20147003707 A2 I 000 0 1010 A 0 A 0

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/003707 A2

(51

eay)

(22)

(25)
(26)
1

(72)
(73)

74

31

3 January 2014 (03.01.2014) WIPOIPCT
International Patent Classification:
GO6F 12/16 (2006.01)
International Application Number:
PCT/US2012/043995

International Filing Date:
25 June 2012 (25.06.2012)

English
Publication Language: English

Applicant (for all designated States except US): EMPIRE
TECHNOLOGY DEVELOPMENT LLC [US/US];
2711 Centerville Road, Suite 400, Wilmington, DE 19808
(US).

Inventor; and
Inventor/Applicant (for US only): SOLIHIN, Yan
[US/US]; 2006 Red Deer Ct., Apex, NC 27502 (US).

Agent:. WONG, Steven Koon, Hon; Hope Baldauff Hart-
man, LLC, 1720 Peachtree Street, N.W., Suite 1010, At-
lanta, GA 30309 (US).

Filing Language:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: HARDWARE-BASED ACCELERATOR FOR MANAGING COPY-ON-WRITE

02 Y42

FROM L1 CACHE — ORIGINAL ADDRESS

HARDWARE-BASED ACCELERATOR 100

_PGINDEX 132 __PGOFFSET 146 _ BLKOFFSET 148

MIRROR TABLE 114

LAZY COPY TABLE 108

118A 1188 110A ol 110C

1100

uﬁsu

-3
i
131
i

R
i
R
i

156 1 174

72
4

1044

Fig. 1

164-4

,,,,,,,,,,,, h
TOL2CACHE «—— NEW ADDRESS| | INDEX :} TAG | !

PG INDEX 166 PGOFFSET 168 BLKOFFSET 170

(57) Abstract: Technologies are described herein for providing a hardware-based accelerator adapted to manage copy-on- write.
Some example technologies may identify a read request adapted to read a block at an original memory address. The technologies
may utilize the hardware-based accelerator to determine whether the block is located at the original memory address. When a de -
termination is made that the block is located in at the original memory address, the technologies may utilize the hardware-based ac -
celerator to pass the original memory address so that the read request can be performed utilizing the original memory address. When
a determination is made that the block is not located in the memory at the original memory address, the technologies may utilize the
hardware-based accelerator to generate a new memory address and to pass the new memory address so that the read request can be
performed utilizing the new memory address.

WO 2014/003707 PCT/US2012/043995

HARDWARE-BASED ACCELERATOR FOR MANAGING
COPY-ON-WRITE

BACKGROUND

[0001] Unless otherwise indicated herein, the materials described in this
section are not prior art to the claims in this application and are not admitted to be
prior art by inclusion in this section.

[0002] Copy-on-write (“COW?”) can be understood as a memory optimization
technique that is commonly performed in computer systems. COW can be performed
by an operating system (“OS”) in a non-virtual environment or by a hypervisor in a
virtual environment. In an example implementation of COW, a parent process may
create a child process via a fork OS call. When the child process is created, an OS
may cause the parent process to share its pages with the child process, rather than
create a separate copy of the parent process’s pages for the child process. The OS
may also impose write protection on the shared pages.

[0003] When either the parent process or the child process writes to a shared
page, the write protection may cause the OS to raise a write protection exception. In
response to the write protection exception, the OS may allocate a child process’s page
and copy contents of the parent process’s page to the child process’s page. For
example, the OS may execute a loop of load and store operations adapted to copy
cach word from the parent process’s page to the child process’s page. The OS may
then turn off the write protection on the shared page and return from the exception.
[0004] Conventional COW mechanisms suffer from various drawbacks. First,
conventional COW mechanisms may involve a central processing unit (“CPU”),
thereby occupying the CPU from performing other operations. In particular, the OS
may instruct the CPU to copy data from the parent process’s page to the child
process’s page using, for example, the loop of load and store operations. Second,
conventional COW mechanisms may result in superfluous copying. In particular, the
OS may instruct the CPU to copy each byte or word from the parent process’s page to
the child process’s page, even though the parent process’s page and the child
process’s page may differ by only a few bytes or words. Third, conventional COW
mechanisms may result in cache inefficiency. In particular, during the copy process,
the parent process’s page and the child process’s page may be brought into the cache,

regardless of whether the data is needed by the CPU. Fourth, conventional COW

WO 2014/003707 PCT/US2012/043995

mechanisms may not be scalable for future computing systems that implement larger
page sizes. In particular, because conventional COW mechanisms copy entire pages,
larger page sizes may worsen the other drawbacks described above, thereby making

such COW mechanisms prohibitively expensive.

SUMMARY
[0005] The present disclosure generally describes techniques for providing a
hardware-based accelerator adapted to manage copy-on-write (“COW?”) in a memory
of a computer. Some example methods may identify a read request adapted to read a
block in the memory at an original memory address. Example methods may utilize
the hardware-based accelerator to determine whether the block is located in the
memory at the original memory address. When the hardware-based accelerator
determines that the block is located in the memory at the original memory address,
example methods may utilize the hardware-based accelerator to pass the original
memory address to a processor of the computer. The processor may be adapted to
perform the read request utilizing the original memory address. When the hardware-
based accelerator determines that the block is not located in the memory at the
original memory address, example methods may utilize the hardware-based
accelerator to generate a new memory address and to pass the new memory address to
the processor of the computer. The processor may be adapted to perform the read
request utilizing the new memory address.
[0006] The present disclosure generally further describes some COW
accelerators configured to be implemented on a computer. The COW accelerator may
include a lazy copy table and a COW module coupled to the lazy copy table. The
COW module may be configured to perform one or more operations. The module
may be configured to identify a read request adapted to read a block in a memory of
the computer at an original memory address. The module may be configured to
determine whether the block is located in the memory at the original memory address
utilizing the lazy copy table. The module may be configured to pass the original
memory address to a processor of the computer, when the block is determined to be
located in the memory at the original memory address. The processor may be adapted
to perform the read request utilizing the original memory address. The module may
be configured to generate a new memory address and pass the new memory address to

the processor of the computer, when the block is determined to not be located in the

WO 2014/003707 PCT/US2012/043995

memory at the original memory address. The processor may be adapted to perform
the read request utilizing the new memory address.

[0007] The present disclosure generally also describes some computing
systems adapted to implement COW. The computing system may include a multicore
processor and a COW accelerator. The multicore processor may include a processor
core and a cache memory coupled to the processor core. The COW accelerator may
be coupled to the cache memory. The COW accelerator may include a lazy copy
table and a COW module coupled to the lazy copy table. The module may be
configured to perform one or more operations. The module may be configured to
identify a read request adapted to read a block in the cache memory at an original
memory address. The module may be configured to determine whether the block is
located in the cache memory at the original memory address utilizing the lazy copy
table. The module may be configured to pass the original memory address to the
processor core, when the block is determined to be located in the cache memory at the
original memory address. The processor core may be adapted to perform the read
request utilizing the original memory address. The module may be configured to
generate a new memory address and pass the new memory address to the processor
core, when the block is determined to not be located in the cache memory at the
original memory address. The processor core may be adapted to perform the read
request utilizing the new memory address.

[0008] The foregoing Summary is illustrative only and is not intended to be in
any way limiting. In addition to the illustrative aspects, embodiments, and features
described above, further aspects, embodiments, and features will become apparent by

reference to the Figures and the following Detailed Description.

DESCRIPTION OF THE FIGURES

[0009] The foregoing and other features of this disclosure will become more
fully apparent from the following Detailed Description, accompanying Figures, and
appended claims. Understanding that these Figures depict only several embodiments
in accordance with the disclosure and are, therefore, not to be considered limiting of
its scope, the disclosure will be described with additional specificity and detail with
reference to the accompanying Figures, in which:

FIG. 1 is a diagram illustrating an example architecture of a hardware-

based accelerator adapted to perform copy-on-write operations;

WO 2014/003707 PCT/US2012/043995

FIG. 2 is a diagram is a diagram illustrating an example architecture of
a lazy copy table adapted to implement multiple levels to represent a large page;

FIG. 3 is a flow diagram illustrating an example process adapted to
provide a hardware-based accelerator adapted to manage copy-on-write;

FIG. 4 is a flow diagram illustrating an example process adapted to
provide a hardware-based accelerator adapted to manage copy-on-write;

FIG. 5 is a block diagram illustrating a computer hardware architecture
for an example computing system; and

FIG. 6 is a schematic diagram illustrating a computer program product

that includes a computer program for executing a computer process on a computing

device;
all arranged in accordance with at least some embodiments presented
herein.
DETAILED DESCRIPTION
[0010] In the present Detailed Description, reference is made to the

accompanying Figures, which form a part hereof. In the Figures, similar symbols
typically identify similar components, unless context dictates otherwise. The
illustrative embodiments described in the Detailed Description and Figures are not
meant to be limiting. Other embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the subject matter presented
herein. It will be readily understood that the aspects of the present disclosure, as
generally described herein, and illustrated in the Figures, can be arranged, substituted,
combined, separated, and designed in a wide variety of different configurations, all of
which are explicitly contemplated herein.

[0011] This disclosure is generally drawn, inter alia, to a hardware-based
accelerator configured to perform COW operations. The hardware-based accelerator
may be configured to perform COW operations in a manner that is transparent to
software, such as the OS in a non-virtual environment or a hypervisor in a virtual
environment. The hardware-based accelerator may be integrated in a cache,
according to various embodiments.

[0012] When the OS copies a source page to a destination page (e.g., via a
fork OS call), the hardware-based accelerator may be configured to perform a “lazy

copy” implementation of COW. In lazy copy, a write to a block in either the source

WO 2014/003707 PCT/US2012/043995

page or the destination page does not cause the entire contents of the source page to
be copied to the destination page. Rather, the hardware-based accelerator may be
configured to copy only the requested block from the source page to the destination
page. The hardware-based accelerator may be configured to maintain a COW status
that keeps track of the blocks that have been and have not been copied between the
source page and the destination page.

[0013] When a process attempts to read a block in the destination page, the
hardware-based accelerator may be configured to evaluate the COW status. If the
COW status indicates that the corresponding block in the source page has not been
copied, then the hardware-based accelerator may be configured to divert the read
access to the source page. If the COW status indicates that the corresponding block in
the source page has been copied, then the hardware-based accelerator may be
configured to allow the read access to the block in the destination page.

