
US 20120233509A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0233509 A1

KOUMA (43) Pub. Date: Sep. 13, 2012

(54) FAULT DETECTING METHOD AND (30) Foreign Application Priority Data
INFORMATION PROCESSINGAPPARATUS

May 30, 2008 (JP) 2008-142285
(75) Inventor: Takahiro KOJIMA, Kawasaki-shi Publication Classification

(JP) (51) Int. Cl.
G06F II/07 (2006.01)

(73) Assignee: FUJITSU LIMITED, (52) U.S. Cl. 714/49; 714/E11.024
Kawasaki-shi (JP) (57) ABSTRACT

(21) Appl. No.: 13/482,698 An information processing apparatus including a storage area
separated into a user space and a kernel space executes, gen
erating a core file of a process existing in the user space,

(22) Filed: May 29, 2012 retaining the process with the core file which starts being
generated in the user space, and notifying a monitor unit of an

Related U.S. Application Data identification number of the process with the core file which
starts being generated, wherein the monitor unit detects a

(63) Continuation of application No. 12/408,095, filed on fault in the process by receiving the identification number
Mar. 20, 2009, now Pat. No. 8,190,946. allocated to the process.

USER SPACE KERNEL SPACE

CORE DUMB&NWOKING 22

85N5 NRING CORE DUMP COLLECTING
DAEMON PROCESS COMMON ROUTINE

POLLING-ORENTED
MONITORNG

REPORT OF REPORT OF
FAULT FAULT NWOKING

MONTOR PROCESS

STARTUP
25B

REQUEST FOR REGISTRATION CORE DUMP OCCURRENCE
MONITOR PROCESS BEWicEDRIVER

ASYNCHRONOUS NOTIFICATION

Patent Application Publication Sep. 13, 2012 Sheet 1 of 8 US 2012/0233509 A1

A/6 7

START-UP BY
STAND BY SYSTEM
(CLUSTER
SWITCHING)

ACTIVE SERVER STAND BY SERVER

Patent Application Publication Sep. 13, 2012 Sheet 2 of 8 US 2012/0233509 A1

A/G 2

10 11

INTERFACE 12

MAG NETC DISK
DRW

ET
NG DEVICE

MAGNET C DISK

INPUT DEVICE 15

DISPLAY DEVICE 16

US 2012/0233509 A1 Sep. 13, 2012 Sheet 3 of 8

þNIYONNÈž dM(10 3800 30WdS TENNEXIHOWdS \|EST]

Patent Application Publication

Patent Application Publication Sep. 13, 2012 Sheet 4 of 8 US 2012/0233509 A1

A/64

40

ELEMENT 1 ELEMENT 2

1 PROCESS D-A PROCESS D-C

PROCESS D-B PROCESS D-D

Patent Application Publication Sep. 13, 2012 Sheet 5 of 8 US 2012/0233509 A1

A/65

21

KERNEL

50 PROCESS RETAINING UNIT

51

52

PROCESS FAULT DETECTING UNIT

CORE FILE GENERATING UNIT

53 CORE DUMP OCCURRENCE NOTIFYING UNIT

Patent Application Publication Sep. 13, 2012 Sheet 6 of 8 US 2012/0233509 A1

A/6 6

START
S601

START UP MONITOR PROCESS 25B

S602

NATING \YES
p S603

H MONITORING OF
ORING TARGET PROCESS 24

S604 C END)
EXISTENCE OF MONITORING \NO
TARGET PROCESS 24?

YES S605
YES MONITOR PROCESS 25B

STARTED UP2
NO

S606

REPORT FAULT
IN PROCESS

Patent Application Publication Sep. 13, 2012 Sheet 7 of 8 US 2012/0233509 A1

A/G 7

START
S701

NOTFY PROCESS ID OF MONITORING
TARGET PROCESS 24 AND PROCESS ID
OF MONITOR PROCESS 25B

S702

OCCURRENCE OF TERMINATING \YES
INSTRUCTION SIGNAL S703

REQUEST FOR DELETING
PROCESS ID

S704 C END D
CORE DUMP OCCURRENCE
NOTIFICATION RECEIVED / S705

YES

REPORT FAULT IN PROCESS

Patent Application Publication Sep. 13, 2012 Sheet 8 of 8 US 2012/0233509 A1

A/68

START
S801

ACQUIRE PROCESS ID OF
MONITORING TARGET PROCESS 24

S802

EXTRACT ONE OF 2-TUPLE ELEMENTS
FROM CORE DUMP WATING TABLE 40

S803

NO PROCESS DS COINCIDENT2

YES

NOTIFY OF OCCURRENCE OF CORE DUMP
OF MONITORING TARGET PROCESS 24

DELETE 2-TUPLE ELEMENTS WITH
COINCIDENT PROCESS DS FROM
CORE DUMP WATING TABLE 40

S806
YES, EXISTENCE OF NOT-YET-CHECKED 2-TUPLE ELEMENTS IN

CORE DUMP WAITING TABLE 40 2
NO

C END D

US 2012/0233509 A1

FAULT DETECTING METHOD AND
INFORMATION PROCESSINGAPPARATUS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 12/408,095, filed Mar. 20, 2009, which is based
upon and claims the benefit of prior Japanese Patent Appli
cation No. 2008-142285 filed on May 30, 2008, the entire
contents of which are incorporated herein by reference.

FIELD

0002. The embodiment discussed herein is related to a
fault detecting method, a fault detecting program and an
information processing apparatus, which detect a fault in a
process executing a predetermined operation.

