 24. Thus, rather than being transmitted through
wireless carrier 14, the provider’s content can be
transmitted directly from provider 12 through a direct
dial-up modem connection to mobile device 18.

In one embodiment of the invention, a
desktop computer 16 1s also provided that can
periodically retrieve or receive new and updated data
from content provider 12. Computer 16 can render this
data on its own associated wonitor or in some
embodiments, can transmit the data to mobile device
18.

Data on either computer 16 or mobile device
18 can be transmitted to the other device through-a
synchronization component 26 on computer 16 that is
configured to interact with a similar synchronization
component 28 on mobile device 18. Once synchronized,
the affected data on both computer 16 and mobile
device 18 is the same. In some embodiments, mobile
device 18 can be synchronized with either desktop

computer 16, or another mobile device 18, or both.



10

15

20

25

30

WO 00/24129 PCT/US99/24421

The connection to other mobile devices can be made
using any suitable, and commercially available
communication link and using a suitable communications
protocol. For instance, in one embodiment, mobile
device 18 communicates with either desktop computer 16
or another mobile device 18 with a physical cable,

which communicates using a serial communications

protocol. Other communication mechanisms are also
contemplated by the present invention, such as
infrared (IR) communication or other suitable

communication mechanisms.

Although wireless device 18 has Dbeen
described as having the ability to communicate
directly with the desktop computer 16 and with content
provider 12, those skilled in the art will recognize
that less sophisticated mobile devices under the
present invention will not have these abilities. In
particular, some mobile devices under the present
invention do not include a modem, such as modem 24 of
FIG. 1, or synchronization component 28 of FIG. 1.

FIG. 2 and the related discussion are
intended to provide a brief, general description of a
suitable desktop computer 16 in which portions of the
invention may be implemented. Although not required,
the invention will be described, at least in part, in
the general context of computer-executable
instructions, such as program modules, being executed
by a personal computer 16 a wireless push server 20 or
mobile device 18. Generally, program modules include
routine programs, objects, components, data
structures, etc. that perform particular tasks or

implement particular abstract data types. Moreover,



10

15

20

25

30

WO 00/24129 PCT/US99/24421

those skilled in the art will appreciate that desktop
computer 16 may be implemented with other computer
system configurations, including multiprocessor
systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe
computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that
are linked through a communications network. In a
distributed computing environment, program modules may
be located in both local and remote memory storage
devices.

With reference to FIG. 2, an exemplary
system for implementing desktop computer 16 includes a
general purpose computing device in the form of a
conventional personal computer 16, including
processing unit 48, a system memory 50, and a system
bus 52 that couples various system components
including the system memory 50 to the processing unit
48. The system bus 52 may be any of several types of
bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. The system
memory 50 includes read only memory (ROM) 54, and a
random access memory (RAM) 55. A basic input/output
system (BIOS) 56, containing the basic routine that
helps to transfer information between elements within
the desktop computer 16, such as during start-up, is
stored in ROM 54.

The desktop computer 16 further includes a
hard disc drive 57 for reading from and writing to a

hard disc (not shown), a magnetic disk drive 58 for



10

15

20

25

30

WO 00/24129 PCT/US99/24421

reading from or writing to removable magnetic disc 59,
and an optical disk drive 60 for reading from or
writing to a removable optical disk 61 such as a CD
ROM or other optical media. The hard disk drive 57,
magnetic disk drive 58, and optical disk drive 60 are
connected to the system bus 52 by a hard disk drive
interface 62, magnetic disk drive interface 63, and an
optical drive interface 64, respectively. The drives
and the associated computer readable media provide
nonvolatile storage of computer readable instructions,
data structures, program modules and other data for
the desktop computer 16. Although the exemplary
environment described herein employs a hard disk, a
removable magnetic disk 59, and a removable optical
disk 61, it should be appreciated by those skilled in
the art that other types of computer readable media
that can store data and that is accessible by a

computer, such as magnetic cassettes, flash memory

cards, digital video disks (DVDs) , Bernoulli
cartridges, random access memories (RAMs), read only
memory (ROM), and the like, may also be used in the

exemplary operating environment.

A number of program modules may be stored on
the hard disk, magnetic disk 59, optical disk 61, ROM
54 or RAM 55, including an operating system 65, one -or
more application programs 66 (which may include PIMs),
other program  modules 67 (which may include
synchronization component 26), and program data 68.

A user may enter commands and information
into desktop computer 16 through input devices such as
a keyboard 70, pointing device 72 and microphone 74.

