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1
SYSTEMS AND METHODS FOR ENABLING
ACCESS TO EXTENSIBLE REMOTE
STORAGE OVER A NETWORK AS LOCAL
STORAGE VIA A LOGICAL STORAGE
CONTROLLER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part application of
U.S. patent application Ser. No. 14/300,552, filed Jun. 10,
2014, which further claims the benefit of U.S. Provisional
Patent Application No. 61/987,956, filed May 2, 2014 and is
entitled “Systems and methods for enabling access to exten-
sible storage devices over a network as local storage via
NVMe controller,” which is incorporated herein in its
entirety by reference.

This application also claims the benefit of U.S. Provi-
sional Patent Application No. 62/314,494, filed Sep. 4, 2015
and entitled “Enabling elastic storage over a network via a
logical storage controller,” which is incorporated herein in
its entirety by reference.

BACKGROUND

Service providers have been increasingly providing their
web services (e.g., web sites) at third party data centers in
the cloud by running a plurality of virtual machines (VMs)
on a host/server at the data center. Here, a VM is a software
implementation of a physical machine (i.e. a computer) that
executes programs to emulate an existing computing envi-
ronment such as an operating system (OS). The VM runs on
top of a hypervisor, which creates and runs one or more VMs
on the host. The hypervisor presents each VM with a virtual
operating platform and manages the execution of each VM
on the host. By enabling multiple VMs having different
operating systems to share the same host machine, the
hypervisor leads to more efficient use of computing
resources, both in terms of energy consumption and cost
effectiveness, especially in a cloud computing environment.

Non-volatile memory express, also known as NVMe or
NVM Express, is a specification that allows a solid-state
drive (SSD) to make effective use of a high-speed Peripheral
Component Interconnect Express (PCle) bus attached to a
computing device or host. Here the PCle bus is a high-speed
serial computer expansion bus designed to support hardware
1/O virtualization and to enable maximum system bus
throughput, low I/O pin count and small physical footprint
for bus devices. NVMe typically operates on a non-volatile
memory controller of the host, which manages the data
stored on the non-volatile memory (e.g., SSD) and commu-
nicates with the host. Such an NVMe controller provides a
command set and feature set for PCle-based SSD access
with the goals of increased and efficient performance and
interoperability on a broad range of enterprise and client
systems. The main benefits of using an NVMe controller to
access PCle-based SSDs are reduced latency, increased
Input/Output (1/0) operations per second (IOPS) and lower
power consumption, in comparison to Serial Attached SCSI
(SAS)-based or Serial ATA (SATA)-based SSDs through the
streamlining of the I/O stack.

Currently, a VM running on the host can access the
PCle-based SSDs via the physical NVMe controller attached
to the host and the number of storage volumes the VM can
access is constrained by the physical limitation on the
maximum number of physical storage units/volumes that
can be locally coupled to the physical NVMe controller.
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Since the VMs running on the host at the data center may
belong to different web service providers and each of the
VMs may have its own storage needs that may change in real
time during operation and are thus unknown to the host, it
is impossible to predict and allocate a fixed amount of
storage volumes ahead of time for all the VMs running on
the host that will meet their storage needs. It is thus desirable
to be able to provide storage volumes to the VMs that are
extensible dynamically during real time operation via the
NVMe controller.

The foregoing examples of the related art and limitations
related therewith are intended to be illustrative and not
exclusive. Other limitations of the related art will become
apparent upon a reading of the specification and a study of
the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are best understood from
the following detailed description when read with the
accompanying figures. It is noted that, in accordance with
the standard practice in the industry, various features are not
drawn to scale. In fact, the dimensions of the various
features may be arbitrarily increased or reduced for clarity of
discussion.

FIG. 1 depicts an example of a diagram of a system to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs in accordance with
some embodiments.

FIG. 2 depicts an example of a diagram of a system to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs via an NVMe
controller in accordance with some embodiments.

FIG. 3 depicts an example of hardware implementation of
the physical NVMe controller depicted in FIG. 2 in accor-
dance with some embodiments.

FIG. 4 depicts a non-limiting example of a lookup table
that maps between the NVMe namespaces of the logical
volumes and the remote physical storage volumes in accor-
dance with some embodiments.

FIG. 5 depicts a flowchart of an example of a process to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs in accordance with
some embodiments.