BACKGROUND

0003. An active server, if disabled from continuing the
predetermined operation, takes over the predetermined
operation to a standby server, whereby the standby server
continuously performs the predetermined operation. For
example, if a fault occurs in the process which executes the
predetermined operation, the active server gets disabled from
continuing the predetermined operation. The process with the
occurrence of the fault is terminated, and the active server is
forcibly stopped (which is also called a forced panic),
whereby the standby server takes over the predetermined
operation.
0004 An UNIX-based operating system includes a /proc

file system. The ?proc file system is stored with text-formatted
information about a kernel and an in-execution process.
Whether the process exists on a memory or not is checked by
monitoring a process structure of the ?proc file system in a
way that uses a polling-oriented monitoring technique. Then,
in the case of detecting that none of the process exists on the
memory, the active server is forcibly stopped. A known tech
nique is a technique of acquiring a terminated status of the
process (for example, Japanese Laid-Open Patent Publication
NO. 2007-133603).

SUMMARY

0005 According to an aspect to the embodiment, a fault
detecting method by which an information processing appa
ratus including a storage area separated into a user space and
a kernel space executes, generating a core file of a process
existing in the user space, retaining the process with the core
file which starts being generated in the user space, and noti
fying a monitoring unit of an identification number of the
process with the core file which starts being generated,
wherein the monitoring unit detects a fault in the process by
receiving the identification number allocated to the process.
0006. The object and advantages of the embodiment will
be realized and attained by means of the elements and com
binations particularly pointed out in the claims.
0007. It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory and are not restrictive of the embodi
ment, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 is a diagram illustrating an architecture of the
system.
0009 FIG. 2 is a diagram illustrating a hardware configu
ration of an active server.

Sep. 13, 2012

0010 FIG.3 is an explanatory diagram of a storage area of
a memory.
0011 FIG. 4 is an explanatory diagram of a core dump
waiting table.
0012 FIG. 5 is a function block diagram of a kernel.
0013 FIG. 6 is a flowchart illustrating a flow of a process
in which a monitor process monitors a monitoring target
process.

0014 FIG. 7 is a flowchart illustrating a process in which
a monitor process asynchronously waits for occurrence of a
core dump of the monitoring target process.
0015 FIG. 8 is a flowchart asynchronously a process in
which a core dump occurrence device driver notifies the
monitor process of the occurrence of the core dump.

DESCRIPTION OF EMBODIMENT

0016. There is a method of clarifying a cause of occur
rence of the fault of the process by writing, to an auxiliary
storage device Such as a magnetic disk, the process informa
tion in a main storage device Such as a memory and a register
just before forcibly stopping the active server. In the case of
forcibly stopping the active server after writing the process
information in the main storage device to the auxiliary storage
device, the process information in the main storage device is
written in an intact status to the auxiliary storage device. In
this case, the active server is not forcibly stopped till the
process information in the main storage device is written to
the auxiliary storage device, and a problem is a delay of the
takeover of the operation to the standby server. Further, if the
active server is forcibly stopped before the process informa
tion in the main storage device is written to the auxiliary
storage device, the process information in the main storage
device is not written in the intact status to the auxiliary storage
device. Therefore, a problem is that the cause of the occur
rence of the fault in the process can not be clarified from a
content written to the auxiliary storage device.
0017. There is a method of writing all of the storage con
tents in the main storage device to the auxiliary storage device
and clarifying the cause of the occurrence of the fault in the
process from the storage contents written to the auxiliary
storage device. In the case of detecting that none of the pro
cess exists on the memory and forcibly stopping the active
server, any information for knowing a status of the process is
not left on the memory after the forced stop. Hence, such a
problem arises that if all of the storage contents in the main
storage device are written to the auxiliary storage device after
the forced stop, the cause of the occurrence of the fault in the
process can not be clarified from the storage contents written
to the auxiliary storage device.
0018. According to the fault detecting method, the moni
toring unit is notified of the identification number of the
process, and the monitoring unit detects the fault in the pro
cess existing in the user space by receiving the identification
number of the process. The identification number of the pro
cess of which the monitoring unit is notified is an identifica
tion number of the process with a core file that starts being
generated.
0019. Accordingly, the monitoring unit receives the iden
tification number of the process in a way that links to the
generation of the core file, thereby enabling the fault in the
process to be detected at a higher speed. The process with the
core file which starts being generated is retained in the user

