An object of the present invention is to find a new pharmaceutical application of a prostaglandin F2α derivative. It was found that the prostaglandin F2α derivative inhibits glutamate-induced retinal neuronal cell death in a concentration-dependent manner in rat fetal retinal neuronal cells, in other words, the prostaglandin F2α derivative acts directly on the retinal neuronal cells and exhibits a protective effect. Accordingly, the prostaglandin F2α derivative is useful for the prevention or treatment of an eye disease associated with retinal neuronal cell damage.
PROTECTIVE AGENT FOR RETINAL NEURONAL CELL CONTAINING PROSTAGLANDIN F2ALPHA DERIVATIVE AS ACTIVE INGREDIENT

TECHNICAL FIELD

[0001] The present invention relates to a protective agent for a retinal neuronal cell containing a prostaglandin F2α derivative as an active ingredient.

BACKGROUND ART

[0002] The retina is a tissue with a thickness of from 0.1 to 0.5 mm consisting of ten layers of inner limiting membrane, nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor cell layer and retinal pigment epithelium layer, and retinal neuronal cell groups including photoreceptor cells, bipolar cells, ganglion cells, horizontal cells, amacrine cells and Muller cells are present therein.

[0003] The retinal neuronal cells play an important role in the reception and transmission of visual information such as converting light stimulation into an electrical signal and transmitting the signal to the brain.

[0004] To specifically describe the mechanism of such transmission, the visual information from the eyes is converted into an electrical signal through photoreceptor cells and transmitted to ganglion cells by way of horizontal cells, bipolar cells and/or amacrine cells. Then, the electrical signal is transmitted to the brain by way of the optic nerve which is a bundle of optic nerve fibers including axons of ganglion cells.

[0005] On the other hand, when these retinal neuronal cells are damaged due to various causes, the homeostasis (a function to supply oxygen or nutrition to retinal neuronal cells through retinal blood circulation, and the like) of retinal neuronal cells cannot be maintained, and the transmission of visual information to the brain is inhibited. For example, it is widely known that dysfunction of retinal neuronal cells is caused in various retinal diseases such as retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, glaucoma, macular degeneration, retinitis pigmentosa and Leber’s disease (Brain Res. Bull., 62(6), 447-455 (2004)).

[0006] It has recently been considered that retinal neuronal cell death due to retinal ischemia is one of the causes of retinal neuronal cell damage, and the following events have been reported regarding the retinal neuronal cell death due to retinal ischemia (JP-A-2003-146904 and Nature Rev., 2, 448-459 (2003)).

[0007] 1) The mechanism of retinal neuronal cell death due to retinal ischemia is similar to that of cerebral neuronal cell death due to cerebral ischemia.

[0008] 2) In short term retinal ischemia, the retinal inner layer (inner plexiform layer) is selectively damaged.

[0009] 3) The excess release of glutamate during retinal ischemia can be observed.

[0010] 4) By injecting an excitatory amino acid such as glutamate into the vitreous body, retinal neuronal cell death is induced.

[0011] 5) The overstimulation mediated by retinal N-methyl-D-aspartate (NMDA) receptors promotes calcium (Ca) influx into cells, which results in inducing cell damage by way of induction of nitrogen monoxide (NO).

[0012] From these events, it is considered that a drug such as a glutamate neurotoxicity inhibitor, an NMDA receptor antagonist or an NO synthesis inhibitor is useful for treating an eye disease caused by retinal neuronal cell damage, and various studies have been carried out.

[0013] For example, JP-A-2001-072591 discloses a protective agent for a retinal neuronal cell containing nipradiol which is one of the β-blockers as an active ingredient. WO 01/05606 discloses a protective agent for an optic ganglion cell containing an interleukin-1 receptor antagonist protein as an active ingredient. WO 03/004058 discloses a protective agent for an optic ganglion cell containing an α1 receptor antagonist such as brimonidine hydrochloride as an active ingredient. Experimental Eye Res., 72, 479-486 (2001) discloses a nerve-protecting effect of flut=toprost which is one of the prostaglandin derivatives, etc.

