

(21) (A1) **2,306,995**
(86) 1998/10/16
(87) 1999/04/29

(72) SIMPSON, LANCE, US
(72) KIYATKIN, NIKITA, US
(72) MAKSYMOWYCH, ANDREW, US
(71) THOMAS JEFFERSON UNIVERSITY, US

(51) Int.Cl.⁶ A61K 39/08

(30) 1997/10/20 (08/954,302) US

(54) **COMPOSITIONS ET PROCEDES D'APPORT SYSTEMIQUE DE
VACCINS ET D'AGENTS THERAPEUTIQUES PAR VOIE
ORALE**

(54) **COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY
OF ORAL VACCINES AND THERAPEUTIC AGENTS**

(57) Cette invention se rapporte à des compositions et à des procédés d'administration par voie orale d'un antigène ou d'un agent thérapeutique dans la circulation générale, au moyen d'une toxine de botulinum modifiée qui est capable de passer de l'intestin dans la circulation générale, et qui est modifiée pour être non toxique.

(57) Compositions and methods of oral delivery of an antigen or therapeutic agent to the general circulation using a modified botulinum toxin which is capable of translocating from the gut to the general circulation but which is altered to be nontoxic are provided.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 39/08		A1	(11) International Publication Number: WO 99/20306 (43) International Publication Date: 29 April 1999 (29.04.99)
(21) International Application Number: PCT/US98/21897 (22) International Filing Date: 16 October 1998 (16.10.98)		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 08/954,302 20 October 1997 (20.10.97) US			
(71) Applicant (for all designated States except US): THOMAS JEFFERSON UNIVERSITY [US/US]; 11th and Walnut Streets, Philadelphia, PA 19107 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): SIMPSON, Lance [US/US]; 122 Foxwood Drive, Blason Woods, Moorestown, NJ 08057 (US). KIYATKIN, Nikita [RU/US]; 123 Eaton Way, Cherry Hill, NJ 08003 (US). MAKSYMOWYCH, Andrew [US/US]; 1210 Rebel Hill Road, Gulph Mills, PA 19428 (US).			
(74) Agent: MONACO, Daniel, A.; Seidel, Gonda, Lavorgna & Monaco, P.C., Suite 1800, Two Penn Center Plaza, Philadelphia, PA 19102 (US).			

(54) Title: COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF ORAL VACCINES AND THERAPEUTIC AGENTS

(57) Abstract

Compositions and methods of oral delivery of an antigen or therapeutic agent to the general circulation using a modified botulinum toxin which is capable of translocating from the gut to the general circulation but which is altered to be nontoxic are provided.

- 1 -

**COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF
ORAL VACCINES AND THERAPEUTIC AGENTS**

Introduction

This invention was made in the course of research
5 sponsored by the National Institutes of Health. The U.S. Government may have certain rights in this invention.

Field of the Invention

The present invention relates to compositions and methods for systemic delivery of orally administered vaccines
10 and therapeutic agents via a modified botulinum toxin, wherein said toxin maintains its ability to translocate across the gut wall but has been altered to be non-toxic.

Background of the Invention

Clostridial neurotoxins are the most potent protein
15 toxins known. The neurotoxin produced from *Clostridium tetani* (tetanus toxin) is encountered by humans as a result of open wounds. However, tetanus poisoning at least in industrial countries is no longer a major public health problem due to the availability and widespread use of a safe, effective and
20 inexpensive vaccine. This vaccine is basically a formalin-inactivated culture supernatant from *C. tetani* grown in fermentors.

Botulinum neurotoxin (BoNT), which is produced by the organisms *Clostridium botulinum*, *Clostridium butyricum* and
25 *Clostridium baratii*, is the potent etiologic agent associated with the disease botulism (Simpson, L. *Annu. Rev. Pharmacol. Toxicol.* 1986 26:427-453). Humans are usually exposed to this neurotoxin through food poisoning, although there are rare incidents of wound botulism. A similar vaccine to the tetanus

- 2 -

vaccine has been developed to provide protection from botulinum toxin poisoning. However, since there are seven different serotypes of botulinum toxin, complete protection with this inactivated toxin can be afforded only by making 5 seven distinct vaccines and combining them for administration. Presently, only five of the seven serotypes are represented in the botulinum toxin vaccine. Further, some of the serotypes are composed of strains that do not produce high levels of toxin in culture. Thus, growth, purification and 10 inactivation of the toxins for vaccine purposes is time consuming and expensive, owing to the high hazards associated with handling fully active toxin (Clayton et al. *Infection and Immunity* 1995 63(7):2738-2742). At this time this vaccine is only available through the Center of Disease Control for 15 primarily experimental use.

Typically, botulism results from ingestion of food that is tainted with the toxin, or by the ingestion of food contaminated with organisms that can manufacture the toxin in the gut. Regardless of origin, botulinum toxin is synthesized 20 as a relatively nontoxic single chain polypeptide with a molecular weight of approximately 150 kDa. To become fully toxic, it must undergo posttranslational processing, during which the molecule is cleaved by a protease to yield a dichain structure in which a heavy chain (approximately 100,000 25 daltons) is linked by a disulfide bond to a light chain (approximately 50,000 daltons). The dichain molecule is the holotoxin that accounts for biological activity. BoNT translocates from the gut into the general circulation (lymph and blood) wherein it is then distributed to cholinergic nerve 30 endings which are the target sites of toxin action. The toxin enters these nerves, where it acts as a zinc-dependent endoprotease to cleave polypeptides that are essential for exocytosis (Montecucco, C. and Schiavo, G. *Mol. Microbiol.* 1994 13:1-8). Cleavage of these polypeptides leads to 35 blockade of transmitter release and paralysis.

- 3 -

The heavy chain of the toxin is believed to be essential for binding and translocation of the toxin from the outside to the inside of the cholinergic nerve endings, while the light chain possesses the zinc-dependent endoprotease activity 5 that accounts for the ability of the toxin to poison cholinergic nerve endings (Neimann et al. *Behring Inst. Mitt.* 1991 89:153-162). Accordingly, vaccines against botulism comprising a nontoxic 50 kDa carboxyterminal fragment of *Clostridium botulinum* have been described. LaPenotiere et al. 10 *Toxicon* 1995 33(10):1383-6 and Clayton et al. *Infection and Immunity* 1995 63(7):2738-2742. Further, it has been suggested that this highly selective neurotoxin and tetanus toxin may be converted into nontoxic therapeutic tools that can be applied in delivery of drugs, hormones, enzymes or antiviral 15 substances to the central nervous system.

Summary of the Invention

An object of the present invention is to provide a modified botulinum toxin which maintains its ability to 20 translocate from the gut into the general circulation but which is nontoxic. The modified botulinum toxin can be used as an oral vaccine for antigenic peptides including botulinum toxin and for the oral delivery of other therapeutic agents to the general circulation.

25 Brief Description of the Drawings

Figure 1 is diagram of the native botulinum toxin. This figure illustrates the light chain with the zinc binding motif linked by a disulfide bond to the heavy chain of the native toxin.

30 Figure 2 is a diagram illustrating an example of a modified botulinum toxin of the present invention. This figure illustrates the light chain with a modified zinc

- 4 -

binding motif linked to the intact heavy chain of botulinum toxin.

