
(12) United States Patent 

USO09529773B2 

(10) Patent No.: US 9,529,773 B2 
Hussain et al. (45) Date of Patent: *Dec. 27, 2016 

(54) SYSTEMS AND METHODS FOR ENABLING (52) U.S. Cl. 
ACCESS TO EXTENSIBLE REMOTE CPC ............... G06F 15/167 (2013.01); G06F 3/06 
STORAGE OVER A NETWORK AS LOCAL 
STORAGE VIA A LOGICAL STORAGE 
CONTROLLER 

(71) Applicant: CAVIUM, INC., San Jose, CA (US) 

(72) Inventors: Muhammad Raghib Hussain, 
Saratoga, CA (US); Vishal Murgai, 
Cupertino, CA (US); Manojkumar 
Panicker, Sunnyvale, CA (US); Faisal 
Masood, San Jose, CA (US); Brian 
Folsom, Northborough, MA (US); 
Richard Eugene Kessler, 
Northborough, MA (US) 

(73) Assignee: CAVIUM, INC., San Jose, CA (US) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 
This patent is Subject to a terminal dis 
claimer. 

(21) Appl. No.: 15/041,892 

(22) Filed: Feb. 11, 2016 

(65) Prior Publication Data 

US 2016/0162438 A1 Jun. 9, 2016 

Related U.S. Application Data 
(63) Continuation-in-part of application No. 14/300,552, 

filed on Jun. 10, 2014, now Pat. No. 9,294,567. 
(Continued) 

(51) Int. Cl. 
G06F 3/06 (2006.01) 
G06F 5/67 (2006.01) 

(Continued) 

(2013.01); G06F 3/0604 (2013.01); G06F 
3/065 (2013.01); 

(Continued) 
(58) Field of Classification Search 

CPC ...... G06F 3/0662: G06F 3/0665; G06F 3/067; 
G06F 3/0683; G06F 3/0685; G06F 

3/0689; G06F 3/0626; G06F 
3/0622; G06F 3/0617: G06F 

3/0604: G06F 9/45558; G06F 9/45533; 
G06F 9/5072: G06F 13/1642; H04L 

67/1097 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

7, 1994 Keith 
1/2006 Ransom 

(Continued) 

5,329,318 A 
6,990,395 B2 

Primary Examiner — Le H Luu 
(74) Attorney, Agent, or Firm — Duane Morris LLP: 
David T. Xue 

(57) ABSTRACT 
A new approach is proposed that contemplates systems and 
methods to support elastic (extensible/flexible) storage 
access in real time by mapping a plurality of remote storage 
devices that are accessible over a network fabric as logical 
namespace(s) via a logical storage controller using a mul 
titude of access mechanisms and storage network protocols. 
The logical storage controller exports and presents the 
remote storage devices to one or more VMs running on a 
host of the logical storage controller as the logical 
namespace(s), wherein these remote storage devices appear 
virtually as one or more logical Volumes of a collection of 
logical blocks in the logical namespace(s) to the VMS. As a 
result, each of the VMs running on the host can access these 
remote storage devices to perform read/write operations as 
if they were local storage devices via the logical 
namespace(s). 

24 Claims, 6 Drawing Sheets 

  



US 9,529,773 B2 
Page 2 

Related U.S. Application Data 2009 OO37680 A1* 2, 2009 Colbert ................. GO6F 3.06.17 
T11 162 

(60) Provisional application No. 62/214,494, filed on Sep. 2009/0307388 A1* 12/2009 Tchapda .................. GO6F 3,067 
4, 2015. T10.33 

2010, OO82922 A1 4/2010 George 
(51) Int. Cl. 2010/0325371 A1 12/2010 Jagadish 

2012/0042033 A1 2/2012 Ayala, Jr. 
H04L 2/26 (2006.01) 2012/0042034 A1 2/2012 Goggin 
H04L 29/08 (2006.01) 2012/0110259 A1 5, 2012 Mills 
G06F 9/455 (2006.01) 2012fO150933 A1 6, 2012 Boersma 
H04L 12/24 (2006.01) 2013/0014103 A1 1/2013 Reuther 

(52) U.S. Cl 2013,0042056 A1 2/2013 Shats 
AV e. we 2013/0097369 A1 4/2013 Talagala 

CPC ............. G06F 3/067 (2013.01); G06F 3/06 II 2013,019 1590 A1 7, 2013 Malwankar 
(2013.01); G06F 3/0662 (2013.01); G06F 2013, O1983.12 A1 8, 2013 Tamir 
3/0665 (2013.01); G06F 3/0683 (2013.01); 2013/0204849 A1* 8, 2013 Chacko ................. G06F 3,0604 

G06F 3/0685 (2013.01); G06F 3/0689 2013,0318197 A1 11, 2013 Plaisted 707,692 
(2013.01); G06F 9/45533 (2013.01); G06F ck aste 

ossss (26.301). troit too, (2013,015, 2014 0007189 Al" 2014 Huynh or Goof a 
H04L 43/04 (2013.01); H04L 67/1097 2014/0059226 A1 2/2014 Messerli ............... GO6F 9/5072 

(2013.01); G06F 2009/4557 (2013.01); G06F TO9,226 
2009/45583 (2013.01); G06F 2009/45587 2014.0089276 A1 3/2014 Satish 

