
US008983908B2

(12) United States Patent (10) Patent No.: US 8,983,908 B2
Gowda et al. (45) Date of Patent: Mar. 17, 2015

(54) FILE LINK MIGRATION FOR 7,418.439 B2 8/2008 Wong
DECOMMISONING ASTORAGE SERVER 7,536,526 B2 * 5/2009 Srinivasan et al. T11 165

7,890,469 B1 2/2011 Maionchi et al.
2002/0107874 A1 8, 2002 DeLorime et al.

(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 2003/0005256 A1 1/2003 Grossman et al. T11 202
2003/01 15439 A1* 6/2003 Mahalingam et al. 712/1

(72) Inventors: Shishir Nagaraja Gowda, Mysore (IN); 2003. O159006 A1 8, 2003 Frank et al.
Anand Vishweswaran Avati, Mysore 2003/0163568 A1 8/2003 Kano et al.
(IN); Amar Tumballi Suryanarayan 2003/0182257 A1* 9, 2003 O’Connell et al. 707/1
K s taka (IN s 2004/O128556 A1 7/2004 Burnett
arnataka (IN) 2004/O133540 A1* 7/2004 Saake et al. 707/1

2005, 0071708 A1 1/2005 Bartfall et al.
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 2006/0271754 A1* 1 1/2006 Shibayama et al. T11 165

2006/0294039 A1* 12/2006 Mekenkamp et al. 707/1
(*) Notice: Subject to any disclaimer, the term of this 3.289 A. 398, Watana i. 2. amamoto et al.

past its, G adjusted under 35 2007. O150499 A1* 6, 2007 D’Souza et al. 707/101
.S.C. 154(b) by 0 days. 2007.02451 12 A1 10, 2007 Grubbs et al.

21) Appl. No.: 13/769,087 2008/0086,518 A1* 4/2008 Balakrishnan et al. 707,204
(21) Appl. No.: 9 (Continued)
(22) Filed: Feb. 15, 2013 OTHER PUBLICATIONS

O O USPTO Office Action for U.S. Appl. No. 13/686,091, mailed Jan. 30, (65) Prior Publication Data 2013.
US 2014/O236895A1 Aug. 21, 2014 Gluster Inc., Gluster Filesystem Unified File and Object Storage—

Beta 2". Published Aug. 2011, pp. 1-27. Available at <http://
hypnotoad.uchicago.edu/roll-documentation?glusterfs/6.0/Gluster (51) Int. Cl GoF i 7/30 (2006.01) Unified File and Object Storage.pdf>, retrieved Jan. 18, 2013.

GO6F 3/06 (2006.01) (Continued)
(52) U.S. Cl. Primary Examiner — Robert Beausoliel, Jr.

CPC G06F 17/30079 (2013.01); G06F 3/0647 Assistant Examiner — Richard Bowen
USPC 30.8; (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(58) Field of Classification Search (57) ABSTRACT
CPC G06F 17/30079; G06F 3/0647 f E.ths O a true E. issists a set of
S lication file f let h historv. 1KS 1 SSCW a 1SaSSOC18CW1 OOO
ee appl1cauon Ille Ior complete searcn n1Story hard links that point to file data for a file in the first server. The

(56) References Cited computer system migrates the set of files links for the file to a

U.S. PATENT DOCUMENTS

5,886,699 A 3, 1999 Belfiore et al.
5,951,649 A 9, 1999 Dobbins et al.
6,697,846 B1 2/2004 Soltis
6,938,039 B1* 8/2005 Bober et al. 707 704
7,080,102 B2 * 7/2006 O'Connell et al. 707,617

second server prior to migrating the file data for the file in the
first server to the second server. The second server is hosted
by a second computer system. The first computer system
migrates the file data for the file in the first server to the second
server when the migration of the set of file links for the file to
the second server is complete.

17 Claims, 5 Drawing Sheets

- y

Machine-A140A lusersjaneidocslappointments.txt 153A - s a. n

Storage S
Server-A142A FileData lusersjanelschedule.txt 155A s M

51A v
Migration --- !

Module 145 —— : N v \
userscalendar.txtS7A r t W

- \ \ .

-- 1. t .
(171 (173) (17s) (177. &- st Y

f |
F--, f I

y f f
Machine-B140B userscalendar.txtS7B ar : / ff

Storage --- : / M A

Server-B42B lusersjanelschedule.txt 155B 11
M

!
/

US 8,983.908 B2
Page 2

(56) References Cited 2014/0108475 A1 4/2014 Yamada et al. 707/829

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
Business Wire, “Gluster Announces Apache Hadoop Storage Com

2008/01 14854 A1* 5/2008 Wong et al. TO9,214 patibility in Latest GlusterFS Release'. Published Aug. 23, 2011,
2008, 0235300 A1* 9, 2008 Nemoto et al. 707,204 Available at <http://www.businesswire.com/news/home?
2008/0320062 A1* 12/2008 Miyamae et al. 707,205 20110823005899/en/Gluster-Announces-Apache-Hadoop-Storage
2009/0063393 A1 3f2009 Saake et al. 707/1 Compatibility-Latest>, retreived Jan. 18, 2013.
2009,02545.92 A1* 10, 2009 Marinov et al. 707,204 USPTO Office Action for U.S. Appl. No. 13/555,718, mailed Jan. 30,
2009/0307245 A1* 12, 2009 Mullen et al. .. . 707/101 2013.
3888-67; A. ck 13: plan et al. 707/2O2 Golub, Ben, “Why I believe in UFOS: Unified file and object stor