Detailed Description of the Invention

One of the major challenges of modern medicine is the 5 development of drugs that can be administered by the oral route. The development of oral peptide vaccines that evoke systemic immunity has proven to be especially problematic. Difficulties associated with the development of oral peptide vaccines include: degradation upon exposure to conditions of 10 low pH and proteolytic enzymes found in the human gut; the antigenic domain of the agent which produces the illness being too large to allow for significant non-specific diffusion from the lumen of the gut to the general circulation; and an inability to design peptide vaccines that will bind 15 exploitatively to receptors in the gut and undergo active transport to the general circulation. Despite these difficulties, considerable effort is being invested in the search for oral vaccines. For example, the concept of using engineered food such as a potato or a banana as a vector for 20 widescale vaccination has recently been proposed. However, engineering the antigenic peptide into a food which is then ingested does not overcome these difficulties. Accordingly, there is a need for drug delivery vehicles which will reliably and reproducibly translocate an antigenic peptide or other 25 therapeutic agent from the gut to the general circulation.

The present invention provides a modified botulinum toxin which can be used as an oral delivery vehicle for antigenic peptides including, but not limited to, botulinum toxin and other therapeutic agents to the general circulation. 30 It has now been found that botulinum toxin translocates from the gut to the general circulation by binding to serospecific receptors on the mucosal side of polarized gut cells grown in a monolayer. Bound toxin is actively transported across the cells and delivered intact and unmodified on the serosal side

- 5 -

of the monolayers. It has been suggested that auxiliary proteins such as hemagglutinin, which is a component of the non-covalent complex of proteins including the botulinum toxin which is released by *Clostridium*, may mediate binding and 5 transport of the toxin across the gut wall. However, experiments performed with a recombinant form of the holotoxin now demonstrate that the botulinum toxin itself possesses the binding domain that recognizes receptors on the surface of gut cells. Further, it has now been demonstrated that 10 modifications can be made to the light chain of the toxin to render it nontoxic without altering the capability of the protein to translocate from the gut to the general circulation. Accordingly, for the purposes of the present invention, by "modified botulinum toxin" is meant a botulinum 15 toxin which maintains its capability of translocating from the gut to the general circulation but which is nontoxic. Alterations which will render the botulinum toxin nontoxic include mutations to the amino acid sequence of the light chain and deletion of the light chain or portions thereof. 20 In a preferred embodiment, mutations are made to the zinc binding motif or the substrate binding motif of the light chain. For the purposes of this invention, by "nontoxic" it is meant that exposure of the cholinergic nerve endings to the modified botulinum toxin does not result in blockade of 25 transmitter release in the nerve endings and paralysis. The effects of alterations rendering the botulinum toxin nontoxic on the ability of the toxin to translocate from the gut to the general circulation can be routinely performed in accordance with the teachings provided herein so that one of skill may 30 identify modified botulinum toxins of the present invention. Included within this definition of modified botulinum toxins are botulinum toxins which further comprise a selected antigen for a protein other than botulinum toxin or a therapeutic agent.

- 6 -

For example, compositions were prepared comprising a botulinum neurotoxin in which the zinc binding motif of the light chain of the holotoxin was inactivated. The modified toxin is nontoxic because the holotoxin does not retain the 5 ability to cause neuromuscular blockade, but the modification to the light chain does not adversely affect the ability of the remainder of the toxin molecule to escape the lumen of the gut into the general circulation. In this preferred embodiment at least three of the amino acids comprising the 10 zinc binding motif of the light chain were modified. Specifically, the amino acids His (at position 229), Glu (at position 230), and His (at position 233) of the native sequence were substituted with amino acids Gly, Thr and Asn, respectively, resulting in SEQ ID NO: 1. The nucleic acid 15 sequence encoding this modified botulinum toxin is depicted as SEQ ID NO: 2. These amino acid substitutions eliminated the ability of the holotoxin to bind catalytic zinc or other divalent cations.

Experiments have also been performed demonstrating that 20 unnicked or single chain botulinum toxin also binds and is transported across the gut wall. Accordingly, modified botulinum toxins of the present invention also include compositions wherein the nicking site has been eliminated.

The biological activity of a modified botulinum toxin 25 of the present invention was determined via an *in vivo* toxicity test, *in vitro* activity on the mouse phrenic nerve-hemidiaphragm preparation, and enzymatic activity in crude synaptosome preparations. For these experiments, the modified botulinum toxin, referred to herein as modified recombinant 30 or modified rBoNT/C, was generated from botulinum toxin serotype C using site-directed mutagenesis to inactivate the zinc binding motif from the light chain of the holotoxin that is essential for endoprotease activity. However, other methods of peptide synthesis including, but not limited to, 35 biochemical techniques, such as enzymatically cutting a

- 7 -

peptide and cross linking the resulting fragments which are performed routinely by those of skill in the art can also be used. Further, given the structural and functional similarities of the botulism serotypes, one of skill could 5 routinely prepare modified botulinum toxins from serotypes other than botulinum serotype C. For example, all serotypes of botulinum toxins are synthesized as relatively inactive precursors with molecular weights of approximately 150,000. In each case, the precursors must be "nicked" by a protease 10 to generate a dichain molecule having a heavy chain (100,000 kDa) linked by a disulfide bond to a light chain (50,000 kDa). Every serotype of botulinum toxin acts preferentially on cholinergic nerve endings to block transmitter release, with the heavy chain acting principally as a tissue-targeting 15 domain to direct the toxin to cholinergic nerve endings, and the light chain acting inside the nerve ending to block transmitter release. It is the light chain of every serotype that acts as a zinc-dependent metalloendoprotease to cleave one or more members of a family of polypeptides that is 20 essential for transmitter release. In every serotype, there is a zinc binding motif, His-Glu-X-X-His (SEQ ID NO: 3) that is essential for enzymatic activity. Modification of the binding motif invariably causes loss of enzymatic activity. Further, alignment of the nucleic acid and amino acid 25 sequences for a portion of each serotype encompassing the region of the zinc binding motif demonstrates a high degree of sequence identity in the regions adjacent to and comprising the zinc binding motif. Thus, examples using botulinum serotype C are representative of the entire class.

30 *In vivo* toxicity testing of modified rBoNT/C holotoxin demonstrated that the modified botulinum toxin with mutations in the zinc binding motif produced no acute toxicity in mice during a 16 week monitoring period following administration, even at high doses (10 µg per animal, i.p.). No apparent 35 neurotoxicity or other obvious harmful effects were observed

- 8 -

in any of the animals. In contrast, mice injected with 100 ng i.p. native BoNT/C died within 2 to 2.5 hours of injection.

The *in vitro* toxicity of modified BoNT/C holotoxin was also compared with that of native BoNT/C in mouse phrenic 5 nerve-hemidiaphragm preparations. It was found that the addition of the modified botulinum toxin to phrenic nerve-hemidiaphragm preparations did not produce neuromuscular blockade (1×10^{-10} M; n=4). By contrast, addition of native BoNT/C (1×10^{-12} M; n=8) invariably produced paralysis of 10 transmission (mean \pm S.E.M. = 152 ± 17 min).

The ability of this modified botulinum toxin to evoke an immune response was also tested after oral (p.o.) administration and subcutaneous (s.c.) injection. As determined by immunoblot analysis, both p.o. and s.c. 15 administration of modified rBoNT/C holotoxin evoked systemic antibody production. Accordingly, the modified botulinum toxin of the present invention maintained its ability survive transit through the gut and to undergo active translocation out of the gut. This is further evidenced by the finding that 20 s.c. administration of a non-homogeneous preparation of the modified botulinum toxin, which contained small amounts of unrelated proteins, is able to evoke an immune response against these unrelated proteins, while p.o. administration evoked antibody only against the modified botulinum toxin.