(2013.01) 2014/0173149 A1* 6/2014 Walker ................ GO6F 9/45533 
T10,263 

(56) References Cited 2014/O195634 A1 7/2014 Kishore 
2014/0281040 A1 9/2014 Liu 

U.S. PATENT DOCUMENTS 2014/0282521 A1* 9/2014 Lango ................. GO6F 9/45533 
T18, 1 

8,214,539 B1 7, 2012 Kulanko 2014/031720.6 A1* 10/2014 Lomelino ........... HO4L 67/1097 
8,239,655 B2 8/2012 Goggin TO9,206 
8.291,135 B2 10/2012 Subramanian 2014/0331001 A1 11/2014 Liu 
8,756,441 B1 6, 2014 Mullins 2015, 0120971 A1* 4/2015 Bae ....................... G06F 3,0626 
9,098,214 B1 8, 2015 Vincent T10, 106 

2005/0060590 A1 3/2005 Bradley 
2008/0235293 A1 9/2008 Levering * cited by examiner 



US 9,529,773 B2 Sheet 1 of 6 Dec. 27, 2016 U.S. Patent 

|---- 

  

  

  

  

  

  

  

  



US 9,529,773 B2 Sheet 2 of 6 Dec. 27, 2016 U.S. Patent 

  

  

  

  

  

  

  

  



US 9,529,773 B2 U.S. Patent 

  

  

  



U.S. Patent Dec. 27, 2016 Sheet 4 of 6 US 9,529,773 B2 

ta 8 
w 

x x C 

  

  



US 9,529,773 B2 Sheet S of 6 Dec. 27, 2016 U.S. Patent 

(~~~~------------ 
{ | | 

“………………… 

  

  

  

  

  

  



US 9,529,773 B2 Sheet 6 of 6 Dec. 27, 2016 

-- 

U.S. Patent 

x: 

  

  

  



US 9,529,773 B2 
1. 

SYSTEMIS AND METHODS FOR ENABLING 
ACCESS TO EXTENSIBLE REMOTE 

STORAGE OVER A NETWORK AS LOCAL 
STORAGE VIA A LOGICAL STORAGE 

CONTROLLER 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation-in-part application of 
U.S. patent application Ser. No. 14/300,552, filed Jun. 10, 
2014, which further claims the benefit of U.S. Provisional 
Patent Application No. 61/987,956, filed May 2, 2014 and is 
entitled "Systems and methods for enabling access to exten 
sible storage devices over a network as local storage via 
NVMe controller, which is incorporated herein in its 
entirety by reference. 

This application also claims the benefit of U.S. Provi 
sional Patent Application No. 62/314,494, filed Sep. 4, 2015 
and entitled "Enabling elastic storage over a network via a 
logical storage controller, which is incorporated herein in 
its entirety by reference. 

BACKGROUND 

Service providers have been increasingly providing their 
web services (e.g., web sites) at third party data centers in 
the cloud by running a plurality of virtual machines (VMs) 
on a host/server at the data center. Here, a VM is a software 
implementation of a physical machine (i.e. a computer) that 
executes programs to emulate an existing computing envi 
ronment such as an operating system (OS). The VM runs on 
top of a hypervisor, which creates and runs one or more VMs 
on the host. The hypervisor presents each VM with a virtual 
operating platform and manages the execution of each VM 
on the host. By enabling multiple VMs having different 
operating systems to share the same host machine, the 
hypervisor leads to more efficient use of computing 
resources, both in terms of energy consumption and cost 
effectiveness, especially in a cloud computing environment. 

Non-volatile memory express, also known as NVMe or 
NVM Express, is a specification that allows a solid-state 
drive (SSD) to make effective use of a high-speed Peripheral 
Component Interconnect Express (PCIe) bus attached to a 
computing device or host. Here the PCIe bus is a high-speed 
serial computer expansion bus designed to Support hardware 
I/O virtualization and to enable maximum system bus 
throughput, low I/O pin count and Small physical footprint 
for bus devices. NVMe typically operates on a non-volatile 
memory controller of the host, which manages the data 
stored on the non-volatile memory (e.g., SSD) and commu 
nicates with the host. Such an NVMe controller provides a 
command set and feature set for PCIe-based SSD access 
with the goals of increased and efficient performance and 
interoperability on a broad range of enterprise and client 
systems. The main benefits of using an NVMe controller to 
access PCIe-based SSDs are reduced latency, increased 
Input/Output (I/O) operations per second (IOPS) and lower 
power consumption, in comparison to Serial Attached SCSI 
(SAS)-based or Serial ATA (SATA)-based SSDs through the 
streamlining of the I/O stack. 

Currently, a VM running on the host can access the 
PCIe-based SSDs via the physical NVMe controller attached 
to the host and the number of storage volumes the VM can 
access is constrained by the physical limitation on the 
maximum number of physical storage units/volumes that 
can be locally coupled to the physical NVMe controller. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
Since the VMs running on the host at the data center may 
belong to different web service providers and each of the 
VMS may have its own storage needs that may change in real 
time during operation and are thus unknown to the host, it 
is impossible to predict and allocate a fixed amount of 
storage volumes ahead of time for all the VMs running on 
the host that will meet their storage needs. It is thus desirable 
to be able to provide storage volumes to the VMs that are 
extensible dynamically during real time operation via the 
NVMe controller. 
The foregoing examples of the related art and limitations 

related therewith are intended to be illustrative and not 
exclusive. Other limitations of the related art will become 
apparent upon a reading of the specification and a study of 
the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Aspects of the present disclosure are best understood from 
the following detailed description when read with the 
accompanying figures. It is noted that, in accordance with 
the standard practice in the industry, various features are not 
drawn to scale. In fact, the dimensions of the various 
features may be arbitrarily increased or reduced for clarity of 
discussion. 

FIG. 1 depicts an example of a diagram of a system to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMS in accordance with 
Some embodiments. 