FIG. 6 depicts a non-limiting example of a diagram of a
system to support virtualization of a plurality of remote
storage devices to be presented as local storage devices to
VMs, wherein the physical NVMe controller further
includes a plurality of virtual NVMe controllers in accor-
dance with some embodiments.

DETAILED DESCRIPTION

The following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the subject matter. Specific examples of components
and arrangements are described below to simplify the pres-
ent disclosure. These are, of course, merely examples and
are not intended to be limiting. In addition, the present
disclosure may repeat reference numerals and/or letters in
the various examples. This repetition is for the purpose of
simplicity and clarity and does not in itself dictate a rela-
tionship between the various embodiments and/or configu-
rations discussed.

A new approach is proposed that contemplates systems
and methods to support elastic (extensible/flexible) storage
access in real time by mapping a plurality of remote storage
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devices that are accessible over a network fabric as logical
namespace(s) via a logical storage controller using a mul-
titude of access mechanisms and storage network protocols.
The logical storage controller exports and presents the
remote storage devices to one or more VMs running on a
host of the logical storage controller as the logical
namespace(s), wherein these remote storage devices appear
virtually as one or more logical volumes of a collection of
logical blocks in the logical namespace(s) to the VMs. As a
result, each of the VMs running on the host can access these
remote storage devices to perform read/write operations as
if they were local storage devices via the logical
namespace(s).

By virtualizing and presenting the remote storage devices
as if they were local disks to the VMs via the logical storage
controller, the proposed elastic storage approach enables the
VMs running on the server/host to access remote storage
devices accessible over a network on demand in real time,
removing any physical limitation on the number of storage
volumes accessible by the VMs. Under such an approach,
every storage device is presented to the VMs as local
regardless of whether the storage device is locally attached
or remotely accessible and the host of the VMs is enabled to
dynamically allocate storage volumes to the VMs in real
time based on their actual storage needs during operation
instead of pre-allocating the storage volumes ahead of time,
which may either be insufficient or result in unused storage
space.

FIG. 1 depicts an example of a diagram of system 100 to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs. Although the dia-
grams depict components as functionally separate, such
depiction is merely for illustrative purposes. It will be
apparent that the components portrayed in this figure can be
arbitrarily combined or divided into separate software, firm-
ware and/or hardware components. Furthermore, it will also
be apparent that such components, regardless of how they
are combined or divided, can execute on the same host or
multiple hosts, and wherein the multiple hosts can be
connected by one or more networks.

In the example of FIG. 1, a computing unit/appliance/host
112 runs a plurality of VMs 110, each configured to provide
a web-based service to clients over the Internet. Here, the
host 112 can be a computing device, a communication
device, a storage device, or any electronic device capable of
running a software component. For non-limiting examples,
a computing device can be, but is not limited to, a laptop PC,
a desktop PC, a mobile device, or a server machine such as
an x86/ARM server. A communication device can be, but is
not limited to, a mobile phone.

In the example of FIG. 1, a logical or elastic storage
controller 101 is configured to utilize a local network
interface card/controller (NIC) 114 coupled to the host 112
to map one or more remote storage devices 122 accessible
from a network fabric 132 via a network storage protocol
and (optional) one or more locally coupled storage devices
120 accessible via a local bus to a plurality of logical
volumes and present the logical volumes to the VMs 110 as
if they were local logical storage devices. Here, the local
NIC 114 is configured to include/implement a multitude of
access mechanisms comprising but not limited to one or
more of an NVMe controller 102, a Simplified Layer 2
Transport over Ethernet 103, a remote direct memory access
(RDMA)/RDMA over Converged Ethernet (RoCE) control-
ler 104, an internet Wide Area RDMA Protocol (iWARP) or
Ceph controller 106, a SCSI or SATA controller 108.
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In the example of FIG. 1, each of the locally coupled
storage devices 120 and the remotely accessible storage
devices 122 can be a non-volatile (non-transient) storage
device, which can be but is not limited to, a solid-state drive
(SSD), a Static random-access memory (SRAM), a magnetic
hard disk drive, and a flash drive. The remote storage
devices 122 can be part of one or more backend storage
servers accessible by the NIC 114 over the network fabric
132.