US 2012/0233509 A1

space, and hence the cause of the occurrence of the fault in the
process can be clarified from the core file and the process
retained in the user space.
0020. It is feasible to attain both of the fast failover from
the active server to the standby server and the clarification of
the cause of the occurrence of the fault in the process.
0021. A cluster system according to the embodiment be
described with reference to the drawings. A configuration in
the following embodiment is an exemplification, and the dis
closure is not limited to the configuration in the embodiment.
0022 FIG. 1 illustrates an architecture of the system. The
system includes an active server (which is also called an
active node) 1 defined as an information processing apparatus
and a standby server (which is also called a standby node) 2.
in which the active server 1 and the standby server 2 are
connected to each other via a network 3 such as a LAN (Local
Area Network). The active server 1 is a server which performs
predetermined operations. The active server 1 starts up an
operation application 4 for executing the predetermined
operations. The standby server 2 is a server that takes over the
operation executed so far by the active server 1 if a hardware
fault or an operation continuation disabled (operation-con
tinuation-disabled) trouble such as a fault of the application
occurs in the active server 1. The standby server 2 starts up an
operation application 5 for executing predetermined opera
tions.
0023. If the operation continuation disabled trouble occurs
in the active server 1, the active server 1 detects the operation
continuation disabled trouble. When the active server 1
detects the operation continuation disabled, the active server
1 stops the operation application 4 or is forcibly stopped by
itself. The standby server 2 starts up the operation application
5 and takes over the operations performed by the active server
1, thereby executing the predetermined operations. Thus, the
system realizes high availability in such a way that if the
operation continuation disabled trouble occurs in the active
server 1, the standby server 2 takes over the operations per
formed by the active server 1. If the operation continuation
disabled trouble occurs in the active server 1, the standby
server 2 takes over the operations, which is also called cluster
Switching.
0024 FIG. 2 illustrates a hardware configuration of the
active server 1 according to the embodiment. Note that the
standby server 2 has the same hardware configuration as the
active server 1 has. The active server 1 illustrated in FIG. 2 is
exemplified by a personal computer, a workstation, a main
frame, etc. As illustrated in FIG. 2, the active server 1 includes
a CPU (Central Processing Unit) 10 which controls the active
server 1 by executing a computer program, and a memory 11
stored with the computer program executed by the CPU 10
and data processed by the CPU 10. Further, as illustrated in
FIG. 2, the active server 1 includes an interface 12 for estab
lishing connections between the CPU 10 and a variety of
devices, a magnetic disc driving device 13, a portable medium
driving device 14, an input device 15 and a display device 16.
0025. The memory 11 is exemplified by a volatile RAM
(Random Access Memory) and a nonvolatile ROM (Read
Only Memory). The interface 12 may be either a serial inter
face such as a USB (Universal Serial Bus) or a parallel inter
face such as PCI (Peripheral Component Interconnect). Note
that the CPU 10, though connected via the interface 12 to the
respective devices, may be connected via a different type of
interface to the devices. Moreover, a plurality of interfaces
may also be bridge-connected.

Sep. 13, 2012

0026. The magnetic disc driving device 13 includes a mag
netic disc 17. The magnetic disc driving device 13 records the
data on the magnetic disc 17 and reads the data recorded on
the magnetic disc 17. The magnetic disc 17 is stored with the
program which is loaded into the memory 11. Further, the
magnetic disc 17 is stored with the data processed by the CPU
10.
0027. The portable medium driving device 14 is a driving
device for, e.g., a CD (Compact Disc), a DVD (Digital Ver
satile Disk), an HD-DVD, a Blu-ray disc and so on. Moreover,
the portable medium driving device 14 may also be an input/
output device for a card medium having a nonvolatile
memory like a flash memory, etc. The medium driven by the
portable medium driving device 14 is stored with, e.g., a
computer program installed into the magnetic disc 17, the
input data, etc. The input device 15 is exemplified such as a
keyboard, a mouse, a pointing device and a wireless remote
controller.
0028. The display device 16 displays the data processed by
the CPU 10 and the data stored in the memory 11. The display
device 16 is exemplified by a liquid crystal display device, a
plasma display panel, a CRT (Cathode Ray Tube), an elec
troluminescence panel, etc.
0029 FIG.3 is an explanatory diagram of a storage area of
the memory 11 provided in the active server 1. As illustrated
in FIG. 3, the storage area of the memory 11 is separated into
a user space and a kernel space. The CPU 10 has, as execution
modes, a kernel mode defined as a privilege mode and a user
mode defined as a non-privilege mode. The kernel space is an
address space accessible by the CPU 10 in the kernel mode, in
which an operating system for providing a basic service of the
active server 1 operates. The user space is an address space
accessible by the CPU 10 in the user mode, in which the
operation application 4 and a cluster control daemon 20 oper
ate.

0030. A kernel 21 (unillustrated in FIG. 3) is a core of the
operating system, and has a core dump collecting common
routine 22 and a core dump occurrence device driver 23.
Further, the kernel 21 provides functions such as a process
management function, a memory management function, a file
system function, a network function and a device driver func
tion.
0031. The kernel 21 detects a fault in a monitoring target
process 24. The kernel 21, when detecting the fault in the
monitoring target process 24, stops the monitoring target
process 24. Then, the kernel 21, in the case of stopping the
monitoring target process 24, starts generating a core file of
the monitoring target process 24. The generation of the core
file is referred to as a core dump. For example, if the in
execution monitoring target process 24 tries to write the data
to a memory area to which any data originally does not be
written, the kernel 21 detects the fault in the monitoring target
process 24. The core file is file-formatted data of information
for knowing a process status of the monitoring target process
24 just before being stopped. The information for knowing
the process status (which will hereinafter be termed process
status information) of the monitoring target process 24 just
before being stopped is exemplified by data on a stack of the
memory 11 and data on a register of the CPU 10 just before
the monitoring target process 24 stops.
0032. The cluster control daemon 20 is a program for,
when detecting the operation continuation disabled trouble of
the active server 1, stopping the operation application 4 or
forcibly stopping the active server 1 as the necessity may