S s

2010. 0235383 A1* 9, 2010 Kashiwase et al. 707/769 SOSEt Bes ts s is mailed May 22
2010/0332456 A1 12, 2010 Prahladet al. 2013 - w x w s
2011/0213813 A1* 9, 2011 Leventhal et al. 707/825
2012/O185926 A1* T/2012 Topatan et al. 726/7 USPTO Office Action for U.S. Appl. No. 13/757,437, mailed May 17,
2012/033O894 A1 12, 2012 Sk 2013.
2013,0007051 A1 1/2013 Astle et al. 707/769
2013,0007220 A1 1/2013 Astle et al. TO9,219 * cited by examiner

US 8,983,908 B2 Sheet 1 of 5 Mar. 17, 2015 U.S. Patent

US 8,983,908 B2 U.S. Patent

00Z

U.S. Patent Mar. 17, 2015 Sheet 4 of 5 US 8,983,908 B2

(stART)
x. 401 400

v A A
Receive input

to startafile migration process
403

y /

Identify a directory level in the server
to Search for file data that is aSSOCiated

with multiple file links
404

Identify file data for
a file in the directory level

y 405 406
- E. air

File data NO Create a hard link
<-- associated with multiple file > o

is links? -- for the destination file ---

- - - -

YES

v 407 409
Fledal / - Fle data N. YE < associated with YES Create a hard link >
migration? - for the destination file

x -

NO 411
v /

Create file name and inOde
at destination location

413 v
Set extended attribute value in the

SOUrce file data to the SOUrCelocation

y 415
- Y.

YES - More file data inst & >
is current level? -

NO
y 417

- -- /
Destination

NO - link Count match
Y Source link -

Y. -
count? -

ves 419
Migrate Source file

data to destination location
y 421

Set attribute in the SOUrCe file data
and destination file data to FIG. 4
the destination location

(END)

U.S. Patent Mar. 17, 2015

Processing Device 502

InstructionS 522

Migration Module
303

Main Memory 504

InstructionS 522

Migration Module
303

Static Memory
506

NetWOrk Interface Device
508

Sheet 5 of 5

500

Video Display
510

D.
Alpha-Numeric Input Device

512

CurSOr COntrol Device
514

() Signal Generation Device
516

BUS 530

/
Data Storage Device 518

Machine-Readable Storage Medium
528

InstructionS 522

Migration Module
303

FIG. 5

US 8,983,908 B2

US 8,983,908 B2
1.

FILE LINK MGRATION FOR
DECOMMISONING ASTORAGE SERVER

TECHNICAL FIELD

The present disclosure relates to file migration, and more
particularly, to migrating file links for decommissioning a
storage server.

BACKGROUND

Data may be stored as unstructured data, for example, in
files and directories in a file system. A file in the file system
may have multiple file links that point to the same file data for
the file. A file link can be an original file name for a file and/or
an alternative file name that is implemented as a hard link for
the file. A hard link is a directory entry that points to a location
of the file in the file system. If the file is opened using one of
its hard links, and changes are made to the file’s content, then
the changes can also be visible when the file is opened by an
alternative hard link or the original file name of the file. The
files may be stored in a data store (e.g., disk) that is coupled to
a storage server in a machine in the file system. The file
system can include multiple machines, multiple storage serv
ers, and multiple data stores. A storage server may be decom
missioned, for example, due to capacity reduction, problems
with the machine, storage server, and/or disk, etc. When a
storage server is to be decommissioned, the data (e.g., files)
on the disk for the storage server should be migrated to
another disk being managed by another storage server in
another machine in order to prevent data loss. When the file
data for the file is migrated to another storage server, the
current file links usually still point to the old location of the
file data. Any attempts to access the file data using the current
file links typically result in errors since the file data has
already been migrated to the new location.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood more fully from
the detailed description given below and from the accompa
nying drawings of various implementations of the disclosure.

FIG. 1 illustrates an example of migrating of file links for
decommissioning a storage server, in accordance with vari
ous implementations.

FIG. 2 illustrates an example system architecture, in accor
dance with various implementations.

FIG.3 is a block diagram of an implementation of a migra
tion module for migrating file links for decommissioning a
storage server.

FIG. 4 is a flow diagram illustrating an implementation for
a method for migrating file links for decommissioning a stor
age Server.

FIG. 5 is a block diagram of an example computer system
that may perform one or more of the operations described
herein.