In the example of FIG. 1, the network fabric 132 refers to
switched fabric or switching fabric, which is a network
topology in which network nodes interconnect via one or
more network switches (e.g., crossbar switches). Because a
switched fabric network spreads network traffic across mul-
tiple physical links, it yields higher total throughput than
broadcast networks. The network fabric 132 constitutes not
only the network (which can be but is not limited to internet,
intranet, wide area network (WAN), local area network
(LAN), wireless network, Bluetooth, WiFi, mobile commu-
nication network, or any other network type), but also the
storage network protocols that establish the connectivity
between one or more initiators (e.g., the logical storage
controller 101/logical volumes) and targets (remote/backend
storage devices) of the network.

FIG. 2 depicts an example of a diagram of system 200 to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs via an NVMe
controller. Although the NVMe controller 102 is used as a
non-limiting example to be utilized the logical storage
controller to illustrate the proposed approach in the follow-
ing discussions, a person ordinarily skilled in the art would
understand that the same approach is also applicable to other
types of logical storage controllers/technologies (e.g., Sim-
plified Layer 2 Transport 103, RDMA/RoCE 104, iWARP
106, and SCSI/SATA 108) discussed above to achieve the
same effects.

In the example of FIG. 2, the host 112 is coupled to the
physical NVMe controller 102 via a PCle/NVMe link/
connection 211 and the VMs 110 running on the host 112 are
configured to access the physical NVMe controller 102 via
the PCIle/NVMe link/connection 211. For a non-limiting
example, the PCle/NVMe link/connection 211 is a PCle
Gen3 x8 bus.

In the example of FIG. 2, the physical NVMe controller
102 having at least an NVMe storage proxy engine 204,
NVMe access engine 206 and a storage access engine 208
running on the NVMe controller 102. Here, the physical
NVMe controller 102 is a hardware/firmware NVMe mod-
ule having software, firmware, hardware, and/or other com-
ponents that are used to effectuate a specific purpose. As
discussed in details below, the physical NVMe controller
102 comprises one or more of a CPU or microprocessor, a
storage unit or memory (also referred to as primary memory)
such as RAM, with software instructions stored for practic-
ing one or more processes. The physical NVMe controller
102 provides both Physical Functions (PFs) and Virtual
Functions (VFs) to support the engines running on it,
wherein the engines will typically include software instruc-
tions that are stored in the storage unit of the physical NVMe
controller 102 for practicing one or more processes. As
referred to herein, a PF function is a PCle function used to
configure and manage the single root /O virtualization
(SR-IOV) functionality of the controller such as enabling
virtualization and exposing PCle VFs, wherein a VF func-
tion is a lightweight PCle function that supports SR-IOV and
represents a virtualized instance of the controller 102. Each
VF shares one or more physical resources on the physical
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NVMe controller 102, wherein such resources include but
are not limited to on-controller memory 308, hardware
processor 306, interface to storage devices 322, and network
driver 320 of the physical NVMe controller 102 as depicted
in FIG. 3 and discussed in details below.

FIG. 3 depicts an example of hardware implementation
300 of the physical NVMe controller 102 depicted in FIG.
2. As shown in the example of FIG. 3, the hardware
implementation 300 includes at least an NVMe processing
engine 302, and an NVMe Queue Manager (NQM) 304
implemented to support the NVMe processing engine 302.
Here, the NVMe processing engine 302 includes one or
more CPUs/processors 306 (e.g., a multi-core/multi-
threaded ARM/MIPS processor), and a primary memory 308
such as DRAM. The NVMe processing engine 302 is
configured to execute all NVMe instructions/commands and
to provide results upon completion of the instructions. The
hardware-implemented NQM 304 provides a front-end
interface to the engines that execute on the NVMe process-
ing engine 302. In some embodiments, the NQM 304
manages at least a submission queue 312 that includes a
plurality of administration and control instructions to be
processed by the NVMe processing engine 302 and a
completion queue 314 that includes status of the plurality of
administration and control instructions that have been pro-
cessed by the NVMe processing engine 302. In some
embodiments, the NQM 304 further manages one or more
data buffers 316 that include data read from or to be written
to a storage device via the NVMe controllers 102. In some
embodiments, one or more of the submission queue 312,
completion queue 314, and data buffers 316 are maintained
within memory 310 of the host 112. In some embodiments,
the hardware implementation 300 of the physical NVMe
controller 102 further includes an interface to storage
devices 222, which enables the plurality of storage devices
120 to be coupled to and accessed by the physical NVMe
controller 102 locally via a local bus, and a network driver
230, which enables a plurality of storage devices 122 to be
connected to the NVMe controller 102 remotely over the
network fabric 132 via the multitude of access mechanisms
discussed above.

In the example of FIG. 2, the NVMe access engine 206 of
the NVMe controller 102 is configured to receive and
manage instructions and data for read/write operations from
the VMs 110 running on the host 102. When one of the VM
110 running on the host 112 performs a read or write
operation, it places a corresponding instruction in a submis-
sion queue 312, wherein the instruction is in NVMe format.
During its operation, the NVMe access engine 206 utilizes
the NQM 304 to fetch the administration and/or control
commands from the submission queue 312 on the host 112
based on a “doorbell” of read or write operation, wherein the
doorbell is generated by the VM 110 and received from the
host 112. The NVMe access engine 206 also utilizes the
NQM 304 to fetch the data to be written by the write
operation from one of the data buffers 316 on the host 112.
The NVMe access engine 206 then places the fetched
commands in a waiting buffer 318 in the memory 308 of the
NVMe processing engine 302 waiting for the NVMe Stor-
age Proxy Engine 204 to process. Once the instructions are
processed, The NVMe access engine 206 puts the status of
the instructions back in the completion queue 314 and
notifies the corresponding VM 110 accordingly. The NVMe
access engine 206 also puts the data read by the read
operation to the data buffer 316 and makes it available to the
VM 110.
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In some embodiments, each of the VMs 110 running on
the host 112 has an NVMe driver 214 configured to interact
with the NVMe access engine 206 of the NVMe controller
102 via the PCle/NVMe link/connection 211. In some
embodiments, each of the NVMe driver 214 is a virtual
function (VF) driver configured to interact with the PCle/
NVMe link/connection 211 of the host 112 and to set up a
communication path between its corresponding VM 110 and
the NVMe access engine 206 and to receive and transmit
data associated with the corresponding VM 110. In some
embodiments, the VF NVMe driver 214 of the VM 110 and
the NVMe access engine 206 communicate with each other
through a SR-IOV PCle connection 211 as discussed above.

In some embodiments, the VMs 110 run independently on
the host 112 and are isolated from each other so that one VM
110 cannot access the data and/or communication of any
other VMs 110 running on the same host. When transmitting
commands and/or data to and/or from a VM 110, the
corresponding VF NVMe driver 214 directly puts and/or
retrieves the commands and/or data from its queues and/or
the data buffer, which is sent out or received from the NVMe
access engine 206 without the data being accessed by the
host 112 or any other VMs 110 running on the same host
112.

In the example of FIG. 2, the storage access engine 208
of the NVMe controller 102 is configured to access and
communicate with a plurality of non-volatile disk storage
devices/units, wherein each of the storage units is either
(optionally) locally coupled to the NVMe controller 102 via
the interface to storage devices 222 (e.g., local storage
devices 120), or remotely accessible by the physical NVMe
controller 102 over the network fabric 132 (e.g., remote
storage devices 122) via the network communication inter-
face/driver 230 following certain communication protocols
such as TCP/IP protocol.

In the example of FIG. 2, the NVMe storage proxy engine
204 of the NVMe controller 102 is configured to collect
volumes of the remote storage devices accessible via the
storage access engine 208 over the network under the
storage network protocol and convert the storage volumes of
the remote storage devices to one or more NVMe
namespaces each including a plurality of logical volumes (a
collection of logical blocks) to be accessed by VMs 110
running on the host 112. As such, the NVMe namespaces
may cover both the storage devices locally attached to the
NVMe controller 102 and those remotely accessible by the
storage access engine 208 under the storage network proto-
col. The storage network protocol is used to access a remote
storage device accessible over the network fabric 132,
wherein such storage network protocol can be but is not
limited to Internet Small Computer System Interface
(iSCSI). iSCSI is an Internet Protocol (IP)-based storage
networking standard for linking data storage devices by
carrying SCSI commands over the networks. By enabling
access to remote storage devices over the network, iSCSI
increases the capabilities and performance of storage data
transmission over local area networks (LANs), wide area
networks (WANSs), and the Internet.

In some embodiments, the NVMe storage proxy engine
204 organizes and maps the remote storage devices to one or
more logical or virtual volumes/blocks in the NVMe
namespaces, to which the VMs 110 can access and perform
1/O operations as if they were local storage volumes. Here,
each volume is classified as logical or virtual since it maps
to one or more physical storage devices either locally
attached to or remotely accessible by the NVMe controller
102 via the storage access engine 208. In some embodi-
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ments, multiple VMs 110 running on the host 112 are
enabled to access the same logical volume or virtual volume
and each logical/virtual volume can be shared among mul-
tiple VMs. In some embodiments, the virtual volume
includes a meta-data mapping table between the logical
volume and the remote storage devices 122, wherein the
mapping table translates an incoming (virtual) volume iden-
tifier and a logical block addressing (LBA) on the virtual
volume to one or more corresponding physical disk identi-
fiers and LBAs on the storage devices. In some embodi-
ments, the logical volume may include logical blocks across
multiple physical disks in the storage devices. For non-
limiting examples, two possible scenarios are:

A single logical volume could be mapped to and served by

a single remote storage device/backend server using a
given underlying technology, e.g., NVMe, Simplified
Transport, iWARP, RoCE, etc.

A single logical volume could be mapped to and served by
a plurality of remote storage devices under one or more
different controllers/technologies via the NIC 114. For
a non-limiting example, the logical storage controller
101 may utilize the NVMe controller 102 to map from
one remote server, and use RDMA/RoCE controller
104 to map from the other remote server, wherein the
logical storage controller 101 is configured to handle
the logic and complexity among the different underly-
ing controllers and technologies.

In some embodiments, the NVMe storage proxy engine
204 establishes a lookup table that maps between the NVMe
namespaces of the logical volumes, Ns_1, . . . , Ns_m, and
the remote physical storage devices/volumes, Vol_1, . . .,
Vol_n, accessible over the network as shown by the non-
limiting example depicted in FIG. 4. Here, there is a
multiple-to-multiple correspondence between the NVMe
namespaces and the physical storage volumes, meaning that
one namespace (e.g., Ns_2) may correspond to a logical
volume that maps to a plurality of remote physical storage
volumes (e.g., Vol_2 and Vol_3), and a single remote physi-
cal storage volume may also be included in a plurality of
logical volumes and accessible by the VMs 110 via their
corresponding NVMe namespaces. In some embodiments,
the NVMe storage proxy engine 204 is configured to expand
the mappings between the NVMe namespaces of the logical
volumes and the remote physical storage devices/volumes to
add additional storage volumes on demand. Specifically,
when at least one of the VMs 110 running on the host 112
requests for more storage volumes, the NVMe storage proxy
engine 204 may expand the namespace/logical volume
accessed by the VM to include additional remote physical
storage devices.

For a non-limiting example, a VM 110 running on the host
112 may request the logical storage controller 101 in FIG. 1
to allocate X TB amount of disk space at runtime. The
logical storage controller 101 is configured to utilize the NIC
114 (e.g., NVMe controller 102 depicted in FIG. 2) to
allocate the required disk space from the remote storage
devices 122 on the backend storage servers over the network
fabric 132 as logical volumes to the VM 110. Here, the
logical storage controller 101 is configured to provision the
requested storage space on the locally attached storage
device 120 and the remote storage devices 122 via one or
more provisioning mechanisms, which include but are not
limited to, the NVMe controller 102, one of RDMA/RoCE/
iWARP controllers, or a Simplified Layer 2 Transport over
the plain Ethernet fabric. It is up to the logical storage
controller 101 to determine which controllers and/or tech-
nologies of the NIC 114 to utilize to accomplish the storage
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request (and any addition request) by the VM 110. If the VM
110 needs more storage at runtime, it may request for, for a
non-limiting example, an additional storage capacity of Y
TB, and the logical storage controller 101 is configured to
dynamically provision that increased storage capacity in real
time via the NIC 114 to make X+Y TB amount of storage
available to the VM 110. The logical storage controller 101
is configured to accomplish this by either extending the
storage of the already allocated logical volume of X TB by
Y TB or by allocating another logical volume of X+Y TB of
storage space. The logical storage controller 101 is further
configured to expand mappings between the logical volumes
and the remote physical storage devices to include the
additional storage space allocated on the remote physical
storage devices.