Other input devices (not shown) may include a



WO 00/24129 PCT/US99/24421

joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often
connected to processing unit 48 through a serial port
interface 76 that is coupled to the system bus 52, but
may be connected by other interfaces, such as a sound
card, a parallel port, game port or a universal serial
bus (USB). A monitor 77 or other type of display
device is also connected to the system bus 52 via an
interface, such as a video adapter 78. 1In addition to
the monitor 77, desktop computers may typically
include other peripheral output devices such as
speakers or printers.

Desktop computer 16 may operate in a
networked environment using logic connections to one
or more remote computers (other than mobile device
18), such as a remote computer 79. The remote
computer 79 may be another personal computer, a
server, a router, a network PC, a peer device or other
network node, and typically includes many or all of
the elements described above relative to desktop
computer 16, although only a memory storage device 80
has been illustrated in FIG. 2. The logic connections
depicted in FIG. 2 include a local area network (LAN)
81 and a wide area network (WAN) 82. Such networking
environments are commonplace in offices, enterprise-
wide computer network intranets and the Internet.

When used in a LAN networking environment,
desktop computer 16 is connected to the local area
network 81 through a network interface or adapter 83.

When used in a WAN networking environment, desktop
computer 16 typically includes a modem 84 or other

means for establishing communications over the wide



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-10-

area network 82, such as the Internet. The modem 84,
which may be internal or external, is connected to the
system bus 52 via the serial port interface 76. 1In a
network environment, program modules depicted may be
stored in the remote memory storage devices. It will
be appreciated that the network connections shown are
exemplary and other means of establishing a
communications link between the computers may be used.

Desktop computer 16 runs operating system
65, which is typically stored in non-volatile memory
54 and executes on processor 48. One suitable
operating system is a Windows brand operating system
sold by Microsoft Corporation, such as Windows 95 or
Windows NT, operating systems, other derivative
versions of Windows brand operating systems, or
another suitable operating system. Other suitable
operating systems include systems such as the
Macintosh 0S sold from Apple Corporation, and the 0S/2
Presentation Manager sold by International Business
Machines (IBM) of Armonk, New York.

Application programs are preferably stored
in program module 67, in volatile memory or non-
volatile memory, or can be loaded into any of the
components shown in FIG. 2 from disc drive 59, CDROM
drive 61, downloaded from a network via network
adapter 83, or loaded using another suitable
mechanism.

A dynamically linked library (DLL) ,
comprising a plurality of executable functions is
associated with PIMs in the memory for execution by
processor 48. Interprocessor and intercomponent calls

are facilitated using the component object model (COM)



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-11-

as 1s common in programs written for Microsoft Windows
brand operating systems. Briefly, when using COM, a
software component such as DLL has a number of
interfaces. Each interface exposes a plurality of
methods, which can be called individually to utilize
different services offered by the software component.

In addition, interfaces are provided such that
methods or functions can be called from other software
components, which optionally receive and return one or
more parameter arguments.

FIGS. 3A and 3B provide a flow diagram of a
method under one embodiment of the present invention.

The method starts at step 150 of FIG. 3A and proceeds
to step 152 where one less than the number of Unicode
characters in the string is recorded as the length.
The length is not the total number of characters in
the string Dbecause the 1last Unicode character
typically contains all zeros to mark the end of the
string. Thus, it does not contain a Unicode character
that represents a language symbol. Under the present
invention, this last Unicode character is no longer
needed since the length of the Unicode strength is
passed through the transmission channel. Therefore,
the last Unicode character in the string is not
included in the length of the string.

The recorded length of the Unicode string is
then separated into individual hexadecimal nibbles at
step 154. Thus, if the length of the Unicode string
is “2C” hexadecimal, the recorded length would be
separated into a most significant hexadecimal nibble
of "2" and a least significant hexadecimal nibble of

"C". A hexadecimal “6” is prepended to the front of



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-12-

all of the 1length nibbles except for the least
significant length nibble. In the example above, a
"g" would be prepended to the “2” to produce the
length byte “62” but a "6" would not be prepended to
the “C” nibble, which is the least significant length
nibble. This prepending takes place at step 156 of
FIG. 3A.

At step 158 of FIG. 3A, the characters in
the Unicode string are each examined to determine if
they are all from the same code page. Under the
Unicode standard, each Unicode character is
constructed from two eight-bit bytes and two Unicode
characters are from the same code page if their first
bytes match. Thus, in step 158, the method examines
the first byte of each Unicode character in the
Unicode string to determine if the first bytes are the
same.