25 The protective effect of the antibodies elicited by p.o. and s.c. administration of the modified botulinum toxin was then demonstrated in both serum neutralization and *in vivo* toxicity tests. Regardless of the route of administration, serum from animals immunized with modified botulinum toxin 30 inactivated a large dose ($\sim 10,000$ LD₅₀) of native BoNT/C. Similarly, in *in vivo* toxicity tests, immunization with the modified botulinum toxin by either the p.o. or s.c. route produced a dramatic reduction in the potency of a subsequent injection of native toxin. Animals given the modified 35 botulinum toxin by the oral route of administration had

- 9 -

detectable antibodies in serum for at least three months. Further, animals that received the modified botulinum toxin either p.o. or s.c. were protected against native BoNT/C challenge three months after the third booster.

5 Accordingly, results from these experiments demonstrate that a modified botulinum toxin can be constructed in accordance with the teachings provided herein that is nontoxic but which retains the ability to translocate from the gut to the general circulation and to evoke protective antibodies. 10 Further, compositions comprising a modified botulinum toxin of the present invention are clearly effective as oral vaccines against botulism in animals.

In addition, because the modified botulinum toxins of the present invention retain their ability to translocate from 15 the gut and to be delivered intact to the general circulation, these modified botulinum toxins can be used as delivery vehicles for oral administration of antigens to proteins other than botulinum toxin and therapeutic agents to the general circulation. There are various ways in which the modified 20 botulinum toxin could be used as a carrier for oral vaccines. For example, because the inactivation of the zinc binding motif of the light chain does not adversely affect the toxin's ability to translocate out of the gut, the zinc binding motif of the native botulinum toxin can be replaced with a selected 25 antigen for a different protein, i.e. a protein other than botulism, to produce an oral vaccine against this different protein. Alternatively, well known techniques of protein chemistry and molecular biology can be used to attach the selected antigen or a portion thereof to a modified botulinum 30 toxin. The resulting modified botulinum toxin would not only be nontoxic, but also retain its ability to translocate from the gut to the general circulation so that the selected antigen, when administered orally, would reach the general 35 circulation to evoke a systemic immune response against the protein. Examples of vaccines which could be administered

- 10 -

orally with the modified botulinum toxin include, but are not limited to, vaccines for *Bacille Calmette-Guerin*, cholera, diphtheria, hepatitis B, measles, meningitis, mumps, pertussis, plague, polio, rabies, rubella, tetanus, typhoid, 5 and yellow fever. The oral vaccine can be administered individually or in combination, such as for DTP (diphtheria, tetanus, pertussis). The ability to deliver an oral vaccine is especially important for areas in which medical personnel are not readily available. Moreover, an oral vaccine of the 10 present invention would represent an important economic advantage in addition to diminishing the need for skilled personnel as it would eliminate costs associated with syringes used for injection and/or for the disposal of used syringes.

Formulations of oral vaccines of the present invention 15 preferably comprise the modified botulinum toxin in a pharmacologically acceptable carrier, such as sterile physiological saline, sterile saline with 0.1% gelatin, or sterile saline with 1.0 mg/ml bovine serum albumin. Alternatively, the modified botulinum toxin of the present 20 invention can be genetically engineered into a plant so that food produced by the plant such as a potato or a banana can serve as a vector for widespread vaccination. Methods of genetically engineering plants to express a foreign peptide are well known in the art as exemplified by PCT/US96/09558, 25 filed June 6, 1996.

The modified botulinum toxins of the present invention are also useful in the construction of chimeric oral therapeutics. In this embodiment, a therapeutic agent can be linked to modified botulinum toxin to yield two broad groups 30 of orally administered molecules: (1) new drugs with biologically stable linkages, and (2) conjugate prodrugs having biologically or chemically unstable linkages, which dissociate from the carrier upon reaching the blood. Examples of chimeric therapeutic techniques are described generally by 35 Lautenslager, G.T. and Simpson, L.L., "Chimeric Molecules

- 11 -

Constructed with Endogenous Substances," *Advances in Molecular and Cell Biology*, Vol. 9, pp. 233-262, JAI Press, Inc. (1994). For example, a therapeutic peptide could be attached to a modified botulinum toxin, thus creating an agent which

5 possesses the characteristics of the substituent yet is capable of being administered orally. One example would be the creation of an orally administered thrombolytic agent. A fusion protein constructed by combining P-selectin and tissue plasminogen activator (TPA) is a promising chimera

10 which expresses thrombolytic activity and targets to the thrombi. This chimera must be introduced into the blood stream. However, using either molecular biology or protein chemistry, this 'first order' chimeric molecule could be attached to a modified botulinum toxin of the present

15 invention to create a higher order chimera which possesses the added advantage of being delivered to the general circulation by oral administration. Another example is in the design of an orally administered anti-neoplastic drug. Various antineoplastic drugs which exploit the cytotoxic properties

20 of one molecule, fused to a portion of another which functions to specifically target the toxin have been disclosed. A more recent example employs the amino-terminus of *Pseudomonas exotoxin* (PE) fused to epidermal growth factor (EGF), resulting in chimera EGF-PE which can be used as a cytotoxic

25 agent towards EGF-receptor-bearing cancer cells. Linkage of this chimera to a modified botulinum toxin of the present invention would result in creation of a higher order chimera which can be administered orally.

The general concepts for use of a modified botulinum

30 toxin as a carrier for vaccines or other therapeutic agents are the same for human and for non-human animals, with one exception. All serotypes of botulinum toxin are not likely to be equally efficacious as carriers for drugs in all species. Clinical evidence suggests that humans are

35 especially sensitive to the effects of serotypes A, B, and E.

- 12 -

This may relate to the efficiency with which these three serotypes are absorbed from the gastrointestinal system. Thus, serotypes A, B, and E would be preferred carriers of therapeutic agents for humans.

5 On the contrary, most non-human animals are particularly sensitive to serotype C. This suggests that as to veterinary medicine, the preferred carrier of therapeutic agents for non-human animal use would be serotype C. Examples of animal vaccines which could be administered orally with the modified
10 botulinum toxin include, but are not limited to, ones for adenovirus type 2, *Bordetella bronchispetica*, botulism, calicivirus, *Chlamydia psittaci*, clostridial diseases, such as *Clostridium Perfringens* type C, coronaviruses, distemper, equine encephalomyelitis, *Escherichia coli*, feline infectious
15 peritonitis, feline leukemia virus, feline panleukopenia, hepatitis, leptospirosis, parainfluenza virus, parvoviruses, rabies, rhinotracheitis virus, and tetanus.

The following examples are provided for illustrative purposes only and are not intended to limit the invention.

20 EXAMPLES

Restriction endonucleases and DNA modifying enzymes were purchased from New England Biolabs (Beverly, MA). The expression vector pQE-30 and nickel-nitrilotriacetic acid (Ni-NTA) Agarose were purchased from QIAGEN (Chatsworth, CA).
25 Monoclonal antibodies (mAb) specific for the 6xHis affinity tag were purchased from QIAGEN. Anti-syntaxin mAbs (S-0664; anti-HPC-1) were purchased from SIGMA (St. Louis, MO), and horse anti-BoNT/C antibodies was obtained from the Centers for Disease Control (CDC, Atlanta, GA). Plasmids pCL8 and pCH3
30 carrying EcoRI fragments of BoNT/C DNA have been described previously by Kimura et al. *BBRC* 1990 171:1304-1311.

- 13 -

**Example 1: Construction of expression vectors for synthesis
rBoNT/C holotoxin**

A schematic representation of the native botulinum toxin is depicted in Figure 1. A schematic representation of a 5 modified botulinum toxin, rBoNT/C is depicted in Figure 2. The nucleic acid and protein sequences for the modified botulinum toxin, rBoNT/C are depicted in SEQ ID NO: 2 and SEQ ID NO: 1, respectively.

