Sigma–delta analog–to–digital converter topology with an error signal branch including a subtractor (10), a loop filter (4), and a quantizer (6), and a feedback branch including a digital–to–analog converter (8). The gain error caused by a return–to–zero switch in the feedback branch is cancelled by moving the return–to–zero switch (20) to the signal error branch.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td>TR</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C I</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sigma-delta analog-to-digital converter.

The invention relates to a sigma-delta analog-to-digital converter for converting an analog input signal into a digital output signal, comprising in a signal processing loop:

- means for providing a difference signal in response to the analog input signal and an analog feedback signal;
- means for filtering the difference signal and for providing a filtered difference signal;
- means for sampling and quantizing the filtered difference signal and having an output for providing the digital output signal;
- a digital-to-analog converter for converting the digital output signal to the analog feedback signal; and
- a return-to-zero switch included in the signal processing loop.

Such a sigma-delta analog-to-digital converter is known, for example, from European Patent Application No. 0 495 328. This known sigma-delta analog-to-digital converter has a return-to-zero switch in its feedback branch to reduce the non-linearity caused by the digital-to-analog converter in the feedback branch. The rising and falling edges of the output signal generated by the digital-to-analog converter have non-zero rise and fall times. In the case that the input code of the digital-to-analog converter does not change, the output signal of the digital-to-analog converter remains constant during the clock period. In the case that the input code does change, the output signal of the digital-to-analog converter changes from one level to another level. Due to the non-zero rise or fall times the net signal content in that clock period is different from that in a clock period with no input code change. The net signal content per clock period thus depends on the code, which is a non-linear effect causing inter-symbol interference and thus distortion. The return-to-zero switch in the feedback branch reduces this effect by excluding the output signal portions of the digital-to-analog converter during the transitions from the one level to the other level. However, this return-to-zero switching also changes the frequency spectrum of the analog feedback signal, which results in a low frequency gain change and thus a gain error.

It is an object of the invention to provide a sigma-delta analog-to-digital converter with an improved gain accuracy. To this end, the sigma-delta analog-to-digital
converter as defined in the opening paragraph is characterized in that the return-to-zero switch
is arranged between an output of the means for providing the difference signal and an input
of the means for filtering the difference signal.

By arranging the return-to-zero switch before the means for filtering the open-
loop gain is reduced by the return-to-zero action, but the closed-loop gain is hardly affected, as
long as the remaining open-loop gain is sufficiently large, which is the case in practice. In this
way the gain accuracy is restored.

In a preferred embodiment the analog input signal and the analog feedback
signal are converted to currents by means of voltage-to-current converters. In this way the
difference signal is obtained by a simply interconnecting of the outputs of the voltage-to-
current converters. The digital-to-analog converter may have differential outputs and the
voltage-to-current converters may have differential inputs and outputs to improve the
performance of the sigma-delta analog-to-digital converter.

These and other aspects, features and advantages of the invention will be
apparent from the following description of exemplary embodiments of the invention with
reference to the accompanying drawings, in which:

Figure 1A is a circuit diagram of a conventional discrete-time sigma-delta
analog-to-digital converter with a switched-capacitor digital-to-analog converter in the
feedback loop;

Figure 1B is a circuit diagram of a conventional sigma-delta analog-to-digital
converter with a continuous-time loop filter and a switched-current digital-to-analog converter
in the feedback loop;

Figure 2 is a circuit diagram of an implementation of the sigma-delta analog-to-
digital converter of Figure 1B using differential input/output transconductors;

Figure 3 shows signals illustrating the operation of the sigma-delta analog-to-
digital converter of Figure 2;

Figure 4 is a circuit diagram of the sigma-delta analog-to-digital converter of
Figure 3 with a return-to-zero switch in the feedback branch;

Figure 5 shows signals illustrating the operation of the sigma-delta analog-to-
digital converter of Figure 4;

Figure 6 is a circuit diagram of an embodiment of a sigma-delta analog-to-
digital converter according to the invention, of the type shown in Figure 2 with a return-to-
zero switch before the loop filter; and
Figure 7 is a circuit diagram of a general embodiment of a sigma-delta analog-to-digital converter according to the invention with a return-to-zero switch before the loop filter.