If the Unicode characters of the Unicode
string are each from the same code page, the method
continues at step 160 where the method determines if
the Unicode characters are each from the O0th code
page. Unicode characters from the 0Oth code page each
have “00” hexadecimal as their first byte. In
addition, the Oth code page contains all of the
printable “ASCII” character set. Thus, under the
Unicode standard, “ASCII” charactexrs translate
directly to a Unicode character simply by prepending
“00”to the front of the “ASCII” character.

If all of the Unicode characters in the
string are from the 0th code page at step 160, "2"
hexadecimal is prepended to the least significant
length nibble at step 162. Recall that at step 156



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-13-

above, nothing was prepended to the least significant
length nibble, however, the other length nibbles had a
"6" prepended to them.

If the Unicode characters are not all from
the 0th code page at step 160, the method continues at
step 164 where "3" hexadecimal is prepended to the
least significant length nibble. A copy of the first
byte of one of the Unicode characters in the string of
Unicode characters is then placed in a temporary
buffer at step 166. Thus, if the first byte of each
of the Unicode characters in the string was “B2”, “B2”
will be copied into the temporary buffer.

After step 162 or step 166, the lower byte
in each character in the Unicode character string 1is
copied into the temporary buffer at a step 168.

Through steps 160, 162, 164, 166, and 168, a
Unicode string consisting of Unicode characters that
have the same first byte is reduced to a string of
single byte values consisting of the second byte of
each Unicode character. To indicate the value of the
striped first byte, a designation value is added to
the string of single byte values. For Unicode
characters from the 0th code page, the designation
value is simply the "2" prepended to the Ileast
significant length nibble. For Unicode characters
that share other code pages, the designation value is
a composite of the "3" prepended to the least
significant length nibble in step 164 and the single
copy of the upper byte of the Unicode characters that
is stored in the temporary buffer at step 166. By
examining this single upper byte, it is possible to

determine the code page for the Unicode characters



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-14-

that were converted into single bytes under this
embodiment of the present invention.

If at step 158 all of the characters are not
from the same Unicode code page, the method continues
at step 170 where a "4" hexadecimal is prepended to
the least significant length nibble. Afterwards, at
step 172, the two-byte Unicode characters are divided
into one-byte values while maintaining the order of
the bytes in the Unicode string. The one-byte values
are then stored in a temporary buffer.

After step 168 or after step 172, the method
continues at step 174 of FIG. 3B, where the values in
the temporary buffer are examined to determine if any
of the values are outside of the printable “ASCII”
range consisting of Thexadecimal values between
"20"hexadecimal and "7E" hexadecimal. If any of the
values in the temporary buffer are outside the
printable “ASCII” range, the method continues at step
176 where the entire contents of the temporary buffer
is UUencoded. The results of the UU encoding are then
stored back in the temporary buffer. Afterwards, at
step 178, the nibble prepended to the least
significant length nibble is copied as the first
nibble of a byte ending in “0” hexadecimal. This
forms a marker byte that indicates whether the Unicode
characters were from the same Unicode code page.
Thus, if a "3" had been prepended to the Ileast
significant length nibble, the "3" would be copied to
produce a marker byte of “30”, which indicates that
the Unicode characters all came from the same code
page and that the code page was different than the Oth
code page.



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-15-

After the marker byte has been formed in
step 178, the nibble prepended to the least:
significant length nibble is changed to w57
hexadecimal at a step 180. Thus, if the least
significant length nibble was “C”, and it had a "2"
prepended to it at step 162 to form a byte “2C”, step
180 would replace the "2" with a “5” to produce a byte
“5C”.

After step 180 or if all of the values in
the temporary buffer are in the printable "“ASCII”
range at step 174, the method continues at step 182
where the output data package is constructed. Under
this embodiment of the invention the output package
includes the length bytes, the marker byte if any, and
the values in the temporary buffer. The length bytes
consist of length nibbles prepended by %“6” hexadecimal
and the least significant length nibble prepended by a
designation number. In some cases, the designation
number indicates what type of Unicode compression was
performed on the Unicode characters. For example, if
the designation number is "2" hexadecimal, the Unicode
characters were all from the 0th code page and were
compressed by removing their first or upper byte,
which as "00" hexadecimal. If the designation number
is "3", the Unicode characters were all from the same
code page but not the 0th code page. 1In addition the
Unicode characters were compressed by removing their
common first byte. If the designation number is "4",
the Unicode characters were not from the same code
page and thus were not compressed.