DETAILED DESCRIPTION

Described herein are a method and system for migrating
file links for decommissioning a storage server, according to
various implementations. Data in a file system can be stored
as files and directories. The file data for a file can be accessed
by multiple file names. The file names may be file links that
point to the same file data. A file link can be an original file
name that is pointing to the file data and/or an alternate file
name implemented as a hard link pointing to the same file

10

15

25

30

35

40

45

50

55

60

65

2
data. For example, a user may create a file with an original file
name "calendar.txt that is an original file link pointing to the
file data for “calendar.txt. The file data for “calendar.txt
may also be accessed by alternate file names. The alternate
file names can be implemented as hard links which point to
the same file data for “calendar.txt. For example, the user
may create another file with the file name "schedule.txt.
which may be a hard link that points to the file data for
“calendar.txt. The directories in the file system can form a
directory level hierarchy of various levels, or tree structure of
one or more directory levels in the file system. For example,
there may be a top-level directory “/users’. There may be one
or more sub-level directories within the top-level directory.
For example, there may be sub-level directories for specific
users within the top-level directory “/users’. For example,
there may be a sub-directory "/jane' that has a path "/users/
jane'. The original file names and the hard links can be stored
at different directory levels. For example, the original file
name "calendar.txt may be stored as “/users/calendar.txt in
the top-level directory, and the hard link "schedule.txt may
be stored as “/users/jane/schedule.txt in the sub-level direc
tory.
The file system can include multiple machines that host

storage servers to manage the file data, and the original file
names and hard links for the file data. The storage servers can
be coupled to storage devices that store and organize the file
data, original file names, and hard links using the directory
level hierarchy. A storage server may be decommissioned, for
example, due to hardware and/or software problems related to
the machine and/or storage server, capacity down-scaling of
the storage device for the storage server, machine mainte
nance, etc. The file data, original file names, hard links, and
directory level hierarchy for the storage server that is being
decommissioned should be migrated to a new location before
the storage server is decommissioned to prevent data loss. For
example, Storage Server-A on Machine-A and coupled to
Disk-A may be decommissioned, and the file data, original
file names, hard links, and directory level hierarchy for the
Storage Server-A should be migrated to Storage Server-B on
Machine-B and coupled to Disk-B.

Implementations can include a migration module, which is
described in greater detail below, that may be hosted on a
storage server in a machine to migrate the file data, and the file
links (e.g., original file name, hard links for alternate file
names), and the directory level hierarchy from a source loca
tion (e.g., Storage Server-A) to a destination location (e.g.,
Storage Server-B). The migration module can duplicate the
directory level hierarchy of the source location at the desti
nation location, and can duplicate the pattern of the file links
(e.g., original file name, hard links for alternate file names), as
implemented in the directory level hierarchy at the source
location, in the corresponding directory level hierarchy at the
destination location. As a result, errors can be eliminated and
the file migration is more efficient since the file links (e.g.,
original file name, hard links for alternate file names) are valid
and point to the file data at the destination location.

FIG. 1 illustrates an example of migrating of file links (e.g.,
original file name, hard links for alternate file names) for
decommissioning a storage server, in accordance with vari
ous implementations. For example, there may be Storage
Server-A 142A hosted in Machine-A 140A and Storage
Server-B142Bhosted in Machine-B 140B. Storage Server-A
142A can be coupled to a data store 150 that stores file data
151A. There may be multiple file links (e.g., original file
name and hard links for alternate file names) to file data 151A.
For example, a user may have created a file with an original
file name of “calendar.txt 157A in “/users” that points to file

US 8,983,908 B2
3

data 151A, a second file named 'schedule.txt 155A in "/us
ers/jane' as a hard link that also points to file data 151A, and
a third file named “appointments.txt 153A in “/users/jane/
docs” as a hard link that also points to file data 151A.

Storage Server-A142A may be decommissioned and can
include a migration module 145 to migrate the file data 151A
and file links (e.g., original file name and hard links for
alternate file names) from the Source location (e.g., data store
150 for Storage Server-A 142A) to a destination location
(e.g., data store 160 for Storage Server-B142B in Machine-B
140B). The migration module 145 can crawl through the
various directory levels in the source location and can identify
file links (e.g., original file name and hard links for alternate
file names) and can migrate the file links to the destination
location. The migration module 145 can duplicate the direc
tories and the directory level hierarchy (e.g., fusers, fusers/
jane, fusers/jane/docs) of the file links in the Source location
in the destination location. Implementations describing the
migration module crawling through the directory level hier
archy to discovery file links in a source location and to dupli
cate the file links and directory level hierarchy in a destination
location are described in greater below in conjunction with
FIG. 3.
The migration module 145 can identify the file links that

correspond to the file data 151A in the source location and can
migrate (173.175,177) the file links that correspond to the file
data 151A to the destination location prior to migrating 171
the actual file data 151A to the destination location. For
example, the migration module 145 can create file names
153B,155B,157B as file links at the destination location.
Implementations describing the migration module identify
ing the file links that correspond to particular file data using a
hard link count are described in greater below in conjunction
with FIG. 3 and FIG. 4. When all of the file links that corre
spond to the file data 151A are migrated, the migration mod
ule 145 can migrate (171) the actual file data 151A to the
destination location (e.g., data store 160 for Storage Server-B
142B). For example, the migration module 145 can create file
data 151B at the destination location.