[0014] When a process attempts to write to a block in the source page or the
destination page, the hardware-based accelerator may be configured to evaluate the
COW status. If the COW status indicates that the block has been copied, then the
hardware-based accelerator may be configured to allow write access to the block in
the source page or the destination page. If the COW status indicates that the block
has not been copied, then the hardware-based accelerator may be configured to trigger
a COW at the block level. More specifically, the hardware-based accelerator may be
configured to copy the appropriate block from the source page to the destination page.
The hardware-based accelerator may be configured to update the COW status in order
to indicate that the block has been copied. When the COW status has been updated,
the hardware-based accelerator may be configured to allow the write to the block in
cither the original page or the destination page.

[0015] The hardware-based accelerator addresses various drawbacks found in
conventional COW mechanisms. First, use of the hardware-based accelerator may
offload page copying from the CPU to the hardware-based accelerator. The
hardware-based accelerator may be a dedicated device optimized to perform COW
operations very efficiently. Further, by offloading page copying from the CPU, the
CPU may be available to perform other tasks. Second, by copying data at a block-
level granularity, the hardware-based accelerator may avoid unnecessarily copying
from the source page to the destination page blocks that are not modified. Third, by

copying data at a block-level granularity, only those blocks that are written by a

WO 2014/003707 PCT/US2012/043995

process may be brought into the cache due to temporal locality. Fourth, by copying
data at a block-level granularity, effectiveness of the hardware-based accelerator can
be maintained even as the page size increases.

[0016] FIG. 1 is a diagram illustrating an example architecture of a hardware-
based accelerator 100 adapted to perform COW operations, arranged in accordance
with at least some embodiments presented herein. The operation of the hardware-
based accelerator 100 may be transparent to the OS. COW operations that are
conventionally performed by the OS (via the CPU) may be offloaded to the hardware-
based accelerator 100. The hardware-based accelerator 100 may be a dedicated
device optimized to perform COW operations very efficiently. The hardware-based
accelerator 100 may be integrated in a cache, according to various embodiments. As
illustrated in FIG. 1, the hardware-based accelerator may be communicatively
coupled to an L1 cache 102 and integrated into an L2 cache 104. In other
embodiments, the hardware-based accelerator may be integrated in other cache levels,
such as an L1 cache or an L3 cache. For example, when the hardware-based
accelerator 100 is integrated into the L2 cache 104, the hardware-based accelerator
100 may be configured to intercept L1 cache miss, write through, and state upgrade
requests, along with physical addresses corresponding to the requests.

[0017] The hardware-based accelerator 100 may include a lazy copy table
(“LCT”) 106. The LCT 106 may include multiple records (represented as rows in the
LCT 106), such as a record 108. The LCT 106 may also include multiple columns,
such as a tag column 110A, a source page index column 110B, a COW status column
110C, or a level column 110D. The LCT 106 may further include multiple entries,
cach of which corresponds to one of the records and one of the columns 110A-110D.
For example, the record 108 may include a first entry 112A corresponding to the tag
column 110A, a second entry 112B corresponding to the source page index column
110B, a third entry 112C corresponding to the COW status column 110C, and a fourth
entry 112D corresponding to the level column 110D. Each record in the LCT 106
may also be indexed by a corresponding index value. For example, successive
records in the LCT 106 may correspond to successive incremental index values.
[0018] The hardware-based accelerator 100 may also include a mirror table
114. The mirror table 114 may include multiple records (represented as rows in the
mirror table 114, such as a record 116). The mirror table 114 may also include

multiple columns, such as a tag column 118A or a destination page index column

WO 2014/003707 PCT/US2012/043995

118B. The mirror table 114 may further include multiple entries, each of which
corresponds to one of the records and one of the columns 118A-118B. For example,
the record 116 may include a first entry 120A corresponding to the tag column 118A
and a second entry 120B corresponding to the destination page index column 118B.
The hardware-based accelerator 100 may further include a binary-to-bitmap converter
122, a first comparator 124, a second comparator 126, and a multiplexer 128.

[0019] Each record in the LCT 106 may correspond to a destination page,
which is further associated with a source page. For example, the record 108 may
correspond to a source page that is located at a source page index 130 and a
destination page that is located at a destination page index 132. The destination page
index 132 may include an index portion 134 and a remaining tag portion 136. In
particular, the record 108 may be indexed by the index portion 134. The tag portion
136 may be stored in the first entry 112A. The source page index 130 may be stored
in the second entry 112B.

[0020] A COW status array 138 may be stored in the third entry 112C. A
level value 140 may be stored in the fourth entry 112D. The COW status array 138
may include multiple status identifiers. In some embodiments, a quantity of status
identifiers in the COW status array 138 may equal a quantity of blocks in the source
page or the destination page. Each status identifier in the COW status array 138 may
correspond to a particular block in the source page and indicate that either the block in
the source page has been copied or the block in the source page has not been copied.
In some embodiments and as illustrated in FIG. 1, the status identifiers may be status
bits. For example, a status bit value of zero may indicate that a corresponding block
in the source page has not been copied, while a status bit value of one may indicate
that the corresponding block in the source page has been copied.

[0021] In some other embodiments, a quantity of status identifiers in the
COW status array 138 may be less than a quantity of blocks in the source page or the
destination page. The level value 140 may be utilized to specify multiple records that
can be utilized to represent a large page that includes a quantity of blocks greater than
a quantity of status identifiers in the COW status array 138. At a higher level above a
first level, the corresponding record may include a COW status array where each
status identifier corresponds to a particular region, rather than a particular block, in
the source page. One or more of the regions may include two or more blocks. At the

first level, the corresponding record may include a COW status array like the COW

WO 2014/003707 PCT/US2012/043995

status array 138 where cach status identifier corresponds to a particular block in the
source page. The hardware-based accelerator 100 may be configured to access a
particular block in a large page by recursively evaluating each level starting with the
highest level and ending at the first level that corresponds to the block. Additional
details regarding the level value 140 are provided below with reference to FIG. 2.
[0022] In lazy copying, the hardware-based accelerator 100 may be
configured to perform copy-on-write on only those blocks of a given page (rather than
the entire page itself) that are written by a process. As a result, when a read request is
directed a memory address of a destination page, the hardware-based accelerator 100
may effectively allow the read request to retrieve a requested block from the memory
address of the destination page if the LCT 106 does not contain a relevant record or a
corresponding block in a source page has not been copied. However, if the LCT 106
contains a relevant record and the corresponding block in the source page has been
copied, then the hardware-based accelerator 100 may effectively redirect the read
request from the memory address of the destination page to a memory address of the
source page.

[0023] In an illustrative example of a read request, the L1 cache 102 may
suffer a cache miss of a block at a particular memory address corresponding to the
read request. For purposes of this example, the memory address corresponding to the
read request may be referred to as an original memory address 142. The original
memory address 142 may correspond to a destination page. As a result of the cache
miss, the hardware-based accelerator 100 may be configured to intercept the read
request including the original memory address 142 from the L1 cache 102. The
original memory address 142 may include three adjacent portions: the destination
page index 132, a page offset 146, and a block offset 148. For example, for a four-
kilobyte (4KB) page and a sixty-four-byte (64B) block size implemented on a sixty-
four-bit (64b) address space, the page index, the page offset, and the block offset may
be fifty-two bits (52b), six bits (6b), and six bits (6b), respectively. As previously
described, the destination page index 132 may include the index portion 134 and he
tag portion 136.

[0024] The multiplexer 128 may be configured to receive the source page
index 130 as a first input 154 and the destination page index 132 as a second input
156. The multiplexer 128 may be configured further to receive a result of the first

comparator 124 as a first selector input 158 and a result of the second comparator 126

WO 2014/003707 PCT/US2012/043995

as a second selector input 160. The multiplexer 128 may be configured to produce an
output 162 of ecither the source page index 130 (i.e., the first input 154) or the
destination page index 132 (i.e., the second input 156) based on a value of at least one
of the two selector inputs 158, 160.

[0025] The hardware-based accelerator 100 may be configured to generate a
new memory address 164 based, at least in part, on the original memory address 142.
The new memory address 164 may include three adjacent portions: a page index 166,
a page offset 168, and a block offset 170. The hardware-based accelerator 100 may
be configured to pass the new memory address 164 (along with the read request) to
the L2 cache 104. The L2 cache 104 may attempt to retrieve the data at the new
memory address 164 in accordance with the read request.

[0026] As illustrated in FIG. 1, the page offset 146 may form the page offset
168 as indicated by arrow 172, and the block offset 148 may form the block offset
170 as indicated by arrow 174. The page index 166 may be either the source page
index 130 from LCT 106 or the destination page index 132 from the original memory
address 142 depending on the output 162 of the multiplexer 128. If the hardware-
based accelerator 100 determines that data can be found at the original memory
address 142, then the multiplexer 128 may be configured to output the destination
page index 132. That is, if the hardware-based accelerator 100 determines that the
data can be found at the original memory address 142, then the hardware-based
accelerator 100 may be configured to effectively pass the memory address of the
destination page (i.c., the original memory address 142) to the L2 cache 104. If the
hardware-based accelerator 100 determines that data cannot be found at the original
memory address 142, then the multiplexer 128 may be configured to output the source
page index 130. That is, if the hardware-based accelerator 100 determines that the
data cannot be found at the original memory address 142, then the hardware-based
accelerator 100 may be configured to effectively pass the memory address of the
source page to the L2 cache 104.

[0027] As previously described, the record 108 may be indexed by the index
portion 134 of the destination page index 132. As a result, the first comparator 124
may receive as inputs the tag portion stored in the first entry 112A and the tag portion
136 from the destination page index 132. The first comparator 124 may be
configured to compare the tag portion stored in the first entry 112A and the tag
portion 136. If the tag portion stored in the first entry 112A and the tag portion 136

WO 2014/003707 PCT/US2012/043995

do not match, then the first comparator 124 may be configured to output a first signal
as the first selector input 158. If the tag portion stored in the first entry 112A and the
tag portion 136 match, then the first comparator 124 may be configured to output a
second signal as the first selector input 158. In the example illustrated in FIG. 1, the
tag portion stored in the first entry 112A matches the tag portion 136.