Alternatively, the designation number can

indicate whether the values accompanying the length



10

15

20

25

30

WO 00/24129 PCT/U $99/24421

-16-

bytes were UUencoded. If the values were UUencoded,

the designation number is "5" hexadecimal and the

output package includes a marker byte. The marker
byte has a value of "20", "30" or "40" hexadecimal
corresponding to the designation numbers "2", "3", and
"4" discussed above. Thus, the marker byte indicates

the type of Unicode compression performed on the
Unicode characters before the UUencoding took place.

At step 184, the output package is sent
through the transmission channel.

FIGS 4A and 4B show an example of the
conversion of a Unicode string 200, shown in FIG. 4A,
into a compressed string 202, shown in FIG. 4B, under
the embodiment of the present invention described
above. Unicode string 200 of FIG. 4A includes 19
Unicode characters and a Unicode string delimiter
character 204, having a wvalue of ™“0000”, which is
located at the end of the Unicode string. Thus, the
length of the Unicode string is "19" decimal or "13"
hexadecimal. Under the method of one embodiment of
the present invention, the two hexadecimal nibbles
that represent the length are divided into separate
nibbles and the most significant nibble has a "é"
prepended to it to produce length byte 206 of output
package 202. This vresults in a value of "61"
hexadecimal for length byte 206.

Since each of the Unicode bytes in Unicode
string 200 is from the same code page and in fact is
from the Oth code page, a "2" 1is prepended to the
least significant length nibble, which has a value of
"3", to produce least significant length byte 208,
which has a value of "23" hexadecimal.



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-17-

The remaining mnineteen bytes of output
package 202 are the second or lower bytes of the
Unicode characters in Unicode string 200. Thus, byte
210 of output package 202 is “43”, which is the second
byte of Unicode character 212 of Unicode string 200.
Similarly, byte 214 of output package 202 is “32”,
which is the second byte of Unicode character 216 of
Unicode string 200. Note that since each of the
characters come from the Oth code page, a separate
byte 1s not needed to designate their common code
page. Instead, the "2" prepended to the least
significant length nibble indicates that the Unicode
characters were each from the 0th code page.

FIGS. 5A and 5B show another Unicode string
230 and its resultant compressed string 232 after
following the process of the present invention.
Unicode string 230 includes nineteen Unicode
characters and one Unicode string delimiter byte 234,
which contains all zeros. As in the example of FIGS.
4A and 4B, the hexadecimal representation of the
length of Unicode string 230 is “13”, which is
separated into individual nibbles and has a "é"
prepended to the most significant nibble to produce
length byte 238 of compressed string 232. Although
each of the Unicode characters in Unicode string 230
is from the same code page, they are not from the Oth
code page. Instead, they are each from the “40” code
page. Thus, instead of prepending a "2" to the least
significant length nibble, the embodiment of the
present invention prepends a "3" to the least
significant length nibble. This creates least

significant length byte 236, which has a value of



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-18-

w337, This byte 1is placed after most significant
length byte 238 in compressed string 232.

Since the Unicode characters are not all
from the O0th code page, the code page must be
identified by a byte in compressed string 232. This
is accomplished in step 166 of FIG. 3A by copying the
common first byte of each of the Unicode characters in
Unicode string 230 into a designation byte 240, which
has a value of “40” in compressed string 232.

The remaining bytes in compressed string 232
are simply the second bytes of each of the Unicode
characters in Unicode string 230. Thus, byte 242 of
compressed string 232 is the second byte of Unicode
character 244 of Unicode string 230. Note that the
bytes in compressed string 232 are organized in the
same order as they appear in Unicode string 230.
Thus, byte 242 1is the second character byte in
compressed string 232 and corresponds to Unicode
character 244, which is the second Unicode character
Unicode string 230.

FIG. 6A shows a Unicode string 260 that is
converted into an output package 262 shown in FIG. 6B.
Unicode string 260 includes four Unicode characters
and a Unicode string delimiter 264 that marks the end
of Unicode string 260. In Unicode string 260, Unicode
characters 266 and 268 are from code page “40” and
Unicode characters 270 and 272 are from code page
“50”. Since Unicode characters 266 and 268 are from a
different code page than Unicode characters 270 and
272, 'Unicode string 260 can not be compressed by
removing a common code page byte. Thus, for the
example of FIG. 6A, the method of FIG. 3A proceeds



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-19-

from step 158 to step 170. Thus, a “4” is prepended
to the least significant length nibble, which is also
wa7, to form length byte 274, which has a value of
"g4n in output package 262.

To form the remainder of output package 262,
the Unicode characters of Unicode string 260 are
broken apart into individual bytes and placed in
output package 262 in the same order as they appear in
Unicode string 260.