[0015] However, any of these documents does not describe an effect of a fluorine-containing prostaglandin F2α derivative on protecting a retinal neuronal cell at all.

DISCLOSURE OF THE INVENTION

Problems to be Solved

[0016] It is a very interesting subject to find a new pharmaceutical application of a prostaglandin F2α derivative (particularly a fluorine-containing prostaglandin F2α).

Means of Solving Problems

[0017] Accordingly, the present inventors made intensive studies in order to find a new pharmaceutical application of a prostaglandin F2α derivative. As a result, they found that the prostaglandin F2α derivative inhibits glutamate-induced retinal neuronal cell death in a concentration-dependent manner in rat fetal retinal neuronal cells, in other words, the prostaglandin F2α derivative acts directly on the retinal neuronal cells and exhibits a protective effect, thus accomplished the present invention.

[0018] The present invention relates to a protective agent for a retinal neuronal cell containing a prostaglandin F2α derivative as an active ingredient.

[0019] Further, the present invention relates to a method of protecting a retinal neuronal cell and a method of preventing or treating an eye disease associated with retinal neuronal cell damage.
In the present invention, the “prostaglandin F2α derivative” means a prostaglandin F2α-related compound derived from the skeleton of prostanoic acid.

Preferably, a protective agent for a retinal neuronal cell is, for example, one which contains a “fluorocontaining prostaglandin F2α derivative” as an active ingredient. The “fluorocontaining prostaglandin F2α derivative” means a prostaglandin F2α derivative having one or more fluorine atoms.

A further more preferred protective agent for a retinal neuronal cell is, for example, one which contains a 15,15-difluoroprostaglandin F2α derivative represented by the following general formula (I), which is a further more preferred fluorocontaining prostaglandin F2α derivative or a salt thereof, as an active ingredient.

![Diagram](https://via.placeholder.com/150)

[R represents a hydroxyalkyl group, a formyl group, a carboxy group, an alkoxycarbonyl group, an aryloxy carbonyl group, an aminocarbonyl group, an alkylaminocarbonyl group or an arylaminocarbonyl group, and when R is an aryloxy carbonyl group or an arylaminocarbonyl group, the aryl moiety thereof may have a substituent. Hereinafter the same shall apply.]

The respective groups and terms defined in this specification will be shown below.

The “halogen” refers to fluorine, chlorine, bromine or iodine.

The “alkyl” refers to straight-chain or branched alkyl having 1 to 6 carbon atoms. Specific examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl and the like.

The “alkoxy” refers to straight-chain or branched alkoxy having 1 to 6 carbon atoms. Specific examples thereof include methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy, isopropoxy, isobutoxy, sec-butoxy, tert-butoxy, isopentoxy and the like.

The “aryloxy” refers to monosubstituted aromatic carboxy, or bicyclic or tricyclic condensed polycyclic aromatic hydrocarbonox having 6 to 14 carbon atoms. Specific examples thereof include phenoxyl, naphthoxy, anthryloxy, phenanthryloxy and the like.

The “halogen” refers to fluorine, chlorine, bromine or iodine.

The “alkyl” refers to straight-chain or branched alkyl having 1 to 6 carbon atoms. Specific examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl and the like.

The “aryloxy” refers to monosubstituted aromatic carboxy, or bicyclic or tricyclic condensed polycyclic aromatic hydrocarbonox having 6 to 14 carbon atoms. Specific examples thereof include phenoxyl, naphthoxy, anthryloxy, phenanthryloxy and the like.

The “halogen” refers to fluorine, chlorine, bromine or iodine.

The “alkyl” refers to straight-chain or branched alkyl having 1 to 6 carbon atoms. Specific examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl and the like.