Techniques for DNA fragment isolation, repair of 10 overhanging ends with the Klenow fragment of DNA polymerase I, and ligation with T4 ligase are known to those skilled in the art and have been described, for example, by Sambrook et al., 1989 *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 15 All cloning steps and expression were performed in *Escherichia coli* strain M-15 (QIAGEN) containing the pREP4 repressor plasmid.

The gene encoding a recombinant modified botulinum toxin was assembled from three separate toxin fragments (fragments 20 I, II and III) generated using PCR and ligated into vector pQE-30 resulting in plasmid pQE-TC1. Initially, a DNA fragment coding for the amino-terminal portion of BoNT/C (fragments I and II) was amplified from plasmid pCL8 in two sequential steps to generate pBot C2. DNA fragment I (nt 4- 25 689) was amplified using the following pair of oligonucleotide primers:

(forward) 5'-CCCAATAACAATTAACAACTTTAAT-3' (SEQ ID NO: 4)
KpnI
(reverse) 5'-TTTGGTACCCATTAAAATTAGTATTGGATCCAT-3' (SEQ ID NO: 30 5)

One cytosine was added to the 5'-end of the forward primer to provide for reconstruction of the BamHI restriction site, as well as to clone rBoNT/C DNA in frame with the pQE-30 initiation of translation methionine.

- 14 -

A *Kpn*I restriction site was included in the reverse primer to generate amino acid mutations His²²⁹→Gly and Glu²³⁰→Thr at the 3' end of fragment I. Amplified fragment I was treated with T4 polymerase, cut with *Kpn*I and inserted 5 between the Klenow filled-in *Bam*HI and *Kpn*I sites of the expression vector pQE-30, resulting in plasmid pBot C1. DNA fragment II (nt 689-1633) was then amplified using oligonucleotide primers:

*Kpn*I

10 (forward) 5'-TTTGGTACCCTTAATAATGCAATGCATAATTATATGGA-3' (SEQ ID NO: 6)

*Eco*RI

(reverse) 5'-GAATTCAAATAATCAACATTGAG-3' (SEQ ID NO: 7)

In the forward primer nucleotide changes were introduced 15 to create a *Kpn*I site and generate amino acid mutations His²²⁹→Gly, Glu²³⁰→Thr, and His²³³→Asn at the 5' end of fragment II. The reverse primer was complementary to the BoNT/C sequence and contained an internal *Eco*RI site at nucleotide position 1633. Amplified fragment II was treated with T4 20 polymerase, cut with *Kpn*I and inserted between the *Kpn*I and Klenow filled-in *Sal*I sites of pBot C1. The resulting plasmid pBot C2 contained the 5'-terminal fragment of BoNT/C (nt 4-1633) in frame with the ATG codon and 6xHis affinity sequence of pQE-30.

25 DNA fragment III (nt 1633-3873) coding for the carboxy-terminal domain of BoNT/C was amplified from plasmid pCH3 using oligonucleotide primers

*Eco*RI

forward 5'-TTTGAATTCTTATTATTACCTAGAAC-3' (SEQ ID NO: 8)
30 *Sac*I
reverse 5'-TTTGAGCTTTATTCACTTACAGGTACAAAC-3' (SEQ ID NO: 9)

The forward primer was complementary to the BoNT/C sequence and contained an internal *Eco*RI site at position

- 15 -

1632. In the reverse primer, a *SacI* restriction site was introduced immediately downstream of the stop codon. Amplified fragment III was digested with *EcoRI* and *SacI* and cloned separately into *EcoRI* and *SacI* digested plasmid pQE-30 5 generating plasmid pBot C3. Finally, the DNA encoding a full-size, modified botulinum toxin was reconstructed by introducing the *EcoRI*-*EcoRI* fragment (nt -88 to +1632) from plasmid pBot C2 into *EcoRI* digested, calf intestine alkaline phosphatase dephosphorylated plasmid pBot C3 to give plasmid 10 pQE-TC1. All PCR fragments were reanalyzed by DNA sequencing.

The oligonucleotide primers were designed to engineer a *KpnI* restriction site in the segment of DNA encoding the zinc-binding motif. The creation of the *KpnI* restriction site in this DNA segment enabled the mutation of three amino acids 15 (*His*²²⁹-*Gly*; *Glu*²³⁰-*Thr* and *His*²³³-*Asn*) that are essential for zinc binding, and provided for the reconstruction of a DNA encoding a modified botulinum toxin without preliminary cloning of wild type BoNT/C DNA. The recombinant modified botulinum toxin, synthesized from plasmid pQE-TC1, contained 20 eleven additional amino acids, Arg-Gly-Ser-His-His-His-His-His-Gly-Ser (SEQ ID NO: 10), at the amino-terminus.

Example 2 Optimization of neurotoxin expression

PCR was used to modify a sequence of the pQE-30 vector preceding the structural gene encoding modified rBoNT/C. A 25 new forward primer, 5'-CGGTACCATGCCAATAACAATTAACAACTT-3' (SEQ ID NO: 11), containing ten additional nucleotides on the 5'-end and a new reverse primer,

*Bgl*II

5'-AGCTATAGATCTATAATAATCCAA-3'

30 (SEQ ID NO: 12) covering the *Bgl*II restriction site at position 892 of the BoNT/C sequence (Kimura et al. *Biochem. Biophys. Res. Comm.* 1990 171:1304-1311) were used to reamplify a DNA fragment coding for the amino-terminal portion of the

- 16 -

rBoNT/C. The amplified fragment was treated with T4 polymerase, cut with *Bgl*III and inserted between the Klenow filled in *Bam*HI and *Bgl*III sites of pQE-TC1 to give plasmid pQE-TC2.

5 Example 3 Expression and purification of modified rBoNT/C holotoxin

Cultures were grown in Lennox L broth at 37°C, with shaking, to an A_{600} of 0.6-0.8. Isopropyl- β -D-thiogalactopyranoside was added to 1.0 mM final concentration, 10 and incubation continued for an additional 5 hours. Bacteria from 1 liter of induced culture were harvested by centrifugation at 4°C and resuspended in 20 ml of 50 mM sodium phosphate buffer, pH 7.4, with 300 mM NaCl. The cell suspension was lysed, on ice, by sonication, with 2 pulses of 15 1 minute duration each at 75% power, using a Model 60 Sonic Dismembrator (Fisher Scientific, Malvern, PA). Lysates were centrifuged at 20,000 \times g for 30 minutes at 4°C. The clarified supernatants were mixed with 1 ml of packed Ni-NTA resin, incubated for 1 hour at 4°C on a rotator and finally 20 poured into a 25 ml column. The column was washed with 30 volumes of washing buffer (50 mM sodium phosphate, pH 6.0, 300 mM NaCl, 25 mM imidazole). Bound proteins were eluted with elution buffer (50 mM sodium phosphate, pH 4.5, 300 mM NaCl). Purified proteins were analyzed on sodium dodecylsulfate 25 polyacrylamide gels (SDS-PAGE).

Example 4 Immunoblot Analysis

The ability of *E.coli* to drive expression of a recombinant modified botulinum toxin from plasmid pQE-TC1 was examined by immunoblot analysis of cell extract. Proteins for 30 analysis by Western blotting were separated on 10% polyacrylamide gels according to the method of Laemmli, U.K. *Nature* 1970 22:680-685, transferred to nitrocellulose, and

- 17 -

processed for detection of immunoreactive proteins containing the 6xHis affinity tag. Incubations with primary antibodies were performed for 1 hour at 37°C with a 1:2000 dilution of the anti-6xHis affinity tag mAb, or with anti-BoNT/C 5 antibodies. Membranes were developed using enhanced chemiluminescence according to manufacturers instructions (ECL; Amersham Corp., Arlington Heights, IL). The synthesis of recombinant proteins was induced with IPTG and aliquots of solubilized cells were run on SDS-PAGE.