FIG. 2 is an example system architecture 200 for various
implementations. The system architecture 200 can include a
distributed file system 201 coupled to one or more client
machines 202 via a network 208. The network 208 may be a
public network, a private network, or a combination thereof.
The distributed file system 201 can be a network attached
storage file system that includes one or more machines
240A-B and one or more mass storage devices, such as mag
netic or optical storage based disks 250.260, solid-state drives
(SSDs) or hard drives, coupled to the machines 240A-B via
the network 208. The machines 240A-B can include, and are
not limited to, any data processing device. Such as a desktop
computer, a laptop computer, a mainframe computer, a per
Sonal digital assistant, a server computer, a handheld device
or any other device configured to process data.
The distributed file system 201 can store data as files and

can include directories, which are virtual containers within
the file system 201, in which groups offiles and possibly other
directories can be kept and organized. The machines 240A-B
can include storage servers 242A-B to manage the files and
directories in one or more levels in a directory level hierarchy
for a corresponding storage server 242A-B. For example,
Storage Server-A 242A may store File1 data 251A in data
store 250 and may store multiple file names 253A,255A,
257A as file links that point to the File1 data 251A in various
directory levels in the data store 250. For example,
File1 Namel 257A may be stored in a top-level directory
"/users”. File1 Name2255A may be stored in a sub-directory

10

15

25

30

35

40

45

50

55

60

65

4
“/jane” within"/users', and File1 Name3 253A may be stored
in a sub-directory “/docs” within "/jane'.
One or more client machines 202 can include a file system

client 236 to communicate with the storage servers 242A-B in
the file system 201. Examples of file system clients 236 can
include, and are not limited to, native file system clients and
network file system (NFS) clients. “Native' can describe
Support for specific operating systems. For example, a native
file system client may be, and is not limited to, a file system
client that Supports the Linux operating system. The file sys
tem client 236 can mount the file system 201 via a mount
point to access the data in the file system 201. The client
machines 202 can host one or more applications 234. An
application 234 can be any type of application including, for
example, a web application, a desktop application, a browser
application, etc. An application 234 may request access (e.g.,
read, write, etc.) to the data in the file system 201 via the
mount point and the file system client 236. The client machine
202 may a computing device Such as a server computer, a
desktop computer, a set-top box, a gaming console, a televi
Sion, a portable computing device Such as, and not limited to,
mobile telephones, personal digital assistants (PDAs), por
table media players, netbooks, laptop computers, an elec
tronic book reader and the like.
One or more storage servers 242A-B can include a migra

tion module 245 to migrate (290) file data for multiple files
and file links for the file data from a source location to a
destination location. One implementation of the migration
module 245 migrating file data for multiple files and file links
for the file data is described in greater detail below in con
junction with FIG.3 and FIG. 4. For example, the migration
module 245 can create the file links (e.g., file names 253B,
255B.257B) in data store 260 in a directory level hierarchy
that corresponds to Storage Server-A242A, and can create a
copy of File1 data 251A as File1 data 251B in data store 260.
File names 253B.255B,257B can point to File1 data 251B in
data store 260.
The data stores 250.260 can be a persistent storage unit. A

persistent storage unit can be a local storage unit or a remote
storage unit. Persistent storage units can be a magnetic stor
age unit, optical storage unit, Solid state storage unit, elec
tronic storage units (main memory), or similar storage unit.
Persistent storage units can be a monolithic device or a dis
tributed set of devices. A set, as used herein, refers to any
positive whole number of items.

FIG. 3 is a block diagram of an implementation of a migra
tion module migrating file links (e.g., original file names and
alternative files names for hard links) for decommissioning a
storage server. Storage Server-A 305 hosted by Machine-A
301 may be decommissioned, for example, due to Machine-A
301 and/or Storage Server-A305 being problematic. Storage
Server-A305 can be coupled to data store 307 to storefile data
329,333 and file links using a directory level hierarchy that
has one or more directory levels. For example, there may be a
top-level 309A directory “/users', a sub-level 309B directory
“/jane” within the top-level 309A directory “/users', and a
sub-level 309C directory “/docs” within the sub-level 309B
directory "/jane'.

File1 Data 329 may be accessed by multiple file names,
Such as File1 Namel 311 that is stored in level 309A and
File1 Name2315 that is stored in level 309B. The multiple file
names (e.g., File1 Name 1311 and File1 Name2315) can point
to the same inode (e.g., Inodel 321), which can point to File1
Data 329. An inode is a data structure that can contain infor
mation about a file system object (e.g., file), except for the file
data and file names (e.g., original file name, alternate file
names). The inode (e.g., Inodel 321) can include a link count

US 8,983,908 B2
5

323 that stores a value indicating the number of file links (e.g.,
original file names and alternate file names as hard links) for
particular file data (e.g., File1 Data 329). For example, count
323 may be “2. The inode (e.g., Inodel 321) can include a
pointer to the actual file data (e.g., File1 Data 329).

In another example, File2 Data 333 may be accessed by
multiple file names, such as File2Name 1313 that is stored in
level 309A, File2Name2317 that is stored in level 309B, and
File2Name3319 that is stored in level 309C. The multiple file
names (e.g., File2Namel 313, File2Name2317, File2Name3
319) can point to the same inode (e.g., Inode2325), which can
point to File2 Data 333. Inode2325 can include a link count
327 that stores a value indicating the number of file links (e.g.,
original file names and alternate file names as hard links) for
particular file data (e.g., File2 Data 333). For example, count
327 may be “3”.