The “aryloxy” refers to monosubstituted aromatic carboxy, or bicyclic or tricyclic condensed polycyclic aromatic hydrocarbonox having 6 to 14 carbon atoms. Specific examples thereof include phenoxyl, naphthoxy, anthryloxy, phenanthryloxy and the like.

In the case where R is an “aryloxy carbonyl group” or an “arylamino carbonyl group”, the aryl moiety thereof may have a substituent. As the substituent, an atom or a group selected from a halogen atom, an alkyl group, a halogenated alkyl group and an alkoxy group is preferred, and the number of the substituents is preferably 1 to 3.

A further more preferred fluorocontaining prostaglandin F2α derivative is, for example, a 15,15-difluoroprostaglandin F2α derivative of the above-mentioned general formula (I) in which R represents a carboxy group or a salt thereof or an alkoxy carbonyl group.

A particularly preferred fluorocontaining prostaglandin F2α derivative is, for example, a 15,15-difluoroprostaglandin F2α derivative of the above-mentioned general formula (I) in which R represents a carboxy group or a salt thereof or an alkoxy carbonyl group.

In addition, another preferred compound is, for example, a 15-monofluoroprostaglandin F2α derivative described in the above-mentioned WO 98/12175.

These prostaglandin F2α derivatives can be in the form of a salt with an inorganic acid such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid or phosphoric acid, an organic acid such as acetic acid, fumaric acid, maleic acid, succinic acid or citric acid, an alkali metal such as lithium, sodium or potassium, an alkaline earth metal such as calcium or magnesium, ammonia or the like. These salts are also included in the present invention.

In the present invention, the “retinal neuronal cell” means a neuronal cell involved in the transmission of visual signal to the brain. Specifically, it means a photoreceptor cell, a horizontal cell, a bipolar cell, an optic ganglion cell, an amacrine cell or the like.
In the present invention, the "eye disease" means an eye disease associated with retinal neuronal cell damage.

Specifically, it means abnormal visual field, retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, glaucoma, macular degeneration, retinitis pigmentosa, Leber's disease or the like, and preferably it means abnormal visual field, retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, macular degeneration, retinitis pigmentosa or Leber's disease.

For example, an eye drop can be prepared using a tonicity agent such as sodium chloride or concentrated glycerin, a buffer such as sodium phosphate or sodium acetate, a surfactant such as polyoxyethylene sorbitan monoleate, polyoxy 40 steareate or polyoxyethylene hydrogenated castor oil, a stabilizer such as sodium citrate or sodium edetate, a preservative such as benzalkonium chloride or paraben according to need. The pH of the eye drop is permitted as long as it falls within the range that is acceptable as an ophthalmic preparation. Preferred pH is in the range of 4 to 8.

An ophthalmic ointment can be prepared using a widely used base such as white soft paraffin or liquid paraffin according to need.

Further, an oral preparation such as a tablet, a capsule, a granule or a powder can be prepared using an extender such as lactose, crystalline cellulose, starch or a vegetable oil, a lubricant such as magnesium stearate or tule, a binder such as hydroxypropyl cellulose, or polyvinylpyrrolidone, a disintegrant such as carboxymethyl cellulose calcium or low-substituted hydroxypropyl methyl cellulose, a coating agent such as hydroxypropyl methyl cellulose, macrogol or a silicone resin, a film forming agent such as gelatin film, or the like according to need.

The dose can be appropriately selected depending on the symptoms, age, dosage form and the like. An eye drop may be instilled once to several times a day at a concentration of from 0.00001 to 1% (w/v), preferably from 0.0001 to 1% (w/v). An oral preparation may be administered once or divided into several times at a dose of generally from 0.01 to 5000 mg per day, preferably from 0.1 to 1000 mg per day.