Like reference symbols are employed in the drawings and in the description of the embodiments to represent the same or similar items.

Sigma-delta analog-to-digital converters can roughly be divided in two classes. The first class, shown in Figure 1A, has a sampler 2 at the input, and is usually a switched-capacitor circuit. Its modulator works in the discrete-time domain with a discrete-time loop filter 4 which feeds a quantizer 6. The data output signal D of the quantizer 6 is fed back via a switched-capacitor digital-to-analog converter (DAC) 8 and subtracted from the sampled analog input signal V_{in} in a subtractor 10. The quantizer 6 and the digital-to-analog converter 8 may have 1-bit or multi-bit resolution.

The second class, shown in Figure 1B, has a continuous-time loop filter 4 and a switched-current digital-to-analog converter 8 in the feedback loop. The sampler 2 has been moved to the output of the continuous-time loop filter 4. In a switched-current digital-to-analog converter the output current is more or less constant during the clock period. In a switched-capacitor digital-to-analog converter the output current is not constant during the clock period. It usually is high at the beginning of the clock period and negligibly low at the end of the clock period. The total charge delivered during the clock period may be equal to that of a switched-current digital-to-analog converter. In this second class the quantizer 6 and the digital-to-analog converter 8 may also have 1-bit or multi-bit resolution.

A sigma-delta analog-to-digital converter from the second class of Figure 1B may be implemented using differential input and output transconductors as shown in Figure 2. The analog input voltage V_{in} is converted into a differential current i_{in} by means of a first voltage-to-current converter 12 and the output signal V_{DAC} from the digital-to-analog converter 8 is converted into a differential current i_{DAC} by means of a second voltage-to-current converter 14. The output currents are added in nodes 16 and 18 and fed to the continuous-time loop filter 4. The digital-to-analog converter 8 is, by way of example, a 1-bit converter which supplies an output voltage $V_{\text{DAC}}=c \cdot V_{\text{ref}}$, in which c is the output code (+1 or −1) of the data signal D and V_{ref} is a reference voltage, usually a voltage proportional to a bandgap reference voltage. In a multi-bit system the output code c can take more than two values. For example, in a 3-bit system the output code c is one of the values -1, -5/7, -3/7, -1/7, +1/7, +3/7, +5/7, +1. The differential output current i_{DAC} is equal to $g_m V_{\text{DAC}} = g_m c \cdot V_{\text{ref}}$ in
which g_m is the transconductance of the second voltage-to-current converter 14. The clock period $T = 1/f_s$, in which f_s is the sampling frequency. The net charge q thus flowing per clock period is: $q = I \cdot T = c \cdot g_m V_{ref} T$, in which I is the value of the output current I_{DAC}.

The problem to addressed is the non-linearity of the feedback digital-to-analog converter 8. The rising and falling edges have non-zero rise and fall times. When the input code D does not change, the differential output current i_{DAC} remains constant, as shown in Figure 3. After one clock period a net charge q equal to $g_m V_{ref} T$ has flown through the nodes 16 and 18, either in a positive or in a negative direction. When the input code D does change, for example from $+1$ to -1, the differential output current i_{DAC} switches from $g_m V_{ref}$ to $-g_m V_{ref}$.

Due to the non-zero rise time or fall time the net charge transported in one clock period differs from $g_m V_{ref} T$. The net charge per clock period thus depends on the code, which is a non-linear effect causing inter-symbol interference (ISI) and thus distortion.

A known solution to circumvent this non-linear effect is to implement a return-to-zero scheme, as shown in Figure 4. A return-to-zero switch 20 switches the output current i_{DAC} of the second voltage-to-current converter 14 to zero for part of the clock period T, as shown in Figure 5. This return-to-zero switching in the feedback branch takes place synchronously with the sampling frequency. As a result, the frequency spectrum of the feedback current i_{DAC} changes, especially for high frequencies, but the low-frequency content of the spectrum only corresponds to a gain change. No new low frequencies are introduced, so aliasing is no problem. The scheme thus avoids ISI at the cost of a change in low-frequency gain. Thus a gain accuracy problem is introduced.

