
(19) United States
US 2002O1122O1A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0112201 A1
Flanagan et al. (43) Pub. Date: Aug. 15, 2002

(54) METHOD AND APPARATUS FOR
AUTOMATICALLY INFERRING
ANNOTATIONS FOR AN EXTENDED STATIC
CHECKER

(76) Inventors: Cormac Andrias Flanagan, San
Francisco, CA (US); K. Rustan M.
Leino, Sunnyvale, CA (US)

Correspondence Address:
Pennie & Edmonds, LLP
3300 Hillview Avenue
Palo Alto, CA 94.304 (US)

(21) Appl. No.: 10/007,113

(22) Filed: Dec. 4, 2001

Related U.S. Application Data

(60) Provisional application No. 60/251,304, filed on Dec.
4, 2000. Provisional application No. 60/251,305, filed
on Dec. 4, 2000.

Publication Classification

(51) Int. Cl." ... H04B 1/74

100
A

User Interface

SO Annotated Computer Program
Intermediate Modified Computer
Program
Annotation inference System

(52) U.S. Cl. ... 714/42; 714/38

(57) ABSTRACT

A System, method and computer program product for anno
tating a computer program. The method includes inserting a
Set of heuristically derived candidate annotations into the
computer program and converting the computer program
into a verification condition-which includes a set of guards
corresponding to the Set of candidate annotations. Initial
truth values are assigned to the guards. A theorem prover is
applied to the Verification condition, and the counter-ex
amples are mapped into one or more annotation modifica
tions. The truth value of at least one of the guards corre
sponding to the one or more annotation modifications is
updated. The theorem proving, mapping and truth value
updating Steps are repeated until the theorem prover pro
duces no counter-examples that are Suitable for mapping
into an annotation modification. The resulting annotation
modifications are applied to the computer program. The
System and computer program product implement this
method of annotating a computer program.

Memory
106

Annotation Inference Module

Network Interface Heuristic Annotation Generator

Counter-Example Mapper

Annotation Modification(s)
Program Updater

Guarded Verification Condition

Guard Truth Wector

Guard Truth Vector Updater
Program Checking Tool

Verification Condition Generator

Patent Application Publication Aug. 15, 2002. Sheet 1 of 4 US 2002/0112201 A1

Memory
106

Operating System

100

Application Programs
Authoring Tool(s)
Computer Program

User Interface Modified Computer Program

SO
a.a.a.a.
1.2%aa

Yaaaaaaa

Annotated Computer Program

Intermediate Modified Computer
Program

Annotation Inference System
Annotation inference Module

Heuristic Annotation Generator Network Interface

Counter-Example Mapper

Annotation Modification(s)
Program Updater

Guarded Verification Condition

Guard Truth Vector

Guard Truth Vector Updater

Program Checking Tool
Verification Condition Generator

Analysis Module

Counter Example(s)
Warning Message(s)

Verification Condition F.G. 1

Patent Application Publication Aug. 15, 2002. Sheet 2 of 4 US 2002/0112201 A1

118

Computer Program

130

Annotation Inference
System

120

Modified Computer Program

FG 2

2 12

Annotated Computer
Program

162

Verification
Condition

2 12

Annotated Computer
Program

150 154

Program Checking
TOOl

1 160 58
COUnter

Example(s)

160

FIG. 3A FIG. 3B

Patent Application Publication Aug. 15, 2002 Sheet 3 of 4

402

Heuristically Construct
Candidate Set of

Annotations

404

insert
Candidate Set
of Annotations
into Program

122

Annotated
Computer Program

406

Apply Program
Checking Tool

Any warning
Of the Second kind
that mentions a

Candidate
Annotation?

NO 120

Modified
Computer Program

Intermediate
Modified Computer

Program

118

Computer Program

124

Remove from program
any mentioned

Candidate annotation

412

Map counter example into
an annotation modification

FIG. 4

US 2002/0112201 A1

414

Patent Application Publication Aug. 15, 2002. Sheet 4 of 4 US 2002/0112201 A1

Annotated 122
Computer Program

Apply Program 4O6
Checking Tool

505

Generate guarded verification condition
and initial guard truth vector

507

Apply theorem prover Vector and COmbine
With GVC

Update guard truth

509
Counter
Examples

510

Any
Counter examples
aSSOCiated with
a Candidate
annotation?

YeS

NO 516

Remove from program annotations
whose guards are false

120

MOClified
Computer Program FGS

US 2002/0112201 A1

METHOD AND APPARATUS FOR
AUTOMATICALLY INFERRING ANNOTATIONS

FOR AN EXTENDED STATIC CHECKER

0001. This application claims priority to provisional
patent application entitled "Method and Apparatus for Auto
matically Inferring Annotations For an Extended Static
Checker,” Serial No. 60/251,304, filed Dec. 4, 2000, and to
provisional patent application entitled "Method and Appa
ratus for Automatically Inferring Annotations,” Serial No.
60/251,305, filed Dec. 4, 2000, both of which are incorpo
rated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates generally to program
checking tools that automatically verify, using Static check
ing techniques, the correctness of a computer program with
respect to predefined criteria. The present invention relates
particularly to an inference System that automatically anno
tates the computer program by iterative application of a
program checking tool Such as an extended Static checker So
as to eliminate or reduce Spurious warning messages pro
duced by the program checking tool.

BACKGROUND OF THE INVENTION

0003. The purpose of a program checking tool is to
analyze a given computer program to determine whether or
not it has certain desirable properties. Program checking
tools, often called program checkers, are specific examples
of verification Systems that can also be used to analyze
hardware components, formulae, algorithms, or, more gen
erally, behavioral designs.
0004. A program checking tool may generate a verifica
tion condition from a given computer program. A verifica
tion condition (VC) is a logical formula that, ideally, is valid
if and only if all possible behaviors of the program have the
desirable properties under consideration. The program
checking tool then processes the verification condition with
a theorem prover.
0005 The theorem prover should have the property that
when it fails to generate a proof it generates a number of
potential counter examples. The program checking tool then
post-processes these counter examples into warnings that the
desirable properties may not hold. A warning may be Spu
rious, that is, it may warn about Something that is not a real
error, as may arise when the theorem prover does not have
enough information to generate a proof.
0006. A good program checking tool has the property that
the warnings it produces are informative and easy for a
designer to understand. An informative warning message
should, ideally, include a characterization of each possible
defect (e.g., “array index out of bounds”, “timing constraint
not satisfied”, “race condition”, “deadlock”, “failure to
establish invariant”) and a Source location in the computer
program where the verification System tried, but failed, to
show the absence of the defect (e.g., “line 218 of file
ABC.Source”). If a warning message is informative and
easy to understand, the designer can more easily determine
whether a warning is real or Spurious, and what its cause is.
The designer can then act accordingly, correcting the pro
gram at the Source of the problem, or ignoring the warning,
possibly annotating the program So that the warning will be

Aug. 15, 2002

Suppressed next time the program checking tool is run. The
cost of a programming error can be greatly reduced if it is
detected early in the development process.
0007 Static checkers catch errors at compile time with
out executing the program and are valuable because they can
be applied throughout the development cycle. A common
example of a Static checker is a type checker, which detects
errorS Such as the application of a function to inappropriate
argument values. Another Static checker is the Compaq
Extended Static Checker for Java (“ESC/Java”), which
checks for additional errors that are not caught by traditional
type checker Systems, Such as dereferencing a null pointer,
indexing an array outside its bounds, or accessing a shared
variable without holding its protecting lock. ESC/Java uses
an underlying automatic theorem prover to precisely reason
about whether or not these kinds of errors can occur.

0008 Static checkers generally rely on the programmer
to Supply annotations. The computer program may be anno
tated by a developer to indicate aspects that may not be
apparent to the checker, or to impose restraints on how the
program operates, or to describe program properties Such as
invariants. The annotations may permit the program check
ing tool to find defects using a local (modular) analysis,
because the annotations provide a Specification of other parts
of the program. In modular checking, the Static program
checker analyses one program module at a time, where a
module may be a function, Subroutine or Some Suitable
compartment of the program. During Such a modular analy
sis, the program checking tool verifies that the Supplied
annotations are consistent with the program. The presence of
the annotations guides the checking process, thus making
the checking problem conceptually and computationally
Simpler.

0009 For example, conventional type checkers follow
this modular approach and rely on type annotations to guide
the type checking process. Similarly, Static race detection
checkers, like rcciava (Flanagan, C., and Freund, S. N.,
“Type-based race detection for Java,” PLDI'00, ACM SIG
PLAN Notices, 35(5):219-232, May 2000) rely on annota
tions describing the locking discipline. Additionally,
extended static checkers like ESC/Modula-3 (Detlefs, D. L.,
Leino, K. R. M., Nelson, G., and Saxe, J. B., “Extended
Static Checking,” Research Report 159, Compaq Systems
Research Center, December 1998) and ESC/Java (see
www.research.compaq.com/SRC/esc/Esc.html) are modular
checkers whose annotations include preconditions, postcon
ditions, and object invariants.
0010 The main costs in using a program checking tool,
from the perspective of the programmer, comprise annotat
ing the program, waiting for the tool to complete its analysis,
and interpreting the tools output. Often the dominant cost of
using a program checking tool is annotating the program,
especially for large legacy programs, because of the number
of Special constraints and conditions that need to be con
veyed to the program checking tool via annotations.
0011 Thus, a limitation of the modular checking
approach is the burden on the programmer to Supply anno
tations. Although programmerS have grown accustomed to
Writing type annotations, they have been reluctant to provide
additional annotations. This reluctance has been the major
obstacle to the adoption of modular checkers like ESC/Java
and rcciava. The burden of introducing annotations appears

US 2002/0112201 A1

particularly pronounced when faced with the daunting task
of applying Such a checker to existing (unannotated) code
bases. Preliminary experience with ESC/Java has indicated
that a programmer can annotate an existing unannotated
program at the rate of at most a few hundred lines per hour,
though a lower rate is more usual if the programmer is
unfamiliar with the code.