10 Western blot analysis with anti-6xHis tag or anti-BoNT/C antibodies revealed an extremely low level of expression. Accordingly, a new plasmid was constructed which did not contain the stretch of four cytosine nucleotides which originated from cloning of neurotoxin DNA into the *Bam*HI site 15 of pQE-30 vector and designated pQE-TC2. Western blot analysis with anti-6xHis tag antibody revealed that pQE-TC2 was more efficient at driving the synthesis of modified rBoNT/C holotoxin. Indeed, 1-2 mg of modified rBoNT/C holotoxin could be purified from 1L of Lennox broth.

20 Modified rBoNT/C holotoxin was synthesized in soluble form, without visible degradation, but unlike *Clostridium botulinum* the *E. coli* did not provide for efficient nicking of modified rBoNT/C holotoxin. Only trace amounts of L-chain were detectable in modified rBoNT/C holotoxin by Coomassie 25 staining or Western blotting. However, modified rBoNT/C holotoxin was efficiently nicked with immobilized TPCK-trypsin (Pierce, Rockford, IL) and produced heavy and light chains of the correct molecular weight. Modified rBoNT/C holotoxin synthesized from pQE-TC2 contained fourteen additional amino 30 acids (Arg-Gly-Ser-His-His-His-His-Gly-Ser-Gly-Thr (SEQ ID NO: 13)) at the amino terminus. The 6xHis sequence within this fourteen amino acid segment was used for purification and subsequent detection of synthesized protein. The recombinant protein produced in this manner was purified 35 by affinity chromatography on Ni-NTA resin using the 6xHis

- 18 -

affinity tag. Specifically bound protein was eluted with low pH (elution buffer pH 4.5) and analyzed on SDS-PAGE. Analysis of protein eluted from the affinity resin revealed that toxin could be purified to a homogeneity of 80% - 90%. The purified 5 modified recombinant BoNT/C or modified rBoNT/C was used for all studies presented herein.

Example 5 Bioassay of recombinant proteins

As described in the examples that follow, the purified recombinant proteins was assayed for biological activity using 10 an *in vivo* toxicity test, *in vitro* activity on the mouse phrenic nerve-hemidiaphragm preparation, and enzymatic activity in crude synaptosome preparations.

A. In vivo toxicity testing

The toxicity of modified rBoNT/C holotoxin was tested. 15 Modified rBoNT/C holotoxin purified by elution from the histidine affinity resin was diluted in PBS including 1 mg/ml BSA and injected intraperitoneally (i.p.) into mice. The rBoNT/C holotoxin was administered in a 100 μ l aliquot of PBS-BSA at a concentration of 10 μ g per animal having an average 20 weight of 25 g. The animals were monitored for a total of 16 weeks to rule out any non-specific toxicity.

B. In vitro toxicity testing

Toxicity was bioassayed on the mouse phrenic nerve-hemidiaphragm preparations using the method of Simpson et al. 25 *J. Pharmacol. Exp. Ther.* 1990 254:98-103. Tissues were excised and suspended in physiological buffer that was aerated with 95% O₂, 5% CO₂ and maintained at 35°C. The physiological solution had the following composition (millimolar): NaCl, 137; KCl, 5; CaCl₂, 1.8; MgSO₄, 1.0; NaHCO₃, 24; NaH₂PO₄, 1.0; 30 D-glucose, 11; and gelatin, 0.01%. Phrenic nerves were stimulated continuously (1.0 Hz; 0.1-0.3 millisecond duration), and muscle twitch was recorded. Toxin-induced

- 19 -

paralysis was measured as a 50% reduction in muscle twitch response to neurogenic stimulation.

C. Cleavage of substrate

Synaptosomes (1 mg/ml) were prepared according to the 5 method of Rosahl et al. Cell 1993 75:661-670. The synaptosomes were incubated in the presence of modified rBoNT/C holotoxin (100 nM) for 90 minutes at 37°C in Tris-buffered saline (TBS) or in TBS containing 10 mM dithiothreitol. In parallel experiments, synaptosomal 10 membranes were incubated in the presence and absence of native BoNT/C. The proteins were separated on 15% SDS-PAGE, transferred to nitrocellulose, and processed for detection of immunoreactive proteins with anti-syntaxin mAb.

15 **Example 6 Serum antibody response in mice immunized with modified rBoNT/C holotoxin**

Swiss-Webster female mice weighing approximately 25 grams (Ace Animals, Boyertown, PA) were immunized in parallel experiments either, s.c. or p.o., with rBoNT/C holotoxin or 20 TBS, to assess the ability of this peptide to evoke a serum immune response.

A. Immunization and sample collection

For s.c. injection each animal received 2 µg protein in 0.1 ml of elution buffer. For the oral administration route, 25 each animal was fed 4 µg of protein in 0.2 ml elution buffer administered through an intragastric feeding needle. Mice were immunized on day zero, and boosters were given on days 14, 28, and 42. Samples of serum from identically immunized mice were collected and pooled on days 21, 35, and 49 after 30 immunization. For collection of serum, mice were bled with heparinized capillary tubes at the retro-orbital plexus while under isoflurane anesthesia.

- 20 -

B. Assay of serum for antibody production

Sera from immunized or control mice were assayed for antibodies using immunoblot analysis for immunoreactivity to unnickled modified botulinum toxin. Recombinant antigen 5 (modified botulinum toxin; 0.1 μ g/lane) was separated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat powdered milk in TBS, cut into strips and processed for detection of immunoreactive proteins using various serum samples. Primary incubations were 10 performed overnight (18 hours) at room temperature with a 1:1000 diluted serum. A secondary horseradish peroxidase-labeled anti-mouse IgG was used at a 1:10,000 dilution for 1 hour at room temperature. After extensive washing, membranes were developed using ECL (Amersham).

15 **Example 7 Neutralizing activity of serum from immunized mice**

Experiments were performed to assess the ability of various serum samples to neutralize native BoNT/C. Three different sources of serum were tested, as follows: 1) non-immune serum, 2) serum from animals that had received modified 20 rBoNT/C holotoxin p.o., and 3) serum from animals that had received modified rBoNT/C holotoxin s.c. Native BoNT/C (10 μ l, 100 ng) was incubated with 10 μ l of pre-immune or immune serum at 37°C for 1 hour, or with PBS-BSA. Subsequently, the incubation mixture was diluted with 80 μ l PBS including 1 25 mg/ml BSA and injected i.p. The mice were monitored for 48 hours to assess any residual toxicity of the various mixtures.

Example 8 Protection of mice against challenge with native BoNT/C

Three months after administration of the third booster, 30 mice immunized with rBoNT/C were challenged with an i.p. dose of 100 ng native BoNT/C per animal. The survival of challenged animals was monitored for 5 days.

WO 99/20306

PCT/US98/21897

- 21 -

The disclosures of each and every, patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety.

While the invention has been disclosed with reference 5 to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent 10 variations.

WO 99/20306

PCT/US98/21897

SEQUENCE LISTING

<110> SIMPSON, LANCE
KIYATKIN, NIKITA
MAKSYMOWYCH, ANDREW

<120> COMPOSITIONS AND METHODS FOR SYSTEMIC DELIVERY OF ORAL
VACCINES AND THERAPEUTIC AGENTS

<130> JEFF-0256

<140>
<141>

<150> 08/954,302
<151> 1997-10-20

<160> 13

<170> PatentIn Ver. 2.0

<210> 1
<211> 1291
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Modified
Botulinum Toxin

<400> 1

Met Pro Ile Thr Ile Asn Asn Phe Asn Tyr Ser Asp Pro Val Asp Asn
1 5 10 15

Lys Asn Ile Leu Tyr Leu Asp Thr His Leu Asn Thr Leu Ala Asn Glu
20 25 30

Pro Glu Lys Ala Phe Arg Ile Thr Gly Asn Ile Trp Val Ile Pro Asp
35 40 45

Arg Phe Ser Arg Asn Ser Asn Pro Asn Leu Asn Lys Pro Pro Arg Val
50 55 60

Thr Ser Pro Lys Ser Gly Tyr Tyr Asp Pro Asn Tyr Leu Ser Thr Asp
65 70 75 80

Ser Asp Lys Asp Thr Phe Leu Lys Glu Ile Ile Lys Leu Phe Lys Arg
85 90 95

WO 99/20306

PCT/US98/21897

Ile Asn Ser Arg Glu Ile Gly Glu Glu Leu Ile Tyr Arg Leu Ser Thr
 100 105 110

Asp Ile Pro Phe Pro Gly Asn Asn Asn Thr Pro Ile Asn Thr Phe Asp
 115 120 125

Phe Asp Val Asp Phe Asn Ser Val Asp Val Lys Thr Arg Gln Gly Asn
 130 135 140

Asn Trp Val Lys Thr Gly Ser Ile Asn Pro Ser Val Ile Ile Thr Gly
 145 150 155 160

Pro Arg Glu Asn Ile Ile Asp Pro Glu Thr Ser Thr Phe Lys Leu Thr
 165 170 175

Asn Asn Thr Phe Ala Ala Gln Glu Gly Phe Gly Ala Leu Ser Ile Ile
 180 185 190

Ser Ile Ser Pro Arg Phe Met Leu Thr Tyr Ser Asn Ala Thr Asn Asp
 195 200 205

Val Gly Glu Gly Arg Phe Ser Lys Ser Glu Phe Cys Met Asp Pro Ile
 210 215 220

Leu Ile Leu Met Gly Thr Leu Asn Asn Ala Met His Asn Leu Tyr Gly
 225 230 235 240

Ile Ala Ile Pro Asn Asp Gln Thr Ile Ser Ser Val Thr Ser Asn Ile
 245 250 255

Phe Tyr Ser Gln Tyr Asn Val Lys Leu Glu Tyr Ala Glu Ile Tyr Ala
 260 265 270

Phe Gly Gly Pro Thr Ile Asp Leu Ile Pro Lys Ser Ala Arg Lys Tyr
 275 280 285

Phe Glu Glu Lys Ala Leu Asp Tyr Tyr Arg Ser Ile Ala Lys Arg Leu
 290 295 300

Asn Ser Ile Thr Thr Ala Asn Pro Ser Ser Phe Asn Lys Tyr Ile Gly
 305 310 315 320

Glu Tyr Lys Gln Lys Leu Ile Arg Lys Tyr Arg Phe Val Val Glu Ser
 325 330 335

Ser Gly Glu Val Thr Val Asn Arg Asn Lys Phe Val Glu Leu Tyr Asn
 340 345 350

WO 99/20306

PCT/US98/21897

Glu Leu Thr Gln Ile Phe Thr Glu Phe Asn Tyr Ala Lys Ile Tyr Asn
 355 360 365

Val Gln Asn Arg Lys Ile Tyr Leu Ser Asn Val Tyr Thr Pro Val Thr
 370 375 380

Ala Asn Ile Leu Asp Asp Asn Val Tyr Asp Ile Gln Asn Gly Phe Asn
 385 390 395 400

Ile Pro Lys Ser Asn Leu Asn Val Leu Phe Met Gly Gln Asn Leu Ser
 405 410 415

Arg Asn Pro Ala Leu Arg Lys Val Asn Pro Glu Asn Met Leu Tyr Leu
 420 425 430

Phe Thr Lys Phe Cys His Lys Ala Ile Asp Gly Arg Ser Leu Tyr Asn
 435 440 445

Lys Thr Leu Asp Cys Arg Glu Leu Leu Val Lys Asn Thr Asp Leu Pro
 450 455 460

Phe Ile Gly Asp Ile Ser Asp Val Lys Thr Asp Ile Phe Leu Arg Lys
 465 470 475 480

Asp Ile Asn Glu Glu Thr Glu Val Ile Tyr Tyr Pro Asp Asn Val Ser
 485 490 495

Val Asp Gln Val Ile Leu Ser Lys Asn Thr Ser Glu His Gly Gin Leu
 500 505 510

Asp Leu Leu Tyr Pro Ser Ile Asp Ser Glu Ser Glu Ile Leu Pro Gly
 515 520 525

Glu Asn Gln Val Phe Tyr Asp Asn Arg Thr Gln Asn Val Asp Tyr Leu
 530 535 540

Asn Ser Tyr Tyr Tyr Leu Glu Ser Gln Lys Leu Ser Asp Asn Val Glu
 545 550 555 560

Asp Phe Thr Phe Thr Arg Ser Ile Glu Glu Ala Leu Asp Asn Ser Ala
 565 570 575

Lys Val Tyr Thr Tyr Phe Pro Thr Leu Ala Asn Lys Val Asn Ala Gly
 580 585 590

Val Gln Gly Gly Leu Phe Leu Met Trp Ala Asn Asp Val Val Glu Asp
 595 600 605

WO 99/20306

PCT/US98/21897

Phe Thr Thr Asn Ile Leu Arg Lys Asp Thr Leu Asp Lys Ile Ser Asp
 610 615 620

 Val Ser Ala Ile Ile Pro Tyr Ile Gly Pro Ala Leu Asn Ile Ser Asn
 625 630 635 640

 Ser Val Arg Arg Gly Asn Phe Thr Glu Ala Phe Ala Val Thr Gly Val
 645 650 655

 Thr Ile Leu Leu Glu Ala Phe Pro Glu Phe Thr Ile Pro Ala Leu Gly
 660 665 670

 Ala Phe Val Ile Tyr Ser Lys Val Gln Glu Arg Asn Glu Ile Ile Lys
 675 680 685

 Thr Ile Asp Asn Cys Leu Glu Gln Arg Ile Lys Arg Trp Lys Asp Ser
 690 695 700

 Tyr Glu Trp Met Met Gly Thr Trp Leu Ser Arg Ile Ile Thr Gln Phe
 705 710 715 720

 Asn Asn Ile Ser Tyr Gln Met Tyr Asp Ser Leu Asn Tyr Gln Ala Gly
 725 730 735

 Ala Ile Lys Ala Lys Ile Asp Leu Glu Tyr Lys Tyr Ser Gly Ser
 740 745 750

 Asp Lys Glu Asn Ile Lys Ser Gln Val Glu Asn Leu Lys Asn Ser Leu
 755 760 765

 Asp Val Lys Ile Ser Glu Ala Met Asn Asn Ile Asn Lys Phe Ile Arg
 770 775 780

 Glu Cys Ser Val Thr Tyr Leu Phe Lys Asn Met Leu Pro Lys Val Ile
 785 790 795 800

 Asp Glu Leu Asn Glu Phe Asp Arg Asn Thr Lys Ala Lys Leu Ile Asn
 805 810 815

 Leu Ile Asp Ser His Asn Ile Ile Leu Val Gly Glu Val Asp Lys Leu
 820 825 830

 Lys Ala Lys Val Asn Asn Ser Phe Gln Asn Thr Ile Pro Phe Asn Ile
 835 840 845

 Phe Ser Tyr Thr Asn Asn Ser Leu Leu Lys Asp Ile Ile Asn Glu Tyr
 850 855 860

WO 99/20306

PCT/US98/21897

Phe Asn Asn Ile Asn Asp Ser Lys Ile Leu Ser Leu Gln Asn Arg Lys
 865 870 875 880

Asn Thr Leu Val Asp Thr Ser Gly Tyr Asn Ala Glu Val Ser Glu Glu
 885 890 895

Gly Asp Val Gln Leu Asn Pro Ile Phe Pro Phe Asp Phe Lys Leu Gly
 900 905 910

Ser Ser Gly Glu Asp Arg Gly Lys Val Ile Val Thr Gln Asn Glu Asn
 915 920 925

Ile Val Tyr Asn Ser Met Tyr Glu Ser Phe Ser Ile Ser Phe Trp Ile
 930 935 940

Arg Ile Asn Lys Trp Val Ser Asn Leu Pro Gly Tyr Thr Ile Ile Asp
 945 950 955 960

Ser Val Lys Asn Asn Ser Gly Trp Ser Ile Gly Ile Ile Ser Asn Phe
 965 970 975

Leu Val Phe Thr Leu Lys Gln Asn Glu Asp Ser Glu Gln Ser Ile Asn