ADVANTAGE OF THE INVENTION

As will be described in detail in the section of Pharmacological Test below, an effect of a prostaglandin F2α derivative on glutamate-induced retinal neuronal cell death was examined using rat fetal retinal neuronal cells. As a result, the prostaglandin F2α derivative inhibited the glutamate-induced retinal neuronal cell death in a concentration-dependent manner. That is, the prostaglandin F2α derivative has an action of protecting a retinal neuronal cell, and is useful for the prevention or treatment of an eye disease associated with retinal neuronal cell damage.

BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, preparation examples of the present invention and results of a pharmacological test will be described. However, these examples are described for the purpose of understanding the present invention better and are not meant to limit the scope of the present invention.

Preparation Examples

Hereinafter, examples of general preparations containing a prostaglandin F2α derivative according to the present invention will be described.

1) Eye drop (in 100 mL)

<table>
<thead>
<tr>
<th>Prostaglandin F2α derivative</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated glycerin</td>
<td>2500 mg</td>
</tr>
<tr>
<td>Polysorbate 80</td>
<td>2000 mg</td>
</tr>
<tr>
<td>Sodium phosphate monobasic dihydrate</td>
<td>200 mg</td>
</tr>
<tr>
<td>Sterile purified water</td>
<td>q.s.</td>
</tr>
<tr>
<td>1 N hydrochloric acid or 1 N sodium hydroxide</td>
<td>q.s.</td>
</tr>
<tr>
<td>pH</td>
<td>6.0</td>
</tr>
</tbody>
</table>

2) Ophthalmic ointment (in 100 g)

<table>
<thead>
<tr>
<th>Prostaglandin F2α derivative</th>
<th>0.1 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid paraffin</td>
<td>20 g</td>
</tr>
<tr>
<td>White soft paraffin</td>
<td>77.9 g</td>
</tr>
<tr>
<td>Purified lanolin</td>
<td>2 g</td>
</tr>
</tbody>
</table>

A desired eye drop can be obtained by appropriately changing the kinds and the amounts of the prostaglandin F2α derivative and additives.

Pharmacological Test

In order to find a new pharmaceutical application of a prostaglandin F2α derivative, by using rat fetal retinal neuronal cells, an effect of a prostaglandin F2α derivative on protecting retinal neuronal cells against glutamate-induced retinal neuronal cell death was evaluated and examined.

Incidentally, as the prostaglandin F2α derivative which is a test compound, 16-phenoxo-15-deoxy-15,15-difluoro-17,18,19,20-tetranor-prostaglandin F2α was used.

(1) Isolation Culture of Retinal Neuronal Cells

A pregnant SD rat was subjected to laparotomy under systemic anesthesia, and the uterus was transferred to a dish containing Hank's balanced salt solution (HBSS). A rat fetus was isolated from the uterus, and the eyeballs of the rat fetuses were taken out. The retina was isolated from the eyeballs under a stereoscopic microscope and cut into pieces with a surgical knife. Then, the retina was further broken down to the cellular level and passed through a nylon mesh (No. 305, manufactured by NBC Industries Co., Ltd.) to remove cell
aggregates, and then, the resulting filtrate was centrifuged at 1000 rpm for 4 minutes. The supernatant was removed, and an appropriate amount of modified Eagle's medium (MEM) containing 10% fetal bovine serum (FBS) was added to the remaining cells to suspend them. If the cell number was counted with a hemocytometer, an MEM medium containing 10% FBS was added thereto, whereby a cell suspension with a cell density of 0.8x10^6 cells/mL was obtained. The cell suspension was incubated at 37°C for 4 days. Each 15 mL of polyethylene-tetrafluoroethylene-coated plastic discs, and the discs were allowed to stand in an incubator (37°C, 5% CO₂). The day of cell inoculation was designated as day 1 of culture, and medium replacement was carried out on even number days. Incidentally, up to day 4, an MEM medium containing 10% FBS was used, and after day 8, an MEM medium containing 10% horse serum (HS) was used. Incidentally, on day 6, 6 mL of a medium containing cytarabine (Ara-C) (1.5x10^-6 M) in an MEM medium containing 10% FBS) was used for removing proliferative cells.