0012. A new approach developed in conjunction with the
present invention utilizes the warnings produced by the
program checking tool itself to infer annotations and inserts
those annotations directly into the program. In this way, the
program checking tool functions much as a black box in the
Sense that its internal workings are irrelevant for the purpose
of the analysis. Such an approach can be repeated iteratively
in Such a way as to generate a modified computer program
containing many new annotations at relatively little burden
to the author, but in Such a way that the annotations are
intelligible.

0013 A method involving iterative modifications to a
computer program obtained by using a Static checker is also
described in concurrently filed and commonly assigned U.S.
patent application, Ser. No. , entitled "Method and
Apparatus for Automatically Inferring Annotations, incor
porated herein by reference. An algorithm for enabling
annotation inference by iterative application of a Static
checker is described in: Flanagan, C., Joshi, R. and Leino, K.
R. M., “Annotation Inference for Modular Checkers,'Infor
mation Processing Letters, 77: 97-108 (2001), incorporated
herein by reference.
0.014 Houdini is an annotation assistant that embodies
this approach (See, Flanagan, C., and Leino, K. R. M.,
"Houdini, an Annotation Assistant for ESC/Java, SRC
Technical Note 2000-003, which also appears in: Flanagan,
C. and Leino, K. R. M., "Houdini, an annotation assistant for
ESC/Java,” in International Symposium of Formal Methods
Europe 2001: Formal Methods for Increasing Software
Productivity, vol. 2021 of Lecture Notes in Computer Sci
ence, 500-517. Springer, (March 2001)) to make ESC/Java
more useful in catching defects in legacy code. ESSentially,
Houdini conjectures heuristically a large number of candi
date annotations for an unannotated program, many of
which will be invalid, and then repeatedly uses ESC/Java as
a Subroutine to Verify or refute each of these annotations.
0.015 Nevertheless, a scheme involving iterative modi
fications to the computer program entails an overhead cor
responding to the cost of making the modifications at each
iteration and is therefore slow to run. It would be more
convenient to modify the computer program just once, after
the annotations have converged.

SUMMARY OF THE INVENTION

0016. In summary, the present invention falls within a
class of program Verifiers known as Static checkers and is
designed to reduce the cost of annotating programs. The
present invention uses the program checking tool as a black
box and utilizes the warnings produced by the program
checking tool itself to refute annotations. The functionality
of the program checking tool is thereby leveraged, rather
than being duplicated. The annotation inference module
modifies the computer program, by adding candidate anno
tations to a computer program and then removing refuted
annotations from the program. In particular the present

Aug. 15, 2002

invention uses facilities of a program checking tool Such as
an extended Static checker to reduce the cost overhead of
modifying the computer program.

0017 Accordingly, the present invention includes a
method of annotating a computer program with a least one
unrefuted annotation, which begins with inserting a set of
candidate annotations into the computer program to create
an annotated computer program. At least one guarded veri
fication condition is generated from the annotated computer
program, wherein the guarded verification condition com
prises a Set of guards. Each guard in the Set of guards
corresponds to an annotation in the Set of candidate anno
tations, and an initial truth Value of each of the guards is Set
to true. A theorem prover is applied to the at least one
guarded verification condition, to produce one or more
counter examples. For each of the counter examples that
indicates that there is an inconsistency between the com
puter program and at least one annotation in the Set of
candidate annotations, the method updates the truth value of
each guard that corresponds to the at least one annotation.
The applying and the updating are repeated until the theorem
prover produces no counter examples that indicate that there
is an inconsistency between the computer program and an
annotation in the Set of annotations. Finally, the computer
program is modified So as to remove every annotation whose
truth Value has been updated, thereby creating a modified
computer program that contains at least one unrefuted
annotation.

0018. The system and computer program product of the
present invention implement this method of annotating a
computer program.

0019. Accordingly, the present invention further includes
a computer program product for use in conjunction with a
computer System. The computer program product compris
ing a computer readable Storage medium and a computer
program mechanism embedded therein. The components of
the computer program mechanism include: a set of instruc
tions for inserting a set of candidate annotations into a
computer program; a verification condition generator for
generating at least one guarded verification condition from
the annotated computer program wherein the guarded Veri
fication condition comprises a Set of guards wherein each
guard in the Set of guards corresponds to an annotation in the
Set of candidate annotations and wherein an initial truth
value of each of the guards is Set to true; a theorem prover
for producing, from the at least one guarded Verification
condition, one or more counter examples, a guard truth
vector updater for updating the truth Value of each guard that
corresponds to an annotation that corresponds to at least one
of the counter examples, is inconsistent with the computer
program; control instructions for iteratively applying the
theorem prover and guard truth Vector updater until the
theorem prover produces no counter examples that indicates
that there is an inconsistency between the computer program
and an annotation in the Set of annotations, and instructions
for modifying the computer program So as to remove every
annotation whose truth Value has been updated thereby
creating a modified computer program that contains at least
one unrefuted annotation.

0020. The present invention also includes a system for
annotating a computer program with at least one unrefuted
annotation. This System includes at least one memory, at

US 2002/0112201 A1

least one processor and at least one user interface, all of
which are connected to one another by at least one bus. The
at least one processor is configured to annotate the computer
program with at least one unrefuted annotation. The proces
Sor executes instructions to: insert a Set of candidate anno
tations into the computer program; generate at least one
guarded verification condition from the annotated computer
program wherein the guarded Verification condition com
prises a set of guards wherein each guard in the Set of guards
corresponds to an annotation in the Set of candidate anno
tations and wherein an initial truth value of each of the
guards is Set to true, apply a theorem prover to produce, from
the at least one guarded verification condition, one or more
counter examples, update the guard truth Vector So that the
truth value of each guard that corresponds to an annotation
that corresponds to at least one of the counter examples, is
inconsistent with the computer program; iteratively apply
the theorem prover and guard truth Vector updater until the
theorem prover produces no counter examples that indicates
that there is an inconsistency between the computer program
and an annotation in the Set of candidate annotations, and
modify the computer program So as to remove every anno
tation whose truth Value has been updated thereby creating
a modified computer program that contains at least one
unrefuted annotation.

0021. In a preferred embodiment, the set of candidate
annotations is derived by employing a heuristic analysis of
the computer program. In an especially preferred embodi
ment, the program checking tool is an extended Static
checker.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. Additional objects and features of the invention
will be more readily apparent from the following detailed
description and appended claims when taken in conjunction
with the drawings, in which:
0023 FIG. 1 is a block diagram of a programmed general
purpose computer according to an embodiment of the anno
tation inference System of the present invention.
0024 FIG. 2 is a flow chart showing the application of
the annotation inference System to a computer program in
order to generate an annotated computer program.
0025 FIGS. 3A and 3B are flow charts showing the
application of a program checking tool to an annotated
computer program to generate Warnings.

0.026 FIG. 4 is a flow chart showing an iterative method
of inferring annotations in which the program is modified at
each iteration.

0027 FIG. 5 is a flow chart showing a preferred embodi
ment of the method of inferring annotations according to the
present invention.

In flow charts it is not intended that the ordering of
Steps as shown is necessarily the ordering that must
be carried out when practicing the methods of the

present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0028. The methods of the present invention are described
with respect to a computer program and a program checking

Aug. 15, 2002

tool, but it is to be understood that the methods are equally
applicable to algorithms, formulae, hardware descriptions
or, more generally, behavioral designs and their respective
asSociated verification Systems.
0029. Hereinafter, when using the term procedure, as
used to mean a portion of a computer program, it is also
assumed that the discussion can also apply to a 'class,
module, function, or Subroutine, depending upon the

computer language or System employed.
0030) Referring to FIG. 1, the present invention may be
implemented using a programmed general-purpose com
puter system 100. The computer system 100 includes: (a)
one or more data processing units (CPU's) 102; (b) memory
106, which will typically include both high speed random
access memory as well as non-volatile memory (Such as one
or more magnetic disk drives); (c) a user interface 108 which
may comprise a keyboard, mouse and/or touch-Screen dis
play; (d) a network or other communication interface 110 for
communicating with other computers as well as other
devices; and (e) one or more communication busses 104 for
interconnecting the CPU(s) 102, memory 106, user interface
108, and network interface 110.
0031. The computer system's memory 106 stores proce
dures and data, typically including:

0032 an operating system 112 for providing basic
System Services,

0033 application programs 114, such as user level
programs for viewing and manipulating images,

0034) authoring tools 116, for assisting with the
Writing of computer programs,

0035 a computer program 118 possibly containing
Some annotations, to be analyzed by an annotation
inference system 130;

0036) a modified computer program 120 that is the
product of applying annotation inference System 130
to computer program 118 and which contains at least
one unrefuted annotation;

0037 an annotated computer program 122 that
results from inserting a candidate Set of annotations
into computer program 118;

0038 optionally, an intermediate modified computer
program 124 that results each time one or more
annotations from the candidate Set is refuted by the
annotation inference System; and

0039 an annotation inference system 130 for auto
matically inserting annotations into computer pro
gram 118.

0040. The annotation inference system 130 preferably
includes:

0041 an annotation inference module 132, also
called an annotation assistant, which is the main
procedure of the annotation inference System and
controls its overall operation; and

0042 a program checking tool 150 that, when
applied to a computer program 118, produces Zero or
more warnings.

US 2002/0112201 A1

0.043 Together, the elements of the annotation inference
module 132, or annotation assistant, along with those of
program checking tool 150, may be referred to as an
annotation inference System 130. In particular, the annota
tion inference module is able to control the running of the
program checking tool.
0044) The annotation inference module 132 preferably
includes:

0045 a heuristic annotation generator 134 that
parses computer program 118 and Suggests one or
more annotations,

0046) a counter example mapper 136 that maps
counter examples 158 into annotation modifications
138;

0047 a guarded verification condition 142 that com
prises a verification condition with additional guards
corresponding to annotations,

0048 a guard truth vector 144 that contains the set
of truth values for all the guards in guarded verifi
cation condition 142,

0049 a guard truth vector updater 146 that updates
the guard truth vector 144 by setting to false the truth
value of the guards corresponding to refuted anno
tations, and

0050 optionally, one or more annotation modifica
tions 138 corresponding to annotations from the
candidate set that are refuted by the annotation
inference System; and

0051 a program updater 140 that inserts or removes
annotations from computer program 118 according
to Suggestions associated with the annotation modi
fications in order to produce a modified program 120
that contains at least one unrefuted annotation.