Figure 6 is a circuit diagram of an embodiment of a sigma-delta analog-to-digital converter according to the invention. The return-to-zero switch 20 has been moved from the output of the second voltage-to-current converter 14 to the input of the loop filter 4. This topology precludes the gain error in that the return-to-zero switch 20 is moved from the feedback branch to the error signal branch. Thus, the open-loop gain is reduced due to the return-to-zero action, but the closed-loop gain is hardly affected, as long as the remaining open-loop gain is sufficiently large, as is the case in practice. The new topology therefore restores the gain accuracy.

The performance of the sigma-delta analog-to-digital converter according to the invention may be compared to the switched-capacitor sigma-delta analog-to-digital converter of Fig. 1B, which may also show good gain accuracy if well designed. Its performance in respect of power dissipation is better. This is due to the higher power dissipation in the operational transconductance amplifiers in the loop filter of the switched-capacitor sigma-delta
analog-to-digital converter, which must be able to settle to sufficient accuracy within a clock period.

The embodiments of the present invention described herein are intended to be taken in an illustrative and not a limiting sense. Various modifications may be made to these embodiments by persons skilled in the art without departing from the scope of the present invention as defined in the appended Claims. Figure 7 shows a circuit diagram of a general embodiment of a sigma-delta analog-to-digital converter according to the invention with a return-to-zero switch 20 before the loop filter 4. The return-to-zero switch 20 is arranged between an output 22 of the subtractor 10 and an input 24 of the loop filter 4. The quantizer 6 has an output 26 for providing the data signal D. The quantizer 6 may be a 1-bit or a multi-bit quantizer, and similarly the digital-to-analog converter 8 may be a 1-bit or multi-bit digital-to-analog converter. The subtractor 10 may operate on single-ended or differential analog input and feedback signals, and the signals themselves may be voltages or currents.
1. A sigma-delta analog-to-digital converter for converting an analog input signal into a digital output signal, comprising in a signal processing loop:
 - means (10) for providing a difference signal in response to the analog input signal and an analog feedback signal;
 - means (4) for filtering the difference signal and for providing a filtered difference signal;
 - means (6) for sampling and quantizing the filtered difference signal and having an output (26) for providing the digital output signal;
 - a digital-to-analog converter (8) for converting the digital output signal to the analog feedback signal; and
 - a return-to-zero switch (20) included in the signal processing loop, characterized in that the return-to-zero switch (20) is arranged between an output (22) of the means (10) for providing the difference signal and an input (24) of the means (4) for filtering the difference signal.

2. A sigma-delta analog-to-digital converter as claimed in claim 1, wherein the means (10) for providing a difference signal in response to the analog input signal and an analog feedback signal comprises a first voltage-to-current converter (12) for converting the analog input signal to a first output current and a second voltage-to-current converter (14) for converting the analog feedback signal to a second output current.

3. A sigma-delta analog-to-digital converter as claimed in claim 2, wherein the first (12) and second (14) voltage-to-current converters have differential inputs and outputs and wherein the digital-to-analog converter (8) has differential outputs for feeding the differential inputs of the second voltage-to-current converter (14).
FIG. 3

FIG. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H03M3/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H03M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 495 328 A (IBM) 22 July 1992 (1992-07-22) cited in the application column 2, line 54 -column 3, line 5; figures 2,3</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document relating to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search
14 September 2000

Date of mailing of the international search report
21/09/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer
Beindorff, W
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69120924 T</td>
<td>30-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2038104 C</td>
<td>28-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5130051 A</td>
<td>25-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7079313 B</td>
<td>23-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5196853 A</td>
<td>23-03-1993</td>
</tr>
</tbody>
</table>