[0028] The binary-to-bitmap converter 122 may be configured to receive the
page offset 146 of the original memory address 142. The page offset 146 may be a
binary value. The page offset 146 may identify the specific block that is being
requested in the destination page. The binary-to-bitmap converter 122 may be
configured to generate a bitmap 176 that includes a quantity of bits equal to the
quantity of blocks in the source page or the destination page. The bit in the bitmap
176 that corresponds to the block identified by the page offset 146 may be set to a bit
value of one, while all other bits in the bitmap 176 may be set to a bit value of zero.
The binary-to-bitmap converter 122 may be configured to output the bitmap 176 to
the second comparator 126.

[0029] The second comparator 126 may be configured to perform a bitwise
AND operation on the bitmap 176 and the COW status array 138. As previously
described, the COW status array 138 may be implemented as an array of status bits,
where a bit value of zero may indicate that a corresponding block in the source page
has not been copied and a bit value of one may indicate that the corresponding block
in the source page has been copied. If the requested block corresponds to a block in
the source page that has been copied, then the result of the bitwise AND operation
may be non-zero. If the requested block corresponds to a block in the source page
that has not been copied, then the result of the bitwise AND operation may be zero. If
the result of the bitwise AND operation is not zero, then the second comparator 126
may be configured to output a third signal as the second selector input 160. If the
result of the bitwise AND operation is zero, then the second comparator 126 may be
configured to output a fourth signal as the second selector input 160.

[0030] If the first selector input 158 is the first signal (i.e., the tag portion
stored in the first entry 112A and the tag portion 136 do not match), then the
multiplexer 128 may be configured to output the destination page index 132,
regardless of the second selector input 160. If the first selector input 158 is the
second signal (i.e., the tag portion stored in the first entry 112A and the tag portion
136 match) and the second selector input 160 is the third signal (i.e., the requested

10

WO 2014/003707 PCT/US2012/043995

block corresponds to a block in the source page that has been copied), then the
multiplexer 128 may be configured to output the destination page index 132. If the
first selector input 158 is the second signal and the second selector input 160 is the
fourth signal (i.e., the requested block corresponds to a block in the source page that
has not been copied), then the multiplexer 128 may be configured to output the source
page index 130.

[0031] In an illustrative example of a write request, a process may attempt to
write to a block in the L1 cache 102 at a particular memory address corresponding to
the write request. For purposes of this example, the memory address corresponding to
the write request may be referred to as the original memory address 142. The
original memory address 142 may correspond to a destination page. As previously
described, the original memory address 142 may include the destination page index
132, the page offset 146, and the block offset 148. The destination page index 132
may include the index portion 134 and the tag portion 136.

[0032] The requested block may be stored in the L1 cache 102 in a write
protected state. The write protected state may be utilized to ensure notification of an
attempted write request to the hardware-based accelerator 100. For example, the
block may be stored in the L1 cache 102 in a “shared” cache coherence state, rather
than an “exclusive” or “modified” state. Due to the “shared” cache coherence state,
the attempted write to the block in the L1 cache 102 may cause the L1 cache 102 to
send an upgrade or invalidation request down through the cache hierarchy. The
hardware-based accelerator 100 may be configured to intercept the request.

[0033] Upon intercepting the request, the hardware-based accelerator 100 may
be configured to identify a record in the LCT 106 that is indexed by the index portion
134 of the destination page index 132. In this illustrative example, the record 108
may be indexed by the index portion 134. By utilizing the record 108, the hardware-
based accelerator 100 may be configured to generate the memory address of the
source page and to copy a corresponding block from the source page to the
destination page at the original memory address 142. It should be appreciated that, in
this example, there may be no need to generate the new memory address 164 to be
passed to the L2 cache 104. In particular, a write operation may trigger copying of a
block from the source page to the destination page. Once copying is complete, the
write operation may proceed using the original address 142, whether the original

address 142 is to a source block or a destination block.

11

WO 2014/003707 PCT/US2012/043995

[0034] The hardware-based accelerator 100 may be configured to remove the
write protected state of the block in the L1 cache 102. For example, the hardware-
based accelerator 100 may be configured to modify the “shared” cache coherence
state to an “exclusive” or “modified” state. Further, the hardware-based accelerator
100 may be configured to update the status identifier associated with the requested
block in the COW status array 138 in order to indicate that the requested block has
been copied from the source page. For example, the hardware-based accelerator 100
may be configured to modify a particular bit corresponding to the requested block
from a bit value of zero indicating that the requested block has not been copied to a
bit value of one indicating that the requested block has been copied. When the
corresponding block in the source page has been copied to the requested block in the
destination page, the hardware-based accelerator 100 may be configured to allow the
process to write to the requested block in the destination page.

[0035] The above example of a write request attempts to write to the
destination page. That is, an attempt to write to a block in the destination page may
trigger a COW of a corresponding block from the source page to the destination page.
However, an attempt to write to a block in the source page should also trigger a copy-
on-write of the block from the source page to a corresponding block in the destination
page. According to various embodiments, the hardware-based accelerator 100 may be
configured to utilize the mirror table 114 in order to handle write attempts to the
source page.

[0036] Each record in the mirror table 114 may correspond to a source page,
which is further associated with a destination page. For example, the record 116 may
correspond to the source page that is located at a source page index 130 and the
destination page that is located at the destination page index 132. The source page
index 130 may include a fixed index portion 178 and a remaining tag portion 180. In
particular, the record 116 may be indexed by the index portion 178. The tag portion
180 may be stored in the first entry 120A. The destination page index 132 may be
stored in the second entry 120B.

[0037] Each record in the mirror table 114 may effectively mirror a
corresponding record in the LCT 106. While each record in the LCT 106 may be
indexed and searched via an index portion of a destination page memory address,
each record in the mirror table 114 may be indexed and searched via an index portion

of a source page memory address. For example, the record 108 may correspond to a

12

WO 2014/003707 PCT/US2012/043995

destination page at the destination page index 132. As a result, the record 108 may be
indexed by the index portion 134 and store the tag portion 136 in the first entry 112A.
The second entry 112B of the record 108 may also indicate that the destination page
at the original memory address 142 corresponds to a source page at the source page
index 130. Accordingly, the mirror table 114 may include the record 116 that mirrors
the record 108.

[0038] Thus, when the hardware-based accelerator 100 intercepts a write
request directed to a particular memory address, the hardware-based accelerator 100
may be configured to evaluate both the LCT 106 and the mirror table 114. If the
memory address of the write request corresponds to the destination page memory
address, then the memory address may be identified via the LCT 106. If the memory
address of the write request corresponds to a source page memory address, then the
memory address may be identified via the mirror table 114. An identification of a
memory address of the write request in either the LCT 106 or the mirror table 114
may trigger a COW of a block from the source page to the destination page.

[0039] In another illustrative example of a write request, the L1 cache 102
may attempt to write to a block at a particular memory address corresponding to the
write request. For purposes of this example, the memory address corresponding to the
write request may be referred to as source page memory address. The source page
memory address may correspond to a source page. The source page memory address
may include the source page index 130, a page offset, and a block offset. As
previously described, the source page index 130 may include the index portion 178
and the tag portion 180.

[0040] The requested block may be stored in the L1 cache 102 in a write
protected state. The write protected state may be utilized to ensure notification of an
attempted write request to the hardware-based accelerator 100. Corresponding blocks
from the source and destination page addresses may be stored separately at the L1
cache, regardless of whether copying for the blocks have completed or not at the L2
cache. However, both of the blocks will be stored in a write protected state in the L1
cache. For example, the block may be stored in the L1 cache 102 in a “shared” cache
coherence state, rather than an “exclusive” or “modified” state. Due to the “shared”
cache coherence state, the attempted write to the block in the L1 cache 102 may cause

the L1 cache 102 to send an invalidation request down through the cache hierarchy.

13

WO 2014/003707 PCT/US2012/043995

The hardware-based accelerator 100 may be configured to intercept the invalidation
request.

[0041] Upon intercepting the invalidation request, the hardware-based
accelerator 100 may be configured to identify a record in the LCT 106 that is indexed
by the index portion 178 of the source page index 130. When the hardware-based
accelerator 100 cannot identify such record, the hardware-based accelerator 100 may
be configured to identify a record in the mirror table 114 that is indexed by the index
portion 178 of the source page index 130. In this illustrative example, the record 116
may be indexed by the index portion 178. If the tag portion 180 stored in the entry
120A matches with the tag portion 136 of the original address 142, the hardware-
based accelerator 100 may be configured to identify a second record in the LCT 106,
where the index portion stored in the second entry 120B indexes the index portion
134, and the tag portion stored in the second entry 120B matches with the tag portion
136.

[0042] By utilizing the second record, the hardware-based accelerator 100
may be configured to determine a memory address of the destination page and to copy
the requested block from the source page at the source page memory address to a
corresponding block in the destination page. The hardware-based accelerator 100
may be configured to remove the write protected state of the requested block in the L1
cache 102. For example, the hardware-based accelerator 100 may be configured to
modify the “shared” cache coherence state to an “exclusive” or “modified” state.
Further, the hardware-based accelerator 100 may be configured to update the status
identifier associated with the requested block in the COW status array 138 in order to
indicate that the requested block has been copied. For example, the hardware-based
accelerator 100 may be configured to modify a particular bit corresponding to the
requested block from a bit value of zero indicating that the requested block has not
been copied to a bit value of one indicating that the requested block has been copied.
When the requested block in the source page has been copied to the corresponding
block in the destination page, the hardware-based accelerator 100 may be configured
to allow the process to write to the requested block in the source page.

[0043] At some point, the hardware-based accelerator 100 may need to
deallocate one or more records in the LCT 106. In a first example, a process (e.g. a
child process) sharing a page utilized in the LCT 106 may terminate or make a system

call, such as the exec family of functions (e.g., execl(), execle(), execlp(), etc.). When

14

WO 2014/003707 PCT/US2012/043995

the process terminates or makes the system call, the hardware-based accelerator 100
may be configured to deallocate the records in the LCT 106 without completing the
copy-on-write for the remainder of blocks that have not been copied.

[0044] In a second example, the LCT 106 may become full such that new
records cannot be created for additional pages. In order to create a new record in the
LCT 106, at least one of the existing records may need to be evicted. In some
embodiments, the hardware-based accelerator 100 may be configured to evict an
oldest record associated with a source page having the highest pop count, or evict a
record based on taking into account the combination of age, recentness of access, or
pop count. The pop count may refer to the quantity of blocks of the source page that
have been copied. Prior to evicting the oldest record from the LCT 106, the
hardware-based accelerator 100 may be configured to complete the COW for the
remaining uncopied blocks. By selecting the source page with the highest pop count,
the hardware-based accelerator 100 can perform the least amount of work to complete
the copy-on-write prior to the eviction.