0.052 The program checking tool 150 is preferably an
extended Static checker and preferably includes:

0053 a verification condition generator 152 for con
Verting a program into a logical equation called a
verification condition 162;

0054 a theorem prover 154 that attempts to prove or
refute the verification condition 162;

0055 an analysis module 156 that converts counter
examples into Warning messages,

0056. Zero or more counter examples 158;
0057 Zero or more warning messages 160; and
0058 at least one verification condition 162 corre
sponding to a procedure in computer program 118.

0059) Other configurations of the various items in
memory 106, as described hereinabove, are consistent with
the operation of the present invention.

Overview of Operation of an Annotation Inference
System and Program Checking Tool

0060. The general scheme in which the present invention
operates is presented in FIG. 2. A computer program 118 is
provided to an annotation inference system 130 which
produces a modified computer program 120 as output. The

Aug. 15, 2002

modified computer program 120 preferably contains one or
more unrefuted annotations that were not present in the
original computer program 118 and which have been Sup
plied by the annotation inference System. The original
computer program 118 may itself already contain Some
annotations prior to application of the annotation inference
System.

0061 The annotation inference system of the present
invention utilizes a program checking tool 150 that checks
computer programs for defects, as shown in FIG. 3A. The
tool itself takes as input an annotated computer program 122
containing one or more annotations. These annotations are
initially the original Set of annotations, Ann. The annotations
may indicate properties that are expected to hold or are
Supposed to hold at various program points and therefore
help the program checking tool 150 check the program. The
program checking tool is applied to the computer program
122 and Zero or more warnings 160 are produced, possibly
as a result of analyzing one or more counter examples 158.
0062. In a preferred embodiment, the program checking
tool 150 is an extended static checker (ESC) that operates
under the control of the annotation inference module 132.
Examples of extended Static checkers are ESC/Java and
ESC/Modula-3. For the purposes of the present invention it
Suffices that the program checking tool generates a verifi
cation condition and comprises a theorem prover, though
any program or programs that provide access to a verifica
tion condition generator and a theorem prover would Suffice.

0063 FIG. 3B shows the procedure of FIG. 3A, aug
mented to illustrate the internal workings of the program
checking tool. The program checking tool uses a two-step
approach to Verifying the computer program. In a first Step
it converts each procedure in annotated computer program
122 into a corresponding verification condition 162. For the
purposes of the present invention, when discussing the
conversion of a program into a verification condition, it is
assumed that the verification condition can itself comprise
more than one Separate verification conditions correspond
ing to one or more procedures in the computer program. A
Verification condition is a predicate whose universal truth is
tested by a theorem prover. Each annotation may appear in
the verification condition Zero or more times, possibly in
Some modified form. In a Second step, one or more of the
Verification conditions are passed to an automatic theorem
prover 154. The theorem prover refutes a verification con
dition if it contains an incorrect annotation, i.e., if there is a
possible error in the corresponding procedure. One or more
counter examples 158 are output from the theorem prover,
and can be transformed into one or more warning messages
160 suitable for interpretation by a user.

0064 Counter examples are generally mathematical
equations or contexts that are consistent with one another
but indicate conditions that are contrary to one or more
Verification conditions. A counter example may be a simple
mathematical expression of the form “x<0” (which would be
a counter example to a proposition Such as "X-10') or may
be more complicated. Counter examples, as produced by a
theorem prover, may be intelligible to a user but are pref
erably transformed into warning messages that indicate
Specific points in the computer program at which a specific
condition is found not to hold, and are more readily under
stood by a user. Counter examples may, however, be readily

US 2002/0112201 A1

parsed, analyzed or otherwise processed by Software Such as
analysis module 156, or other software modules of the
present invention.

Generation of Verification Conditions

0065. In a preferred embodiment, the transformation of
the annotated computer program 122 into the verification
condition itself occurs via a two-stage process (as described
in: K. R. M. Leino, J. B. Saxe and R. Stata, “Checking Java
programs via guarded commands, SRC Technical Note
1999-002, Compaq Computer Corporation, (May 21, 1999),
also available in Formal Techniques for Java Programs,
Workshop proceedings, Ed. B. Jacobs, et al., Technical
Report 251, Femuniversität Hagen, (1999), incorporated
herein by reference). The computer program Source State
ments are first converted into an intermediate language, and
then weakest precondition operators are used to process the
intermediate-language Statements into Verification condi
tions (as described in U.S. Pat. No. 5,987,252 which is
hereby incorporated herein by reference).
0.066. In a preferred embodiment, the intermediate form
of the computer program is expressed in a particularly
Simple programming language that has no procedure call
Statements. Instead, the conversion to intermediate language
replaces each call by its meaning according to the called
procedure's pre- and postcondition annotations. In a pre
ferred embodiment, the intermediate programming language
utilizes guarded commands. For a description of guarded
commands, see E. W. Dijkstra, A Discipline of Program
ming, Prentice-Hall, (1976). Other examples of guarded
commands derived from Dijkstra are described elsewhere
(See, e.g., G. Nelson, “A Generalization of Dijkstra's Cal
culus, ACM Transactions On Programming Languages and
Systems, 11(4): 517-561, (1989), incorporated herein by
reference). Accordingly, it will be understood by one of skill
in the art that the methods of the present invention are not
limited to any particular Set of guarded commands but are
applicable to Dijkstra's original commands and many other
variations thereof. The conversion of Java programs to a Set
of guarded commands is described in: K. R. M. Leino, J. B.
Saxe and R. Stata, "Checking Java programs via guarded
commands,’SRC Technical Note 1999-002, Compaq Com
puter Corporation, May 21, 1999.

0067. The intermediate language contains assert and
assume Statements that bear labels, So as to keep track of
whether the Statement originated in the Source or was
generated on behalf of Some annotation, and if So, which
one. The labels of assert Statements are used by the program
checking tool to keep track of which annotations are to be
refuted.

0068 The intermediate form of the program is processed
by the verification condition generator 152 to produce a
verification condition 162 for the program. The verification
condition (VC) is a first order logical formula built up from
the constants “false' and "true,” atomic boolean program
expressions Such as equality and inequality relations
between program variables, the usual boolean connectives,
and universal quantification. Additionally, the formula can
be labeled by an annotation or program location, yielding a
labeled formula. While the labels do not change the meaning
of the underlying formula, they provide information to the
Subsequent operation of the program checking tool.

Aug. 15, 2002

0069. In a preferred embodiment, the verification condi
tion generator 152 can produce a guarded verification con
dition 142 for the program, as described hereinbelow, with
out first producing a verification condition.
0070. In a preferred embodiment, the logical formula is
expressed as a “weakest precondition.” The weakest pre
condition of a Statement, S, with respect to a postcondition
R is the formula that characterizes those initial States from
which the execution of S does not go wrong and terminates
only in States Satisfying R. Methods of expressing weakest
preconditions for Statements expressed in guarded com
mands are given by Dijkstra (see, E. W. Dijkstra, A Disci
pline of Programming, Prentice-Hall, (1976)). The logical
formula is typically represented as a tree of Sub-expressions.
Various Subsets and combinations of the Sub-expressions
must be conclusively proved to be true for all possible
program conditions.

Application of the Theorem Prover
0071. The verification condition, VC, is passed to the
theorem prover 154 whose job is to evaluate the Sub
expressions of the VC, for all possible program conditions,
to determine which ones (if any) it cannot conclusively
prove to be true. Failure to prove sufficient combinations of
Sub-expressions to always be true means that one or more of
the pre-conditions or postconditions required for proper
operation of the program is not Satisfied, or may potentially
not be satisfied.

0072) Even if a verification condition, VC, for a proce
dures f, is found to be not valid, thus indicating that an
invocation of f may violate Some annotation, in order to
indicate which annotation is violated it is preferable to
introduce Some extra machinery. Identifying invalid anno
tations can utilize a mechanism of exposing a labeled
Subformula in a VC. This is accomplished by defining a
Suitable function, eXpose, Such that a formula, R, refutes an
annotation C, if expose(C.VC) is not valid. A definition of
expose is given with a discussion of mathematical formal
isms, hereinbelow.
0073. When it is unable to prove the truth of the VC, the
theorem prover ideally produces one or more counter
examples 158. These counter examples can be processed by
an analysis module 156 and output as warning messages
160. A discussion of counter examples and their mapping
into warnings is outside the Scope of this document (but a
discussion may be found in commonly assigned pending
U.S. patent application Ser. No. 09/754,890, entitled, “Sys
tem and Method for Verifying Computer Program Correct
ness and Providing Recoverable Execution Trace Informa
tion,” filed Jan. 5, 2001, incorporated herein by reference).
The program checking tool may produce at least two kinds
of warnings. Each counter example contains Sufficient infor
mation for the program checking tool to figure out whether
it constitutes a warning of the first kind or a warning of the
Second kind. A counter-example can also contain labels
corresponding to annotations.
0074 Warnings of a first kind are warnings about pos
Sible misapplications of primitive operations of the program
ming language. For example, these Warnings concern poten
tial run-time errors, Such as dereferencing a null pointer, and
indicate that the computer program may not work. Such
warnings are denoted WO in commonly assigned, concur

US 2002/0112201 A1

rently filed U.S. patent application Ser. No. , entitled
"Method and Apparatus for Automatically Inferring Anno
tations.”

0075 Warnings of a second kind alert a user about
inconsistencies between the program and particular annota
tions. Such warnings are denoted “W1 in commonly
assigned, concurrently filed U.S. patent application Ser.
No. , entitled “Method and Apparatus for Automati
cally Inferring Annotations.' Warnings of the Second kind
occur if the program checking tool is not able to Verify the
program property claimed by an annotation, i.e., the anno
tation is inconsistent with the program. For example, Such a
warning is generated if preconditions of a procedure are not
Satisfied at the call site of the procedure. The annotation
assistant interprets Such warnings as refuting incorrect
guesses in the candidate annotation Set. The annotations that
give rise to Such warnings are preferably removed from the
computer program text by the annotation inference System.
Such annotations are Sometimes called “refuted annota
tions.” The approach to refuting annotations employed by
the annotation inference module of the present invention is
described hereinbelow.