US 2012/0233509 A1

arise. The cluster control daemon 20, in the case of forcibly
stopping the active server 1, takes over the operation executed
so far by the active server 1 to the standby server 2.
0033. The monitoring target process 24 is a process gen
erated when the operation application 4 is executed by the
CPU 10, the memory 11, etc. A monitoring process 25A is a
process started up (generated) by the cluster control daemon
20 when the monitoring target process 24 is generated. A
monitoring process 25B (corresponding to a monitoring unit)
is a process started up (generated) by the monitoring target
process 24. The monitoring target process 24, the monitoring
process 25A and the monitoring process 25B exist in the user
Space.
0034. The kernel 21 allocates a process ID defined as a
unique identification number to each of the monitoring target
process 24, the monitoring process 25A and the monitoring
process 25B. The kernel 21 generates, in the storage area of
the memory 11, a process management file (/proc) for man
aging the respective processes such as the monitoring target
process 24, the monitoring process 25A and the monitoring
process 25B. The process management file (/proc) is recorded
with Such items of process management information as the
process ID and a group ID about each process.
0035. The monitoring process 25A gives a query to the
kernel 21, thus acquiring the process ID of the self-process
(the monitoring process 25A). The monitoring process 25A
periodically checks the process management file (/proc) by a
polling-oriented technique, thereby monitoring whether the
monitoring target process 24 exists in the user space or not.
Accordingly, the monitoring target process 24 is subordinated
under the monitoring by the monitoring process 25A.
0036. The monitoring process 25A starts up the monitor
ing process 25B for starting to monitor the core dump of the
monitoring target process 24. Hence, a relationship between
the monitoring process 25A and the monitoring process 25B
is that the monitoring process 25A is a parent process, while
the monitoring process 25B is a child process.
0037. The monitoring process 25B gives a query to the
kernel 21, thus acquiring the process ID of the self-process
(the monitoring process 25B). Further, the monitoring pro
cess 25B acquires, from the monitoring process 25A, the
process ID of the monitoring target process 24 Subordinated
under the monitoring by the monitoring process 25A which
has started up the self-process (the monitoring process 25B).
0038. The monitoring process 25B requests the core dump
occurrence device driver 23 to register the process ID of the
monitoring target process 24 and the self-process ID (the
process ID of the monitoring process 25B), and waits for
notification of occurrence of the core dump from the core
dump occurrence device driver 23. Namely, the monitoring
process 25B notifies the core dump occurrence device driver
23 of the process ID of the monitoring target process 24 and
the process ID of the monitoring process 25B itself, and waits
for the occurrence of the core dump of the monitoring target
process 24 asynchronously.
0039 For example, the monitoring process 25B desig
nates the process ID of the monitoring target process 24 and
issues ioctl (I/O control) to the core dump occurrence device
driver 23. Namely, the monitoring process 25B issues a sys
tem call for instructing of a request for registering the process
ID of the monitoring target process 24. Then, the monitoring
process 25B comes to a status of waiting for the notification of
the occurrence of the core dump of the monitoring target
process 24 from the core dump occurrence device driver 23.

Sep. 13, 2012

In this case, the notification of the occurrence of the core
dump may involve using a message showing the occurrence
of the core dump of the monitoring target process 24 and may
also involve using the process ID of the monitoring target
process 24.
0040. The core dump occurrence device driver 23, when
requested by the monitoring process 25B to register the pro
cess ID of the monitoring target process 24 and the process ID
of the monitoring process 25B, registers the process ID of the
monitoring target process 24 and the process ID of the moni
toring process 25B in a core dump waiting table 40 (corre
sponding to a storage unit). The core dump waiting table 40 is
a list-structured table generated in the storage area of the
memory 11 or the magnetic disc 17, and is managed by the
core dump occurrence device driver 23.
0041. The core dump waiting table 40 is registered with
the process ID of the monitoring target process 24 and the
process ID of the monitoring process 25B in a way that
associates these process IDs with each other. To be specific,
the core dump occurrence device driver 23 registers the core
dump waiting table 40 with, as 2-tuple elements, the process
ID of the monitoring target process 24 and the process ID of
the monitoring process 25B, which are requested to be regis
tered by the monitoring process 25B. FIG. 4 illustrates an
example in the case of registering the process ID of the
monitoring target process 24 and the process ID of the moni
toring process 25B as the 2-tuple elements in the core dump
waiting table 40. Herein, an assumption is that the two moni
toring target processes 24 and the two monitoring processes
25B exist in the user space.
0042 Process ID-A and Process ID-C are registered in
a row 1 of the core dump waiting table 40 in FIG. 4. Process
ID-A) is one process ID of the two monitoring processes 25B
existing in the user space. Process ID-C is the other process
ID of the two monitoring processes 25B existing in the user
space. The monitoring process 25B assigned the Process
ID-A monitors the monitoring target process 24 assigned
Process ID-B.
0043 Process ID-B and Process ID-D are registered in
a row 2 of the core dump waiting table 40 in FIG. 4. Process
ID-B is one process ID of the two monitoring target pro
cesses 24 existing in the user space. Process ID-D is the
other process ID of the two monitoring target processes 24
existing in the user space. The monitoring process 25B
assigned the Process ID-C monitors the monitoring target
process 24 assigned Process ID-D.
0044 Process ID-A and Process ID-B are registered as
the 2-tuple elements in a column of an element 1 of the core
dump waiting table 40 in FIG. 4. Process ID-C and Process
ID-D are registered as the 2-tuple elements in the column of
an element 2 of the core dump waiting table 40 in FIG. 4.
0045 Thus, the plurality of monitoring target processes 24
and the plurality of monitor processes 25B may be registered
in the core dump waiting table 40. The core dump occurrence
device driver 23 registers, each time the registration request is
received from the monitoring process 25B, the process ID of
the monitoring target process 24 and the process ID of the
monitoring process 25B as the 2-tuple elements in the core
dump waiting table 40.
0046. The core dump collecting common routine 22 is, if
the core dump of the monitoring target process 24 occurs, a
program invoked by the kernel 21. The core dump collecting
common routine 22 invokes the core dump occurrence device
driver 23 by use of a hook function of the kernel 21.