[0045] In a third example, the hardware-based accelerator 100 may be
configured to maintain a profitability threshold for a source page involved in lazy
copying. In particular, the hardware-based accelerator 100 may be configured to
monitor the pop count associated with the source page. When the pop count exceeds
the profitability threshold, the hardware-based accelerator 100 may be configured to
complete the COW for the remaining uncopied blocks and deallocate a corresponding
record from the LCT 106. The profitability threshold may be set at a level at which
the source page and the destination page differ to such an extent that the hardware-
based accelerator 100 in the LCT 106 no longer provides sufficient performance
benefit.

[0046] The above description of the hardware-based accelerator 100 is
applicable when the processes (e.g., a parent process and a child process) sharing a
page run on cores or thread contexts that share the same cache hierarchy integrating
the hardware-based accelerator 100. For example, if the L2 cache 104 is shared
among multiple cores, then the hardware-based accelerator 100 integrated in the 1.2
cache may provide lazy copy functionality to processes that run on the cores that
share the L2 cache 104. For processes that run on cores that do not share the same
cache hierarchy integrating the hardware-based accelerator 100, several possible

solutions may be available.

15

WO 2014/003707 PCT/US2012/043995

[0047] In an illustrative example, a parent process may run on a first core that
is associated with a first cache hierarchy. A child process may be migrated to run on
a second core that is associated with a second cache hierarchy. In a first example
solution, the hardware performing the migration may deallocate the LCT 106 and
copy blocks in pages involved in lazy copying from the first cache hierarchy to the
second cache hierarchy. In a second example solution, both source and destination
blocks in pages involved in lazy copying may be stored in the first cache hierarchy in
a “modified” cache coherence state. When the child process attempts to read one of
the corresponding blocks in the second cache hierarchy, the first cache hierarchy may
generate a coherence intervention request. The hardware-based accelerator 100 may
be configured to intercept the coherence intervention request. In response to
intercepting the coherence intervention request, the hardware-based accelerator 100
may be configured to copy the blocks from the source to destination page, supply or
transfer the block from first cache hierarchy to the second cache hierarchy, and update
the cache coherence state accordingly.

[0048] In addition to handling COW, the hardware-based accelerator 100 may
also be configured to handle a hypervisor’s transparent page sharing (“TPS”). In
TPS, ecach page across virtual machines may be hashed to find potential copies.
When a first and second page are found to have the same content, the first page may
be mapped to the second page, and a physical page corresponding to the first page
may be deallocated. The hardware-based accelerator 100 may be configured to
generate a record corresponding to the two pages in the LCT 106. The LCT 106 may
keep track of differences between the two pages and perform lazy copying of only
necessary blocks between the two pages.

[0049] As previously described, the quantity of status identifiers in the COW
status array 138 may correspond to the quantity of blocks in a page, in accordance
with some embodiments. For example, a four-kilobyte page (4KB) with a block size
of a sixty-four bytes (64B) may include sixty-four (i.e., 4KB/64B=64) blocks. In this
example, the COW status array 138 may include sixty-four status identifiers. If page
size increases, then the quantity of blocks in a page may be greater than the quantity
of status identifiers in the COW status array 138. In such cases, the LCT 106 may
utilize the level column 110D to implement multiple records (i.e., levels) to represent
a large page. Additional details regarding the level column 110D are provided below

with reference to FIG. 2.

16

WO 2014/003707 PCT/US2012/043995

[0050] FIG. 2 is a diagram illustrating an example architecture of a LCT 200
adapted to implement multiple levels to represent a large page, arranged in
accordance with at least some embodiments presented herein. The LCT 200 may
include multiple records (represented as rows in the LCT 200), such as records 202A-
202C. The LCT 200 may also include multiple columns, such as a tag column 204A,
a source page index column 204B, a COW status column 204C, or a level column
204D.

[0051] The LCT 200 may further include multiple entries, each of which
corresponds to one of the records and one of the columns 204A-204D. For example,
the first record 202A may include a first entry 206A corresponding to the tag column
204A, a second entry 206B corresponding to the source page index column 204B, a
third entry 206C corresponding to the COW status column 204C, and a fourth entry
206D corresponding to the level column 204D. The second record 202B may include
a first entry 208A, a second entry 208B, a third entry 208C, and a fourth entry 208D.
The third record 202C may include a first entry 210A, a second entry 210B, a third
entry 210C, and a fourth entry 210D.

[0052] The records 202A-202C may represent multiple levels 212A-212C of a
large page. In particular, the first record 202A may represent a third level (L2) 212A,
which is indicated in the LCT 200 by a level value of two in the fourth entry 206D.
The second record 202B may represent a second level (L1) 212B, which is indicated
in the LCT 200 by a level value of one in the fourth entry 208D. The third record
202C may represent a first level (L0O) 212C, which is indicated in the LCT 200 by a
level value of zero in the fourth entry 210D. The records 202A-202C may be indexed
by an index value 216.

[0053] In an illustrative example, the records 202A-202C may be utilized to
represent a sixteen-megabyte (16MB) page. In particular, the third level 212A may
be divided into sixty-four L2 regions, each being two hundred and fifty-six kilobytes
(16MB/64=256KB) in size. The base addresses of the L2 regions in a destination
page and a source page may be represented by a tag value (P2) in the first entry 206A
and a source page index (P1) in the second entry 206B, respectively. A first COW
status array 214A in the third entry 206C may indicate that a first L2 region 216 in the
third level 212A has been modified.

[0054] The second level 212B may be divided into sixty-four L1 regions, each
being four kilobytes (256KB/64=4KB). The base addresses of the L1 regions in the

17

WO 2014/003707 PCT/US2012/043995

destination page and the source page may be represented by a second tag value
(P2+x) in the first entry 208A and a second source page index (P1+x) in the second
entry 208B, respectively. A second COW status array 214B in the third entry 208C
may indicate that a last L1 region 218 in the second level 212B has been modified.
[0055] The first level 212C may be divided in sixty-four LO regions, each
being sixty-four bytes (4KB/64=64B) and corresponding to the block size. The base
addresses of the LO regions in the destination page and the source page may be
represented by a third tag value (P2+y) in the first entry 210A and a third source page
index (P1+y) in the second entry 208B, respectively. A third COW status array 214C
in the third entry 210C may indicate that a second block 220 in the first level 212C
has been modified.

[0056] As described above, the hardware-based accelerator 100 may be
configured to access a particular block in a large page by recursively evaluating each
level starting with the highest level and ending when either the copy status identifier
indicates that the region has not been modified (for example, COW status bit is zero
for the region) or the level value reaches zero. In particular, the hardware-based
accelerator 110 may be configured to identify a region corresponding to the block in a
given level. The hardware-based accelerator 110 may be configured to decrement the
level value and to identify another region corresponding to the block in the lower
level. The hardware-based accelerator 110 may be configured to repeat the process of
decrementing the level value and identifying an appropriate region corresponding to
the block until the hardware-based accelerator 110 reaches the block on the first level.
[0057] FIG. 3 is a flow diagram illustrating an example process 300 adapted
to provide a hardware-based accelerator adapted to manage copy-on-write, arranged
in accordance with at least some embodiments presented herein. The process 300
may include various operations, functions, or actions as illustrated by one or more
blocks 302-310.

[0058] The process 300 may begin at block 302 (Identify a Read Request
Adapted to Read a Block at an Original Memory Address), where a hardware-based
accelerator, such as the hardware-based accelerator 100, may be configured to
identify a read request from a block at an original memory address, such as the
original memory address 142. For example, the hardware-based accelerator 100 may

be configured to intercept read requests directed to a particular cache level. The

18

WO 2014/003707 PCT/US2012/043995

hardware-based accelerator 100 may be configured to manage a lazy copying
implementation of COW. Block 302 may be followed by block 304.

[0059] At block 304 (Original Memory Address Involved in Lazy Copying?),
the hardware-based accelerator 100 may be configured to determine whether the
original memory address corresponds to a destination page that is involved in lazy
copying. According to various embodiments, the hardware-based accelerator 100
may be configured to evaluate the LCT 106 in order to determine whether the original
memory address corresponds to a destination page that is involved in lazy copying.
For example, the original memory address 142 may include the destination page index
132, the page offset 146, and the block offset 148. The destination page index 132
may include the index portion 134 and the tag portion 136.

[0060] The hardware-based accelerator 100 may configured to evaluate the
LCT 106 in order to identify a record in the LCT 106 that is indexed by the index
portion 134. Upon identifying the record in the LCT 106 that is indexed by the index
portion 134, the hardware-based accelerator 100 may be configured to compare the
tag stored in the identified record with the tag portion 136. If the tag stored in the
identified record does not match the tag portion 136, then it can be concluded that the
LCT 106 does not contain a record corresponding to the original memory address
142, and block 304 may be followed by 308. If the tag stored in the identified record
matches the tag portion 136, then it can be concluded that the LCT 106 contains a
record corresponding to the original memory address 142, and block 304 may be
followed by block 306.

[0061] At block 306 (Copy-On-Write Completed for the Requested Block?),
the hardware-based accelerator 100 may be configured to determine whether COW
has been completed for the requested block. According to various embodiments, the
hardware-based accelerator 100 may be configured to determine whether a COW
status in the identified record indicates that a corresponding block in a source page
has been copied to the requested block in the destination page. For example, the
COW status may be implemented as an array of status identifiers, such as the COW
status array 138. If the COW status in the identified record indicates that a
corresponding block in the source page has been copied to the requested block in the
destination page, then block 306 may be followed by block 308. If the COW status in

the identified record indicates that the corresponding block in the source page has not

19

WO 2014/003707 PCT/US2012/043995

been copied to the requested block in the destination page, then block 306 may be
followed by block 310.

[0062] At block 308 (Pass the Original Memory Address), the hardware-based
accelerator 100 may be configured to pass the original memory address 142 to the
next cache level so that the read request can be completed utilizing the original
memory address 142. After block 308, the process 300 either repeat (e.g.,
periodically, continuously, or on demand as needed) or terminate.