0.076 The method of the present invention finds the
largest Subset of the original annotations that is valid for the
program. The algorithm employed Starts with the original Set
of annotations, Ann, and removes annotations from it until
a valid Subset is reached.

0077. The original set of annotations may comprise anno
tations originally present in the program as well as a
candidate Set of annotations heuristically guessed and
inserted into the program by the annotation inference System
130. For the purposes of the methods of the present inven
tion, a Subset of the annotations corresponding to the can
didate Set of annotations are refuted and Subsequently
removed.

0078. In a preferred embodiment, the algorithm main
tains a work list, W, that contains the procedures that are still
unchecked with respect to the current Set of annotations.
When checking a procedure, f, from W, any candidate
annotations in the current set that are not valid for f, are
removed from the current set and the work list is extended
with the procedures that assume any of the refuted annota
tions. The algorithm terminates when the work list becomes
empty and at this point the current Set of annotations
becomes the largest valid Subset of Ann.
0079 Since removing one annotation may cause Subse
quent annotations to become invalid, this check-and-refute
cycle iterates until a fixed point is reached. The proceSS
terminates because, until a fixed point is reached, the num
ber of remaining candidate annotations is strictly decreased
with each iteration. The resulting annotation Set is clearly a
Subset of the original Set, and is valid with respect to the
Static checker, that is, the Static checker does not refute any
of its annotations. The inferred annotation Set is in fact a
maximal valid Subset of the candidate set. Furthermore, this
maximal Subset is unique. For a proof of these properties,
and also a more efficient version of the basic algorithm
presented here, See Flanagan, C., et al., “Annotation Infer
ence for Modular Checkers,'Information Processing Let
ters, 77: 97-108 (February, 2001).
0080. As an example of why the refutation of one anno
tation may cause Subsequent annotations to become invalid,

Aug. 15, 2002

consider a candidate annotation, XZ0, as a precondition for
procedures p and q wherein procedure p calls procedure q.
If the program checking tool finds that, elsewhere in the
program, procedure r Sets X=-5 prior to calling p, then the
precondition on p is removed. On a Subsequent application
of the program checking tool, a warning will be generated
for the precondition on X as applied to q.

Iterative Application of a Theorem Prover in Which
a Computer Program is Successively Updated

0081 Amethod of using the annotation inference module
to modify annotations in a computer program, without
exploiting the advantages of the present invention, is
described for comparison purposes with respect to FIG. 4.
The input is the computer program 118. According to this
method, the annotation inference module starts by heuristi
cally constructing from the program a finite candidate Set of
annotations, Step 402, though the program may also contain
manually inserted annotations. Methods of heuristically
generating annotations are described hereinbelow. Ideally,
the candidate Set is Sufficiently large to include all annota
tions that may be useful when applying the program check
ing tool to the program at Step 406. The annotation inference
module inserts the candidate annotations into the program,
Step 404, to produce an annotated computer program, 122.
Then, the annotation inference module applies the program
checking tool to the annotated program, Step 406, thereby
producing warnings 160. In practice, at Step 406, the pro
gram checking tool translates the annotated computer pro
gram into a verification condition, to which the theorem
prover is applied, to generate counter examples. Warnings
are generated from the counter examples using an analysis
module 156, shown in FIG. 1. Invocation of the program
checking tool thus produces warnings about portions of the
program that Violate Some of the given annotations. The
annotation inference module inspects all warnings of the
second kind produced by the tool, step 410, and, if there are
no Such warnings, provides the user with a modified com
puter program 120. If there are warnings of the Second kind
that are Suitable for mapping into annotation modifications
the counter example corresponding to each Such warning is
mapped into an annotation modification, Step 412. The
annotation inference module interprets Such warnings as
identifying incorrect annotation guesses in the candidate Set.
The annotation inference module acts on these annotation
modifications So that any candidate annotation mentioned in
these warnings is removed from the modified computer
program at Step 414 by the program updater, thereby pro
ducing an intermediate modified computer program 416. In
this Sense, an invocation of the program checking tool has
the effect of refuting Some number of candidate annotations.
The program checking tool is then applied again to the
intermediate modified computer program 416 at step 406.
Steps 406, 410,412, and 414 represent a loop that is repeated
until the program checking tool no longer produces any
warnings of the Second kind that involve a candidate anno
tation.

0082 The net effect of the loop is to remove as many
incorrect candidate annotations as are possible while retain
ing those that are not inconsistent with one another. Thus,
the annotations remaining upon termination comprise a
correct Subset of the candidate set. This Subset will be the
greatest Subset whose validity can be established consistent
with other members of the candidate set.

US 2002/0112201 A1

0.083. In pseudo-code, this method of applying the anno
tation inference module can be expressed as follows:

use heuristics to generate candidate annotation set;
repeat

invoke program checking tool to refute annotations;
remove the refuted annotations;

until quiescence

0084. In practice, the program checking tool can be an
extended Static checker which is applied to the program, and
any annotation deemed incorrect by the extended Static
checker is removed at each iteration.

0085. After modified computer program 120 is produced,
the program checking tool is applied to it to produce a final
Set of counter examples that are mapped to warning mes
Sages. The warning messages are presented to the user.

Overview of the Method of the Present Invention

0.086 When refuting annotations, an annotation inference
module using the algorithm described hereinabove may need
to invoke the program checking tool to check each proce
dure a large number of times. Each invocation of the checker
would involve both generating a procedure's verification
condition and checking its validity. However, the former
operation need not be carried out every time Since the
structure of a verification condition is derived from the code
of a procedure, which remains constant. Accordingly, the
present invention seeks a way of updating the current set of
annotations without recreating the VC at every iteration.
0087. The present invention solves the problem of com
putational overhead during the iterations by calling the
theorem prover directly and by introducing annotation
guards into the VC. By enabling annotations to be removed
from the verification condition without having to modify the
text of the original program, and without having to recreate
the verification condition at each iteration, computationally
expensive processes are avoided.
0088 According to the method of the present invention,
an improvement to an annotation assistant that employs a
program checking tool Such as an extended Static checker is
realized by creating a modified form of the verification
condition called a guarded verification condition (GVC). A
GVC includes special boolean variables called annotation
guards, one for each annotation. The collection of annotation
guards is called the guard truth Vector. By using guarded
Verification conditions, it is possible to create the Verifica
tion condition for each procedure just once, and then to
re-run the theorem prover on the Verification condition
multiple times, using the annotation guards to record the
current State, i.e., which annotations have been refuted.
Counter examples produced by the theorem prover are used
to update entries in the guard truth Vector that correspond to
annotations in the candidate Set. This approach avoids
having to recreate the Verification condition at each iteration,
as done in earlier algorithms Such as employed in the earlier
versions of Houdini (see SRC Technical Note 2000-003),
and thus the new approach is Significantly faster than
previous approaches.

Using Guarded Verification Condition Expressions
0089 Referring to FIG.1, according to the method of the
present invention, the program checking tool 150 includes a

Aug. 15, 2002

Verification condition generator 152 for converting a pro
gram into a logical equation called a verification condition
162. The verification condition is converted by the annota
tion inference module into a guarded Verification condition
142. The guarded verification condition (GVC) includes a
number of “guards,” or “guard variables.” The guards of the
guarded verification condition correspond to the program
annotations. The notation g is used to denote the annotation
guard, or guard variable, for Some annotation a. The guarded
Verification condition is created in the same manner as a
conventional verification condition, except that where a
predicate Presulting from an annotation C. Would normally
be inserted into a conventional verification condition, the
implication “(g->P)” is instead inserted into the GVC.
Each of the guards is assigned a truth Value, and the Set of
truth values for all the guards in the Verification condition is
called the guard truth vector 144. Thus, by fixing the
annotation guard g to be true, the predicate resulting from
the annotation is present in the GVC. Alternatively, if g is
false then the implication simplifies to true, (because “false
implies. Something can be anything at all and is thereby
true) and the predicate can be considered to be absent from
the GVC. Initially all of the annotation guards are set to true.

0090 The program checking tool 150 includes a theorem
prover 154 that attempts to prove or refute the guarded
verification condition 142, where the truth value of each of
the guards in the Verification condition is Set in accordance
with the current state of the guard truth vector 144. A guard
truth vector updater 148 updates the guard truth vector 144
by setting to "false’ the truth value of the guards corre
sponding to refuted annotations, if any.

0091. The following translation is defined for generating
guarded verification conditions. The guarded weakest pre
condition translation gwpeStmtxFormula->Formula is
shown in Table 1, hereinbelow.

TABLE 1.

Guarded Weakest Preconditions of Exemplary Guarded Commands

S gwp(S,R)

w: = e R(v: = e)
assert C: e (g, (label C.:e)) AR if C. corresponds to a check

that would give rise to a
warning of the second kind.

e dR if C. corresponds to a check
that would give rise to a
warning of the first kind.

var win S end < w ::gwp(S,R)-> provided no variable w occurs
free in R

0092. In Table 1, S is an intermediate language statement,
Such as a guarded command. The guarded weakest precon
dition of S is given with respect to an annotation, CeAnn,
and a post-State predicate, R. The variable g is the guard
variable associated with annotation, C. In an expression Such
as gee, Substituting “true’ for g, makes it equivalent to
just e, while Substituting "false' makes the expression
equivalent to “true.” An expression gwp(S,R) characterizes
the pre-States from which executions of S do not go wrong
and terminate only in States Satisfying R.

US 2002/0112201 A1

0093. The analogous expressions to those in Table 1 for
the weakest precondition, Wp, can be found in: Flanagan, C.,
Joshi, R., and Leino, K. R. M., “Annotation Inference for
Modular Checkers,'Information Processing Letters, 77: 97
108 (February, 2001). Note that the definition of gwp differs
from that of the weakest precondition only in “assert” and
“assume.

0094. In a preferred embodiment, a single “template
condition' is generated for every procedure at the beginning
of the annotation inference process. When a procedure needs
to be checked, its template condition is converted to an
appropriate Verification condition by replacing the parts
related to the refuted annotations with “true” and leaving the
parts related to the remaining annotations unchanged.