FIGS. 7A, 7B, and 7C show the progression of
a Unicode string 290 through a method of the present
invention in which a portion of the Unicode string
must be UUencoded. In FIG. 7A, Unicode string 290 is
shown as having four Unicode characters 292, 294, 296,
and 298 as well as a Unicode string delimiter 300. As
in Unicode string 260 of FIG. 6A, Unicode string 290
of FIG. 7A includes Unicode characters from multiple
code pages. In particular, Unicode characters 292 and
294 are from Unicode page “40” and Unicode characters
296 and 298 are from Unicode page “10”. As such,
Unicode string 290 can not be compressed by removing
common code pages and the two bytes of each Unicode
character are placed directly into the output package.

FIG 7B depicts an intermediate package 310
that contains a length byte 312 and a byte string 314.

Byte string 314 consists of each of the bYtes found
in Unicode string 290 in the order that they appear in
Unicode string 290. Length byte 312 includes the
least significant 1length nibble, “4”, in its Ilower
byte and the hexadecimal value “4” in its upper byte,
which denotes that all of the characters in the

Unicode string were not from the same Unicode page.



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-20-

Intermediate package 310 represents the state of an
output package produced by the method of FIGS. 3A and
3B after step 172 of FIG. 3A.

In step 174 of FIG. 3B, byte string 314 is
examined to determine if any of the bytes are outside
of the printable “ASCII” range. In byte string 314,
bytes 316, and 318 are outside of the printable
“ASCII” range since each has a wvalue of “10”
hexadecimal. Therefore, under the method of‘FIG. 3B,
byte string 314 is Uuencoded at step 176. The results
of such UUencoding are shown in FIG. 7C as Uuencoded
string 324 of output package 326.

Output package 326 also includes a marker
byte 328 formed by copying the upper nibble 320 of
length byte 312 and prepending the copy to a “0”
nibble. Output package 326 also includes a length
byte 330 that is formed by prepending “5” to lower
nibble 322 of length byte 312 of FIG. 7B.

From the discussion above, it can be seen
that upper nibble 334 of length byte 330 indicates
that the Unicode string was Uuencoded. Lower nibble
336 of 1length byte 330 indicates the length of the
original Unicode string. Byte 328'of output package
326 indicates that before the Unicode string was
Uuencoded, it was not Unicode compressed under the
present invention but instead was simply split into
individual bytes.

Those skilled in the art will recognize that
marker byte 328 could also be “30” if the Unicode
string contained Unicode characters from the same code
page that were not from the O0th code page. In
addition, marker byte 328 could be “20” if the Unicode



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-21-

string only contained Unicode characters from the 0th
code page. In addition, those skilled in the art
world will recognize that for longer Unicode strings,
the length of the Unicode string can be represented by
multiple length bytes. The more significant length
bytes would all begin with “6” and end with a nibble
indicative of a nibble of the length. 1In these cases,
if the byte string is UUencoded, the least significant
length byte contains a “5” in its upper nibble and
indicates that the Unicode string was Uuencoded.

FIGS. 8A and 8B are flow diagrams of a
method under one embodiment of the present invention
for decompressing Unicode strings that have been
compressed through the method of FIGS. 3A and 3B. The
method begins at step 400 of FIG. 8A and proceeds to
step 402 where the first byte in the input string that
does not begin with "6" hexadecimal is located and
saved as the designation byte. At step 404, the lower
nibbles of each byte between and including the
starting byte and the designation byte are combined to
form the Unicode 1length (U-length) of the Unicode
string. This represents the number of Unicode
characters that were in the original string.

After step 404, the method examines the
upper nibble of the designation byte at step 406. If
the upper nibble is equal to "5" at step 406, the
Unicode string has been UUencoded and the method
continues at step 408 where the upper nibble of the
marker byte is used as a designation value. In this
context, the marker byte is the next byte in the input
string after the designation byte. The designation

value is then checked at step 410 to determine if it



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-22-

is equal to "4". If it is equal to "4", the Unicode
characters are not from the same code page and the
method continues at step 412, where an expected length
is determined for the received string. The expected
length is the number of bytes that the received string
needs in order to completely represent the entire
Unicode string. If the Unicode characters were not
from the same code page at step 410, the expected
length determined at step 412 1is calculated by
multiplying the length of the Unicode string by eight
and dividing the product by three. The wvalues of
eight and three are based on two components. First,
for every three bytes that are UUencoded, four bytes
of UUencoded data are produced. This produces an
encoding ratio of 4/3. This encoding ratio is then
multiplied by two to represent that fact that for
every one Unicode character there are two bytes that
are UUencoded if the Unicode characters are not from
the same code page. Thus, 2 times 4/3 produces the
8/3 scaling component that is multiplied by the
Unicode Length to produce the expected length at step
412.

If at step 410 the designation value is not
ngn, the expected length is determined at step 414 by
multiplying the Unicode Length by four and dividing
the product by three. The "4/3" value represents the
encoding ratio of UUencoding. Note that since the
designation value 1is not "4", each of the Unicode
characters is from the same code page such that the
number of bytes that were UUencoded equals the number
of characters in the Unicode string.

At step 416, the number of received bytes is



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-23-

compared against the expected length. This comparison
ig done to determine if the receiver has enough data
to recreate the Unicode string. If the number of
received bytes is not greater than or equal to the
expected length, the receiver does not have enough
data to recreate the Unicode string. This causes the
process to end at step 418. If the number of received
bytes is greater than or equal to the expected length
at step 416, the receiver has enough data to recreate
the ©Unicode string and the received bytes are
UUdecoded at step 420. If the number of received
bytes exceeds the expected length, only the number of
received bytes set Dby the expected length are
UUdecoded.

Returning to step 406, if the upper nibble
of the designation byte is not "5", the Unicode string
has not been UUencoded. This means that the upper
nibble of the designation byte should be used as the
designation value, which occurs at step 422. At step
424, the designation value is compared against "4" to
determine if all of the Unicode characters in the
Unicode string are from the same code page. If the
designation value is equal to "4", the Unicode
characters of the Unicode string are from different
code pages and the process continues at step 426 where
the expected length is set to two times the Unicode
length. The expécted length of step 426 is twice the
Unicode length because each Unicode character is
divided into two bytes before being sent to the
receiver if the Unicode characters are not from the
same code page.

If the Unicode characters are from the same



10

15

20

25

30

WO 00/24129 PCT/US99/24421

-24-

code page at step 424, the process continues at step
428 where the expected length is set equal to the
Unicode length.

After step 426 or step 428, the process
continues at step 430 where the number of received
bytes is compared against the expected length. If the
number of received bytes is not greater than or equal
to the expected length, the receiver does not have
enough data to recreate the Unicode string and the
process ends at step 432. If the number of received
bytes is greater than or equal to the expected length
at step 430, the receiver has enough data to recreate
the Unicode string.

If the number of received bytes exceeds the
expected length at step 430 or after step 420 of FIG.
8A, the process continues at step 434 of FIG. 8B where
the designation value is compared to "2" hexadecimal.

If the designation value is equal to "25, all of the
Unicode characters in the Unicode string are from the
Oth code page. To reconstruct the Unicode characters
from the received bytes, "00" hexadecimal is prepended
to each of the received bytes at step 436. If the
number of received bytes exceeds the expected length,
the number of received bytes used to reconstruct the
Unicode string is limited to the expected length.

If the designation value is not equal to "2"
hexadecimal at step 434, the process continues at step

438 where the designation value is compared to "3"

hexadecimal. If the designation value is equal to
"3n  gll of the Unicode characters are from the same
code page. Recall that the common code page for the

Unicode characters is included as a common code page



10

15

20

25

WO 00/24129 PCT/U S99/24421

-25-

byte in the transmitted package. If a marker byte is
present, indicating UUencoding, the common code page
byte appears after the marker byte. If the marker
byte is not present, the common code page byte appears
after the designation byte. Thus, to reconstruct the
Unicode characters, the first byte after the marker
byte or the first byte after the designation byte is
prepended to the received bytes. This occurs at step
440.

If the designation value .is not "3" at step
438, the Unicode characters do not share a common code
page. As such, both bytes of each Unicode character
are included in the transmitted string. To
reconstruct the Unicode characters, pairs of bytes in
the transmitted string are combined to create
individual Unicode characters.

After step 436, 440 oxr 442, the process
continues at step 444 where a string delimiter equal
to "0000" hexadecimal is added to the end of the
Unicode string.

Although the present invention has been
described with reference to preferred embodiments,
workers skilled in the art will recognize that changes
may be made in form and detail without departing from

the spirit and scope of the invention.



WO 00/24129 PCT/US99/24421

-26-

WHAT IS CLAIMED IS:

1. A method of encoding a string of two-byte
values, each two-byte value having a first byte and a
second byte, the method comprising:
comparing the first byte of one of the two-
byte values in the string to the first
byte of each of the other two-byte
values to determine if the first bytes
are the same;
if the first bytes are the same, creating a
designation value indicative of the
first bytes of each of the two-byte
values;
stripping the first byte from each of the
two-byte values to produce a string of
one-byte values; and
combining the designation wvalue and the
string of one-byte values to produce an

encoded string.