[0063] At block 310 (Generate a New Memory Address and Pass the New
Memory Address), the hardware-based accelerator 100 may be configured to generate
a new memory address 164 that is directed to the corresponding block in the source
page. For example, the hardware-based accelerator 100 may be configured to
generate the new memory address 164 utilizing at least some data contained in the
identified record. The hardware-based accelerator 100 then may be configured to
pass the new memory address 164 to the next cache level so that the read request can
be completed utilizing the new memory address 164. After block 310, the process
300 either repeat (e.g., periodically, continuously, or on demand as needed) or
terminate.

[0064] FIG. 4 is a flow diagram illustrating an example process 400 adapted
to provide a hardware-based accelerator adapted to manage copy-on-write, arranged
in accordance with at least some embodiments presented herein. The process 400
may include various operations, functions, or actions as illustrated by one or more
blocks 402-412.

[0065] The process 400 may begin at block 402 (Identify a Write Request
Adapted to Write to a Block at an Original Memory Address), where a hardware-
based accelerator, such as the hardware-based accelerator 100, may be configured to
identify a write request to a block at an original memory address, such as the original
memory address 142. For example, the hardware-based accelerator 100 may be
configured to intercept write, write through, or state upgrade requests directed to a
particular cache level. The hardware-based accelerator 100 may be configured to
manage a lazy copying implementation of COW. Block 402 may be followed by
block 404.

[0066] At block 404 (Copy-On-Write Completed for Requested Block?),
where the hardware-based accelerator 100 may be configured to determine whether

COW has been completed for the requested block. More specifically, the hardware-

20

WO 2014/003707 PCT/US2012/043995

based accelerator 100 may be configured to evaluate a particular record in the LCT
106 that corresponds to the original memory address 142. The original memory
address 142 may refer to either a source page or a destination page. That is, a write
request to either the source page or the destination page should trigger the hardware-
based accelerator 100.

[0067] If the original memory address 142 refers to the source page, then the
hardware-based accelerator 100 may be configured to determine whether the
requested block in the source page has been copied to a corresponding block in the
destination page, based on the appropriate records in the mirror table 114 and LCT
106. If the requested block in the source page has been copied to the corresponding
block in the destination page, then block 404 may be followed by block 406. If the
requested block in the source page has not been copied to the corresponding block in
the destination page, then block 404 may be followed by block 410.

[0068] If the original memory address 142 refers to the destination page, then
the hardware-based accelerator 100 may be configured to determine whether a
corresponding block in the source page has been copied to the requested block in the
destination page, based on the appropriate record in the LCT 106. If the
corresponding block in the source page has been copied to the requested block in the
destination page, then block 404 may be followed by block 406. If the corresponding
block in the source page has not been copied to the requested block in the destination
page, then block 404 may be followed by block 410.

[0069] At block 406 (Allow Write to the Block at the Original Memory
Address), the hardware-based accelerator 100 may be configured to allow the write
request to be completed to the requested block utilizing the original memory address.
After block 406, the process 400 either repeat (e.g., periodically, continuously, or on
demand as needed) or terminate.

[0070] At block 410 (Complete COW for the Requested Block), the hardware-
based accelerator 100 may be configured to complete the COW for the requested
block. If the original memory address 142 refers to the source page, then the
hardware-based accelerator 100 may be configured to copy the requested block from
the source page to a corresponding block in the destination page as identified by new
memory address 164. If the original memory address 142 refers to the destination

page, then the hardware-based accelerator 100 may be configured to copy a

21

WO 2014/003707 PCT/US2012/043995

corresponding block in the source page to the requested block in the destination page.
Block 410 may be followed by block 412.

[0071] At block 412 (Update Copy-On-Write Status and Allow Write to the
Block at the Original Memory Address), the hardware-based accelerator 100 may be
configured to update the COW status in the appropriate record in the LCT 106 such
that the COW status indicates that COW has been completed for the requested block
between the source page and the destination page. For example, the hardware-based
accelerator 100 may be configured to update the status identifier in the COW status
array 138 that corresponds to the requested block. The hardware-based accelerator
100 then may be configured to allow the write request to be completed to the
requested block utilizing the original memory address. After block 412, the process
400 ecither repeat (e.g., periodically, continuously, or on demand as needed) or
terminate.

[0072] FIG. 5 is a block diagram illustrating a computer hardware architecture
for an example computing system, arranged in accordance with at least some
embodiments presented herein. FIG. 5 includes a computer 500, including a
processor 510, memory 520, and one or more drives 530. The computer 500 may be
implemented as a conventional computer system, an embedded control computer, a
laptop, or a server computer, a mobile device, a set-top box, a kiosk, a vehicular
information system, a mobile telephone, a customized machine, or other hardware
platform. The processor 510 may be configured to implement the logic described in
FIG. 1 or FIG 2, including the hardware-based accelerator 100. The hardware-based
accelerator 100 may be implemented within an on-chip cache, such as an L1, L2, or
L3 cache, in accordance with various embodiments.

[0073] The drives 530 and their associated computer storage media, provide
storage of computer readable instructions, data structures, program modules and other
data for the computer 500. The drives 530 can include an operating system 540,
application programs 550, program modules 560, and a database 580. The computer
500 further includes user input devices 590 through which a user may enter
commands and data. Input devices can include an electronic digitizer, a microphone,
a keyboard and pointing device, commonly referred to as a mouse, trackball or touch
pad. Other input devices may include a joystick, game pad, satellite dish, scanner, or
the like.

22

WO 2014/003707 PCT/US2012/043995

[0074] These and other input devices can be coupled to the processor 510
through a user input interface that is coupled to a system bus, but may be coupled by
other interface and bus structures, such as a parallel port, game port or a universal
serial bus (“USB”). Computers such as the computer 500 may also include other
peripheral output devices such as speakers, which may be coupled through an output
peripheral interface 594 or the like.

[0075] The computer 500 may operate in a networked environment using
logical connections to one or more computers, such as a remote computer coupled to a
network interface 596. The remote computer may be a personal computer, a server, a
router, a network PC, a peer device or other common network node, and can include
many or all of the elements described above relative to the computer 500.
Networking environments are commonplace in offices, enterprise-wide area networks
(“WAN?), local area networks (“LAN”), intranets, and the Internet.

[0076] When used in a LAN or WLAN networking environment, the
computer 500 may be coupled to the LAN through the network interface 596 or an
adapter. When used in a WAN networking environment, the computer 500 typically
includes a modem or other means for establishing communications over the WAN,
such as the Internet or the network 506. The WAN may include the Internet, the
illustrated network 506, various other networks, or any combination thereof. It will
be appreciated that other mechanisms of establishing a communications link, ring,
mesh, bus, cloud, or network between the computers may be used.

[0077] According to some embodiments, the computer 500 may be coupled to
a networking environment. The computer 500 may include one or more instances of a
physical computer-readable storage medium or media associated with the drives 530
or other storage devices. The system bus may enable the processor 510 to read code
and/or data to/from the computer-readable storage media. The media may represent
an apparatus in the form of storage elements that are implemented using any suitable
technology, including but not limited to semiconductors, magnetic materials, optical
media, electrical storage, eclectrochemical storage, or any other such storage
technology. The media may represent components associated with memory 520,
whether characterized as RAM, ROM, flash, or other types of volatile or nonvolatile
memory technology. The media may also represent secondary storage, whether

implemented as the storage drives 530 or otherwise. Hard drive implementations may

23

WO 2014/003707 PCT/US2012/043995

be characterized as solid state, or may include rotating media storing magnetically-
encoded information.

[0078] The storage media may include one or more program modules 560.
The program modules 560 may include software instructions that, when loaded into
the processor 510 and executed, transform a general-purpose computing system into a
special-purpose computing system. As detailed throughout this description, the
program modules 560 may provide various tools or techniques by which the computer
500 may participate within the overall systems or operating environments using the
components, logic flows, and/or data structures discussed herein.

[0079] The processor 510 may be constructed from any number of transistors
or other circuit elements, which may individually or collectively assume any number
of states. More specifically, the processor 510 may operate as a state machine or
finite-state machine. Such a machine may be transformed to a second machine, or
specific machine by loading executable instructions contained within the program
modules 560. These computer-executable instructions may transform the processor
510 by specifying how the processor 510 transitions between states, thereby
transforming the transistors or other circuit elements constituting the processor 510
from a first machine to a second machine. The states of either machine may also be
transformed by receiving input from the one or more user input devices 590, the
network interface 596, other peripherals, other interfaces, or one or more users or
other actors. Either machine may also transform states, or various physical
characteristics of various output devices such as printers, speakers, video displays, or
otherwise.

[0080] Encoding the program modules 560 may also transform the physical
structure of the storage media. The specific transformation of physical structure may
depend on various factors, in different implementations of this description. Examples
of such factors may include, but are not limited to: the technology used to implement
the storage media, whether the storage media are characterized as primary or
secondary storage, and the like. For example, if the storage media are implemented as
semiconductor-based memory, the program modules 560 may transform the physical
state of the semiconductor memory 520 when the software is encoded therein. For
example, the software may transform the state of transistors, capacitors, or other

discrete circuit elements constituting the semiconductor memory 520.

24

WO 2014/003707 PCT/US2012/043995

[0081] As another example, the storage media may be implemented using
magnetic or optical technology such as drives 530. In such implementations, the
program modules 560 may transform the physical state of magnetic or optical media,
when the software is encoded therein. These transformations may include altering the
magnetic characteristics of particular locations within given magnetic media. These
transformations may also include altering the physical features or characteristics of
particular locations within given optical media, to change the optical characteristics of
those locations. It should be appreciated that various other transformations of
physical media are possible without departing from the scope and spirit of the present
description.

[0082] FIG. 6 is a schematic diagram that illustrates a computer program
product 600 that includes a computer program for executing a computer process on a
computing device, arranged in accordance with at least some embodiments presented
herein. An illustrative embodiment of the example computer program product is
provided using a signal bearing medium 602, and may include at least one instruction
of 604: one or more instructions for identifying a read request adapted to read a block
at an original memory address; one or more instructions for determining whether the
block is located at the original memory address; one or more instructions for passing
the original memory address so that the read request can be completed utilizing the
original memory address; or one or more instructions for generating a new memory
address and passing the new memory address so that the read request can be
completed utilizing the new memory address. In some embodiments, the signal
bearing medium 602 of the one or more computer program products 600 include a
computer readable medium 606, a recordable medium 608, and/or a communications
medium 610.