0.095 To convert a guarded verification condition into an
ordinary verification condition, “false' is substituted for the
guard variables associated with refuted annotations and
“true” is substituted for the remaining guard variables. This
is formalized by the function drop Guards, which maps a
formula and a Set of annotations to a formula. The function
dropGuards is preferably defined as follows, wherein A is a
Set of annotations:

dropGuards(g., A) = true if C. e. A
dropGuards(g., A) = false if Ct. A
dropGuards(e., A) = map if e is any other
(<WF: dropGuards(FA)>, e) expression than a guard

variable

0096. In this definition of dropGuards, as would be
understood by one of ordinary skill in the art, the map
expression maps the function drop Guards over the operators
in expression, e, and F is a dummy Variable. It is understood
that other definitions and implementations of dropGuards
that perform Substantially the same function are compatible
with the methods of the present invention.

0097. A preferred embodiment of the method of the
present invention is described with respect to FIG. 5. The
input is annotated computer program 122 preferably created
according to steps 402 and 404 of FIG. 4. In step 402 the
annotation inference module heuristically constructs from a
computer program 118 a finite candidate Set of annotations.
Ideally, the candidate Set is Sufficiently large to include all
annotations that may be useful when applying the program
checking tool to the program. The annotation inference
module inserts the candidate annotations into the program,
Step 404, to produce annotated computer program 122.
Alternatively, annotated computer program 122 may contain
annotations inserted manually by a user. Such annotations
may themselves be inconsistent with the computer program
and may therefore be suitable for refutation, if the user so
requires. Thus it is compatible with the methods of the
present invention that a user could stipulate that certain
annotations are to be refuted and that others are to be
preserved.

0098. The annotation inference system then applies the
program checking tool 122 to the annotated computer pro
gram to produce a verification condition, which is converted
into a guarded verification condition, step 505. In a preferred
embodiment, program checking tool 122 produces a guarded

Aug. 15, 2002

Verification condition directly from the annotated computer
program. ASSociated with the guarded verification condition
is a guard truth Vector whose truth Values are initially Set to
true. The annotation inference module iteratively applies the
theorem prover 146 to the guarded verification condition. At
each Subsequent iteration of the main loop of the procedure,
the theorem prover is re-executed (step 507) without regen
erating the verification condition. Instead, the guarded Veri
fication condition is evaluated in accordance with the current
State of the guard truth Vector.
0099 Each application of the theorem prover, step 507,
produces Zero or more counter examples 509. In a preferred
embodiment, in order to associate a counter example with a
heuristic annotation, a counter example contains a label. The
annotation inference module is able to parse the counter
example in Such a way that it can check whether the label is
asSociated with an annotation from the candidate Set. Ways
to insert labels into counter examples generated by a theo
rem prover are described in commonly assigned pending
U.S. patent application Ser. No. 09/754,890, entitled, “Sys
tem and Method for Verifying Computer Program Correct
ness and Providing Recoverable Execution Trace Informa
tion,” filed Jan. 5, 2001, incorporated herein by reference.
The annotation inference module inspects counter examples
that correspond to warnings of the Second kind produced by
the program checking tool, Step 510, and, if there are no Such
counter examples removes from the computer program
annotations whose annotation guards are false, Step 516, and
provides the user with a modified computer program 120.
0100 If there are counter examples corresponding to
warnings of the Second kind, the guard truth Vector updater
updates the guard truth Vector at Step 515 So as to mask any
candidate annotation mentioned in these counter examples.
That is, at step 515 the guard truth vector is updated so as
to set to “false' the truth value of each guard that corre
sponds to a refuted candidate annotation. The updated guard
truth Vector is combined with the guarded verification con
dition without regenerating the verification condition. The
theorem prover is then applied again to the GVC at step 507.
Steps 507,510 and 515 are repeated until the theorem prover
no longer produces any counter examples corresponding to
warnings of the Second kind and which involve a candidate
annotation. At Such time, the program updater removes from
the computer program annotations whose annotation guards
are false, step 516, and provides the user with a modified
computer program 120.

0101. In pseudo-code, the preferred embodiment of the
annotation inference System can be expressed as follows:

Use heuristics to generate a candidate annotation set;
Create a GVC for each procedure in the program;
Set the initial value of each annotation guard to true;
do

Run the theorem prover on each GVC, using
the current values of the annotation guards;

for each annotation refuted by the theorem prover
Set the annotation guard to false;

end
until quiescence;

0102) The algorithm pre-computes a guarded verification
condition of every procedure in advance and, in a preferred

US 2002/0112201 A1

embodiment, applies drop Guards to convert a guarded Veri
fication condition into a verification condition whenever a
procedure needs to be checked. This algorithm is efficient
because in practice the application of drop Guards is much
faster than the re-generation of a verification condition from
the program Source.
0103). After iterations have converged, the annotation
inference module calls the program updater in order to
delete from the program those annotations that have been
refuted thereby producing a modified computer program.
0104. Then, the final step in the algorithm is to run the
program checking tool one more time to identify potential
run-time errors in the modified program. The counter
examples are mapped to warning messages. These warnings
are then presented to the user, and are used to identify
defects in the program.
0105. This algorithm works also for recursive methods.
The candidate preconditions of a recursive method will be
refined (by removing refuted preconditions) until the result
ing Set of preconditions holds at all call sites of the method,
both recursive and non-recursive call Sites.

0106 By analyzing the dependencies between annota
tions and GVCs, it is also possible to modify the algorithm
described hereinabove to avoid applying the theorem prover
to every GVC at each iteration. The application of a similar
modification to the Houdini algorithm is described in Flana
gan, C., Joshi, R., and Leino, K. R. M., “Annotation Infer
ence for Modular Checkers,'Information Processing Let
ters, 77: 97-108 (February, 2001), incorporated herein by
reference; one of ordinary skill in the art would be able to
apply Such a modification to the method of the present
invention.

0107 The most computationally intensive parts of the
method of the present invention are its validity checks i.e.,
in refuting annotations. However, if multiple processors are
available, it is possible to distribute these checking tasks
acroSS the available processors, So that many procedures can
be checked Simultaneously.

Work List Ordering Heuristics
0108. The method of the present invention, as described
hereinabove, is independent of how the procedures in the
work list are chosen. Nevertheless, how this choice is made
can have a significant impact on performance of the method.
Some heuristics for ordering the procedures in the work list
can usefully be employed. The methods of the present
invention, wherein the verification condition is not repeat
edly regenerated facilitates the use of Such heuristics.
0109. One category of heuristics comprises the “fastest

first and “slowest-first heuristics. Consider a program
containing a procedure ?o with a precondition C. and con
taining two procedures f and f that each calls ?o without
establishing C. In Such a scenario, analyzing either for f.
will uncover the invalid precondition C, and the overall
performance may be improved by preferring the procedure
with the “faster' verification condition. Clearly, it is not
possible to avoid analyzing procedures with “slow” verifi
cation conditions completely: Sooner or later every proce
dure in the work list must be checked. Nevertheless, using
this heuristic, it is hoped to reduce the number of slow
checkS.

Aug. 15, 2002

0110. A “fastest first” ordering heuristic is implemented
by timing each verification task and associating with each
procedure the amount of time it takes to check its verifica
tion condition. When the algorithm Selects the next proce
dure for Verification, it chooses the one that took the least
time the last time it was analyzed.
0111. A different strategy is to order the jobs by “slowest

first.” This heuristic may be useful in a multi-processor
Setting, Since it may allow slow jobs to get a "head Start.”
0112 The “no overlap' heuristic tries to avoid superflu
ouS analysis, as can occur in a multiple-processor environ
ment. For example, when running the distributed algorithm
on a large test case, most of the time at least two processors
were assigned the Same procedure. While Seemingly con
tradictory, this situation is actually possible and likely to
occur. It arises when a processor i is analyzing a procedure
f while another processor refutes Some annotation that is
assumed by f The algorithm then reinserts f into the work
list and can assign it to an idle processor before processor
i finishes its verification of f.
0113. One preemptive approach to implement a “no over
lap' heuristic is to abort the older verification task Since it is
subsumed by the new one. (By monotonicity of an extended
Static checker, as described hereinbelow, the annotations
refuted by the older task would also be refuted by the newer
task.) This strategy may be profitable if many of the anno
tations that the older task will refute have already been
refuted by other jobs.
0114. Another, non-preemptive, approach is to not pick
procedures that are currently being checked. This Strategy
may be profitable, for example, if the verification off spends
a lot of time before it starts analyzing those annotations that
are not in the eventual fixpoint.

Candidate Annotations

0115 The candidate annotation set is a finite set gener
ated from the program text using heuristics, Specific to the
program checking tool, about what annotations are possible
and/or are likely to be applicable to the program.
0116 Ideally, the candidate set of annotations includes all
annotations that may be useful in determining the program's
correctness. However, it is also desirable to keep the can
didate Set reasonably Small because the running time of the
tool is closely related to the number of candidate annota
tions. Furthermore, for correctness reasons, all candidate
annotations that apply to the programs entry point are
required to hold at the program's initial State.
0117 Methods of devising a set of candidate annotations
are described in concurrently filed and commonly assigned
U.S. patent application, Ser. No. , entitled “Method
and Apparatus for Automatically Inferring Annotations,”
and also Flanagan, C., and Leino, K. R. M., "Houdini, an
Annotation Assistant for ESC/Java, SRC Technical Note
2000-003, both of which are incorporated herein by refer
ence. In general, examples of candidate annotations include
preconditions or postconditions and relate values of program
variables to certain interesting constants, Such as -1, 0,1 and
constant dimensions in array allocation expressions in the
Same procedure.