 980 985 990

Phe Ser Tyr Asp Ile Ser Asn Asn Ala Pro Gly Tyr Asn Lys Trp Phe
 995 1000 1005

Phe Val Thr Val Thr Asn Asn Met Met Gly Asn Met Lys Ile Tyr Ile
 1010 1015 1020

Asn Gly Lys Leu Ile Asp Thr Ile Lys Val Lys Glu Leu Thr Gly Ile
 1025 1030 1035 1040

Asn Phe Ser Lys Thr Ile Thr Phe Glu Ile Asn Lys Ile Pro Asp Thr
 1045 1050 1055

Gly Leu Ile Thr Ser Asp Ser Asp Asn Ile Asn Met Trp Ile Arg Asp
 1060 1065 1070

Phe Tyr Ile Phe Ala Lys Glu Leu Asp Gly Lys Asp Ile Asn Ile Leu
 1075 1080 1085

Phe Asn Ser Leu Gln Tyr Thr Asn Val Val Lys Asp Tyr Trp Gly Asn
 1090 1095 1100

Asp Leu Arg Tyr Asn Lys Glu Tyr Tyr Met Val Asn Ile Asp Tyr Leu
 1105 1110 1115 1120

WO 99/20306

PCT/US98/21897

Asn Arg Tyr Met Tyr Ala Asn Ser Arg Gln Ile Val Phe Asn Thr Arg
 1125 1130 1135

Arg Asn Asn Asn Asp Phe Asn Glu Gly Tyr Lys Ile Ile Ile Lys Arg
 1140 1145 1150

Ile Arg Gly Asn Thr Asn Asp Thr Arg Val Arg Gly Gly Asp Ile Leu
 1155 1160 1165

Tyr Phe Asp Met Thr Ile Asn Asn Lys Ala Tyr Asn Leu Phe Met Lys
 1170 1175 1180

Asn Glu Thr Met Tyr Ala Asp Asn His Ser Thr Glu Asp Ile Tyr Ala
 1185 1190 1195 1200

Ile Gly Leu Arg Glu Gln Thr Lys Asp Ile Asn Asp Asn Ile Ile Phe
 1205 1210 1215

Gln Ile Gln Pro Met Asn Asn Thr Tyr Tyr Ala Ser Gln Ile Phe
 1220 1225 1230

Lys Ser Asn Phe Asn Gly Glu Asn Ile Ser Gly Ile Cys Ser Ile Gly
 1235 1240 1245

Thr Tyr Arg Phe Arg Leu Gly Gly Asp Trp Tyr Arg His Asn Tyr Leu
 1250 1255 1260

Val Pro Thr Val Lys Gln Gly Asn Tyr Ala Ser Leu Leu Glu Ser Thr
 1265 1270 1275 1280

Ser Thr His Trp Gly Phe Val Pro Val Ser Glu
 1285 1290

<210> 2

<211> 3950

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Modified
Botulinum Toxin

<400> 2

ggatattaga aagttaggag atgttagtat tatgccaata acaattaaca actttaatta 60
 ttcagatcct gttgataata aaaatatttt atatttagat actcatttaa atacactagc 120
 taatgagcct gaaaaagcct ttgcattac aggaaatata tggtaatac ctgatagatt 180

ttcaagaaat tctaattccaa atttaaataa acctcctcga gttacaagcc ctaaaagtgg 240
 ttattatgt cctaatttatt tgagtactga ttctgacaaa gatacattt taaaagaaat 300
 tataaagtta tttaaaagaa ttaattctag agaaatagga gaagaattaa tatatagact 360
 ttcgacagat atacccttc ctggaaataa caataactcca attaatactt ttgattttga 420
 tgtagattt aacagtgtt aatgtaaaac tagacaaggt aacaactggg ttaaaactgg 480
 tagcataaaat cctagtgtt taataactgg acctagagaa aacattatag atccagaaac 540
 ttctacgtt aaattaacta acaatactt tgcggcacaa gaaggattt gtccttatac 600
 aataattca atatcaccta gatttatgct aacatatagt aatgcaacta atgatgttagg 660
 agagggtaga ttttctaagt ctgaattttg catggatcca atactaattt taatgggtac 720
 ccttaataat gcaatgcata atttatatgg aatagctata ccaaatgatc aaacaatttc 780
 atctgttaact agtaatattt tttattctca atataatgtg aaatttagt atgcagaaat 840
 atatgcattt ggaggcCAA ctatagacct tattcctaaa agtgcagga aatattttga 900
 gaaaaaggca ttggattatt atagatctat agctaaaaga cttaatagta taactactgc 960
 aaatccttca agcttaata aatatatagg ggaatataaa cagaaactta ttagaaagta 1020
 tagattcgta gtagaatctt caggtgaagt tacagtaaat cgtaataagt ttgttgagt 1080
 atataatgaa cttacacaaa tatttacaga atttaactac gctaaaatat ataatgtaca 1140
 aaataggaaa atatatctt caaatgtata tactccggtt acggcgaata tattagacga 1200
 taatgttat gatatacaaa atggatttaa tatacctaaa agtaatttaa atgtactatt 1260
 tatgggtcaa aatttatctc gaaatccagc attaagaaaa gtcatacctg aaaatatgct 1320
 ttatttattt acaaaatttt gtcataaagc aatagatgtt agatcattat ataataaaac 1380
 attagattgt agagagctt tagttaaaaa tactgactta ccctttagt gtgatattag 1440
 tgatgttaaa actgatataat ttttaagaaa agatattaaat gaagaaactg aagtatata 1500
 ctatccggac aatgtttcag tagatcaagt tattctcagt aagaatacct cagaacatgg 1560
 acaactagat ttattatacc ctgtattga cagttagt gaaatattac cagggagaa 1620
 tcaagtctt tatgataata gaactcaaaa tggattttt ttgaattctt attattac 1680
 agaatctcaa aaactaagtg ataatgtga agattttact tttacgagat caattgagga 1740
 ggctttggat aatagtgc当地 aagtatatac ttactttcct acactagcta ataaagtaaa 1800
 tgcgggtgtt caaggtgggtt tatttttaat gtggcaaat gatgttagtt aagattttac 1860
 tacaatatt ctaagaaaag atacattaga taaaatatac gatgtatcag ctattattcc 1920
 ctatatagga cccgcattaa atataagtaa ttctgttaaga agaggaaatt ttactgaagc 1980
 atttgcagtt actgggttaa ctattttattt agaagcattt cctgaattta caatacctgc 2040
 acttggtgca tttgtgattt atagtaaggt tcaagaaaga aacgagatta ttaaaactat 2100
 agataattgt tttagaacaaa ggattaagag atggaaagat tcatatgaat ggatgtatgg 2160
 aacgtggta tccaggatta ttactcaatt taataatata agttatcaaa tgtatgattc 2220
 tttaaattat caggcaggtg caatcaaagc taaaatagat tttagaataa aaaaatattc 2280
 aggaagtgtt aaagaaaata taaaagtc当地 agttgaaaat ttaaaaataa gtttagatgt 2340
 aaaaatttc当地 gaagcaatga ataataaaaa taaattataa cgagaatgtt ccgtaacata 2400
 tttattttaa aatatgttac ctaaagtaat ttagttaattt aatgatgtt atcgaataac 2460
 taaagcaaaa ttaatttaatc ttatagatag tcataatattt attcttagttt gtgaagtaga 2520
 taaattaaaa gcaaaagtaa ataataagctt tcaaaaataca ataccctta atatttttc 2580
 atataactaat aattcttatt taaaagatata attaatgaa tatttcaata atattaatga 2640
 ttcaaaaaattt ttgagcctac aaaacagaaa aaatactta gtggatacat caggatataa 2700
 tgcagaagtg agtgaagaag gcgatgttca gcttaatcca atattccat ttgactttaa 2760
 attaggtatgt tcagggggagg atagaggtt agttatagta acccagaatg aaaatattgt 2820
 atataattct atgtatgaaa gtttttagcat tagttttgg attagaataa ataaatgggt 2880
 aagtaattta cctggatata ctataattga tagttaaaa aataactcag gttggagtt 2940
 aggtatttattt agtaattttt tagtatttac tttaaaacaa aatgaagata gtgaacaaag 3000
 tataaattttt agttatgata tatcaaataa tgctcctgga tacaataat ggtttttgt 3060