Storage Server-A305 can include a migration module 303
to migrate file links and file data from the Source location at
the data store 307 to a destination location, such as, data store
347 that is coupled to Storage Server-B 345 in Machine-B
341. The data stores 307,347 can be mass storage devices,
Such as magnetic or optical storage based disks, Solid-state
drives (SSDs) or hard drives. The migration module 303 can
crawl through various directory levels (e.g., s 309 A-C) in the
directory level hierarchy of the Storage Server-A305 to iden
tify files with multiple file links (e.g., file names) and can
create a pattern of file links in the multiple levels at the
destination location (e.g., data store 347).

For example, the migration module 303 may identify (377)
File1 Namel 311 in level 309A and determine (378) that
count 323 includes a value of '2', which indicates that there
is more than one link to File1 Data 329. A link count that is
greater than one is an indication that the file data has at least
one hard link. The migration module 303 can perform a read
operation on the count323 attribute in the Inodel 321. The “2”
value in the count 323 can represent a link for File1 Name 1
311 and a link for File1 Name2315.
The file data (e.g., File1 Data 329, File2 Data 333) can

include extended attributes that can store information that
describes the file data. For example, the file data can include
a “linkto' 331,335 extended attribute that can indicate the
migration state of the source file data. The linkto attribute can
indicate whether the source file data is associated with a file
migration or not. For example, when the link to 331,335
extended attribute does not store any value, that is an indica
tion that the file data is not associated with a current file
migration. In another example, when the link to 331,335
extended attribute is set to the location of the source file data,
that is an indication that the source file data is associated with
a file migration that is in progress. In another example, the
link to 331,335 extended attribute can be set to store the loca
tion of the destination file data as an indication that the Source
file data is associated with a completed file migration.
The value for the “linkto' 331,335 extended attribute can

be set, for example, by the migration module 303 and can be
read by the migration module 303. For example, after the
migration module 303 determines (378) that count 323 indi
cates that there are multiple file links associated with
File1 Name 1311, the migration module 303 may read the link
to 331 extended attribute in the File1 Data 329, determine that
there is no value in the link to 331 extended attribute, and
determine (379) that File1 Data 339 is not yet associated with
a file migration to the destination location.

The migration module 303 can create (380) File1Namel
351 in a level 349A at the destination location (e.g., data store
347). The level 349A can correspond to level 309A at the
source location. When the migration module 303 creates

10

15

25

30

35

40

45

50

55

60

65

6
File1 Namel 351, the Storage Server-B 345 can create an
inode (e.g., Inodel 361), which File1 Namel 351 points to.
The Inodel 361 can include a link count 363, which may be
currently set to “1” to indicate the link for File1 Namel 351 at
the destination location. The migration module 303 can set
(381) the linkto extended attribute 331 for File1 Data 329 to
the source location (e.g., location of data store 307 for Storage
Server-A) to indicate that File-1 Data 329 is now associated
with a file migration. Subsequently, when the migration mod
ule 303 identifies file names that point to File1 Data 329, the
migration module 303 can quickly determine that the file
name is associated with a file migration, and that a corre
sponding inode for File1 Data 329 already exists at the des
tination location. The migration module 303 can migrate all
of the file links for File1 Data 329 to the destination location
first, and then can migrate the actual file data for File1 Data
329 after all of the file links for File1 Data 329 have been
Successfully migrated, as described in greater detail below.
The migration module 303 can determine (382) that count

323 at the source location does not match count 363 at the
destination location, which indicates that not all of the file
links for File1 Data 329 have yet been migrated to the desti
nation location. For example, the count 323 may be '2' to
reflect File1 Name 1311 in level 309A and File1 Name2315 in
level 309B, and the count 363 at the destination location may
be “1” to reflect the File1 Name 1 351 in level 349A at the
destination location.

Since the counts 323,363 do not match, the migration mod
ule 303 can continue to search (383) for another file name that
is associated with multiple file names in the data store 307.
The migration module 303 can continue to search in the
current directory level (e.g., level 309A). For example, the
migration module 303 may identify (384) File2Namel 313,
which points to File2 Data 333, in level 309, and can deter
mine (385) that count327 includes a value of"3", to represent
the file links for File2Name 1313 in level 309A, File2Name2
317 in level 309B, and File1 Name3 319 in level 309C. The
migration module 303 can perform a read operation on the
count 327 attribute in the Inode2 325.

Since File2Namel 313 is associated with a link count 327
that is greater than “1”, the migration module 303 can read the
linkto 335 extended attribute for File2 Data 333 and may
determine(386) that there is no value in the link to 335
extended attribute, which indicates that File2 Data 333 is not
yet associated with a file migration. The migration module
303 can create (387) File2Namel 353 in a level 349A at the
destination location (e.g., data store 347) and an inode (e.g.,
Inode2365), which File2Namel 353 points to. The Inode2
365 can include a link count 367, which may be currently set
to “1” to indicate the link for File2Namel 353 at the destina
tion location.
The migration module 303 can set (388) the linkto

extended attribute 335 for File2 Data 333 to the Source loca
tion (e.g., location of data store 307 for Storage Server-A) to
indicate that File-2 Data 333 is now associated with a file
migration. Subsequently, when the migration module 303
identifies file names that point to File2 Data 333, the migra
tion module 303 can quickly determine that the file name is
associated with a file migration, and that a corresponding
inode for File2 Data 333 already exists at the destination
location.
The migration module 303 can determine (389) that count

327 at the source location does not match count 367 at the
destination location, which indicates that not all of the file
links for File2 Data 333 have yet been migrated to the desti
nation location. For example, the count 327 may be “3’ to
reflect File2Namel 313 in level 309A, File2Name2 317 in

US 8,983,908 B2
7

level 309B, and File2Name3 319 in level 309C, and the count
367 at the destination location may currently be “1” to reflect
the File2Name 1353 in level 349A at the destination location.