Mathematical Formalisms

0118. Some questions arise about the correctness of the
annotation assistant. For example, whether or not the anno

US 2002/0112201 A1

tation assistant terminates with a unique answer; whether or
not the order in which the checker is invoked on the various
parts of the program matters, whether the checker needs to
be applied to all parts of the program or the verification
condition on every iteration; and upon which properties of
the checker the annotation assistant relies. Such details are
also to be found in: Flanagan, C., Joshi, R., and Leino, K. R.
M., “Annotation Inference for Modular Checkers,'Informa
tion Processing Letters, 77: 97-108 (February, 2001), incor
porated herein by reference.
0119) These issues can be addressed formally, adopting
the following notational conventions. The power set of X is
written PX. Following Dijkstra (Dijkstra, E. W., and Schol
ten, C. S., Predicate Calculus and Program Semantics, Texts
and Monographs in Computer Science, Springer-Verlag,
1990), a left-associative infix ".” (binding stronger than any
other operator) is used to denote function application. The
expression {xr.X::t.X} denotes the set of terms of the form
t.X for all X Satisfying the range expression r.X. For Q
denoting W, , or any associative operator that is Symmetric
on the elements of {xr.X::t.X} (for example, the union
operator, U), the expression (QXr.X::t.X) denotes the appli
cation of Q to the elements of {xr.X::t.X. If the range
expression is true, the “true" may be omitted.
0120) The Extended Static Checker,
Ann->P Ann, is defined by the equation:

ESCePro.cxP

0121 where VC is a verification condition and the item
in square brackets is the validity testing operator. The
invocation ESCOpA) returns the set of annotations in A not
refuted by p.
0122) The function exposee AnnxFormula->Formula,
wherein Formula represents the Syntactic class of formulae
from which a VC can be composed, is defined by:

e. if b = a
expose?a, (label be) = { True, otherwise

0123 expose(C., R)=map((0.Q: expose(a,Q)), R) if
R is not a labeled formula.

0124. In the definition of expose, the argument (label b:e)
is a labeled formula such that formula e is labeled by an
annotation or program location, b. Thus, a formula R refutes
an annotation, C., if expose(C.VC) is not valid.
0.125. A modular checker checks a program one part at a
time. The parts of the program on which the checker
operates are referred to as “units of checking,” or simply as
“units.” For Some checkers, a unit of checking may be a
routine Such as a procedure, method, or constructor. For
other checkers, a unit may be a larger construct Such as a
module, package, or class. Let Unit denote the Set of
possible units of checking. The internal Structure of these
units is of no concern: it is simply assumed that a program
PC Unit is a finite Set of units and that a program checking
tool, or checker, C, can check these units.

0.126 While checking each unit, the checking tool relies
on annotations Specifying properties of the other units in the
program. Ann is used to denote the Set of possible annota

Aug. 15, 2002

tions, and whenever the program checking tool C is invoked
on a unit f in Unit, a set of annotations AC Ann is
preferably also provided.
0127 Warnings of the second kind, as described herein
above, indicate annotations that should be refuted. During
the checking process, the program checking tool may dis
cover that the unit f is not consistent with Some annotation
in A (for example, f may be a procedure that fails to ensure
one of its postconditions). In this case, the checker refutes
the annotation. To simplify the analysis, the checker is
formalized to be a function that returns the Set of annotations
in A that the checker fails to refute:

C: UnitxPAnn->PAnn. (1)

0128. The annotation inference module assumes two
underlying properties of the program checking tool. The first
property is that the Set of annotations returned by the tool is
a subset of those to which the tool is applied:

(Wf, Alfe Unit AAC Ann: CfA CA). (2)
0129. The second property is that the program checking
tool Satisfies the following monotonicity property:

(Wffe Unit: C. f is monotonic). (3)
0.130 Intuitively, if an invocation of the program check
ing tool does not refute a particular annotation, then passing
additional annotations to the tool does not cause that same
annotation to be refuted either.

0131 For convenience, C can also be overloaded
(“lifted”) to apply to sets of units: for any set FC Unit,

C.F.A=(nflifeF: CfA)nA (4)
0132) Properties (2) and (3) for a program checking tool
imply analogous properties for the lifted checking tool.
Furthermore, for any unit? that is an element of a set of units
F, and Set of annotations A, the following hold:

0133) Property (5) means that applying the checker to a
larger Set of code F increases the opportunity for refuting
annotations in A. Thus, the Set of unrefuted annotations
C.F.A is necessarily a Subset of the Set of unrefuted anno
tations Cf.A.
0134). Accordingly, it is said that an annotation Set A is
valid for a program P if C.P.A=A, that is, if program
checking tool C does not refute any of the annotations in A.
It follows from properties (2) and (3) that validity is closed
under union. Hence, for any program Pand annotation Set A,
there is a unique greatest Subset of A that is valid for P.
0.135 An annotation assistant is a program that, for a
given (finite) candidate annotation set G and a program P.
computes the greatest Subset of G that is valid for P.
Formally, an annotation assistant computes a Set B Such that:

Bo G (7)

C.P.B-B (8)

(WXX CGACPX-X: X CB) (9)
0.136 The following program implements an annotation
assistant.

0137) while CPB =B do

US 2002/0112201 A1

0138 choose X such that C.P.BCXCB;
B:=X;

0139) end
0140. The body of this loop picks a set X that satisfies the
given range expression and then Sets B to X. The loop
terminates when no Such X exists.

0.141. The program satisfies the specification of an anno
tation inference module. It is not hard to prove, using
property (2), that properties (7) and (9) together are a loop
invariant. By property (2), the negation of the loop guard is
property (8). Termination follows from variant function B,
which is strictly decreased by the loop body.
0142. Note that this program can remove from B any
annotation that C.PB refutes; it need not contract B to C.PB
itself. Thus refuted annotations can be removed from B in
any order.
0143 Accordingly, the two properties (2) and (3) of the
program checking tool imply that the basic annotation
inference algorithm converges on a unique fixed-point,
regardless of the order in which annotations are refuted and
removed.

EXAMPLES

Example 1

Use of Verification Conditions

0144. The program checking tool used in examples 1 and
2 is an extended Static checker, ESC/Java, a tool for finding
common programming errors in Java programs. ESC/Java
takes as input a Java program, possibly annotated with
ESC/Java light-weight specifications, and produces as out
put a list of warnings of possible errors in the program.
Because of its Static and automatic nature, its use is remi
niscent of that of a type checker. However, ESC/Java is
powered by a more precise Semantics engine than most type
checkers and uses an automatic theorem prover.
0145 ESC/Java performs modular checking: every rou
tine (method or constructor) is given a specification. ESC/
Java checks that the implementation of each routine meets
its specification, assuming that all routines called meet their
Specifications. The Specification comes from user-Supplied
annotations. ESC/Java does not trace into the code of a
callee, even if the callee code is also given to the tool to be
checked. By performing modular checking, ESC/Java can be
applied to a Single class, or even a routine, at a time, without
needing the entire program.
0146 To demonstrate the operation of the embodiment
that utilizes verification conditions and, in Example 2,
guarded Verification conditions, consider an example of a
computer program 120 that comprises two modules, “main'
and "timestwo,” shown in Table 2:

TABLE 2

Example Program for Demonstrating
Verification Conditions with and without Guards

void main() {
int x = 5:
int y = timestwo(x);

Aug. 15, 2002

TABLE 2-continued

Example Program for Demonstrating
Verification Conditions with and without Guards

int timestwo(int n) {
return 2*n;

0147 The first step (i.e., using the procedure shown in
FIG. 4 and described herein above) is for the heuristic
annotation generator to guess candidate annotations (Step
402) and to insert them into the program (step 404). For this
example, an annotated computer program 122 that results is
shown in Table 3.

TABLE 3

Computer Program of Table 2 Annotated with Candidate Set

void main() {
int x = 5:
int y = timestwo(x);
//(G) assert y >= 0;

f/(G) requires n >= 0;
f/(G) requires n < 0;
f/G ensures \result >= 0;
f/G ensures \result < 0;
int timestwo(int n) {

return 2*n;

ff candidate annotation 1
ff candidate annotation 2
ff candidate annotation 3
ff candidate annotation 4

0.148. The static checker, as described above, would
process this program as follows. First, it would generate
verification conditions VC main and VC timestwo (Step
406) for the two modules respectively:

0149 VC main is given by:
x=5->x20Ax<0A(y20Ay-O-ey20).

0150 VC timestwo is given by:
n2OAn&OA result=2*n-> result 20A result <0.

& 0151. In the foregoing expressions “->” means
IMPLIES, “A” means AND, and “A” binds more strongly
than “->.” Each verification condition is composed of a
number of individual fragments separated from one another
by conjunctions or disjunctions. For example, “result=2n'
is a fragment of VC timestwo.
0152 These verification conditions are passed to the
theorem prover, whereupon the theorem prover will refute
VC main on account of the fragment “x<0” which comes
from candidate annotation 2. Such a refutation is presented
as a warning 408. At this stage, VC timestwo is valid.
0153. Because a warning of the second kind is issued and
a candidate annotation is mentioned (step 410), a counter
example corresponding to the warning is mapped into an
annotation modification (Step 412). A counter example to
VC main is, in this case, a simple formula, X=5.
0154) Then, the refuted candidate annotation 2 is
removed from the program (step 414), yielding the first
intermediate modified program 124 shown in Table 4:

US 2002/0112201 A1

TABLE 4

First Intermediate Modified Computer Program

void main() {
int x = 5:
int y = timestwo(x);
f/(G) assert y >= 0;

f/(G) requires n >= 0;
f/G ensures \result >= 0;
f/G ensures \result < 0;
int timestwo(int n) {

return 2*n;

ff candidate annotation 1
ff candidate annotation 3
ff candidate annotation 4

O155 Now, the two verification conditions are generated
for the first intermediate modified program by applying the
program checking tool to it (Step 406):

0156 VC main is now given by:
x=5->x20A(y20Ay-O-ey20).

O157 VC timestwo is now given by:
n2OA result=2*n-> result20A result&O.

0158. These verification conditions are passed to the
theorem prover. This time, VC main is valid but
VC timestwo is not on account of the fragment “resultz0”
which comes from candidate annotation 4. Thus a warning
is issued and the corresponding counter example is mapped
into an annotation modification (step 412). In this case, the
counter example is neOA result=2n, which is the left hand
side of VC timestwo.
0159 Consequently, the refuted candidate annotation 4 is
removed from the program (Step 414), yielding the Second
intermediate modified computer program shown in Table 5:

TABLE 5

Second Intermediate Modified Computer Program

void main() {
int x = 5:
int y = timestwo(x);
f/(G) assert y >= 0;

f/(G) requires n >= 0;
f/G ensures \result >= 0;
int timestwo(int n) {

return 2*n;

ff candidate annotation 1
ff candidate annotation 3

0160 The verification conditions are generated for the
Second intermediate modified computer program (step 506):

0161 VC main is now given by:
x=5->x20A(y20-y20).

0162 VC timestwo is now given by:

0163 These two verification conditions are passed to the
theorem prover, which finds both of them to be valid and
issues no new warnings that mention candidate annotations.
Hence, finally, the annotation inference System outputs a
modified computer program 120 that contains just candidate
annotations 1 and 3.