WO 99/20306

PCT/US98/21897

aactgttact aacaatatga tggaaatat gaagatttat ataaatggaa aattaataga 3120
 tactataaaa gttaaagaac taactggaat taattttgc aaaactataa cattgaaat 3180
 aaataaaatt ccagataccg gtttgattac ttcagattct gataacatca atatgtggat 3240
 aagagattt tatataatttgc tcaaagaatt agatggtaaa gatattaata tattatttaa 3300
 tagcttgcaa tatactaatttgc ttgtaaaaga ttattggga aatgatttaa gatataataa 3360
 agaatattat atggtaata tagattattt aaatagatat atgtatgcga actcacgaca 3420
 aattgtttt aatacacgta gaaataataa tgacttcaat gaaggatata aaattataat 3480
 aaaaagaatc agaggaaata caaatgatac tagagtacga ggaggagata ttttatattt 3540
 tgatatgaca attaataaca aagcatataa tttgtttatg aagaatgaaa ctatgtatgc 3600
 agataatcat agtactgaag atatatatgc tataggttta agagaacaaa caaggatataat 3660
 aaatgataat attatatttc aaatacaacc aatgaataat acttatttattt acgcatctca 3720
 aatatttaaa tcaaatttta atggagaaaa tatttctgga atatgttcaa tagtactta 3780
 tcgtttttaga cttggaggtg attggatag acacaattat ttgggccta ctgtgaagca 3840
 agggaaattat gcttcattat tagaatcaac atcaactcat tggggttttgc tacctgtttag 3900
 tgaataaata atgattaata atataaatta tgttaaatat tttaatatta 3950

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Modified Zinc
Binding

<400> 3

His Glu Xaa Xaa His

1 5

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 4

cccaataaca attaacaact ttaat

25

<210> 5

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

WO 99/20306

PCT/US98/21897

<400> 5
tttggtagcc attaaaatta gtattggatc cat 33

<210> 6
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 6
tttggtagcc ttaataatgc aatgcataat ttatatgga 39

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 7
gaattcaaat aatcaacatt ttgag 25

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 8
tttgaattct tattattacc tagaatc 27

<210> 9
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 9
tttgagctct tattcactta caggtacaaa ac 32

WO 99/20306

PCT/US98/21897

<210> 10
 <211> 11
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Modified
 Botulinum Toxin

<400> 10
 Arg Gly Ser His His His His His His Gly Ser
 1 5 10

<210> 11
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 11
 cggtaccatg ccaataacaa ttaacaactt t

31

<210> 12
 <211> 24
 <212> DNA
 <213> Artificial Sequence

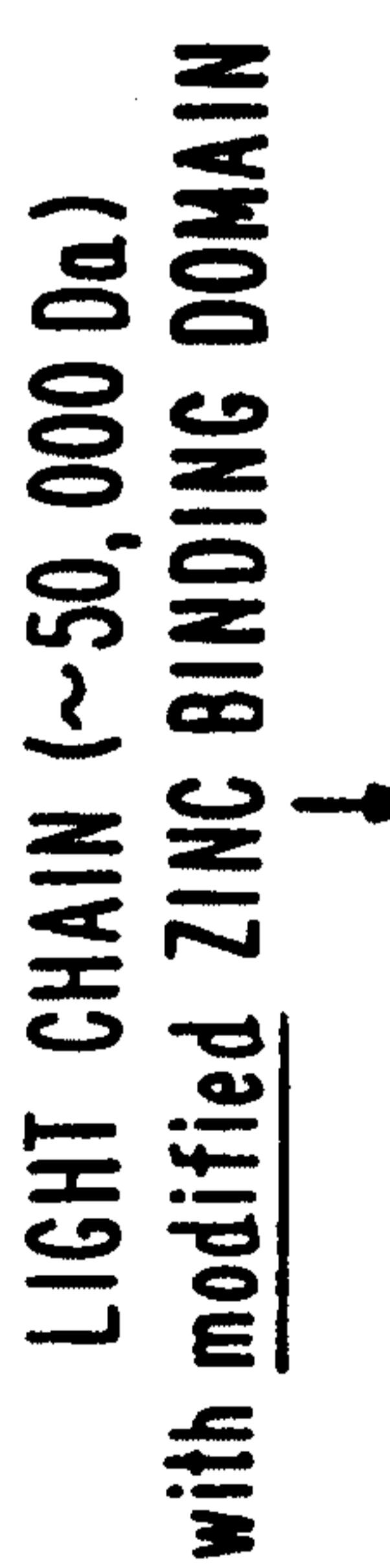
<220>
 <223> Description of Artificial Sequence: Primer

<400> 12
 agctatagat ctataataat ccaa

24

<210> 13
 <211> 13
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Modified
 Botulinum Toxin


<400> 13
 Arg Gly Ser His His His His His His Gly Ser Gly Thr
 1 5 10

- 22 -

What is claimed is:

1. A modified botulinum toxin comprising a botulinum toxin capable of translocating from the gut to the general circulation which is altered to be nontoxic.
- 5 2. The modified botulinum toxin of claim 1 further comprising a selected antigen.
3. The modified botulinum toxin of claim 1 further comprising a therapeutic agent.
4. An oral vaccine against botulism comprising the modified botulinum toxin of claim 1 and a pharmaceutically acceptable vehicle.
5. An oral vaccine against a selected antigen comprising the modified botulinum toxin of claim 2 and a pharmaceutically acceptable vehicle.
- 15 6. A method of orally delivering a therapeutic agent to an animal comprising administering to the animal a modified botulinum toxin of claim 3.

1/1

Fig. 2