US 2012/0233509 A1

0047. The core dump collecting common routine 22
acquires, from the kernel 21, the process ID of the monitoring
target process 24 in which the core dump occurs. The moni
toring target process 24 with the occurrence of the core dump
is also called the monitoring target process 24 in which gen
eration of a core file is started. Then, the core dump collecting
common routine 22 transfers the process ID of the monitoring
target process 24 with the occurrence of the core dump to the
core dump occurrence device driver 23.
0048. The core dump occurrence device driver 23
acquires, from the core dump collecting common routine 22,
the process ID of the monitoring target process 24 with the
occurrence of the core dump. The core dump occurrence
device driver 23 sends notification showing the occurrence of
the core dump to the monitoring process 25B waiting for the
notification of the occurrence of the core dump of the moni
toring target process 24. As described above, the notification
of the occurrence of the core dump may involve using the
message showing the occurrence of the core dump of the
monitoring target process 24 and may also involve using the
process ID of the monitoring target process 24.
0049. The monitoring process 25B receives the message
showing the occurrence of the core dump of the monitoring
target process 24 or the process ID of the monitoring target
process 24, and thus detects the occurrence of the core dump
of the monitoring target process 24.
0050. The monitoring process 25B, when detecting the
occurrence of the core dump of the monitoring target process
24, reports the fault of the monitoring target process 24 to the
cluster control daemon 20. In this case, the monitoring pro
cess 25B may report the fault of the monitoring target process
24 by sending a message showing the fault of the monitoring
target process 24 or the process ID of the monitoring target
process 24.
0051. The cluster control daemon 20 receives the report
about the fault in the monitoring target process 24, thereby
detecting the occurrence of the operation continuation dis
abled trouble in the active server 1. Then, the cluster control
daemon 20 forcibly stops the active server 1 according to the
necessity.
0052. The core dump collecting common routine 22 and
the core dump occurrence device driver 23 may previously be
registered in a source code of the kernel 21 and may also be
incorporated as a module into the kernel 21. The cluster
control daemon 20, the kernel 21, the core dump collecting
common routine 22, the core dump occurrence device driver
23, the monitor process 25A and the monitor process 25B are
executed by CPU 10, the memory 11, etc., thereby enabling
the functions described above to be realized.
0053 FIG. 5 is a diagram of function blocks of the kernel
21. As illustrated in FIG. 5, the kernel 21 includes a process
retaining unit 50, a process fault detecting unit 51, a core file
generating unit 52 and a core dump occurrence notifying unit
53.
0054 The process retaining unit 50 records process man
agement information of the monitoring target process 24, the
monitor process 25A and the monitor process 25B in a pro
cess management file (/proc). Further, the process retaining
unit 50 deletes the process management information of the
monitoring target process 24, the monitor process 25A and
the monitor process 25B from the process management file
(/proc).
0055. The process fault detecting unit 51 detects the fault
of the monitoring target process 24. For example, when the

Sep. 13, 2012

in-execution monitoring target process 24 tries to write the
data to a write-protect area of the memory 11, the process
fault detecting unit 51 detects the fault in the monitoring
target process 24.
0056. The process retaining unit 50, when the process fault
detecting unit 51 detects the fault in the monitoring target
process 24, stops the monitoring target process 24. In this
case, the process retaining unit 50 notifies the monitoring
target process 24 of a stop instruction signal and thus stops the
monitoring target process 24. Then, the process retaining unit
50 retains the monitoring target process 24 in the user space.
Namely, the process retaining unit 50 sets the monitoring
target process 24 in a stopping status without deleting the
process management information of the monitoring target
process 24 from the process management file (/proc). The
process retaining unit 50, when given an instruction to termi
nate the monitoring target process 24 from an operator etc of
the active server 1, notifies the monitoring target process 24 of
a terminating instruction signal, and thus terminates the
monitoring target process 24. Then, the process retaining unit
50 deletes the process management information of the moni
toring target process 24 from the process management file
(/proc).
0057 The core file generating unit 52 generates the core

file of the monitoring target process 24. The core dump occur
rence notifying unit 53, when the core file generating unit 52
starts to generate the core file of the monitoring target process
24, invokes the core dump collecting common routine 22.
Then, the core dump occurrence notifying unit 53 transfers
the process ID of the monitoring target process 24 with the
occurrence of the core dump to the core dump collecting
common routine 22.
0.058 Herein, a synchronous write mode and an asynchro
nous write mode will be explained. The core file generating
unit 52 generates the core file of the monitoring target process
24 in the synchronous write mode or the asynchronous write
mode.
0059. In the case of generating the core file of the moni
toring target process 24 in the synchronous write mode, the
core file generating unit 52 generates the core file in the
storage area of the magnetic disk 17 and thereafter notifies the
cluster control daemon 20 of completion of generating the
core file.
0060. When the core file generating unit 52 generates the
core file of the monitoring target process 24 in the synchro
nous write mode, the cluster control daemon 20 forcibly stops
the active server 1 after receiving completion notification of
generating the core file from the core file generating unit 52.
Namely, the cluster control daemon 20 does not forcibly stop
the active server 1 till receiving the completion notification of
generating the core file from the core file generating unit 52
even if having already received the report of the fault in the
monitoring target process 24. In the case of the synchronous
write mode, the generation of the core file of the monitoring
target process 24 is completed just when the cluster control
daemon 20 forcibly stops the active server 1, and hence the
process status information is saved in a Substantially intact
form as the core file on the magnetic disk 17.
0061. In the case of generating the core file of the moni
toring target process 24 in the asynchronous write mode, the
core file generating unit 52 temporarily saves the process
status information in a cache area of the memory 11, and
writes a content in the cache area to the magnetic disk 17 at a
fixed interval. Namely, the core file generating unit 52 gen

US 2012/0233509 A1

erates the core file of the monitoring target process 24 at the
fixed interval in the storage area of the magnetic disk 17.
0062. In the case of generating the core file of the moni
toring target process 24 in the asynchronous write mode, the
core file generating unit 52 finishes generating the core file of
the monitoring target process 24 just when the cluster control
daemon 20 forcibly stops the active server 1.
0063. If the generation of the core file of the monitoring
target process 24 is completed just when the cluster control
daemon 20 forcibly stops the active server 1, the process
status information is saved in the Substantially intact form as
the core file on the magnetic disk 17.
0064. If the generation of the core file of the monitoring
target process 24 is not completed just when the cluster con
trol daemon 20 forcibly stops the active server 1, part of the
process status information is saved as the core file on the
magnetic disk 17. In this case, the process status information
is in a status of being saved in the cache area of the memory
11.

0065. The active server 1 is forcibly stopped in a status
where the monitoring target process 24 is saved in the user
space. If the generation of the core file of the monitoring
target process 24 is completed just when forcibly stopping the
active server 1, the process status information is saved in the
Substantially intact form as the core file on the magnetic disk
17. A cause of the fault in the monitoring target process can be
clarified by analyzing the core file of the monitoring target
process 24, which is saved on the magnetic disk 17.
0066. If the generation of the core file of the monitoring
target process 24 is not completed just when forcibly stopping
the active server 1, the process status information is saved in
the cache area of the memory 11. In this case, the data on the
memory 11 is generated (saved) as the memory dump data
(file) on the magnetic disk 17 by dint of the memory dump
(memory dump function). The monitoring target process 24
is in the status of being retained in the userspace. Namely, this
is the status in which the process management information of
the monitoring target process 24 is recorded in the process
management file (/proc). The process status information is
extracted from the memory dump data in a way that refers to
the process management information of the monitoring target
process 24, which is recorded in the process management file
(/proc), thereby enabling the core file of the monitoring target
process 24 to be generated.
0067. In the embodiment, the function of generating (sav
ing) all of the data on the memory 11 as a file (dump file) in the
predetermined storage area is called the memory dump. The
predetermined storage area may be a storage area on the
magnetic disk 17 of the active server 1 and may also be a
storage area of a storage device different from the active
server 1. Further, in the embodiment, the file-formatted data
generated by performing the memory dump is termed the
memory dump data. The cause of the fault in the monitoring
target process 24 can be clarified by analyzing the core file of
the monitoring target process 24, which is extracted from the
memory dump data and thus generated. Moreover, the cause
of the fault in the monitoring target process 24 can be clarified
by analyzing the process status information contained in the
memory dump data.
0068 FIG. 6 is a flowchart illustrating a flow of the process
in which the monitor process 25A monitors the monitoring
target process 24. When the cluster control daemon 20 starts
up the monitor process 25A, the monitor process 25A
executes the process illustrated in FIG. 6.

Sep. 13, 2012

0069. To start with, the monitor process 25A starts up the
monitor process 25B (S601). Next, the monitor process 25A
determines whether the terminating instruction signal occurs
or not (S602). The terminating instruction signal is a signal
used for the cluster control daemon 20 to terminate the moni
tor process 25A. The terminating instruction signal is trans
mitted to the monitoring target process 24 from the cluster
control daemon 20.
0070 If the terminating instruction signal occurs (YES in
the process of S602), the monitor process 25A finishes moni
toring the monitoring target process 24 (S603). If the monitor
process 25B is started up in the process in S603, the monitor
process 25A finishes monitoring the monitoring target pro
cess 24 after terminating the monitor process 25B.
0071. Whereas if the terminating instruction signal does
not occur (NO in the process of S602), the monitor process
25A determines whether the monitoring target process 24
exists in the user space or not (S604). In this case, the monitor
process 25A may determine whether the monitoring target
process 24 exists in the user space or not in a way that checks
the process management file (/proc) by the polling-oriented
technique.
0072. If the monitoring target process 24 exists in the user
space (YES in the process of S604), the monitor process 25A
determines whether the monitor process 25B is started up or
not (S605). If the monitor process 25B is started up (YES in
the process of 5605), the monitor process 25A advances to the
process of S602. In this case, the monitor process 25A may
advance to the process of S602 after a predetermined period
of time has elapsed. The predetermined period of time is a
period of time that can be arbitrarily set, and several seconds
may be set as the predetermined period of time.
(0073. Whereas if the monitor process 25B is not started up
(NO in the process of S605), the monitor process 25A
advances to the process of S601. In this case, the monitor
process 25A may advance to the process of S601 after the
predetermined period of time has elapsed. The predetermined
period of time is a period of time that can be arbitrarily set,
and several seconds may be set as the predetermined period of
time.
0074. Further, if the monitoring target process 24 does not
exist in the user space (NO in the process of S604), the
monitor process 25A reports the fault in the monitoring target
process 24 to the cluster control daemon 20 (S606). For
example, the monitoring target process 24 falls into the ter
minated Status for the reason of hang-up etc of the monitoring
target process 24, thereby the monitoring target process 24
does not exist in the user space. In this case, the monitor
process 25A reports the fault in the monitoring target process
24 to the cluster control daemon 20. Then, the monitor pro
cess 25A finishes monitoring the monitoring target process
24.
(0075 FIG. 7 is a flowchart illustrating a flow of a process
in which the monitor process 25B asynchronously waits for
the occurrence of the core dump of the monitoring target
process 24. If the monitor process 25B is started up by the
monitor process 25A, the monitor process 25B executes the
process illustrated in FIG. 7.
0076. To begin with, the monitor process 25B notifies the
core dump occurrence device driver 23 of the process ID of
the monitoring target process 24 and the process ID (the
self-process ID) of the monitor process 25B (S701). Specifi
cally, the monitor process 25B issues a command for regis
tering the process ID of the monitoring target process 24 and