Since the counts 327,367 do not match, the migration mod
ule 303 can continue to search (390) for another file link (e.g.,
file name) that is associated with multiple file links in the data
store 307. The migration module 303 can continue to search
in the current directory level or a next directory level. For
example, the migration module 303 may identify (391)
File1 Name2315 in the next directory level (e.g., level309B),
which points to File1 Data 329, and can determine (392) from
count 323 that there is more than one file link for File1 Data
329, which indicates that File1 Data 329 has at least one hard
link.

Since File1 Name2315 is associated with a link count 323
that is greater than “1”, the migration module 303 can read the
link to 335 extended attribute for File1 Data 329 and may
determine (393) that the linkto 335 extended attribute is set to
the source location, which indicates that File1 Data 329 is
already associated with a file migration to the destination
location, and that the corresponding inode for File1 Data 329
is already created at the destination location. The migration
module 303 can create File1 Name2355 in level 349B at the
destination location as a hard link that points to Inodel 361 for
File1 Data 369 at the destination location. The count 363 can
be incremented by one to reflect File1 Name2 355 in level
349B. For example, count 363 may be incremented from “1”
to “2.

The migration module 303 can determine (395) the count
323 value of '2' at the source location now matches the count
367 value of '2' at the destination location, which indicates
that all of the file links for File1 Data 329 have been migrated
to the destination location. Since the counts 323,363 match,
the migration module 303 can migrate (396) the actual File 1
Data 329 to the destination location as Filel Data 369 in data
store 347 for Machine-B341. The migration module 303 can
create a copy of File1 Data 329 as File1 Data 369 at the
destination location. The copy is hereinafter referred to as the
migrated file or migrated file data. The migration module 303
can set the linkto 331 extended attribute for File1 Data 329 at
the source location to the destination location to change the
migration state for File1 Data 329 to indicate that the migra
tion for File1 Data 329 is complete. With the link to 331
extended attribute now set to the destination location, opera
tions (e.g., read, write, etc.) can now be directed to and per
formed on the migrated file data at the destination location.
The migration module 303 can continue to migrate file links
to the destination location and file data to the destination
location for the various file names in the directory levels.

FIG. 4 is a flow diagram illustrating an implementation for
a method for migrating file links for decommissioning a stor
age server. Method 400 can be performed by processing logic
that can comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), software (e.g., instruc
tions run on a processing device), or a combination thereof. In
one implementation, method 400 is performed by a migration
module 145 in a storage server 142A in a machine 140A of
FIG 1.
At block 401, the server receives input to start a file migra

tion process. The input can be user (e.g., system administra
tor) input. At block 403, the server identifies a first directory
level to search for file data that is associated with multiple file
links. The directory level is in the directory level hierarchy of
the server that is to be decommissioned. For example, the first
directory level may be a top-level directory. The input may be
user (e.g., system administrator) input received via a user
interface that is coupled to the migration module in the server.

10

15

25

30

35

40

45

50

55

60

65

8
The user interface may be a graphical user interface, a com
mand line interface, etc. The server may identify a level in the
directory level hierarchy of the server using configuration
data that is stored in a data store that is coupled to the migra
tion module. For example, the configuration data may specify
a file path and/or Volume name which the server may use to
identify a directory and/or directory level to start searching
for file data of files that are associated with multiple file links.
The configuration data may be user (e.g., system administra
tor) defined. For example, the server may identify that a
top-level directory “/users” in the directory level hierarchy
should be searched for file data for files that are associated
with multiple file links.
At block 404, the server determines whether file data of a

file is associated with multiple file links (e.g., original file
name and one or more alternate file names as hard links) in the
current directory level. The server may read a link count in an
inode that corresponds to a file name for file data to determine
whether the file data is associated with multiple file links. If
the link count is not greater than one (block 405), the server
determines that the file data is not associated with any hard
links at creates and storestracking data to identify the file data
for one or more files in the directory level hierarchy that are
not associated with hard links at block 406. In one implemen
tation, as an optimization of resources, the server can first
migrate file data for the files that are associated with hard
links and can use the tracking data to Subsequently migrate
file data for the files that are not associated with hard links.