(2) Preparation of HS-Containing MEM Medium Containing Test Compound

[0055] 2 mg of the test compound was dissolved in 100% ethanol, and the resulting solution was sequentially diluted with an HS-containing MEM medium, whereby an HS-containing MEM medium containing the test compound at 0.1 nM, 1 nM, 10 nM or 100 nM was prepared.

(3) Preparation of Serum-Free MEM Medium Containing Test Compound

[0056] 2 mg of the test compound was dissolved in 100% ethanol, and the resulting solution was sequentially diluted with a serum-free MEM medium, whereby a serum-free MEM medium containing the test compound at 0.1 nM, 1 nM, 10 nM or 100 nM was prepared.

(4) Evaluation of Cell Death

[0057] At day 10 of culture, the plastic discs in which cells were inoculated and cultured were transferred to an HS-containing MEM medium containing the test compound and incubated for 24 hours (37°C, 5% CO₂). The plastic discs were transferred to a serum-free MEM medium containing 1 mM glutamate and incubated for 10 minutes, and then transferred to the serum-free MEM medium containing the test compound and incubated for 1 hour (37°C, 5% CO₂). Then, the cells were stained with a 1.5% trypan blue solution for 10 minutes and fixed by adding a 10% formalin fixative solution thereto. After the cells were washed with a physiological saline solution, stained cells and unstained cells were counted under an inverted microscope.

[0058] Incidentally, a vehicle administration group was prepared by carrying out the same test as described above except that an HS-containing MEM medium was used instead of the above-mentioned HS-containing MEM medium containing the test compound and a serum-free MEM medium was used instead of the above-mentioned serum-free MEM medium containing the test compound.

[0059] Further, an untreated group was prepared by carrying out the same test as described above except that an HS-containing MEM medium was used instead of the above-mentioned HS-containing MEM medium containing the test compound and a serum-free MEM medium was used instead of the above-mentioned serum-free MEM medium containing the test compound, and further a treatment with a serum-free MEM medium containing glutamate was not carried out.

[0060] The survival rate was calculated based on the following calculation equation.

\[
\text{Survival rate} = \frac{\text{untreated cell number}}{\text{untreated cell number}} \times 100
\]

(5) Results and Discussion

[0061] As shown in FIG. 1, about 40% cell death of the retinal neuronal cells due to the treatment with glutamate was observed in the vehicle addition group. However, when the HS-containing MEM medium containing the test compound (0.1 nM to 100 nM) was used as a medium, the glutamate-induced retinal neuronal cell death was inhibited in a concentration-dependent manner, and it was confirmed that the test compound has an action of protecting a retinal neuronal cell.

BRIEF DESCRIPTION OF THE DRAWING

[0062] FIG. 1 is a graph showing the survival rate for each concentration in the case of using the test compound by the addition of glutamate.

1. A protective agent for a retinal neuronal cell comprising a prostaglandin F2α derivative as an active ingredient.
2. The protective agent for a retinal neuronal cell according to claim 1, wherein the prostaglandin F2α derivative is a fluorine-containing prostaglandin F2α derivative.
3. The protective agent for a retinal neuronal cell according to claim 2, wherein the fluorine-containing prostaglandin F2α derivative is a 15,15-difluoroprostaglandin F2α derivative.
4. The protective agent for a retinal neuronal cell according to claim 3, wherein the 15,15-difluoroprostaglandin F2α derivative is a compound represented by the following general formula (I) or a salt thereof:

![Chemical Structure](image)

wherein R represents a hydroxyalkyl group, a formyl group, a carboxy group, an alkoxyacarbonyl group, an aryloxyacarbonyl group, an aminocarbonyl group, an alkylaminocarbonyl group or aryloxycarbonyl group, and when R is an aryl moiety thereof may have a substituent.
5. The protective agent for a retinal neuronal cell according to claim 4, wherein in the general formula (I), R represents a carboxy group or a salt group thereof or an alkoxyacarbonyl group.
6. The protective agent for a retinal neuronal cell according to claim 2, wherein the fluorine-containing prostaglandin F2α derivative is a 15-monohaloaroprostaglandin F2α derivative.
7. The protective agent for a retinal neuronal cell according to claim 1, wherein the retinal neuronal cell is a photoreceptor cell, a bipolar cell, an optic ganglion cell, a horizontal cell or an amacrine cell.