US 2012/0233509 A1

the process ID of the monitor process 25B to the core dump
occurrence device driver 23 in a way that uses the ioctl.
Namely, the monitor process 25B requests the core dump
occurrence device driver 23 to register the process ID of the
monitoring target process 24 and the process ID of the moni
tor process 25B in the core dump waiting table 40. The core
dump occurrence device driver 23 receiving the request reg
isters the process ID of the monitoring target process 24 and
the process ID of the monitor process 25B as the 2-tuple
elements in the core dump waiting table 40.
0077. Next, the monitor process 25B determines whether
the terminating instruction signal occurs or not (S702). The
terminating instruction signal is the signal used for the cluster
control daemon 20 to terminate the monitor process 25B. The
terminating instruction signal is transmitted to the monitor
process 25B from the cluster control daemon 20.
0078 If the terminating instruction signal occurs (YES in
the process of S702), the monitor process 25B requests the
core dump occurrence device driver 23 to delete the process
ID of the monitoring target process 24 and the process ID of
the monitor process 25B (S703). To be specific, the monitor
process 25B issues a command for deleting the process ID of
the monitoring target process 24 and the process ID of the
monitor process 25B from the core dump waiting table 40 by
use of the ioctl. The core dump occurrence device driver 23
receiving the request deletes the process ID of the monitoring
target process 24 and the process ID of the monitor process
25B from the core dump waiting table 40. The monitor pro
cess 25B, in the case of executing the process of S703, ter
minates the process of asynchronously waiting for the occur
rence of the core dump of the monitoring target process 24.
0079. Whereas if the terminating instruction signal does
not occur (NO in the process of S702), the monitor process
25B determines whether or not the notification of the occur
rence of the core dump is received from the core dump occur
rence device driver 23 (S704). For example, the monitor
process 25B determines whether or not the message indicat
ing the occurrence of the core dump of the monitoring target
process 24 or the process ID of the monitoring target process
24 is received from the core dump occurrence device driver
23.

0080. In the case of receiving the notification of the occur
rence of the core dump from the core dump occurrence device
driver 23 (YES in the process of S704), the monitor process
25B reports the fault in the monitoring target process 24 to the
cluster control daemon 20 (S705). Then, the monitor process
25B terminates the process of asynchronously waiting for the
occurrence of the core dump of the monitoring target process
24. While on the other hand, if the notification of the occur
rence of the core dump is not received from the core dump
occurrence device driver 23 (NO in the process of S704), the
monitor process 25B advances to the process of S702.
0081 FIG. 8 is a flowchart illustrating a flow of a process
(which will hereinafter be termed a core dump occurrence
notifying process) in which the core dump occurrence device
driver 23 notifies the monitor process 25B of the occurrence
of the core dump. When the core dump collecting common
routine 22 invokes the core dump occurrence device driver
23, the core dump occurrence device driver 23 executes the
process illustrated in FIG. 8.
0082. At first, the core dump occurrence device driver 23
acquires the process ID of the monitoring target process 24
with the occurrence of the core dump from the core dump
collecting common routine 22 (S801).

Sep. 13, 2012

I0083) Next, the core dump occurrence device driver 23
extracts one of the 2-tuple elements from the core dump
waiting table 40 (S802). To be specific, the core dump occur
rence device driver 23 extracts, from the core dump waiting
table 40, the process ID of the monitoring target process 24
and the process ID of the monitor process 25B registered as
the 2-tuple elements. In this case, the core dump occurrence
device driver 23 may extract the 2-tuple elements registered
first in the core dump waiting table 40.
I0084. Next, the core dump occurrence device driver 23
determines whether or not the process ID of the monitoring
target process 24 which is acquired in the process of S801 is
coincident with the process ID of the monitoring target pro
cess 24 which is contained in the 2-tuple elements extracted in
the process of S802 (S803).
I0085. If the process ID of the monitoring target process 24
which is acquired in the process of S801 is coincident with the
process ID of the monitoring target process 24 which is con
tained in the 2-tuple elements extracted in the process of S802
(YES in the process of S803), the core dump occurrence
device driver 23 advances to the process of S804.
I0086. The core dump occurrence device driver 23 notifies
the monitor process 25B of the occurrence of the core dump
of the monitoring target process 24 (S804). Then, the core
dump occurrence device driver 23 deletes the 2-tuple ele
ments showing the coincidence of the process ID of the moni
toring target process 24 from the core dump waiting table 40
(S805).
I0087. Whereas if the process ID of the monitoring target
process 24 which is acquired in the process of S801 is not
coincident with the process ID of the monitoring target pro
cess 24 which is contained in the 2-tuple elements extracted in
the process of S802 (No in the process of S803), the core
dump occurrence device driver 23 advances to the process of
S806.