FIG. 2 depicts an example of a diagram of a system to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMs via an NVMe 
controller in accordance with some embodiments. 

FIG.3 depicts an example of hardware implementation of 
the physical NVMe controller depicted in FIG. 2 in accor 
dance with Some embodiments. 

FIG. 4 depicts a non-limiting example of a lookup table 
that maps between the NVMe namespaces of the logical 
Volumes and the remote physical storage Volumes in accor 
dance with Some embodiments. 

FIG. 5 depicts a flowchart of an example of a process to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMS in accordance with 
Some embodiments. 

FIG. 6 depicts a non-limiting example of a diagram of a 
system to Support virtualization of a plurality of remote 
storage devices to be presented as local storage devices to 
VMs, wherein the physical NVMe controller further 
includes a plurality of virtual NVMe controllers in accor 
dance with Some embodiments. 

DETAILED DESCRIPTION 

The following disclosure provides many different 
embodiments, or examples, for implementing different fea 
tures of the Subject matter. Specific examples of components 
and arrangements are described below to simplify the pres 
ent disclosure. These are, of course, merely examples and 
are not intended to be limiting. In addition, the present 
disclosure may repeat reference numerals and/or letters in 
the various examples. This repetition is for the purpose of 
simplicity and clarity and does not in itself dictate a rela 
tionship between the various embodiments and/or configu 
rations discussed. 
A new approach is proposed that contemplates systems 

and methods to support elastic (extensible/flexible) storage 
access in real time by mapping a plurality of remote storage 



US 9,529,773 B2 
3 

devices that are accessible over a network fabric as logical 
namespace(s) via a logical storage controller using a mul 
titude of access mechanisms and storage network protocols. 
The logical storage controller exports and presents the 
remote storage devices to one or more VMs running on a 
host of the logical storage controller as the logical 
namespace(s), wherein these remote storage devices appear 
virtually as one or more logical Volumes of a collection of 
logical blocks in the logical namespace(s) to the VMS. As a 
result, each of the VMs running on the host can access these 
remote storage devices to perform read/write operations as 
if they were local storage devices via the logical 
namespace(s). 
By virtualizing and presenting the remote storage devices 

as if they were local disks to the VMs via the logical storage 
controller, the proposed elastic storage approach enables the 
VMs running on the server/host to access remote storage 
devices accessible over a network on demand in real time, 
removing any physical limitation on the number of storage 
volumes accessible by the VMs. Under such an approach, 
every storage device is presented to the VMs as local 
regardless of whether the storage device is locally attached 
or remotely accessible and the host of the VMs is enabled to 
dynamically allocate storage volumes to the VMs in real 
time based on their actual storage needs during operation 
instead of pre-allocating the storage Volumes ahead of time, 
which may either be insufficient or result in unused storage 
Space. 

FIG. 1 depicts an example of a diagram of system 100 to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMs. Although the dia 
grams depict components as functionally separate. Such 
depiction is merely for illustrative purposes. It will be 
apparent that the components portrayed in this figure can be 
arbitrarily combined or divided into separate software, firm 
ware and/or hardware components. Furthermore, it will also 
be apparent that Such components, regardless of how they 
are combined or divided, can execute on the same host or 
multiple hosts, and wherein the multiple hosts can be 
connected by one or more networks. 

In the example of FIG. 1, a computing unit/appliance/host 
112 runs a plurality of VMs 110, each configured to provide 
a web-based service to clients over the Internet. Here, the 
host 112 can be a computing device, a communication 
device, a storage device, or any electronic device capable of 
running a Software component. For non-limiting examples, 
a computing device can be, but is not limited to, a laptop PC, 
a desktop PC, a mobile device, or a server machine Such as 
an x86/ARM server. A communication device can be, but is 
not limited to, a mobile phone. 

In the example of FIG. 1, a logical or elastic storage 
controller 101 is configured to utilize a local network 
interface card/controller (NIC) 114 coupled to the host 112 
to map one or more remote storage devices 122 accessible 
from a network fabric 132 via a network storage protocol 
and (optional) one or more locally coupled storage devices 
120 accessible via a local bus to a plurality of logical 
volumes and present the logical volumes to the VMs 110 as 
if they were local logical storage devices. Here, the local 
NIC 114 is configured to include/implement a multitude of 
access mechanisms comprising but not limited to one or 
more of an NVMe controller 102, a Simplified Layer 2 
Transport over Ethernet 103, a remote direct memory access 
(RDMA)/RDMA over Converged Ethernet (RoCE) control 
ler 104, an internet Wide Area RDMA Protocol (iWARP) or 
Ceph controller 106, a SCSI or SATA controller 108. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
In the example of FIG. 1, each of the locally coupled 

storage devices 120 and the remotely accessible storage 
devices 122 can be a non-volatile (non-transient) storage 
device, which can be but is not limited to, a solid-state drive 
(SSD), a Static random-access memory (SRAM), a magnetic 
hard disk drive, and a flash drive. The remote storage 
devices 122 can be part of one or more backend storage 
servers accessible by the NIC 114 over the network fabric 
132. 

In the example of FIG. 1, the network fabric 132 refers to 
switched fabric or switching fabric, which is a network 
topology in which network nodes interconnect via one or 
more network Switches (e.g., crossbar Switches). Because a 
switched fabric network spreads network traffic across mul 
tiple physical links, it yields higher total throughput than 
broadcast networks. The network fabric 132 constitutes not 
only the network (which can be but is not limited to internet, 
intranet, wide area network (WAN), local area network 
(LAN), wireless network, Bluetooth, WiFi, mobile commu 
nication network, or any other network type), but also the 
storage network protocols that establish the connectivity 
between one or more initiators (e.g., the logical storage 
controller 101/logical volumes) and targets (remote/backend 
storage devices) of the network. 

FIG. 2 depicts an example of a diagram of system 200 to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMs via an NVMe 
controller. Although the NVMe controller 102 is used as a 
non-limiting example to be utilized the logical storage 
controller to illustrate the proposed approach in the follow 
ing discussions, a person ordinarily skilled in the art would 
understand that the same approach is also applicable to other 
types of logical storage controllers/technologies (e.g., Sim 
plified Layer 2 Transport 103, RDMA/RoCE 104, iWARP 
106, and SCSI/SATA 108) discussed above to achieve the 
same effects. 

In the example of FIG. 2, the host 112 is coupled to the 
physical NVMe controller 102 via a PCIe/NVMe link/ 
connection 211 and the VMs 110 running on the host 112 are 
configured to access the physical NVMe controller 102 via 
the PCIe/NVMe link/connection 211. For a non-limiting 
example, the PCIe/NVMe link/connection 211 is a PCIe 
Gen3 x8 bus. 

In the example of FIG. 2, the physical NVMe controller 
102 having at least an NVMe storage proxy engine 204, 
NVMe access engine 206 and a storage access engine 208 
running on the NVMe controller 102. Here, the physical 
NVMe controller 102 is a hardware/firmware NVMe mod 
ule having Software, firmware, hardware, and/or other com 
ponents that are used to effectuate a specific purpose. As 
discussed in details below, the physical NVMe controller 
102 comprises one or more of a CPU or microprocessor, a 
storage unit or memory (also referred to as primary memory) 
such as RAM, with software instructions stored for practic 
ing one or more processes. The physical NVMe controller 
102 provides both Physical Functions (PFs) and Virtual 
Functions (VFs) to Support the engines running on it, 
wherein the engines will typically include software instruc 
tions that are stored in the storage unit of the physical NVMe 
controller 102 for practicing one or more processes. As 
referred to herein, a PF function is a PCIe function used to 
configure and manage the single root I/O virtualization 
(SR-IOV) functionality of the controller such as enabling 
virtualization and exposing PCIe VFs, wherein a VF func 
tion is a lightweight PCIe function that supports SR-IOV and 
represents a virtualized instance of the controller 102. Each 
VF shares one or more physical resources on the physical 



US 9,529,773 B2 
5 

NVMe controller 102, wherein such resources include but 
are not limited to on-controller memory 308, hardware 
processor 306, interface to storage devices 322, and network 
driver 320 of the physical NVMe controller 102 as depicted 
in FIG. 3 and discussed in details below. 

FIG. 3 depicts an example of hardware implementation 
300 of the physical NVMe controller 102 depicted in FIG. 
2. As shown in the example of FIG. 3, the hardware 
implementation 300 includes at least an NVMe processing 
engine 302, and an NVMe Queue Manager (NQM) 304 
implemented to support the NVMe processing engine 302. 
Here, the NVMe processing engine 302 includes one or 
more CPUs/processors 306 (e.g., a multi-core/multi 
threaded ARM/MIPS processor), and a primary memory 308 
such as DRAM. The NVMe processing engine 302 is 
configured to execute all NVMe instructions/commands and 
to provide results upon completion of the instructions. The 
hardware-implemented NQM 304 provides a front-end 
interface to the engines that execute on the NVMe process 
ing engine 302. In some embodiments, the NQM 304 
manages at least a Submission queue 312 that includes a 
plurality of administration and control instructions to be 
processed by the NVMe processing engine 302 and a 
completion queue 314 that includes status of the plurality of 
administration and control instructions that have been pro 
cessed by the NVMe processing engine 302. In some 
embodiments, the NQM 304 further manages one or more 
data buffers 316 that include data read from or to be written 
to a storage device via the NVMe controllers 102. In some 
embodiments, one or more of the Submission queue 312, 
completion queue 314, and data buffers 316 are maintained 
within memory 310 of the host 112. In some embodiments, 
the hardware implementation 300 of the physical NVMe 
controller 102 further includes an interface to storage 
devices 222, which enables the plurality of storage devices 
120 to be coupled to and accessed by the physical NVMe 
controller 102 locally via a local bus, and a network driver 
230, which enables a plurality of storage devices 122 to be 
connected to the NVMe controller 102 remotely over the 
network fabric 132 via the multitude of access mechanisms 
discussed above. 

In the example of FIG. 2, the NVMe access engine 206 of 
the NVMe controller 102 is configured to receive and 
manage instructions and data for read/write operations from 
the VMs 110 running on the host 102. When one of the VMs 
110 running on the host 112 performs a read or write 
operation, it places a corresponding instruction in a Submis 
sion queue 312, wherein the instruction is in NVMe format. 
During its operation, the NVMe access engine 206 utilizes 
the NQM 304 to fetch the administration and/or control 
commands from the submission queue 312 on the host 112 
based on a “doorbell of read or write operation, wherein the 
doorbell is generated by the VM 110 and received from the 
host 112. The NVMe access engine 206 also utilizes the 
NQM 304 to fetch the data to be written by the write 
operation from one of the data buffers 316 on the host 112. 
The NVMe access engine 206 then places the fetched 
commands in a waiting buffer 318 in the memory 308 of the 
NVMe processing engine 302 waiting for the NVMe Stor 
age Proxy Engine 204 to process. Once the instructions are 
processed. The NVMe access engine 206 puts the status of 
the instructions back in the completion queue 314 and 
notifies the corresponding VM 110 accordingly. The NVMe 
access engine 206 also puts the data read by the read 
operation to the data buffer 316 and makes it available to the 
VM 110. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
In some embodiments, each of the VMs 110 running on 

the host 112 has an NVMe driver 214 configured to interact 
with the NVMe access engine 206 of the NVMe controller 
102 via the PCIe/NVMe link/connection 211. In some 
embodiments, each of the NVMe driver 214 is a virtual 
function (VF) driver configured to interact with the PCIe/ 
NVMe link/connection 211 of the host 112 and to set up a 
communication path between its corresponding VM 110 and 
the NVMe access engine 206 and to receive and transmit 
data associated with the corresponding VM 110. In some 
embodiments, the VF NVMe driver 214 of the VM 110 and 
the NVMe access engine 206 communicate with each other 
through a SR-IOV PCIe connection 211 as discussed above. 

In some embodiments, the VMs 110 run independently on 
the host 112 and are isolated from each other so that one VM 
110 cannot access the data and/or communication of any 
other VMs 110 running on the same host. When transmitting 
commands and/or data to and/or from a VM 110, the 
corresponding VF NVMe driver 214 directly puts and/or 
retrieves the commands and/or data from its queues and/or 
the data buffer, which is sent out or received from the NVMe 
access engine 206 without the data being accessed by the 
host 112 or any other VMs 110 running on the same host 
112. 

In the example of FIG. 2, the storage access engine 208 
of the NVMe controller 102 is configured to access and 
communicate with a plurality of non-volatile disk storage 
devices/units, wherein each of the storage units is either 
(optionally) locally coupled to the NVMe controller 102 via 
the interface to storage devices 222 (e.g., local storage 
devices 120), or remotely accessible by the physical NVMe 
controller 102 over the network fabric 132 (e.g., remote 
storage devices 122) via the network communication inter 
face/driver 230 following certain communication protocols 
such as TCP/IP protocol. 

In the example of FIG. 2, the NVMestorage proxy engine 
204 of the NVMe controller 102 is configured to collect 
Volumes of the remote storage devices accessible via the 
storage access engine 208 over the network under the 
storage network protocol and convert the storage Volumes of 
the remote storage devices to one or more NVMe 
namespaces each including a plurality of logical volumes (a 
collection of logical blocks) to be accessed by VMs 110 
running on the host 112. As such, the NVMe namespaces 
may cover both the storage devices locally attached to the 
NVMe controller 102 and those remotely accessible by the 
storage access engine 208 under the storage network proto 
col. The storage network protocol is used to access a remote 
storage device accessible over the network fabric 132, 
wherein Such storage network protocol can be but is not 
limited to Internet Small Computer System Interface 
(iSCSI). iSCSI is an Internet Protocol (IP)-based storage 
networking standard for linking data storage devices by 
carrying SCSI commands over the networks. By enabling 
access to remote storage devices over the network, iSCSI 
increases the capabilities and performance of storage data 
transmission over local area networks (LANs), wide area 
networks (WANs), and the Internet. 

In some embodiments, the NVMe storage proxy engine 
204 organizes and maps the remote storage devices to one or 
more logical or virtual volumes/blocks in the NVMe 
namespaces, to which the VMs 110 can access and perform 
I/O operations as if they were local storage volumes. Here, 
each Volume is classified as logical or virtual since it maps 
to one or more physical storage devices either locally 
attached to or remotely accessible by the NVMe controller 
102 via the storage access engine 208. In some embodi 



US 9,529,773 B2 
7 

ments, multiple VMs 110 running on the host 112 are 
enabled to access the same logical volume or virtual volume 
and each logical/virtual Volume can be shared among mul 
tiple VMs. In some embodiments, the virtual volume 
includes a meta-data mapping table between the logical 
volume and the remote storage devices 122, wherein the 
mapping table translates an incoming (virtual) Volume iden 
tifier and a logical block addressing (LBA) on the virtual 
Volume to one or more corresponding physical disk identi 
fiers and LBAS on the storage devices. In some embodi 
ments, the logical Volume may include logical blocks across 
multiple physical disks in the storage devices. For non 
limiting examples, two possible scenarios are: 
A single logical volume could be mapped to and served by 

a single remote storage device/backend server using a 
given underlying technology, e.g., NVMe, Simplified 
Transport, iWARP, RoCE, etc. 

A single logical volume could be mapped to and served by 
a plurality of remote storage devices under one or more 
different controllers/technologies via the NIC 114. For 
a non-limiting example, the logical storage controller 
101 may utilize the NVMe controller 102 to map from 
one remote server, and use RDMA/RoCE controller 
104 to map from the other remote server, wherein the 
logical storage controller 101 is configured to handle 
the logic and complexity among the different underly 
ing controllers and technologies. 

In some embodiments, the NVMe storage proxy engine 
204 establishes a lookup table that maps between the NVMe 
namespaces of the logical volumes, NS 1. . . . . NS m, and 
the remote physical storage devices/volumes, Vol 1, . . . . 
Vol n, accessible over the network as shown by the non 
limiting example depicted in FIG. 4. Here, there is a 
multiple-to-multiple correspondence between the NVMe 
namespaces and the physical storage Volumes, meaning that 
one namespace (e.g., NS 2) may correspond to a logical 
Volume that maps to a plurality of remote physical storage 
Volumes (e.g., Vol 2 and Vol 3), and a single remote physi 
cal storage Volume may also be included in a plurality of 
logical volumes and accessible by the VMs 110 via their 
corresponding NVMe namespaces. In some embodiments, 
the NVMestorage proxy engine 204 is configured to expand 
the mappings between the NVMe namespaces of the logical 
Volumes and the remote physical storage devices/volumes to 
add additional storage Volumes on demand. Specifically, 
when at least one of the VMs 110 running on the host 112 
requests for more storage Volumes, the NVMe Storage proxy 
engine 204 may expand the namespace/logical volume 
accessed by the VM to include additional remote physical 
storage devices. 

For a non-limiting example, a VM 110 running on the host 
112 may request the logical storage controller 101 in FIG. 1 
to allocate XTB amount of disk space at runtime. The 
logical storage controller101 is configured to utilize the NIC 
114 (e.g., NVMe controller 102 depicted in FIG. 2) to 
allocate the required disk space from the remote storage 
devices 122 on the backend storage servers over the network 
fabric 132 as logical volumes to the VM 110. Here, the 
logical storage controller 101 is configured to provision the 
requested Storage space on the locally attached storage 
device 120 and the remote storage devices 122 via one or 
more provisioning mechanisms, which include but are not 
limited to, the NVMe controller 102, one of RDMA/RoCE/ 
iWARP controllers, or a Simplified Layer 2 Transport over 
the plain Ethernet fabric. It is up to the logical storage 
controller 101 to determine which controllers and/or tech 
nologies of the NIC 114 to utilize to accomplish the storage 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
request (and any addition request) by the VM 110. If the VM 
110 needs more storage at runtime, it may request for, for a 
non-limiting example, an additional storage capacity of Y 
TB, and the logical storage controller 101 is configured to 
dynamically provision that increased storage capacity in real 
time via the NIC 114 to make X-Y TB amount of storage 
available to the VM 110. The logical storage controller 101 
is configured to accomplish this by either extending the 
storage of the already allocated logical volume of XTB by 
YTB or by allocating another logical volume of X--YTB of 
storage space. The logical storage controller 101 is further 
configured to expand mappings between the logical volumes 
and the remote physical storage devices to include the 
additional storage space allocated on the remote physical 
storage devices. 

In some embodiments, the NVMe storage proxy engine 
204 further includes an adaptation layer/shim 216, which is 
a software component configured to manage message flows 
between the NVMe namespaces and the remote physical 
storage Volumes. Specifically, when instructions for storage 
operations (e.g., read/write operations) on one or more 
logical volumes/namespaces are received from the VMs 110 
via the NVMe access engine 206, the adaptation layer/shim 
216 converts the instructions under NVMe specification to 
one or more corresponding instructions on the remote physi 
cal storage Volumes under the storage network protocol Such 
as iSCSI according to the lookup table. Conversely, when 
results and/or feedbacks on the storage operations performed 
on the remote physical storage Volumes are received via the 
storage access engine 208, the adaptation layer/shim 216 
also converts the results to feedbacks about the operations 
on the one or more logical volumes/namespaces and pro 
vides such converted results to the VMs 110. 

In the example of FIG. 2, the NVMe access engine 206 of 
the NVMe controller 102 is configured to export and present 
the NVMe namespaces and logical volumes of the remote 
physical storage devices 122 to the VMs 110 running on the 
host 112 as accessible storage devices that are no different 
from those locally connected storage devices 120. The actual 
mapping, expansion, and operations on the remote storage 
devices 122 over the network using iSCSI-like storage 
network protocol performed by the NVMe controller 102 are 
transparent to the VMs 110, which provides the instructions 
on the logical Volumes that map to the remote storage 
Volumes. 

FIG. 5 depicts a flowchart of an example of a process to 
Support virtualization of remote storage devices to be pre 
sented as local storage devices to VMS. Although this figure 
depicts functional steps in a particular order for purposes of 
illustration, the process is not limited to any particular order 
or arrangement of steps. One skilled in the relevant art will 
appreciate that the various steps portrayed in this figure 
could be omitted, rearranged, combined and/or adapted in 
various ways. 

In the example of FIG. 5, the flowchart 500 starts at block 
502, where one or more logical volumes in one or more 
NVMe namespaces are created and mapped to a plurality of 
remote storage devices accessible over a network. The 
flowchart 500 continues to block 504, where the NVMe 
namespaces of the logical volumes are presented to one or 
more virtual machines (VMs) running on a host as if they 
were local storage volumes. The flowchart 500 continues to 
block 506, where a first instruction to perform a read/write 
operation on one of the logical Volumes mapped to the 
remote storage devices is received from one of the VMs. The 
flowchart 500 continues to block 508, where the namespaces 
of the logical volumes in the first instruction is converted to 



US 9,529,773 B2 
9 

storage Volumes of the remote storage devices in a second 
instruction according to a storage network protocol. The 
flowchart 500 ends at block 410, where result and/or data of 
the read/write operation performed on the remote storage 
devices is received, processed and presented to the VM after 
the read/write operation is performed on the storage Volumes 
of the remote storage devices over the network using the 
second instruction. 

FIG. 6 depicts a non-limiting example of a diagram of 
system 600 to support virtualization of remote storage 
devices as local storage devices for VMs, wherein the 
physical NVMe controller 102 further includes a plurality of 
virtual NVMe controllers 602. In the example of FIG. 6, the 
plurality of virtual NVMe controllers 602 run on the single 
physical NVMe controller 102 where each of the virtual 
NVMe controllers 602 is a hardware accelerated software 
engine emulating the functionalities of an NVMe controller 
to be accessed by one of the VMs 110 running on the host 
112. In some embodiments, the virtual NVMe controllers 
602 have a one-to-one correspondence with the VMs 110. 
wherein each virtual NVMe controller 602 interacts with 
and allows access from only one of the VMs 110. Each 
virtual NVMe controller 602 is assigned to and dedicated to 
support one and only one of the VMs 110 to access its 
storage devices, wherein any single virtual NVMe controller 
602 is not shared across multiple VMs 110. 

In some embodiments, each virtual NVMe controller 602 
is configured to Support identity-based authentication and 
access from its corresponding VM 110 for its operations, 
wherein each identity permits a different set of API calls for 
different types of commands/instructions used to create, 
initialize and manage the virtual NVMe controller 602, 
and/or provide access to the logic volume for the VM 110. 
In some embodiments, the types of commands made avail 
able by the virtual NVMe controller 602 vary based on the 
type of user requesting access through the VM 110 and some 
API calls do not require any user login. For a non-limiting 
example, different types of commands can be utilized to 
initialize and manage virtual NVMe controller 602 running 
on the physical NVMe controller 102. 
As shown in the example of FIG. 6, each virtual NVMe 

controller 602 may further include a virtual NVMe storage 
proxy engine 604 and a virtual NVMe access engine 606, 
which function in a similar fashion as the respective NVMe 
storage proxy engine 204 and a NVMe access engine 206 
discussed above. In some embodiments, the virtual NVMe 
storage proxy engine 604 in each virtual NVMe controller 
602 is configured to access both the locally attached storage 
devices 120 and remotely accessible storage devices 122 via 
the storage access engine 208, which can be shared by all the 
virtual NVMe controllers 602 running on the physical 
NVMe controller 102. 

During operation, each virtual NVMe controller 602 
creates and maps one or more logical volumes in one or 
more NVMe namespaces mapped to a plurality of remote 
storage devices accessible over a network. Each virtual 
NVMe controller 602 then presents the NVMe namespaces 
of the logical volumes to its corresponding VM 110 as if 
they were local storage volumes. When a first instruction to 
perform a read/write operation on the logical volumes is 
received from the VM 110, the virtual NVMe controller 602 
converts the NVMe namespaces of the logical volumes in 
the first instruction to storage Volumes of the remote storage 
devices in a second instruction according to a storage 
network protocol. The virtual NVMe controller 602 presents 
result and/or data of the read/write operation to the VM 110 
after the read/write operation has been performed on the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
storage Volumes of the remote storage devices over the 
network using the second instruction. 

In some embodiments, each virtual NVMe controller 602 
depicted in FIG. 6 has one or more pairs of submission 
queue 312 and completion queue 314 associated with it, 
wherein each queue can accommodate a plurality of entries 
of instructions from one of the VMs 110. As discussed 
above, the instructions in the submission queue 312 are first 
fetched by the NQM 304 from the memory 310 of the host 
112 to the waiting buffer 318 of the NVMe processing 
engine 302 as discussed above. During its operation, each 
virtual NVMe controller 602 retrieves the instructions from 
its corresponding VM 110 from the waiting buffer 318 and 
converts the instructions according to the storage network 
protocol in order to perform a read/write operation on the 
data stored on the local storage devices 120 and/or remote 
storage devices 122 over the network by invoking VF 
functions provided by the physical NVMe controller 102. 
During the operation, data is transmitted to or received from 
the local/remote storage devices in the logical volume of the 
VM 110 via the interface to storage access engine 208. Once 
the operation has been processed, the virtual NVMe con 
troller 602 saves the status of the executed instructions in the 
waiting buffer 318 of the processing engine 302, which are 
then placed into the completion queue 314 by the NQM 304. 
The data being processed by the instructions of the VMs 110 
is also transferred between the data buffer 316 of the 
memory 310 of the host 112 and the memory 308 of the 
NVMe processing engine 302. 
The methods and system described herein may be at least 

partially embodied in the form of computer-implemented 
processes and apparatus for practicing those processes. The 
disclosed methods may also be at least partially embodied in 
the form of tangible, non-transitory machine readable Stor 
age media encoded with computer program code. The media 
may include, for example, RAMs, ROMs, CD-ROMs, 
DVD-ROMs, BD-ROMs, hard disk drives, flash memories, 
or any other non-transitory machine-readable storage 
medium, wherein, when the computer program code is 
loaded into and executed by a computer, the computer 
becomes an apparatus for practicing the method. The meth 
ods may also be at least partially embodied in the form of a 
computer into which computer program code is loaded 
and/or executed, Such that, the computer becomes a special 
purpose computer for practicing the methods. When imple 
mented on a general-purpose processor, the computer pro 
gram code segments configure the processor to create spe 
cific logic circuits. The methods may alternatively be at least 
partially embodied in a digital signal processor formed of 
application specific integrated circuits for performing the 
methods. 

The foregoing description of various embodiments of the 
claimed subject matter has been provided for the purposes of 
illustration and description. It is not intended to be exhaus 
tive or to limit the claimed subject matter to the precise 
forms disclosed. Many modifications and variations will be 
apparent to the practitioner skilled in the art. Embodiments 
were chosen and described in order to best describe the 
principles of the invention and its practical application, 
thereby enabling others skilled in the relevant art to under 
stand the claimed Subject matter, the various embodiments 
and with various modifications that are Suited to the par 
ticular use contemplated. 