8. The protective agent for a retinal neuronal cell according to claim 1, which is used for the prevention or treatment of an eye disease.

9. A method of protecting a retinal neuronal cell comprising administering an effective amount of a prostaglandin F2α derivative to a patient.

10. The protection method according to claim 9, wherein the prostaglandin F2α derivative is a fluorine-containing prostaglandin F2α derivative.

11. The protection method according to claim 10, wherein the fluorine-containing prostaglandin F2α derivative is a 15,15-difluoroprostaglandin F2α derivative.

12. The protection method according to claim 11, wherein the 15,15-difluoroprostaglandin F2α derivative is a compound represented by the following general formula (I) or a salt thereof:

\[
R \quad \begin{array}{c}
\text{HO} \\
\text{HO} \\
\text{F} \\
\text{F} \\
\text{O} \\
\text{O} \\
\text{R}
\end{array}
\]

wherein R represents a hydroxyalkyl group, a formyl group, a carboxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an aminocarbonyl group, an alkylaminocarbonyl group or an aryloxycarbonyl group, and when R is an aryloxycarbonyl group or an aryloxycarbonyl group, the aryl moiety thereof may have a substituent.

13. The protection method according to claim 12, wherein in the general formula (I), R represents a carboxy group or a salt thereof or an alkoxy carbonyl group.

14. The protection method according to claim 10, wherein the fluorine-containing prostaglandin F2α derivative is a 15-monofluoroprostaglandin F2α derivative.

15. The protection method according to claim 13, wherein the retinal neuronal cell is a photoreceptor cell, a bipolar cell, an optic ganglion cell, a horizontal cell or an amacrine cell.

16. A method of preventing or treating an eye disease associated with retinal neuronal cell damage comprising administering a therapeutically effective amount of a prostaglandin F2α derivative to a patient.

17. The prevention or treatment method according to claim 16, wherein the prostaglandin F2α derivative is a fluorine-containing prostaglandin F2α derivative.

18. The prevention or treatment method according to claim 17, wherein the fluorine-containing prostaglandin F2α derivative is a 15,15-difluoroprostaglandin F2α derivative.

19. The prevention or treatment method according to claim 18, wherein the 15,15-difluoroprostaglandin F2α derivative is a compound represented by the following general formula (I) or a salt thereof:

\[
R \quad \begin{array}{c}
\text{HO} \\
\text{HO} \\
\text{F} \\
\text{F} \\
\text{O} \\
\text{O} \\
\text{R}
\end{array}
\]

wherein R represents a hydroxyalkyl group, a formyl group, a carboxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an aminocarbonyl group, an alkylaminocarbonyl group or an aryloxycarbonyl group, and when R is an aryloxycarbonyl group or an aryloxycarbonyl group, the aryl moiety thereof may have a substituent.

20. The prevention or treatment method according to claim 19, wherein in the general formula (I), R represents a carboxy group or a salt thereof or an alkoxy carbonyl group.

21. The prevention or treatment method according to claim 17, wherein the fluorine-containing prostaglandin F2α derivative is a 15-monofluoroprostaglandin F2α derivative.

22. The prevention or treatment method according to claim 16, wherein the retinal neuronal cell is a photoreceptor cell, a bipolar cell, an optic ganglion cell, a horizontal cell or an amacrine cell.

23-30. (canceled)