I0088 Next, the core dump occurrence device driver 23
determines whether or not not-yet-checked 2-tuple elements
exist in the core dump waiting table 40 (S806). If the not-yet
checked 2-tuple elements exist in the core dump waiting table
40 (YES in the process of S806), the core dump occurrence
device driver 23 advances to the process of S802. In this case,
in the process of S802, the core dump occurrence device
driver 23 extracts one of the not-yet-checked 2-tuple elements
from the core dump waiting table 40.
I0089. Whereas if none of the not-yet-checked 2-tuple ele
ments exist in the core dump waiting table 40 (NO in the
process of S806), the core dump occurrence device driver 23
terminates the core dump occurrence notifying process.
0090 Thus, the fault in the monitoring target process 24 is
reported to the cluster control daemon 20 as triggered by Such
an event that the core file generating unit 52 starts generating
the core file of the monitoring target process 24. Then, the
cluster control daemon 20, when receiving the report of the
fault in the monitoring target process 24 from the monitor
process 25B, forcibly stops the active server 1 as the necessity
may arise.
0091. The fault in the monitoring target process 24 is
detected based on the polling-oriented monitoring technique
at the predetermined intervals (e.g., the intervals of several
seconds). Accordingly, there might be a case of requiring
several seconds for detecting the fault in the monitoring target
process 24 since the fault has occurred in the monitoring
target process 24. Hence, there might be a case in which the
polling-oriented monitoring technique entails several sec

US 2012/0233509 A1

onds till the fault in the monitoring target process 24 is
reported to the cluster control daemon 20.
0092. According to the embodiment, the fault in the moni
toring target process 24 due to the occurrence of the core
dump is reported immediately when the core dump of the
monitoring target process 24 occurs. Namely, the report of the
fault in the monitoring target process 24 to the cluster control
daemon 20 is linked to the occurrence of the core dump of the
monitoring target process 24.
0093. Accordingly, the fault in the monitoring target pro
cess 24 can be detected faster than detecting the fault in the
monitoring target process 24 by the polling-oriented moni
toring technique.
0094) <Computer-Readable Storage Medium->
0095. A program for making a computer realize any one of
the functions described above can be recorded on a computer
readable storage medium. Then, the computer is made to read
and execute the program on the computer-readable storage
medium, whereby the function thereof can be provided.
Herein, the computer-readable storage medium connotes a
recording medium capable of storing information Such as
data and programs electrically, magnetically, optically,
mechanically or by chemical action, which can be read from
the computer. Among these computer-readable storage medi
ums, for example, a flexible disc, a magneto-optic disc, a
CD-ROM, a CD-R/W, a DVD, a DAT, an 8 mm tape, a
memory card, etc are given as those demountable from the
computer. Further, a hard disc, a ROM, etc are given as the
computer-readable storage medium fixed within the com
puter.
0.096 All examples and conditional language recited
herein are intended for pedagogical purposes to aid the reader
in understanding the invention and the concepts contributed
by the inventor to furthering the art, and are to be construed as
being without limitation to Such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the Superiority and
inferiority of the invention. Although the embodiment of the
present inventions have been described in detail, it should be
understood that the various changes, Substitutions, and alter
ations could be made hereto without departing from the spirit
and scope of the invention.
What is claimed is:
1. A fault detecting method for use in an information pro

cessing apparatus including a storage area separated into a
user space and a kernel space, a generating unit working in the
kernel space and a monitoring unit working in the user space;
the fault detecting method comprising:

generating a core file of a process working in the user space
by the generating unit;

retaining the process with the core file which starts being
generated in the user space; and

notifying the monitoring unit of an identification number
of the process with the core file which starts being gen
erated by way of a device driver working in the kernel
Space;

wherein the monitoring unit detects a fault in the process
with the core file which starts being generated by receiv
ing the identification number of the process with the core
file which starts being generated after starting a genera
tion of the core file.

2. The fault detecting method according to claim 1,
wherein the retaining includes retaining the process with the
core file which starts being generated in the user space till the
generation of the core file is completed.

Sep. 13, 2012

3. The fault detecting method according to claim 1,
wherein the information processing apparatus further
eXecutes:

registering an identification number of the process in a
storage unit by accepting a request for registering the
identification number of the process from the monitor
ing unit; and

acquiring the identification number of the process with the
core file which starts being generated,

wherein the notifying includes notifying, if the identifica
tion number of the process with the core file which starts
being generated is registered in the storage unit, the
monitoring unit of the identification number of the pro
cess with the core file which starts being generated.

4. A non-transitory computer-readable storage medium
storing a fault detecting program for making an information
processing apparatus including a storage area separated into a
user space and a kernel space, a generating unit working in the
kernel space and a monitoring unit working in the user space,
the fault detecting program causing a computer to execute a
procedure, the procedure comprising:

generating a core file of a process working in the userspace
by the generating unit;

retaining the process with the core file which starts being
generated in the user space; and

notifying the monitoring unit of an identification number
of the process with the core file which starts being gen
erated by way of a device driver working in the kernel
Space;

wherein the monitoring unit detects a fault in the process
with the core file which starts being generated by receiv
ing the identification number of the process with the core
file which starts being generated after starting a genera
tion of the core file.

5. The non-transitory computer-readable storage medium
that stored the fault detecting program according to claim 4.
wherein the retaining includes retaining the process with the
core file which starts being generated in the user space till the
generation of the core file is completed.

6. An information processing apparatus including a storage
area separated into a user space and a kernel space, the infor
mation processing apparatus comprising:

a generating unit configured to generate a core file of a
process working in the user space;

a retaining unit configured to retain the process with the
core file which starts being generated in the user space;
and

a notifying unit configured to notify a monitoring unit
working in the user space of an identification number of
the process with the core file which starts being gener
ated by way of a device driver working in the kernel
Space,

wherein the monitoring unit detects a fault in the process
with the core file which starts being generated by receiv
ing the identification number of the process with the core
file which starts being generated after the generating unit
working in the kernel space started generating the core
file.

7. The information processing apparatus according to
claim 6, wherein the retaining unit retains the process with the
core file which starts being generated in the user space till the
generation of the core file is completed.

c c c c c