[0083] While the subject matter described herein is presented in the general
context of program modules that execute in conjunction with the execution of an
operating system and application programs on a computer system, those skilled in the
art will recognize that other implementations may be performed in combination with
other types of program modules. Generally, program modules include routines,
programs, components, data structures, and other types of structures that perform
particular tasks or implement particular abstract data types. Moreover, those skilled
in the art will appreciate that the subject matter described herein may be practiced

with other computer system configurations, including hand-held devices, multi-core

25

WO 2014/003707 PCT/US2012/043995

processor systems, microprocessor-based or programmable consumer electronics,
minicomputers, mainframe computers, and the like.

[0084] The present disclosure is not to be limited in terms of the particular
embodiments described in this application, which are intended as illustrations of
various aspects. Many modifications and variations can be made without departing
from its spirit and scope, as will be apparent to those skilled in the art. Functionally
equivalent methods and apparatuses within the scope of the disclosure, in addition to
those enumerated herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are intended to fall within
the scope of the appended claims. The present disclosure is to be limited only by the
terms of the appended claims, along with the full scope of equivalents to which such
claims are entitled. It is to be understood that this disclosure is not limited to
particular methods, reagents, compounds compositions or biological systems, which
can, of course, vary. It is also to be understood that the terminology used herein is for
the purpose of describing particular embodiments only, and is not intended to be
limiting.

[0085] With respect to the use of substantially any plural and/or singular terms
herein, those having skill in the art can translate from the plural to the singular and/or
from the singular to the plural as is appropriate to the context and/or application. The
various singular/plural permutations may be expressly set forth herein for sake of
clarity.

[0086] It will be understood by those within the art that, in general, terms used
herein, and especially in the appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “including” should be interpreted as
“including but not limited to,” the term “having” should be interpreted as “having at
least,” the term “includes” should be interpreted as “includes but is not limited to,”
etc.). It will be further understood by those within the art that if a specific number of
an introduced claim recitation is intended, such an intent will be explicitly recited in
the claim, and in the absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended claims may contain
usage of the introductory phrases "at least one" and "one or more" to introduce claim
recitations. However, the use of such phrases should not be construed to imply that
the introduction of a claim recitation by the indefinite articles "a" or "an" limits any

particular claim containing such introduced claim recitation to embodiments

26

WO 2014/003707 PCT/US2012/043995

containing only one such recitation, even when the same claim includes the
introductory phrases "one or more" or "at least one" and indefinite articles such as "a"
or "an" (e.g., “a” and/or “an” should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles used to introduce claim
recitations. In addition, even if a specific number of an introduced claim recitation is
explicitly recited, those skilled in the art will recognize that such recitation should be
interpreted to mean at least the recited number (e.g., the bare recitation of "two
recitations,” without other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a convention analogous to “at
least one of A, B, and C, etc.” is used, in general such a construction is intended in the
sense one having skill in the art would understand the convention (e.g., “ a system
having at least one of A, B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C together, B and C
together, and/or A, B, and C together, etc.). In those instances where a convention
analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would understand the convention
(e.g., ““ a system having at least one of A, B, or C” would include but not be limited to
systems that have A alone, B alone, C alone, A and B together, A and C together, B
and C together, and/or A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the Detailed Description, claims, or Figures,
should be understood to contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A or B” will be
understood to include the possibilities of “A” or “B” or “A and B.”

[0087] In addition, where features or aspects of the disclosure are described in
terms of Markush groups, those skilled in the art will recognize that the disclosure is
also thereby described in terms of any individual member or subgroup of members of
the Markush group.

[0088] As will be understood by one skilled in the art, for any and all
purposes, such as in terms of providing a written description, all ranges disclosed
herein also encompass any and all possible subranges and combinations of subranges
thereof. Any listed range can be ecasily recognized as sufficiently describing and
enabling the same range being broken down into at least equal halves, thirds, quarters,

fifths, tenths, etc. As a non-limiting example, each range discussed herein can be

27

WO 2014/003707 PCT/US2012/043995

readily broken down into a lower third, middle third and upper third, etc. As will also
be understood by one skilled in the art all language such as “up to,” “at least,”
“greater than,” “less than,” and the like include the number recited and refer to ranges
which can be subsequently broken down into subranges as discussed above. Finally,
as will be understood by one skilled in the art, a range includes ecach individual
member. Thus, for example, a group having 1-3 elements refers to groups having 1,
2, or 3 elements. Similarly, a group having 1-5 elements refers to groups having 1, 2,
3, 4, or 5 elements, and so forth.

[0089] While various aspects and embodiments have been disclosed herein,
other aspects and embodiments will be apparent to those skilled in the art. The
various aspects and embodiments disclosed herein are for purposes of illustration and
are not intended to be limiting, with the true scope and spirit being indicated by the

following claims.

28

WO 2014/003707 PCT/US2012/043995

What 1s claimed is:

1. A method for providing a hardware-based accelerator adapted to
manage copy-on-write in a memory of a computer, the method comprising:

identifying a read request adapted to read a block in the memory at an original
memory address;

utilizing the hardware-based accelerator to determine whether the block is
located in the memory at the original memory address;

when the hardware-based accelerator determines that the block is located in
the memory at the original memory address, utilizing the hardware-based accelerator
to pass the original memory address to a controller of the computer, wherein the
controller is adapted to perform the read request utilizing the original memory
address; and

when the hardware-based accelerator determines that the block is not located
in the memory at the original memory address, utilizing the hardware-based
accelerator to generate a new memory address and to pass the new memory address to
the controller of the computer, wherein the controller is adapted to perform the read

request utilizing the new memory address.

2. The method of claim 1, wherein the original memory address
comprises a page index, a page offset, and a block offset; wherein the page index
comprises an index portion and a tag portion; and wherein utilizing the hardware-
based accelerator to determine whether the block is located in the memory at the
original memory address comprises:

identifying a record in a lazy copy table, wherein the record comprises a tag, a
new page index, and a copy-on-write status; and

determining whether the tag matches the tag portion.

3. The method of claim 2, wherein when the hardware-based accelerator
determines that the block is located in the memory at the original memory address,
utilizing the hardware-based accelerator to pass the original memory address to the

controller of the computer comprises:

29

WO 2014/003707 PCT/US2012/043995

responsive to determining that the tag does not match the tag portion, passing
the original memory address to the controller of the computer, wherein the controller

is adapted to perform the read request utilizing the original memory address.

4. The method of claim 2, wherein utilizing the hardware-based
accelerator to determine whether the block is located in the memory at the original
memory address further comprises:

responsive to determining that the tag matches the tag portion, determining
whether the copy-on-write status indicates that the block in a destination page has

been modified from a corresponding block in a source page.

5. The method of claim 4, wherein when the hardware-based accelerator
determines that the block is located in the memory at the original memory address,
utilizing the hardware-based accelerator to pass the original memory address to the
controller of the computer comprises:

responsive to determining that the copy-on-write status indicates that the block
in the destination page has been modified from the corresponding block in the source
page, passing the original memory address to the controller of the computer, wherein
the controller is adapted to perform the read request utilizing the original memory

address.

6. The method of claim 4, wherein when the hardware-based accelerator
determines that the block is not located in the memory at the original memory
address, utilizing the hardware-based accelerator to generate the new memory address
and to pass the new memory address to the controller of the computer, comprises:

responsive to determining that the copy-on-write status indicates that the block
in the destination page has not been modified from the corresponding block in the
source page, generating the new memory address comprising the new page index, the
page offset, and the block offset, and passing the new memory address to the
controller, wherein the controller is adapted to perform the read request utilizing the

new memory address, and wherein the new memory address corresponds to the source

page.

30

WO 2014/003707 PCT/US2012/043995

7. The method of claim 4, wherein the copy-on-write status comprises a
plurality of status identifiers, and wherein at least one of the plurality of status
identifiers indicating whether a corresponding one of a plurality of blocks in the
destination page has been modified from a corresponding one of a plurality of blocks

in the source page.

8. The method of claim 7, wherein a quantity of the status identifiers in

the copy-on-write status is equal to a quantity of blocks in a page size of the memory.

9. The method of claim 7, wherein the at least one of the plurality of

status identifiers comprises a status bit.

10. The method of claim 9, wherein determining whether the copy-on-
write status indicates that the block in the destination page has been modified from
the corresponding block in the source page comprises:

converting the page offset from a binary representation to a bitmap;

determining whether a result of a bitwise AND operation between the bitmap
and the copy-on-write status equals zero;

responsive to determining that the result of the bitwise AND operation
between the bitmap and the copy-on-write status does not equal zero, determining that
the copy-on-write status indicates that the block in the destination page has been
modified from the source page; and

responsive to determining that the result of the bitwise AND operation
between the bitmap and the copy-on-write status equals zero, determining that the
copy-on-write status indicates that the block in the destination page has not been

modified from the source page.

11. The method of claim 7, wherein a quantity of the status identifiers in
the copy-on-write status is less than a quantity of blocks in a page size of the memory,
wherein the record further comprises a level identifier, and wherein determining
whether the copy-on-write status indicates that the block in the destination page has
been modified from the corresponding block in the source page comprises recursively

evaluating multiple instances of the copy-on-write status based on the level identifier.

31

WO 2014/003707 PCT/US2012/043995

12. The method of claim 11, wherein the level identifier is greater than
zero, and wherein recursively evaluating multiple instances of the copy-on-write
status based on the level identifier comprises:

(a) determining that a current instance of the copy-on-write status indicates
that a current region containing the block in the destination page has been modified
from a corresponding current region in the source page, wherein the current region is
larger than the block, and wherein the current instance of the copy-on-write status and
the current region correspond to a current value of the level identifier;

(b) decrementing the level identifier;

(c) repeating (a) and (b) until either the copy-on-write status indicates that the
region in the destination page has not been modified from the corresponding region in
the source page, or the level identifier equals zero; and

(d) when the level identifier equals zero, determining that a final instance of
the copy-on-write status corresponding to the zero value of the level identifier
indicates that the block in the destination page has been modified from the

corresponding block in the source page.

13. The method of claim 4, further comprising:

intercepting a write request adapted to write to a second block in the memory
at a second memory address, wherein the second memory address corresponds to the
destination page, wherein the second memory address comprises a second page index,
a second page offset, and a second block offset, and wherein the second page index
comprises a second index portion and a second tag portion;

upon intercepting the write request, identifying a second record in the lazy
copy table, wherein the second record is indexed in the lazy copy table at the second
index portion, and wherein the second record comprises a second tag, a second new
page index, and a second copy-on-write status;

generating a second new memory address comprising the second new page
index, the second page offset, and the second block offset;

copying the second block from the source page at the second new memory
address to the destination page at the second memory address;

setting the second copy-on-write status to indicate that the second block in the
destination page has been modified; and

proceeding with the write using the second memory address.