In some embodiments, the NVMe storage proxy engine
204 further includes an adaptation layer/shim 216, which is
a software component configured to manage message flows
between the NVMe namespaces and the remote physical
storage volumes. Specifically, when instructions for storage
operations (e.g., read/write operations) on one or more
logical volumes/namespaces are received from the VMs 110
via the NVMe access engine 206, the adaptation layer/shim
216 converts the instructions under NVMe specification to
one or more corresponding instructions on the remote physi-
cal storage volumes under the storage network protocol such
as iSCSI according to the lookup table. Conversely, when
results and/or feedbacks on the storage operations performed
on the remote physical storage volumes are received via the
storage access engine 208, the adaptation layer/shim 216
also converts the results to feedbacks about the operations
on the one or more logical volumes/namespaces and pro-
vides such converted results to the VMs 110.

In the example of FIG. 2, the NVMe access engine 206 of
the NVMe controller 102 is configured to export and present
the NVMe namespaces and logical volumes of the remote
physical storage devices 122 to the VMs 110 running on the
host 112 as accessible storage devices that are no different
from those locally connected storage devices 120. The actual
mapping, expansion, and operations on the remote storage
devices 122 over the network using iSCSI-like storage
network protocol performed by the NVMe controller 102 are
transparent to the VMs 110, which provides the instructions
on the logical volumes that map to the remote storage
volumes.

FIG. 5 depicts a flowchart of an example of a process to
support virtualization of remote storage devices to be pre-
sented as local storage devices to VMs. Although this figure
depicts functional steps in a particular order for purposes of
illustration, the process is not limited to any particular order
or arrangement of steps. One skilled in the relevant art will
appreciate that the various steps portrayed in this figure
could be omitted, rearranged, combined and/or adapted in
various ways.

In the example of FIG. 5, the flowchart 500 starts at block
502, where one or more logical volumes in one or more
NVMe namespaces are created and mapped to a plurality of
remote storage devices accessible over a network. The
flowchart 500 continues to block 504, where the NVMe
namespaces of the logical volumes are presented to one or
more virtual machines (VMs) running on a host as if they
were local storage volumes. The flowchart 500 continues to
block 506, where a first instruction to perform a read/write
operation on one of the logical volumes mapped to the
remote storage devices is received from one of the VMs. The
flowchart 500 continues to block 508, where the namespaces
of the logical volumes in the first instruction is converted to
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storage volumes of the remote storage devices in a second
instruction according to a storage network protocol. The
flowchart 500 ends at block 410, where result and/or data of
the read/write operation performed on the remote storage
devices is received, processed and presented to the VM after
the read/write operation is performed on the storage volumes
of the remote storage devices over the network using the
second instruction.

FIG. 6 depicts a non-limiting example of a diagram of
system 600 to support virtualization of remote storage
devices as local storage devices for VMs, wherein the
physical NVMe controller 102 further includes a plurality of
virtual NVMe controllers 602. In the example of FIG. 6, the
plurality of virtual NVMe controllers 602 run on the single
physical NVMe controller 102 where each of the virtual
NVMe controllers 602 is a hardware accelerated software
engine emulating the functionalities of an NVMe controller
to be accessed by one of the VMs 110 running on the host
112. In some embodiments, the virtual NVMe controllers
602 have a one-to-one correspondence with the VMs 110,
wherein each virtual NVMe controller 602 interacts with
and allows access from only one of the VMs 110. Each
virtual NVMe controller 602 is assigned to and dedicated to
support one and only one of the VMs 110 to access its
storage devices, wherein any single virtual NVMe controller
602 is not shared across multiple VMs 110.

In some embodiments, each virtual NVMe controller 602
is configured to support identity-based authentication and
access from its corresponding VM 110 for its operations,
wherein each identity permits a different set of API calls for
different types of commands/instructions used to create,
initialize and manage the virtual NVMe controller 602,
and/or provide access to the logic volume for the VM 110.
In some embodiments, the types of commands made avail-
able by the virtual NVMe controller 602 vary based on the
type of user requesting access through the VM 110 and some
API calls do not require any user login. For a non-limiting
example, different types of commands can be utilized to
initialize and manage virtual NVMe controller 602 running
on the physical NVMe controller 102.

As shown in the example of FIG. 6, each virtual NVMe
controller 602 may further include a virtual NVMe storage
proxy engine 604 and a virtual NVMe access engine 606,
which function in a similar fashion as the respective NVMe
storage proxy engine 204 and a NVMe access engine 206
discussed above. In some embodiments, the virtual NVMe
storage proxy engine 604 in each virtual NVMe controller
602 is configured to access both the locally attached storage
devices 120 and remotely accessible storage devices 122 via
the storage access engine 208, which can be shared by all the
virtual NVMe controllers 602 running on the physical
NVMe controller 102.

During operation, each virtual NVMe controller 602
creates and maps one or more logical volumes in one or
more NVMe namespaces mapped to a plurality of remote
storage devices accessible over a network. Each virtual
NVMe controller 602 then presents the NVMe namespaces
of the logical volumes to its corresponding VM 110 as if
they were local storage volumes. When a first instruction to
perform a read/write operation on the logical volumes is
received from the VM 110, the virtual NVMe controller 602
converts the NVMe namespaces of the logical volumes in
the first instruction to storage volumes of the remote storage
devices in a second instruction according to a storage
network protocol. The virtual NVMe controller 602 presents
result and/or data of the read/write operation to the VM 110
after the read/write operation has been performed on the
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storage volumes of the remote storage devices over the
network using the second instruction.

In some embodiments, each virtual NVMe controller 602
depicted in FIG. 6 has one or more pairs of submission
queue 312 and completion queue 314 associated with it,
wherein each queue can accommodate a plurality of entries
of instructions from one of the VMs 110. As discussed
above, the instructions in the submission queue 312 are first
fetched by the NQM 304 from the memory 310 of the host
112 to the waiting buffer 318 of the NVMe processing
engine 302 as discussed above. During its operation, each
virtual NVMe controller 602 retrieves the instructions from
its corresponding VM 110 from the waiting buffer 318 and
converts the instructions according to the storage network
protocol in order to perform a read/write operation on the
data stored on the local storage devices 120 and/or remote
storage devices 122 over the network by invoking VF
functions provided by the physical NVMe controller 102.
During the operation, data is transmitted to or received from
the local/remote storage devices in the logical volume of the
VM 110 via the interface to storage access engine 208. Once
the operation has been processed, the virtual NVMe con-
troller 602 saves the status of the executed instructions in the
waiting buffer 318 of the processing engine 302, which are
then placed into the completion queue 314 by the NQM 304.
The data being processed by the instructions of the VMs 110
is also transferred between the data buffer 316 of the
memory 310 of the host 112 and the memory 308 of the
NVMe processing engine 302.

The methods and system described herein may be at least
partially embodied in the form of computer-implemented
processes and apparatus for practicing those processes. The
disclosed methods may also be at least partially embodied in
the form of tangible, non-transitory machine readable stor-
age media encoded with computer program code. The media
may include, for example, RAMs, ROMs, CD-ROMs,
DVD-ROMs, BD-ROMs, hard disk drives, flash memories,
or any other non-transitory machine-readable storage
medium, wherein, when the computer program code is
loaded into and executed by a computer, the computer
becomes an apparatus for practicing the method. The meth-
ods may also be at least partially embodied in the form of a
computer into which computer program code is loaded
and/or executed, such that, the computer becomes a special
purpose computer for practicing the methods. When imple-
mented on a general-purpose processor, the computer pro-
gram code segments configure the processor to create spe-
cific logic circuits. The methods may alternatively be at least
partially embodied in a digital signal processor formed of
application specific integrated circuits for performing the
methods.