US 9,529,773 B2 
11 

What is claimed is: 
1. A system to support elastic network storage, compris 

ing: 
a logical storage controller of a local network interface 

card/controller (NIC), configured to: 
accept a request for storage space from one of a 

plurality of virtual machines (VMs) running on a 
host; 

allocate storage Volumes on one or more remote storage 
devices accessible over a network fabric in accor 
dance with the request for the storage space; 

create and map one or more logical volumes in one or 
more logical namespaces to the storage Volumes on 
the remote storage devices; 

present the logical volumes mapped to the storage 
Volumes on the remote storage devices as local 
storage Volumes to the VM requesting the storage 
Space; 

enable the VM to perform a read/write operation on the 
logical Volumes via a first instruction. 

2. The system of claim 1, wherein: 
the host of the VM is an x86 or ARM server. 
3. The system of claim 1, wherein: 
the NIC includes or implements one or more of an NVMe 

controller, a remote direct memory access (RDMA)/ 
RDMA over Converged Ethernet (RoCE) controller, a 
Simplified Transport over Ethernet, an internet Wide 
Area RDMA Protocol (iWARP) controller, and a local 
SCSI or SATA controller. 

4. The system of claim 1, wherein: 
the remote storage devices are part of one or more 

backend storage servers accessible by the NIC over the 
network fabric. 

5. The system of claim 1, wherein: 
the network fabric is a network topology in which nodes 

in a network interconnect via one or more network 
Switches. 

6. The system of claim 1, wherein: 
the logical volumes are further mapped to a storage device 

attached to the NIC locally. 
7. The system of claim 1, wherein: 
the VMs run independently on the host and are isolated 

from each other so that one VM cannot access the data 
and/or communication of any other VMS running on 
the same host. 

8. The system of claim 1, wherein: 
the logical storage controller is configured to 

convert the logical volumes in the first instruction from 
the VM to the storage volumes of the remote storage 
devices in a second instruction according to a storage 
network protocol; 

present result and/or data of the read/write operation to 
the VM after the read/write operation has been 
performed on the storage Volumes of the remote 
storage devices over the network fabric using the 
second instruction. 

9. The system of claim 8, wherein: 
the storage network protocol is Internet Small Computer 

System Interface (iSCSI). 
10. The system of claim 1, wherein: 
the logical storage controller is configured to enable 

multiple of the plurality of VMs to access the same 
logical Volume and each logical volume is enabled to 
be shared among the multiple VMs. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
11. The system of claim 1, wherein: 
the logical storage controller is configured to map a single 

logical volume to a single remote storage device via a 
controller of the NIC. 

12. The system of claim 1, wherein: 
the logical storage controller is configured to map a single 

logical Volume to a plurality of remote storage devices 
via different controllers of the NIC. 

13. The system of claim 1, wherein: 
the logical storage controller is configured to perform the 

mapping and the operations on the remote storage 
devices over the network transparent to the VM. 

14. The system of claim 1, wherein: 
the logical storage controller is configured to 

dynamically allocate additional storage space on the 
remote physical storage devices to the VM per 
additional storage request by the VM in real time; 

expand mappings between the logical volumes and the 
remote physical storage devices to include the addi 
tional storage space allocated on the remote physical 
storage devices. 

15. A method to Support elastic network storage via a local 
network interface card/controller (NIC), comprising: 

accepting a request for storage space from one of a 
plurality of virtual machines (VMs) running on a host; 

allocating Storage Volumes on one or more remote storage 
devices accessible over a network fabric in accordance 
with the request for the storage space; 

creating and mapping one or more logical volumes in one 
or more logical namespaces to the storage Volumes on 
the remote storage devices; 

presenting the logical volumes mapped to the storage 
volumes on the remote storage devices as local storage 
Volumes to the VM requesting the storage space; 

enabling the VM to perform a read/write operation on the 
logical Volumes via a first instruction. 

16. The method of claim 15, further comprising: 
including or implementing one or more of an NVMe 

controller, a remote direct memory access (RDMA)/ 
RDMA over Converged Ethernet (RoCE) controller, a 
Simplified Transport over Ethernet, an internet Wide 
Area RDMA Protocol (iWARP) controller, and a local 
SCSI or SATA controller via the NIC. 

17. The method of claim 15, further comprising: 
mapping the logical Volumes to a storage device attached 

to the NIC locally. 
18. The method of claim 15, further comprising: 
enabling the VMs to run independently on the host and 

isolating the VMs from each other so that one VM 
cannot access the data and/or communication of any 
other VMs running on the same host. 

19. The method of claim 15, further comprising: 
converting the logical Volumes in the first instruction from 

the VM to the storage volumes of the remote storage 
devices in a second instruction according to a storage 
network protocol; 

presenting result and/or data of the read/write operation to 
the VM after the read/write operation has been per 
formed on the storage Volumes of the remote storage 
devices over the network fabric using the second 
instruction. 

20. The method of claim 15, further comprising: 
enabling multiple of the plurality of VMs to access the 

same logical Volume and each logical Volume to be 
shared among the multiple VMs. 

21. The method of claim 15, further comprising: 
mapping a single logical Volume to a single remote 

storage device via a controller of the NIC. 



US 9,529,773 B2 
13 

22. The method of claim 15, further comprising: 
mapping a single logical Volume to a plurality of remote 

storage devices via different controllers of the NIC. 
23. The method of claim 15, further comprising: 
performing the mapping and the operations on the remote 

storage devices over the network transparent to the 
VM. 

24. The method of claim 15, further comprising: 
dynamically allocating additional storage space on the 

remote physical storage devices to the VM per addi 
tional storage request by the VM in real time; 

expanding mappings between the logical volumes and the 
remote physical storage devices to include the addi 
tional storage space allocated on the remote physical 
storage devices. 

k k k k k 

5 

10 

15 

14 