2. The method of claim 1 wherein the

designation value comprises a four-bit value.

3. The method of claim 1 wherein the
designation value comprises an eight-bit byte that has
the same value as the first byte stripped from the

two-byte values.

4. The method of claim 3 wherein the
designation value further comprises a length nibble
and a designation nibble.



WO 00/24129 PCT/US99/24421

-27-

5. The method of claim 1 further comprising
steps of: .
determining if any of the one-byte values is
outside of a range of values; and
encoding at least a portion of the string of
one-byte values to produce an encoded
string if any of the one-byte values is
outside of the range, the encoded
string comprising a string of one-byte
values, each one-byte value within the

range of values.

6. The method of claim 5 wherein the range of

values is from 20 hexadecimal to 7E hexadecimal.

7. The method of claim 6 wherein encoding at
least a portion of the string comprises UUencoding at

least a portion of the string.

8. The method of claim 1 wherein if the first
bytes of the two-byte values are not the same the
method further comprises a step of dividing each two-

byte value into two one-byte values.



PCT/US99/24421

WO 00/24129

1/8

81 IDIA3A ITI90ON

l Old

8¢
1NINOJNOD
"ONAS

[4R-ENEE]! ¥e
SSIATFHIM W3Aaow

a

0Z SdM

142 -

HIHEVYO SSITIHIM

oz
ININOJINOD Swwﬁwam__zooo
"ONAS
|z ¥3aInoNd
INJLNOD

/|o_‘




PCT/US99/24421

WO 00/24129

2/8

¢l
aSNOW

¢ 9Old

8 W3AOW D 0/ QYVYOgAIM
- D
9/ 3OVAYILNI
1¥0d TVIY3S
08
AHOWIN 99 SWYHO0Nd
89 VLVA WVHO08d | “\oiivorddy
/9 31NCAOW G9 INILSAS
6. NYHO0Yd ONILYHIdO
Y31NdINOD sZWvd | 95 soig
310W3Y G INOY
65
05 AHOWIW 3OVdOlS
1 379YAONIY
L
Z5
- 20 41N TN
NSIa QHVH
i 85 IAINA
€8 €9 4INI | vio1a o11aNOYIN
d3Ldvay 09 IAINA
MHOMLIN ||
¥ 4INl | yo1q volLdo
y " o ERE
y3aildvav IvIOIlLdO
HOLINOW o Ndo

9l ¥ALNdNOD)




WO 00/24129

PCT/US99/24421

3/8

RECORD THE NUMBER SEPARATE HEX
OF UNICODE CHARACTERS OF
CHARACTERS IN LENGTH INTO
STRING AS LENGTH INDIVIDUAL NIBBLES
150 152 ; %
v 154
156 —_S | PREPEND 6 HEXTO
ALL BUT THE LEAST
SIGNIFICANT NIBBLE

158

2

170

| ¢

PREPEND "4" HEX TO

ALL CHARACTER
FROM SAME
CODEPAGE?

160

164

LEAST SIGNIFICANT
NIBBLE OF LENGTH é
PREPEND "2" PREPEND 3"
HEX TO LEAST HEX TO LEAST
DIVIDE TWO-BYTE SIGNIFICANT SIGNIFICANT
CHARACTERS INTO LENGTH LENGTH
ONE-BYTE VALUES | NIBBLE NIBBLE
WHILE
A
MAININTAINING COPY LOWER COPY UPPER
ORDER OF BYTES; BYTE OF EACH BYTE OF ONE
STORE ONE-BYTE CHARACTER |« CHARACTER
VALUES IN TEMP INTO TEMP INTO TEMP
BUFFER BUFFER §BUFFER
é v é 166
172 TO STEP 174 168
FIG. 3B FIG. 3A



WO 00/24129

176

vl

UUENCODE TEMP
BUFFER AND
STORE RESULTS IN
TEMP BUFFER

Y

178

COMBINE COPY OF
NIBBLE
PREPENDED TO
LEAST
SIGNIFICANT
LENGTH NIBBLE
WITH "0" TO FORM
MARKER BYTE

A

REPLACE NIBBLE
PREPENDED TO
LEAST
SIGNIFICANT
LENGTH NIBBLE
WITH "5" HEX

j 180

ANY VALUES IN TEMP BUFFER
OUTSIDE OF PRINTABLE ASCII
RANGE( 20 HEX- 7E HEX)?