The foregoing description of various embodiments of the
claimed subject matter has been provided for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the claimed subject matter to the precise
forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. Embodiments
were chosen and described in order to best describe the
principles of the invention and its practical application,
thereby enabling others skilled in the relevant art to under-
stand the claimed subject matter, the various embodiments
and with various modifications that are suited to the par-
ticular use contemplated.
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What is claimed is:
1. A system to support elastic network storage, compris-
ing:
a logical storage controller of a local network interface
card/controller (NIC), configured to:
accept a request for storage space from one of a
plurality of virtual machines (VMs) running on a
host;
allocate storage volumes on one or more remote storage
devices accessible over a network fabric in accor-
dance with the request for the storage space;
create and map one or more logical volumes in one or
more logical namespaces to the storage volumes on
the remote storage devices;
present the logical volumes mapped to the storage
volumes on the remote storage devices as local
storage volumes to the VM requesting the storage
space;
enable the VM to perform a read/write operation on the
logical volumes via a first instruction.
2. The system of claim 1, wherein:
the host of the VM is an x86 or ARM server.
3. The system of claim 1, wherein:
the NIC includes or implements one or more of an NVMe
controller, a remote direct memory access (RDMA)/
RDMA over Converged Ethernet (RoCE) controller, a
Simplified Transport over Ethernet, an internet Wide
Area RDMA Protocol (iWARP) controller, and a local
SCSI or SATA controller.
4. The system of claim 1, wherein:
the remote storage devices are part of one or more
backend storage servers accessible by the NIC over the
network fabric.
5. The system of claim 1, wherein:
the network fabric is a network topology in which nodes
in a network interconnect via one or more network
switches.
6. The system of claim 1, wherein:
the logical volumes are further mapped to a storage device
attached to the NIC locally.
7. The system of claim 1, wherein:
the VMs run independently on the host and are isolated
from each other so that one VM cannot access the data
and/or communication of any other VMs running on
the same host.
8. The system of claim 1, wherein:
the logical storage controller is configured to
convert the logical volumes in the first instruction from
the VM to the storage volumes of the remote storage
devices in a second instruction according to a storage
network protocol;
present result and/or data of the read/write operation to
the VM after the read/write operation has been
performed on the storage volumes of the remote
storage devices over the network fabric using the
second instruction.
9. The system of claim 8, wherein:
the storage network protocol is Internet Small Computer
System Interface (iSCSI).
10. The system of claim 1, wherein:
the logical storage controller is configured to enable
multiple of the plurality of VMs to access the same
logical volume and each logical volume is enabled to
be shared among the multiple VMs.
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11. The system of claim 1, wherein:
the logical storage controller is configured to map a single
logical volume to a single remote storage device via a
controller of the NIC.
12. The system of claim 1, wherein:
the logical storage controller is configured to map a single
logical volume to a plurality of remote storage devices
via different controllers of the NIC.
13. The system of claim 1, wherein:
the logical storage controller is configured to perform the
mapping and the operations on the remote storage
devices over the network transparent to the VM.
14. The system of claim 1, wherein:
the logical storage controller is configured to
dynamically allocate additional storage space on the
remote physical storage devices to the VM per
additional storage request by the VM in real time;
expand mappings between the logical volumes and the
remote physical storage devices to include the addi-
tional storage space allocated on the remote physical
storage devices.
15. A method to support elastic network storage via a local
network interface card/controller (NIC), comprising:
accepting a request for storage space from one of a
plurality of virtual machines (VMs) running on a host;
allocating storage volumes on one or more remote storage
devices accessible over a network fabric in accordance
with the request for the storage space;
creating and mapping one or more logical volumes in one
or more logical namespaces to the storage volumes on
the remote storage devices;
presenting the logical volumes mapped to the storage
volumes on the remote storage devices as local storage
volumes to the VM requesting the storage space;
enabling the VM to perform a read/write operation on the
logical volumes via a first instruction.
16. The method of claim 15, further comprising:
including or implementing one or more of an NVMe
controller, a remote direct memory access (RDMA)/
RDMA over Converged Ethernet (RoCE) controller, a
Simplified Transport over Ethernet, an internet Wide
Area RDMA Protocol (iWARP) controller, and a local
SCSI or SATA controller via the NIC.
17. The method of claim 15, further comprising:
mapping the logical volumes to a storage device attached
to the NIC locally.
18. The method of claim 15, further comprising:
enabling the VMs to run independently on the host and
isolating the VMs from each other so that one VM
cannot access the data and/or communication of any
other VMs running on the same host.
19. The method of claim 15, further comprising:
converting the logical volumes in the first instruction from
the VM to the storage volumes of the remote storage
devices in a second instruction according to a storage
network protocol;
presenting result and/or data of the read/write operation to
the VM after the read/write operation has been per-
formed on the storage volumes of the remote storage
devices over the network fabric using the second
instruction.
20. The method of claim 15, further comprising:
enabling multiple of the plurality of VMs to access the
same logical volume and each logical volume to be
shared among the multiple VMs.
21. The method of claim 15, further comprising:
mapping a single logical volume to a single remote
storage device via a controller of the NIC.
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22. The method of claim 15, further comprising:
mapping a single logical volume to a plurality of remote
storage devices via different controllers of the NIC.

23. The method of claim 15, further comprising:

performing the mapping and the operations on the remote
storage devices over the network transparent to the
VM.

24. The method of claim 15, further comprising:

dynamically allocating additional storage space on the
remote physical storage devices to the VM per addi-
tional storage request by the VM in real time;

expanding mappings between the logical volumes and the
remote physical storage devices to include the addi-
tional storage space allocated on the remote physical
storage devices.
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