If the link count is greater than one (block 405), the server
determines that the file data for the file is associated with at
least one hard link, and the server determines the migration
state associated with the file link (e.g., file name) and deter
mines whether the file name is associated with a file migration
or not at block 407. For example, the server may read a linkto
extended attribute in the file data. If the linkto attribute is set
to the source location (block 407), the server determines that
the file name is associated with a file migration and migrates
the file name to the destination location at block 409. The
server can migrate the file name to the destination location by
creating a hard link, which corresponds to the file name, at the
destination location at block 409. The server can execute a
command to create the hard link and to configure the hard link
to point to the location of the file. For example, in Linux, the
command may be “link (<path of original file>, <path of hard
links)'. The server can create the hard link in a corresponding
directory level at the destination location. The link count that
is associated with the file name at the destination location can
be incremented.

If the linkto attribute is not set to the source location (block
407), the server migrates the file name to the destination
location at block 411. The server can migrate the file name to
the destination location by creating the file name and an inode
at the destination location. The server can create the file name
in a directory level at the destination location that corresponds
to the directory level at the source location. The file name can
point to the inode at the destination location. The inode at the
destination location can include a link count, which may be
set at “1” to represent the newly created file name at the
destination location.
At block 413, the server sets the value for an extended

attribute (e.g., link to extended attribute) in the source file data
to the source location to change the migration state to indicate
that the Source file data is now associated with a file migra
tion. Subsequently, when the server identifies any file names
that may be associated with this particular source file data, the
server can identify that the file name is associated with a file
migration and that the corresponding inode for the source file

US 8,983,908 B2
9

data is already created at the destination location. At block
415, the server determines whether there is another file link
(e.g., file name) in the current directory level. If there is
another file link (e.g., file name) in the current directory level,
the server returns to block 405 to identify a file link (e.g., file
name) that is associated with multiple file links. If there is not
another file link (e.g., file name) in the current directory level
(block 415), the server determines whether the link count for
the destination file data matches the link count for the source
file data at block 417. If the link count does not match, the
server returns to block 403 to identify a next directory level in
the directory level hierarchy for the server. For example, the
server identifies a sub-directory"/jane' in the top-level direc
tory “/users”.

If the link count for the file data at the destination location
matches the link count for the file data at the source location,
the server migrates the Source file data to the destination
location at block 419. The server can create a copy of the
source file data at the destination location. The copy of file
data at the destination location becomes the migrated file
data. At block 421, the server sets the extended attributed
(e.g., link to extended attribute) at the source file data to the
destination location to change the migration state for the
Source file data to indicate that the migration is complete.
Operations (e.g., read, write, etc.) for the source file data can
be redirected to and performed on the migrated data at the
destination location. The server can iterate through at least a
portion of method 400. The number of iterations can be based
on the number of file names, file data, and/or directory levels
for the server.

FIG. 5 illustrates an example machine of a computer sys
tem 500 within which a set of instructions, for causing the
machine to perform any one or more of the methodologies
discussed herein, may be executed. In alternative implemen
tations, the machine may be connected (e.g., networked) to
other machines in a LAN, an intranet, an extranet, and/or the
Internet. The machine may operate in the capacity of a server
or a client machine in client-server network environment, or
as a peer machine in a peer-to-peer (or distributed) network
environment.
The machine may be apersonal computer (PC), a tablet PC,

a set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, a Switch or bridge, or any machine capable of execut
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while a single
machine is illustrated, the term “machine' shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per
formany one or more of the methodologies discussed herein.
The example computer system 500 includes a processing

device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor
age device 518, which communicate with each other via abus
S30.

Processing device 502 represents one or more general
purpose processing devices such as a microprocessor, a cen
tral processing unit, or the like. More particularly, the pro
cessing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 502 may also be one or more special

10

15

25

30

35

40

45

50

55

60

65

10
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device 502 is configured to execute
instructions 522 for performing the operations and steps dis
cussed herein.
The computer system 500 may further include a network

interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).
The data storage device 518 may include a machine-read

able storage medium 528 (also known as a computer-readable
medium) on which is stored one or more sets of instructions or
software 522 embodying any one or more of the methodolo
gies or functions described herein. The instructions 522 may
also reside, completely or at least partially, within the main
memory 504 and/or within the processing device 502 during
execution thereof by the computer system 500, the main
memory 504 and the processing device 502 also constituting
machine-readable storage media.

In one implementation, the instructions 522 include
instructions for a migration module (e.g., migration module
303 of FIG. 3) and/or a software library containing methods
that call modules in a migration module. While the machine
readable storage medium 528 is shown in an example imple
mentation to be a single medium, the term “machine-readable
storage medium’ should be taken to include a single medium
or multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable stor
age medium’ shall also be taken to include any medium that
is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
performany one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium’
shall accordingly be taken to include, but not be limited to,
Solid-state memories, optical media and magnetic media.
Some portions of the preceding detailed descriptions have

been presented in terms of algorithms and symbolic repre
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec
trical or magnetic signals capable of being stored, combined,
compared, and otherwise manipulated. It has proven conve
nient at times, principally for reasons of common usage, to
refer to these signals as bits, values, elements, symbols, char
acters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “identifying or “migrating or “creating or “setting or
the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu
lates and transforms data represented as physical (electronic)
quantities within the computer system's registers and memo

US 8,983,908 B2
11

ries into other data similarly represented as physical quanti
ties within the computer system memories or registers or
other such information storage devices.
The present disclosure also relates to an apparatus for

performing the operations herein. This apparatus may be
specially constructed for the intended purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, Such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented hereinare not inher
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per
form the method. The structure for a variety of these systems
will appear as set forth in the description below. In addition,
the present disclosure is not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple
ment the teachings of the disclosure as described herein.
The present disclosure may be provided as a computer

program product, or software, that may include a machine
readable medium having Stored thereon instructions, which
may be used to program a computer system (or other elec
tronic devices) to perform a process according to the present
disclosure. A machine-readable medium includes any mecha
nism for storing information in a form readable by a machine
(e.g., a computer). For example, a machine-readable (e.g.,
computer-readable) medium includes a machine (e.g., a com
puter) readable storage medium such as a read only memory
(“ROM), random access memory (“RAM), magnetic disk
storage media, optical storage media, flash memory devices,
etc.

In the foregoing specification, implementations of the dis
closure have been described with reference to specific
example implementations thereof. It will be evident that vari
ous modifications may be made thereto without departing
from the broader spirit and scope of implementations of the
disclosure as set forth in the following claims. The specifica
tion and drawings are, accordingly, to be regarded in an illus
trative sense rather than a restrictive sense.

What is claimed is:
1. A method, comprising:
identifying, by a processing device, a first file link refer

encing a file residing at a first computer system;
identifying, at the first computer system, a first data struc

ture referenced by the first file link, the first data struc
ture comprising information about the file, the informa
tion including a first link count and excluding file data
and file names;

responsive to determining that an extended attribute of the
first data structure indicates that the file is associated
with a current migration operation, creating a second
data structure at a second computer system, wherein the
second data structure comprises information about the
file including a second link count and excluding file data
and file names;

creating a second file link to reference the second data
structure at the second computer system; and

5

10

15

25

30

35

40

45

50

55

60

65

12
responsive to determining that the first link count matches

the second link count, migrating file data referenced by
the first data structure to the second computer system
and modifying the extended attribute to indicate that the
migration operation has been completed.

2. The method of claim 1, wherein the first file link is
provided by one of: a name of the file or a hard link referenc
ing the file.

3. The method of claim 1, wherein the second file link is
provided by one of: a name of the file or a hard link referenc
ing the file.

4. The method of claim 1, wherein at least one of the first
data structure and the second data structure is provided by an
inode.

5. The method of claim 1, wherein identifying the first file
link comprises crawling through one or more directory levels.

6. The method of claim 1, further comprising:
responsive to determining that the first link count does not

match the second link count, identifying a third file link
referencing the file.

7. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
device, cause the processing device to perform operations
comprising:

identifying, by the processing device, a first file link refer
encing a file residing at a first computer system;

identifying, at the first computer system, a first data struc
ture referenced by the first file link, the first data struc
ture comprising information about the file, the informa
tion including a first link count and excluding file data
and file names;

responsive to determining that an extended attribute of the
first data structure indicates that the file is associated
with a current migration operation, creating a second
data structure at a second computer system, the second
data structure corresponding to the first data structure,
wherein the second data structure comprises informa
tion about the file including a second link count and
excluding file data and file names;

creating a second file link to reference the second data
structure at the second computer system; and

responsive to determining that the first link count matches
the second link count, migrating file data referenced by
the first data structure to the second computer system
and modifying the extended attribute to indicate that the
migration operation has been completed.

8. The non-transitory computer-readable storage medium
of claim 7, wherein the first file link is provided by one of a
name of the file or a hard link referencing the file.

9. The non-transitory computer-readable storage medium
of claim 7, wherein the second file link is provided by one of:
a name of the file or a hard link referencing the file.

10. The non-transitory computer-readable storage medium
of claim 7, wherein at least one of the first data structure and
the second data structure is provided by an inode.

11. The non-transitory computer-readable storage medium
of claim 7, wherein identifying the first file link comprises
crawling through one or more directory levels.

12. The non-transitory computer-readable storage medium
of claim 7, further comprising executable instructions caus
ing the processing device to perform operations comprising:

responsive to determining that the first link count does not
match the second link count, identifying a third file link
referencing the file.

US 8,983,908 B2
13 14

13. A system comprising: responsive to determining that the first link count
a memory; and matches the second link count, migrate file data ref
a processing device coupled to the memory, the processing erenced by the first data structure to the second com

device to: puter system and modify the extended attribute to
identify a first file link referencing a file residing at a first 5 indicate that the migration operation has been com

computer system;

identistsE".REE", "S.A., 14. The system of claim 13, wherein the first file link is
provided by one of: a name of the file or a hard link referenc

pleted.

structure comprising information about the file, the
information including a first link count and excluding ing the file.
file data and file names; 15. The system of claim 13, wherein the second file link is

responsive to determining that an extended attribute of provided by one of: a name of the file or a hard link referenc
the first data structure indicates that the file is associ- ing the file.
ated with a current migration operation, create a sec
ond data structure at a second computer system, the
second data structure corresponding to the first data
structure, wherein the second data structure com
prises information about the file including a second
link count and excluding file data and file names;

create a second file link to reference the second data
structure at the second computer system; and k

16. The system of claim 13, wherein at least one of the first
is data structure and the second data structure is provided by an

inode.

17. The system of claim 13, wherein identifying the set of
file links comprises crawling through one or more directory
levels.