12
Aug. 15, 2002

Example 2

Using Guarded Verification Conditions to Avoid
Modifying the Computer Program

0164. The method according to the present invention
employs an improved version of the Static checker that
avoids regeneration of the verification condition each time
that a candidate annotation is refuted and removed from the
program. This improved version of the Static checker oper
ates as follows, as shown in FIG. 5.
0.165. After the annotation assistant has generated a set of
candidate annotations and inserted them into the program, a
guarded verification condition (GVC) is generated for the
annotated computer program (step 505):
0166 Using the program used in Example 1, and shown
in Table 2 hereinabove, two guarded verification conditions
are created, denoted GVC main and GVC timestwo,
respectively.

0167 GVC main is given by:

0168 GVC timestwo is given by:

01.69 Each fragment of the guarded verification condi
tions is given a guard variable name, for example G1, G2.
Each fragment corresponds to a single annotation. Subse
quently, a Set of initial truth assignments, denoted TAO and
stored in the guard truth vector associated with the GVC, is
generated for the guard variables:

TAO: G1=trueAG2=trueAG3=trueAG4=true.

0170 The theorem prover is then presented (at step 507)
with the following two formulas:

TAO->GVC main; and
TAO->GVC timestwo.

0171 The theorem prover will refute the first of these
formulas on account of the fragment "X-0 and produce a
counter example which comes from candidate annotation 2.
The Second formula is valid at this Stage.
0172 The truth assignments for the guard variables are
updated (step 515) to record that candidate annotation 2 has
been refuted. Thus, G2 is set to false. The updated truth
assignments are denoted TA1 to indicate that the values are
those Set on the first iteration:

0173 Next, the theorem prover is presented with the
following two formulas (step 507):

TA1->GVC main; and
TA1->GVC timestwo.

0.174. This time, the first formula is valid and the second
is not on account of the fragment “resultz0” which comes
from candidate annotation 4. Accordingly, a counter
example results, and the truth assignments for the guard
variables are updated (step 515) to record that candidate
annotation 4 has been refuted. The truth assignments,
denoted TA2, are thus:

US 2002/0112201 A1

0175. Again, the theorem prover is presented (step 507)
with the following two formulas:

TA2->GVC main; and
TA2->GVC timestwo.

0176) This time, both formulas are valid and no more
warnings that mention a candidate annotation are generated.
Thus, the annotation inference System removes from the
program annotations whose guards are false, Step 516.
0177. In each of the foregoing steps, simplifications can
be applied to the GVC combined with the guard truth vector.
Such simplifications are often called peep-hole-like opti
mizations because they concentrate on the details of Small
portions. Examples of peephole optimizations include the
following. For a GVC whose form is:

0.178 wherein Po and P are postconditions, if G0 is true
and G1 is false, a first peephole optimization is to rewrite the
GVC as:

0179. In which case, each of the fragments may be further
replaced, in another peephole optimization:

(Po)A(True).
0180. This expression can, in turn, be further simplified
to Po because any expression and-ed with “true’ is simply
the expression itself.
0181 Finally, the annotation inference module outputs a
modified version of the program (120) that contains just
candidate annotations 1 and 3.

0182. As shown, the annotation inference module gener
ates the verification conditions (GVC main and GVC
timestwo) only once, saving the time that would otherwise

be required to re-parse and re-type-check the computer
program and re-generate Verification conditions.

Example 3

Comparison of Timings Using Guarded Verification
Conditions Without Modifying the Computer

Program With Prior Method

0183 The ideas of the present invention have been imple
mented in the annotation assistant, Houdini, Specifically, the
version Houdini 2.0, which infers annotations for ESC/Java.
Houdini consists of three components. Two of these are
components of ESC/Java: a verification condition generator,

benchmark

Java2Html
WebSampler
PachyClient
Cobalt

Aug. 15, 2002

which has been modified to produce guarded Verification
conditions, and a theorem prover, Simplify. The third com
ponent is a driver program that implements the annotation
inference logic.
0.184 Given a Java program, Houdini first generates an
initial Set of annotations and uses ESC/Java to produce
guarded verification conditions for every procedure (method
or constructor) of the program. The obtained guarded veri
fication conditions are Stored as text files on disk. The driver
program contains two modules: the coordinator and the
server. The coordinator remotely starts a fixed number of
Server processes and performs Scheduling of Verification
tasks among them. Given a procedure name, a Server loads
its verification condition from disk, applies drop Guards and
various peephole-like optimizations as described herein
above in Example 2, to it. The server then sends the obtained
formula to a local copy of the theorem prover Simplify, and
forwards the results of the verification back to the coordi
nator. The coordinator and Servers communicate using Sock
etS.

0185. Communication overhead of this annotation assis
tant is insignificant, and the running time is dominated by
the theorem proving component. The coordinator process
idles about 90% of the time waiting for replies from the
Servers. Each Server process, in turn, Spends between 5% to
10% of its time preparing the verification condition for the
theorem prover; Simplify takes the rest of the time.
0186 Principal experiments have been conducted on four
input programs:

0187 Java2Html, a 500-line program that turns Java
programs into color-coded HTML pages (Compaq
Systems Research Center, available from research
.compaq.com/SRC/Software);

0188 WebSampler, a 2,000-line program that per
forms Statistical Samplings of trace files generated by
the web crawler Mercator (see, Heydon, A., and
Najork, M. A., “A Scalable, extensible web crawler,
”World Wide Web, 2(4):219–229, (1999));

0189 PachyClient, the 11,000-line graphical user
interface of the web-based email program Pachy
derm (Compaq Systems Research Center, (1997),
available from research.compaq.com/SRC/pachy
derm), and

0.190 Cobalt, a proprietary 36,000-line program.
0191 Table 6 shows some statistics about these pro
grams.

TABLE 6

The benchmark programs used for
the performance numbers in Example 3.

lines Annotations Warnings

of code classes routines candidate valid ESCAJava Houdini

558 5 32 398 86 70 11
1875 14 127 6252 5061 252 41
10928 57 653 33062 6O76 1325 525
36152 173 1157 283.63 9246 3978 649

US 2002/0112201 A1

0.192 Table 6 also shows how many candidate annota
tions were guessed for these programs and how many of the
candidate annotations were valid. The difference between

these two numbers is how many annotations Houdini
refuted. For WebSampler, most of the candidate annotations
remain, which is because the files included a lot of code that
was not reachable from the given program entry points.
Accordingly, as can be seen by comparing PachyClient and
Cobalt, the number of candidate annotations is not just a
function of program Size but also of the particular declara
tions in the program.

0193 The last two columns in Table 6 show how many
warnings ESC/Java and Houdini produced on these pro
grams. That is, they show how many warnings ESC/Java
produced on the programs without any annotations and also
with the valid annotations inferred by Houdini. As can be
Seen, the number of warnings is decreased significantly by
employing an annotation inference System.

0194 Table 7 shows some performance numbers on the
four benchmark programs. The computations detailed in
Table 7 were performed on a single processor.

TABLE 7

Houdini analysis performance.

Generate New Houdini

candidate Original Generate
benchmark annotations Houdini GVC

Java2Html O:O:08 O:5:44 O:O:20 O:3:17
WebSampler O:O:12 1:11:32 O:2:03 O:28:39
PachyClient O:O:42 35:21:25 O:49:44 6:41:47
Cobalt O:4:41 60:00:00(8) O:18:24 11:47:34

0.195 All times in Table 7 are in hours: minutes:seconds.
Numbers marked with (*) in Table 7 are approximations.
The first number column shows that the time to generate the
candidate annotations is insignificant compared to the rest of
the computation. The next column shows the time required
by the unoptimized Houdini to refute the invalid candidate
annotations.

0196) The last two columns of Table 7 pertain to Houdini
runs that use the optimizations described hereinabove, in
particular using the fastest-first work ordering heuristic (but
not the no-overlap heuristic). The first of these columns
shows the time required to generate the guarded verification
conditions from the annotated program. The proportionately
long time taken for PachyClient is due to the large number
of annotations that were input to the program. The last
column shows the time taken from entering the iterative loop
to exiting it. This time is dominated by the time taken to
refute candidate annotations. Time taken for additional
Steps, Such as for the program updater to remove from the
annotated computer program those annotations that have
been refuted, are not shown in Table 7. It can be seen from
Table 7, that the methods of the present invention give rise
to a significant improvement in performance over previous
comparable methods.

Aug. 15, 2002

Example 4

Heuristic Generation of Annotations

0197)

TABLE 8

Example program for which annotations are generated.
Line numbers as shown in the left hand column.

0 int a 100:
1 int b50:
2 intm;
3 int n;
4 int x := 0;
5 inty := 0;
6 while (x < 100) {
7 m := ax:
8 n := by:
9 x := x+2:

10 y := y+1;
11 }

0198 Running a conventional program checking tool on
the program shown in Table 3 produces the following
warning:

Line 8: possible array index Out of bounds.

0199 An annotation inference system according to the
method of the present invention first guesses many annota
tions and then lets the underlying tool refute them. For the
program shown in Table 8, the annotation inference module
may guess the annotations shown in Table 9.

TABLE 9

Candidate set of annotations heuristically
derived for the program in Table 8

<= X

<= y
<= 50
<= 50
&= 100
&= 100
<= X

eve

odd
eve

odd

0200. The rationale behind the annotations in the candi
date set is as follows. The number Zero (0) is important to
many programs, especially as a likely lower bound to an
array index variable such as X or y. The integer fifty (50)
appears in the program text as the length of array “b,” and
hence may also be an important value. Similarly, the integer
one hundred (100) appears in the program text as the length
of array “a.” Other guesses utilize the variables in various
possible conditions.

0201 After repeatedly calling a program checking tool to
refute these annotations, the Set of annotations that remains
is shown in Table 10.

US 2002/0112201 A1

TABLE 10

Set of annotations remaining in the program of Table 8
after iteratively calling a program checking tool

3. : 1. O O

0202) Note that the loop invariant “y.<=50” has been
refuted, despite the fact that it is true in all executions. The
reason for this is that there is no explicit link between the
variable y, the array incrementing variable X and the bounds
of execution of the loop. Had the heuristic annotation
generator also guessed a condition like "y+y=X, then both
“yz=50' and “y+y=x” would have remained unrefuted.
0203) Note also that a condition like “X=0Vx>=2' is a
loop invariant, but it was not guessed by the annotation
assistant in this example because of the overall Simplicity of
the annotations.

Alternate Embodiments

0204. The present invention can be implemented as a
computer program product that includes a computer pro
gram mechanism embedded in a computer readable Storage
medium. For instance, the computer program product could
contain the program modules shown in FIG. 1. These
program modules may be stored on a CD-ROM, magnetic
disk Storage product, or any other computer readable data or
program Storage product. The Software modules in the
computer program product may also be distributed electroni
cally, via the Internet or otherwise, by transmission of a
computer data Signal (in which the Software modules are
embedded) on a carrier wave.
0205 While the present invention has been described
with reference to a few specific embodiments, the descrip
tion is illustrative of the invention and is not to be construed
as limiting the invention. Various modifications may occur
to those skilled in the art without departing from the true
Spirit and Scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method of annotating a computer program with a

least one unrefuted annotation, comprising:
inserting a set of candidate annotations into the computer

program to create an annotated computer program;

generating at least one guarded verification condition
from Said annotated computer program wherein Said
guarded verification condition comprises a set of
guards wherein each guard in Said Set of guards corre
sponds to an annotation in Said Set of candidate anno
tations and wherein an initial truth Value of each of Said
guards is Set to true;

applying a theorem prover to the at least one guarded
Verification condition, to produce one or more counter
examples,

Aug. 15, 2002
15

for each of Said counter examples that indicates that there
is an inconsistency between the computer program and
at least one annotation in Said Set of candidate anno
tations:

updating the truth Value of each guard that corresponds
to Said at least one

annotation;
repeating Said applying and Said updating until Said

theorem prover produces no counter examples that
indicates that there is an inconsistency between the
computer program and an annotation in Said Set of
annotations, and

modifying the computer program So as to remove every
annotation whose truth Value has been updated thereby
creating a modified computer program that contains at
least one unrefuted annotation.

2. The method of claim 1 wherein said set of candidate
annotations is derived by employing a heuristic analysis of
the computer program.

3. The method of claim 2 wherein said set of candidate
annotations comprises a candidate invariant for a variable f.

4. The method of claim 3 wherein said candidate invariant
comprises an expression that includes a comparison opera
tor.

5. The method of claim 4 wherein said expression
includes an operand Selected from the group consisting of:
a variable declared earlier in a Same class of the computer
program; any one of the constants -1, 0, 1; and a constant
dimension in an array allocation expression in the computer
program.

6. The method of claim 2 wherein said set of candidate
annotations comprises a predicate Selected from the group
consisting of a precondition and a postcondition.

7. The method of claim 1 additionally comprising, after
Said modifying, applying a program checking tool to Said
modified computer program to present one or more warning
meSSages to a user.

8. The method of claim 7 wherein said program checking
tool is an extended Static checker.

9. The method of claim 1 wherein said theorem prover is
contained within an extended Static checker.

10. The method of claim 1 wherein said generating
additionally comprises:

converting Said annotated computer program into an
intermediate form; and

processing Said intermediate form by a verification con
dition generator to produce Said at least one guarded
Verification condition.

11. The method of claim 10 wherein said processing
utilizes a guarded weakest precondition operator.

12. The method of claim 10 wherein said processing
additionally comprises:

producing at least one verification condition and Subse
quently transforming Said at least one verification con
dition into Said at least one guarded verification con
dition.

13. The method of claim 12 wherein said producing
utilizes a weakest precondition operator.

14. The method of claim 1 wherein at least one of Said
counter examples that indicates that there is an inconsistency

US 2002/0112201 A1

between the computer program and at least one annotation
in Said Set of candidate annotations, corresponds to a warn
ing message.

15. A computer program product for use in conjunction
with a computer System, the computer program product
comprising a computer readable Storage medium and a
computer program mechanism embedded therein, the com
puter program mechanism comprising:

a set of instructions for inserting a Set of candidate
annotations into a computer program;

a verification condition generator for generating at least
one guarded verification condition from Said annotated
computer program wherein Said guarded verification
condition comprises a set of guards wherein each guard
in Said Set of guards corresponds to an annotation in
Said Set of candidate annotations and wherein an initial
truth Value of each of Said guards is set to true;

a theorem prover for producing, from the at least one
guarded verification condition, one or more counter
examples,

a guard truth Vector updater for updating the truth value
of each guard that corresponds to an annotation that,
according to at least one of Said counter examples, is
inconsistent with the computer program;

control instructions for iteratively applying the theorem
prover and guard truth Vector updater until Said theo
rem prover produces no counter examples that indicates
that there is an inconsistency between the computer
program and an annotation in Said Set of annotations,
and

instructions for modifying the computer program So as to
remove every annotation whose truth value has been
updated thereby creating a modified computer program
that contains at least one unrefuted annotation.

16. The computer program product of claim 15 further
comprising a heuristic annotation generator for heuristically
deriving Said candidate Set of annotations from the computer
program.

17. The computer program product of claim 16 wherein
Said Set of candidate annotations comprises a candidate
invariant for a variable f.

18. The computer program product of claim 17 wherein
Said candidate invariant comprises an expression that
includes a comparison operator.

19. The computer program product of claim 18 wherein
Said expression includes an operand Selected from the group
consisting of: a variable declared earlier in a Same class of
the computer program; any one of the constants -1, 0, 1; and
a constant dimension in an array allocation expression in the
computer program.

20. The computer program product of claim 16 wherein
Said Set of candidate annotations comprises a predicate
Selected from the group consisting of a precondition and a
postcondition.

21. The computer program product of claim 15 addition
ally comprising instructions for applying a program check
ing tool to Said modified computer program to present one
or more warning messages to a user.

22. The computer program product of claim 21 wherein
Said program checking tool is an extended Static checker.

Aug. 15, 2002

23. The computer program product of claim 15 wherein
Said theorem prover is contained within an extended Static
checker.

24. The computer program product of claim 15 wherein
Said verification condition generator additionally comprises:

instructions for converting Said annotated computer pro
gram into an intermediate form; and

instructions for processing Said intermediate form to
produce Said at least one guarded verification condi
tion.

25. The computer program product of claim 24 wherein
Said instructions for processing utilize a guarded weakest
precondition operator.

26. The computer program product of claim 24 wherein
Said instructions for processing additionally comprise:

instructions for producing at least one verification condi
tion and instructions for Subsequently transforming
Said at least one verification condition into Said at least
one guarded verification condition.

27. The computer program product of claim 26 wherein
Said instructions for producing utilize a weakest precondi
tion operator.

28. The computer program product of claim 15 wherein at
least one of Said counter examples that indicates that there
is an inconsistency between the computer program and at
least one annotation in Said Set of candidate annotations,
corresponds to a Warning message.

29. A System for annotating a computer program with at
least one unrefuted annotation, the System comprising:

at least one memory, at least one processor and at least one
user interface, all of which are connected to one another
by at least one bus,

wherein Said at least one processor is configured to
annotate the computer program with at least one unre
futed annotation; and

wherein Said at least one processor executes instructions
to:

insert a set of candidate annotations into the computer
program,

generate at least one guarded verification condition from
Said annotated computer program wherein Said guarded
Verification condition comprises a set of guards
wherein each guard in Said Set of guards corresponds to
an annotation in Said Set of candidate annotations and
wherein an initial truth value of each of Said guards is
Set to true,

apply a theorem prover to produce, from the at least one
guarded verification condition, one or more counter
examples,

update the guard truth Vector So that the truth Value of
each guard that corresponds to an annotation that
corresponds to at least one of Said counter examples, is
inconsistent with the computer program;

iteratively apply the theorem prover and invoke the guard
truth Vector updater until Said theorem prover produces
no counter examples that indicates that there is an
inconsistency between the computer program and an
annotation in Said Set of candidate annotations, and

US 2002/0112201 A1

modify the computer program So as to remove every
annotation whose truth value has been updated thereby
creating a modified computer program that contains at
least one unrefuted annotation.

30. The system of claim 29 wherein said at least one
processor further executes instructions for heuristically
deriving Said candidate Set of annotations from the computer
program.

31. The system of claim 30 wherein said set of candidate
annotations comprises a candidate invariant for a variable f.

32. The system of claim 31 wherein said candidate
invariant comprises an expression that includes a compari
Son operator.

33. The system of claim 32 wherein said expression
includes an operand Selected from the group consisting of:
a variable in a same class of the computer program; any one
of the constants -1, 0, 1; and a constant dimension in an
array allocation expression in the computer program.

34. The system of claim 30 wherein said set of candidate
annotations comprises a predicate Selected from the group
consisting of a precondition and a postcondition.

35. The system of claim 29 wherein said at least one
processor further executes instructions for applying a pro
gram checking tool to Said modified computer program to
present one or more warning messages to a user.

36. The system of claim 35 wherein said program check
ing tool is an extended Static checker.

17
Aug. 15, 2002

37. The system of claim 29 wherein said theorem prover
is contained within an extended Static checker.

38. The system of claim 29 wherein said at least one
processor additionally executes:

instructions for converting Said annotated computer pro
gram into an intermediate form; and

instructions for processing Said intermediate form to
produce Said at least one guarded verification condi
tion.

39. The system of claim 38 wherein said instructions for
processing utilize a guarded weakest precondition operator.

40. The system of claim 38 wherein said instructions for
processing additionally comprise:

instructions for producing at least one verification condi
tion and instructions for Subsequently transforming
Said at least one verification condition into Said at least
one guarded verification condition.

41. The system of claim 40 wherein said instructions for
producing utilize a weakest precondition operator.

42. The system of claim 29 wherein at least one of said
counter examples that indicates that there is an inconsistency
between the computer program and at least one annotation
in Said Set of candidate annotations, corresponds to a warn
ing message.