32

WO 2014/003707 PCT/US2012/043995

14. The method of claim 4, further comprising:

intercepting a write request adapted to write to a second block in the memory
at a second new memory address, wherein the second new memory address
corresponds to the source page, wherein the second new memory address comprises a
second new page index, a second page offset, and a second block offset, and wherein
the second new page index comprises a second new index portion and a second new
tag portion;

upon intercepting the write request, identifying a mirror record in a mirror
table, wherein the mirror record is indexed in the mirror table at the second new index
portion, wherein the mirror record comprises the second new tag portion and a second
page index, wherein the second page index comprises a second index portion and a
second tag portion;

upon identifying the mirror record in the mirror table, identifying a second
record in the lazy copy table, wherein the second record is indexed in the lazy copy
table at the second index portion, and wherein the second record comprises a second
tag that matches the second tag portion, the second new page index, and a second
copy-on-write status;

generating a second memory address comprising the second new page index,
the second page offset, and the second block offset;

copying the second block from the source page at the second new memory
address to the destination page at the second memory address;

setting the second copy-on-write status to indicate that the second block in the
destination page has been modified; and

proceeding with the write using the second new memory address.

15. A copy-on-write accelerator configured to be implemented on a
computer, the copy-on-write accelerator comprising:
a lazy copy table; and
a copy-on-write module coupled to the lazy copy table and configured to
identify a read request adapted to read a block in a memory of the
computer at an original memory address,
determine whether the block is located in the memory at the original

memory address utilizing the lazy copy table,

33

WO 2014/003707 PCT/US2012/043995

when the block is determined to be located in the memory at the
original memory address, pass the original memory address to a controller of the
computer, wherein the controller is adapted to perform the read request utilizing the
original memory address, and

when the block is determined to not be located in the memory at the
original memory address, generate a new memory address and pass the new memory
address to the controller of the computer, wherein the controller is adapted to perform

the read request utilizing the new memory address.

16. The copy-on-write accelerator of claim 15, wherein the lazy copy table
comprises a plurality of columns and a plurality of records, wherein at least one of the
plurality of records comprises a data value for a corresponding one of the plurality of
columns, and wherein the plurality of columns comprises a tag column, a source page

index column, and a copy-on-write status column.

17. The copy-on-write accelerator of claim 16, wherein the original
memory address corresponds to a destination page, wherein the original memory
address comprises a page index, a page offset, and a block offset, wherein the page
index comprises an index portion and a tag portion; and wherein to determine whether
the block is located in the memory at the original memory address utilizing the lazy
copy table, the copy-on-write module is configured to:

identify a record in the plurality of records, wherein the record is indexed in
the lazy copy table at the index portion, and wherein the record comprises a tag
corresponding to the tag column, a new page index corresponding to the source page
index column, and a copy-on-write status corresponding to the copy-on-write status
column; and

determine whether the tag matches the tag portion.

18. The copy-on-write accelerator of claim 17, wherein to pass the original
memory address to the controller of the computer when the block is determined to be
located in the memory at the original memory address, the copy-on-write module is

configured to:

34

WO 2014/003707 PCT/US2012/043995

when the tag is determined to not match the tag portion, pass the original
memory address to the controller of the computer, wherein the controller is adapted to

perform the read request utilizing the original memory address.

19. The copy-on-write accelerator of claim 17, wherein to determine
whether the block is located in the memory at the original memory address utilizing
the lazy copy table, the copy-on-write module is further configured to:

determine whether the copy-on-write status indicates that the block in the

destination page has been modified from a corresponding block in a source page.

20. The copy-on-write accelerator of claim 19, wherein to pass the original
memory address to the controller of the computer when the block is determined to be
located in the memory at the original memory address, the copy-on-write module is
configured to:

when the copy-on-write status is determined to indicate that the block in the
destination page has been modified from the corresponding block in the source page,
pass the original memory address to the controller of the computer, wherein the
controller is adapted to perform the read request utilizing the original memory

address.

21. The copy-on-write accelerator of claim 19, wherein to generate the
new memory address and pass the new memory address to the controller of the
computer when the block is determined to not be located in the memory at the original
memory address, the copy-on-write module is configured to:

when the copy-on-write status is determined to indicate that the block in the
destination page has not been modified from the corresponding block in the source
page, generate the new memory address comprising the new page index, the page
offset, and the block offset, and pass the new memory address to the controller,
wherein the controller is adapted to perform the read request utilizing the new

memory address, and wherein the new memory address corresponds to the source

page.

22. The copy-on-write accelerator of claim 19, wherein the copy-on-write

status comprises a plurality of status identifiers, at least one of the plurality of status

35

WO 2014/003707 PCT/US2012/043995

identifiers indicating whether a corresponding one of a plurality of blocks in the
destination page has been modified from a corresponding one of a plurality of blocks

in the source page.

23. The copy-on-write accelerator of claim 22, wherein a quantity of the
status identifiers in the copy-on-write status is equal to a quantity of blocks in a page

size of the memory.

24. The copy-on-write accelerator of claim 22, wherein at least one of the

plurality of status identifiers comprises a status bit.

25. The copy-on-write accelerator of claim 24, wherein to determine
whether the copy-on-write status indicates that the block in the destination page has
been modified from the corresponding block in the source page, the copy-on-write
module is further configured to:

convert the page offset from a binary representation to a bitmap,

determine whether a result of a bitwise AND operation between the bitmap
and the copy-on-write status equals zero,

when the result of the bitwise AND operation between the bitmap and the
copy-on-write status is determined to not equal zero, determine that the copy-on-write
status indicates that the block in the destination page has been modified from the
source page; and

when the result of the bitwise AND operation between the bitmap and the
copy-on-write status is determined to equal zero, determine that the copy-on-write
status indicates that the block in the destination page has not been modified from the

source page.

26. The copy-on-write accelerator of claim 22, wherein a quantity of the
status identifiers in the copy-on-write status is less than a quantity of blocks in a page
size of the memory, wherein the lazy copy table further comprises a level column,
wherein the record further comprises a level identifier corresponding to the level
column, and wherein to determine whether the copy-on-write status indicates that the

block in the destination page has been modified from the corresponding block in the

36

WO 2014/003707 PCT/US2012/043995

source page, copy-on-write module is further configured to recursively evaluate

multiple instances of the copy-on-write status based on the level identifier.

27. The copy-on-write accelerator of claim 26, wherein the level identifier
is greater than zero, and wherein to recursively evaluate multiple instances of the
copy-on-write status based on the level identifier, the copy-on-write module is further
configured to:

(a) determine that a current instance of the copy-on-write status indicates that
a current region containing the block in the destination page has been modified from a
corresponding current region in the source page, wherein the current region is larger
than the block, and wherein the current instance of the copy-on-write status and the
current region correspond to a current value of the level identifier;

(b) decrement the level identifier;

(c) repeat (a) and (b) until either the copy-on-write status indicates that the
region in the destination page has not been modified from the corresponding region in
the source page, or the level identifier equals zero; and

(d) when the level identifier equals zero, determine that a final instance of the
copy-on-write status corresponding to the zero value of the level identifier indicates
that the block in the destination page has been modified from the corresponding block

in the source page.

28. The copy-on-write accelerator of claim 19, wherein the copy-on-write
module is further configured to:

intercept a write request adapted to write to a second block in the memory at a
second memory address, wherein the second memory address corresponds to the
destination page, wherein the second memory address comprises a second page index,
a second page offset, and a second block offset, and wherein the second page index
comprises a second index portion and a second tag portion;

when the write request is intercepted, identify a second record in the plurality
of records, wherein the second record is indexed in the lazy copy table at the second
index portion, and wherein the second record comprises a second tag, a second new
page index, and a second copy-on-write status;

generate a second new memory address comprising the second new page

index, the second page offset, and the second block offset;

37

WO 2014/003707 PCT/US2012/043995

copy the second block from the source page at the second new memory
address to the destination page at the second memory address;

set the second copy-on-write status to indicate that the second block in the
destination page has been modified; and

proceed with the write using the second memory address.

29. The copy-on-write accelerator of claim 19, wherein the copy-on-write
module is further configured to:

intercept a write request adapted to write to a second block in the memory at a
second new memory address, wherein the second new memory address corresponds
to the source page, wherein the second new memory address comprises a second new
page index, a second page offset, and a second block offset, and wherein the second
new page index comprises a second new index portion and a second new tag portion;

when the write request is intercepted, identify a mirror record in a mirror table,
wherein the mirror record is indexed in the mirror table at the second new index
portion, wherein the mirror record comprises the second new tag portion and a second
page index, wherein the second page index comprises a second index portion and a
second tag portion;

when the mirror record is identified in the mirror table, identify a second
record in the plurality of records, wherein the second record is indexed in the lazy
copy table at the second index portion, and wherein the second record comprises a
second tag that matches the second tag portion, the second new page index, and a
second copy-on-write status;

generate a second memory address comprising the second new page index, the
second page offset, and the second block offset;

copy the second block from the source page at the second new memory
address to the destination page at the second memory address;

set the second copy-on-write status to indicate that the second block in the
destination page has been modified; and

proceed with the write using the second new memory address.

30. A computing system comprising:
a multicore processor comprising a processor core and a cache memory

coupled to the processor core; and

38

WO 2014/003707 PCT/US2012/043995

a copy-on-write accelerator coupled to the cache memory, wherein the copy-
on-write accelerator comprises
a lazy copy table, and
a copy-on-write module coupled to the lazy copy table and configured
to
identify a read request adapted to read a block in the cache
memory at an original memory address,
determine whether the block is located in the cache memory at
the original memory address utilizing the lazy copy table,
when the block is determined to be located in the cache
memory at the original memory address, pass the original memory address to the
processor core, wherein the processor core is adapted to perform the read request
utilizing the original memory address, and
when the block is determined to not be located in the cache
memory at the original memory address, generate a new memory address and pass the
new memory address to the processor core, wherein the processor core is adapted to

perform the read request utilizing the new memory address.