PCT/US99/24421

NO

y

182 —_ S

PREPEND LENGTH
BYTES AND
MARKER BYTE, IF
ANY, TO VALUES IN
TEMP BUFFER TO
PRODUCE OUTPUT
PACKAGE

A

184

SEND OUTPUT
PACKAGE

FI1G. 3B




PCT/US99/24421

[4%4

ve ovN 8¢C
qs ‘Old w @ @

zelielzeltelad]se[se[seloz]vL]19]0z]s9]ar[0z[09]09 S_Q_S_mm E_

1254

: P
V¢ ‘DId (

/ /
0000]zeor [ 10v|zc0v] 1 €0t kazor|scov|SE0r|SE0Y| 020 |#L0Y| 190 |0Z0Y|S90F [AY0Y| 020F|D90Y|D90Y) 190V | EVOY

5/8

80¢C

m.v OMHM <0¢C 90¢

14Y4 012

O , N

N\ AN VAN
ﬁmm 1€lzE|1€]az|SE|SE|SE|0T|¥L]|19]0T(S9|AY|0T|D9|D9| 19|EV[£C| 19

v0¢C 91¢C

Ww “ <.—V @Hm 00¢ [4Y4

WO 00/24129

, S

0000 Nmoo 1£00]2£00] 1£00kaz00]S£00{S£00{S£00{0200|+200|1900{0T00|S900|A+00{0T00{D900[2900|1900]t¥00




PCT/US99/24421

WO 00/24129

6/8

L DIH 87€ gee VEE
yze oze
X Qo W
P
wrlovTooloslazlts[oolos 19]ss [or[er]o PlorTs
0z A
: 0€€
mN\ UH& wﬁm NN%® 01¢€
o N
o9lo1 pofoi[1o]or evfor .
ﬁ VL. DIA
W W At 00€ wmmv omw vaV Nm%
1€ 9l¢
V/ N ~ N N\
0000]0901[0901]190%|£F0b
067 — | |
q9 ‘O @ VLT V9 OId
¢ @ 9T NRV ENV woNV 8%
\ V/ NG NG NG
59705 [0o]os|19]ov[ev[ov [v7] 20z S 1100009000 ts0t evor




WO 00/24129

PCT/US99/24421

7/8

FIND FIRST BYTE COMBINE LOWER NIBBLES
THAT DOES NOT OF EACH BYTE FROM
BEGIN WITH "6" AND |—» STARTING BYTE TO
SAVE AS DESIGNATION BYTE TO
§ DESIGNATION BYTE FORM "U-ILENGTH"
402
400 406 108 é
1 404
IS UPPER NIBBLE YES TAKE UPPER NIBBLE
OF DESIGNATION OF MARKER BYTE AS
BYTE = 5? DESIGNATION VALUE
429 4101
IS
TAKE UPPERNIBBLE | ,,, ‘ DESIGNATION
OF DESIGNATION VALUE = 42 NO
BYTE AS é
DESIGNATION L 4
VALUE SET EXPECTED SET EXPECTED
LENGTH TO LENGTH TO
424 "U-LENGTH"x8/3 "U-LENGTH"x4/3
? IS BYTES BYTES
DESIGNATION
VALUE =42 %
414
A4
SET
SET EXPECTED NUMBER OF
EXPECTED
LENGTH AT LENGTH AT RECEIVED BYTES >
M"U-LENGTH" x 2 EXPECTED
"U-LENGTH"
L] LENGTH?
416
426 428
430
BER OF 4202 MOGUDECODE
RECIEVED BYTES > YES 418
EXPECTED v
LENGTH? TO STEP 434
432 FIG. 8B

FIG.8A




WO 00/24129 PCT/US99/24421

8/8

FROM STEP 430 OR STEP 420
FIG. 8A

434
-
IS

DESIGNATION

YES PREPEND "00" TO EACH BYTE
OF THE EXPECTED LENGTH TO

VALUE =22 FORM UNICODE STRING
NO 436
440
438 I
> M PREPEND COPY OF FIRST BYTE
AFTER MARKER BYTE OR
DESIGNATION BYTE TO EACH
Dsifgﬁzlg\l OF THE BYTES OF THE
EXPECTED LENGTH TO FORM
UNICODE STRING

COMBINE
PAIRS OF

BYTES IN 442
TEMP BUFFER ———5’—
TO FORM

UNICODE
STRING

A 4

444
ADD STRING j

DELIMETER
TOEND OF |«
UNICODE

STRING FIG. 8B




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