31. The computing system of claim 30, wherein the lazy copy table
comprises a plurality of columns and a plurality of records, wherein at least one of the
plurality of records comprises a data value for a corresponding one of the plurality of
columns, and wherein the plurality of columns comprises a tag column, a source page

index column, and a copy-on-write status column.

32. The computing system of claim 31, wherein the original memory
address corresponds to a destination page, wherein the original memory address
comprises a page index, a page offset, and a block offset, wherein the page index
comprises an index portion and a tag portion; and wherein to determine whether the
block is located in the cache memory at the original memory address utilizing the lazy
copy table, the copy-on-write module is configured to:

identify a record in the plurality of records, wherein the record is indexed in
the lazy copy table at the index portion, and wherein the record comprises a tag

corresponding to the tag column, a new page index corresponding to the source page

39

WO 2014/003707 PCT/US2012/043995

index column, and a copy-on-write status corresponding to the copy-on-write status
column; and

determine whether the tag matches the tag portion.

33. The computing system of claim 32, wherein to pass the original
memory address to the processor core when the block is determined to be located in
the cache memory at the original memory address, the copy-on-write module is
configured to:

when the tag is determined to not match the tag portion, pass the original
memory address to the processor core, wherein the processor core is adapted to

perform the read request utilizing the original memory address.

34. The computing system of claim 33, wherein to determine whether the
block is located in the cache memory at the original memory address utilizing the lazy
copy table, the copy-on-write module is further configured to:

determine whether the copy-on-write status indicates that the block in the

destination page has been modified from a corresponding block in a source page.

35. The computing system of claim 34, wherein to pass the original
memory address to the processor core when the block is determined to be located in
the cache memory at the original memory address, the copy-on-write module is
configured to:

when the copy-on-write status is determined to indicate that the block in the
destination page has been modified from the corresponding block in the source page,
pass the original memory address to the processor core, wherein the processor core is

adapted to perform the read request utilizing the original memory address.

36. The copy-on-write accelerator of claim 34, wherein to generate the
new memory address and pass the new memory address to the processor core when
the block is determined to not be located in the cache memory at the original memory
address, the copy-on-write module is configured to:

when the copy-on-write status is determined to indicate that the block in the
destination page has not been modified from the corresponding block in the source

page, generate the new memory address comprising the new page index, the page

40

WO 2014/003707 PCT/US2012/043995

offset, and the block offset, and pass the new memory address to the processor,
wherein the processor is adapted to perform the read request utilizing the new

memory address, and wherein the new memory address corresponds to the source

page.

37. The computing system of claim 32, wherein the multicore processor
further comprises a second processor core and a second cache memory coupled to the
second processor core, and wherein the copy-on-write module is further configured
to:

receive a first notification that a process adapted to access the source or
destination page in the cache memory is migrated from the processor core to the
second processor core;

when the first notification is received, set a cache state associated with the
block in the cache memory to a modified state;

receive a second notification that the process executed by the second processor
core has attempted to access the source or destination page;

when the second notification is received, copy the block from the source page
to the corresponding destination page; and

when the block is copied from the source page to the destination page, set the
cache state associated with the block in the cache memory from the modified state to

a shared state.

38. The computing system of claim 32, further comprising a second copy-
on-write accelerator having a second lazy copy table, wherein the multicore processor
further comprises a second processor core and a second cache memory coupled to the
second processor core, wherein the second copy-on-write accelerator is coupled to the
second cache memory, and wherein the copy-on-write module is further configured
to:

receive a notification that a process adapted to access the destination page is
migrated from the processor core to the second processor core; and

when the notification is received, copy or migrate the plurality of records from

the lazy copy table to the second lazy copy table.

41

WO 2014/003707 PCT/US2012/043995

39. The computing system of claim 32, wherein the copy-on-write module
is further configured to:

receive a notification that a process adapted to access the destination page has
terminated; and

when the notification is received, evict the records from the lazy copy table.

40. The computing system of claim 32, wherein the copy-on-write module
is further configured to:

receive a notification that a process adapted to access the destination page has
made a call to exec family of functions; and

when the notification is received, evict the records from the lazy copy table.

41. The computing system of claim 34, wherein the copy-on-write module
is further configured to:

determine whether the lazy copy table is full; and

when the lazy copy table is determined to be full, select a candidate record in
the plurality of records having a highest pop count, complete a copy of blocks
associated with the candidate record from the source page to the destination page, and

evict the candidate record from the lazy copy table.

42. The computing system of claim 34, wherein the copy-on-write module
is further configured to:

identify one or more candidate records in the plurality of records, wherein at
least one of the candidate records corresponds to a pop count greater than a threshold;

complete a copy of blocks associated with the candidate records from the
source page to the destination page; and

evict the candidate records from the lazy copy table.

42

[514

PCT/US2012/043995
1/6

WO 2014/003707

0/} 135440X79 894 13S4409d 991 XIANI Od
(TTTTTSTTToqToSTI ST oI IIII I e ¥ vl
| | _OVL |1 X3aNI ! !ss3¥aay maN —> IHOVOZ10L
e N (R, Z <)
IIIII yF Y IIIIIINIIIIIII_
29)
— — vl WOYA
.......................... - 2 PR o
051~ g5 HOLYMVANOD LSHI Lo |
A
A
SRR
Pl ol &1 ol
5t . -- --
HOLVYdINOD ONOD3S "5 1| 0 a0r000 1| T I T IS S
x Eirriav Al ity 572ul ettt It S il ittt %)
m | ov) > |
: 80 [gz’ oo | g | van [Y e | v |4
=TT -t----og
T : : : : : :
T MALYAANOD ___ __ __ _
A aorT 3017 qorr | vor =EoTR varT
| 90 319V AdOD AZV1 P11 T19VL SO
001 HOLVYT 1300V 0ISVE-FHYMAHVH
= e O S
| T 11 T ! 1sST4aav WNIOINO «—— FHOVO LTWONA
b looooootzooooot 2o A 20,A
gyl (35440379 9¥) [354409d 25l X3ONI ©d

PCT/US2012/043995

WO 2014/003707

2/6

a¢0¢

4¢c0c

veoc

........................ 7
| _0_ 1107000040 i Aud |1 Auzd ||
o o one’ |@oe Vo |
|||||||||||||||||||||||| |
| _b__i[1+7000000 i Xt i xezd ||
@0z [0s0c anliz” [@80c |veoe |
IIIIIIIIIIIIIIIIIIIIIIII |
| _2__l[10000004 ! kd I zd ||
oz [0z wriz” |@eoc [vaoe | !
ae 3702 e | W
00z 318VL AdOD AZY1

g 51

\\ONN
iy 01
ozlz—
"
axosz ;11
aziz—
N
9z
ano} 71
vziz—*

WO 2014/003707 PCT/US2012/043995
3/6

300
v

START

IDENTIFY A READ REQUEST ADAPTED TO READ A BLOCK AT AN
ORIGINAL MEMORY ADDRESS

302

ORIGINAL MEMORY ADDRESS

INVOLVED IN LAZY COPYING? i

COPY-ON-WRITE COMPLETED
FOR REQUESTED BLOCK?

306
—p PASS THE ORIGINAL MEMORY ADDRESS
| 308
GENERATE A NEW MEMORY ADDRESS AND PASS THE NEW |
MEMORY ADDRESS
v 310
»{ END

Fig. 3

WO 2014/003707 PCT/US2012/043995

4/6

400
v

START

IDENTIFY A WRITE REQUEST ADAPTED TO WRITE TO A BLOCK AT

AN ORIGINAL MEMORY ADDRESS

402

COPY-ON-WRITE COMPLETED

FOR REQUESTED BLOCK?
404

ALLOW WRITE TO THE BLOCK AT THE ORIGINAL MEMORY
ADDRESS

406

|

COMPLETE COPY-ON-WRITE FOR THE REQUESTED BLOCK

410

UPDATE COPY-ON-WRITE STATUS AND ALLOW WRITE TO THE
BLOCK AT THE ORIGINAL MEMORY ADDRESS

412

h 4

END)

i
.

Fig. 4

PCT/US2012/043995

WO 2014/003707

5/6

G ‘51

90S
MHOML3IN

[SEMLER)

d31INIYd

MHOMLAN ” 4
V3uv vO01

.

05 05S 099 oS
SSvaYLYa SINYEO0Md SIINAOW W3LSAS
NOILYDITddY NYHO0Yd ONILYY3dO
QUYOaAIM ~ g
ISNOW S~ e
NRY, =
m INOHJOHOIN I s
e == _
956G 068 oS
JOVAYALNI ERE ﬁ sang u
MHOMLIN LNdNI 43N
r ~
ﬁ (Wvy)
SNG WALSAS - (oY)
0¢%
| Adowaw
PV o
765 HOLYYITI00V
JOVAYALNI Q3SVg-TUVMANVH
WNIHdINId —
Lhdino 000 4 IS ¥0SSID0Nd

PCT/US2012/043995

WO 2014/003707

6/6

r T M CT T T T M CT T T T M

| anol ?@m_m:__,_,__\,_oo " | WNIgaw |" WAEE RO EY "

_ v O | | 318VaH003 ¥ F09 | ¥3LNANOOY F09

e J e J e J
'SSFHAAY AYOWTW

M3IN FHL ONIZITILN d31L37dNOD 38 NV 1SIN0TY AV3Y IHL LVHL OS SSTJAay AYOWIN MIN

JHL ONISSVYd ANV SSFHAAY AHOWIN MAN V ONILVHINTO HO4 SNOILONYLSNI FHON HO INO
H0 -SSTHAAY AHOWIN TYNIDIHO FHL ONIZITILN d3LITAWOD 38 NYO LSINDIY av3Y

JHL LvHL OS SS3dAav AJOW3IN TYNIOIHO IHL ONISSVd J04 SNOILONYLSNI FHON O INO
-SS34AAY AHOWIW TVYNIDIHO

JHL 1V d31v301SI X008 IHL ¥3IHLIHM ONININEFL3A 04 SNOILONYLSNI FHON HO INO
-SS3HAAY AHOWIN TYNIDIHO NV LY

Y0078 V Av3d OL 3Ldvay LSINOFY dV3d V ONIAFILNIAI 404 SNOILONYLSNI FHON HO 3NO
40 INO LSY3T LY ¥09

WNIAIW ONIYY3E TYNDIS V ¢09

10NA0Yd WvH9O0¥d ¥3LNdIWOD v 009

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings

