

(19) AUSTRALIAN PATENT OFFICE

(54)	Title Transmission link adaptation		
(51) ⁶	International Patent Classification(s) H04L 1/00 (2006.01) 8BMEP H04B H04B 7/005 (2006.01) 7/005 H04L 1/00 20060101ALN200510 20060101AFI2005100 08BMEP PCT/US2003/029894		
(21)	Application No: 2003270855		
(22)	Application Date: 2003.09.23		
(87)	WIPO No: WO04/032399		
(30)	Priority Data		
(31)	Number 10/262,422	(32) Date 2002.09.30	(33) Country US
(43)	Publication Date : 2004.04.23		
(43)	Publication Journal Date : 2004.05.27		
(71)	Applicant(s) Intel Corporation		
(72)	Inventor(s) Fleischer, Stephen D., Sankaran, Sundar G., Petrus, Paul		
(74)	Agent/Attorney Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000		
(56)	Related Art US6452941 US6167031		

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
15 April 2004 (15.04.2004)

PCT

(10) International Publication Number
WO 2004/032399 A1

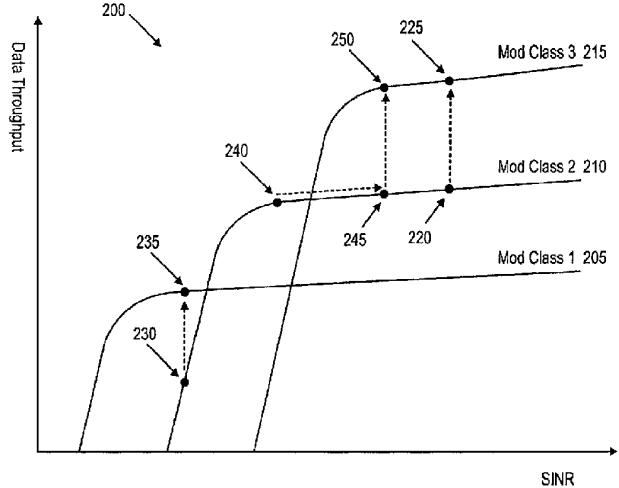
(51) International Patent Classification⁷: H04L 1/00 (74) Agents: CALDWELL, Gregory, D. et al.; Blakely, Sokoloff, Taylor & Zafman, 12400 Wilshire Blvd., 7th Floor, Los Angeles, CA 90025-1026 (US).

(21) International Application Number: PCT/US2003/029894 (81) Designated States (national): AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, IR, IU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NJ, NO, NZ, OM, PG, PI, PL, PT, RO, RU, SC, SD, SE, SG, SK, SI, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 23 September 2003 (23.09.2003) (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CH, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English (85) Published: — with international search report

(26) Publication Language: English


(30) Priority Data: 10/262,422 30 September 2002 (30.09.2002) US

(71) Applicant: ARRAYCOMM, INC. [US/US]; 2480 N. First Street, Suite 200, San Jose, CA 95131 (US).

(72) Inventors: PETRUS, Paul; 2350 Forbes Avenue, Santa Clara, CA 95050 (US), FLEISCHER, Stephen, D.; 181 Thompson Square, Mountain View, CA 94043 (US), SANKARAN, Sundar, G.; 4260 Albany Drive, Apt.#I 101, San Jose, CA 95129 (US).

(54) Title: TRANSMISSION LINK ADAPTATION

WO 2004/032399 A1

(57) **Abstract:** According to an embodiment of the invention, a method and apparatus are described for transmission link adaptation. In one embodiment of the invention, data is obtained regarding a quality of a transmitted signal. Data is obtained regarding available power for transmission. A transmission mode is selected based at least in part on the quality of the transmitted signal and on the available power for transmission.

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TRANSMISSION LINK ADAPTATION

FIELD OF THE INVENTION

The invention relates generally to the field of wireless communications. More particularly, the invention relates to adaptation of transmission links.

5 DESCRIPTION OF THE RELATED ART

In wireless communications, the performance of a system is dependent on the quality of the propagation channel. Communications systems may support variable data rate services to allow for changing propagation conditions. To vary data rates, different transmission modes may be implemented based on the conditions. When channel conditions are 10 relatively good, higher order transmission modes may be used. If channel conditions become poor, the transmission mode may be changed to a lower order transmission method. The method by which a transmission method is chosen is important in maintaining efficiency in transmission. Conventional communications systems do not use all available information in selecting transmission modes, and conventional systems thus may not make 15 optimal transmission mode selections.

BRIEF SUMMARY OF THE INVENTION

3. According to the present invention there is provided a method comprising obtaining data regarding a quality measurement for a transmitted signal that is transmitted from a first radio to a second radio, obtaining data regarding available power for transmission of 20 the signal by the first radio, the available power for transmission of the signal being a difference between a maximum transmission power level for the first radio and a current transmission power level for the first radio and selecting a transmission mode from a plurality of predetermined transmission modes to provide a highest data throughput based at least in part on the quality measurement for the transmitted signal and on the available 25 power for transmission of the signal by the first radio, each transmission mode including signal modulation and signal coding for the transmission of the signal, wherein the selection of the transmission mode includes estimating how much the signal quality can

be improved using the available transmission power and estimating a data throughput at the improved signal quality provided by each transmission mode available at the improved signal quality.

The invention also provides a method comprising transmitting a first signal from a first radio to a second radio, receiving information regarding a quality measurement of the first signal, selecting a transmission mode for the transmission of signals from a plurality of predetermined transmission modes to provide a highest data throughput based at least in part on the information regarding the quality of the first signal and on available transmission power for the first radio, each transmission mode including a modulation scheme and a coding scheme for transmission of a signal by the first radio, wherein the available transmission power is a difference between a maximum transmission power level for the first radio and a current transmission power level for the first radio, and wherein the selection of the transmission mode includes estimating how much the signal quality can be improved using the available transmission power and estimating the data throughput provided at each available transmission mode at the estimated improved signal quality, wherein the transmission mode comprises a modulation scheme and a coding scheme for transmission of a signal by the first radio, and transmitting a second signal from the first radio to the second radio using the selected transmission mode.

The invention also provides a radio unit comprising a transmitter to transmit a signal to a second radio unit, a receiver to receive from the second radio unit a quality measurement data for the transmitted signal and a processor to select a transmission mode from a plurality of predetermined transmission modes to provide a highest data throughput, the processor to select the transmission mode based at least in part on the signal quality measurement data received from the second radio unit and on available transmission power for the radio unit, each transmission mode including a modulation scheme and a coding scheme, wherein the available transmission power for the first radio unit is a difference between a maximum transmission power level for the first radio unit and a current transmission power level for the first radio unit, and wherein the selection of the transmission mode by the processor includes estimating how much the signal quality can be improved using the available transmission power and determining the data throughput

2003270855 04 Jan 2010

C:\WRP\ash\DC\GA\WU645576_1.DOC-142010

- 1B -

provided by each available transmission mode with the estimated improvement in signal quality.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements, and in which:

30

Figure 1 is an illustration of communications between a first device and a second device under an embodiment of the invention;

Figure 2 is a flowchart illustrating messaging for link adaptation under an embodiment of the invention;

35

Figure 3 is a simplified block diagram illustrating a base station on which an embodiment of the invention can be implemented; and

Figure 4 is a simplified block diagram illustrating a remote terminal on which an embodiment of the invention can be implemented.

40

DETAILED DESCRIPTION OF THE INVENTION**Overview**

45

An embodiment of the present invention provides for transmission link adaptation. A signal is transmitted by a radio unit and information regarding the quality of the transmitted signal such as SINR (signal to interference plus noise ratio) is obtained. Information regarding available transmission power is also obtained. A transmission mode is selected from a set of transmission modes, with each of the transmission modes being a combination of a modulation scheme and a coding method and being mapped to a band of signal qualities. An estimate is made regarding how much the signal quality can be modified using the available transmission power. The selection of the transmission mode is based at least in part on the information regarding the signal quality and the information regarding the available transmission power.

50

In one embodiment, it is contemplated the invention is implemented in a TDD (time division duplex) high bandwidth wireless data and voice system, such as ArrayComm's i-BURST (TM) system. However, it should be appreciated the invention is not limited to the i-BURST system or any other particular air interface, and in fact it should become apparent from the description herein that

55

the invention may find use with a variety of air interface protocols and communications systems.

60 **Messaging**

The present invention will generally be described in the context of a base station and a remote terminal. The base station transmits downlink data bursts and the remote terminal transmits uplink data bursts. However, the invention is not limited to systems with base stations and remote terminals or to uplink and downlink data transmissions. The remote terminal transmits information regarding the current transmission mode (also referred to as a modulation class or mod class) being used by the remote terminal and the available transmission power of the remote terminal. The available transmission power is the difference between the maximum transmission power and the current transmission power.

65 However, transmission power information may be transmitted in various other forms. The base station transmits information regarding the current transmission mode of the base station and a recommended transmission mode for the remote terminal.

70 Varying messages communicated between a base station and a remote terminal, including utClass, modClassUp, and modClassDown, can be used to set or change the modulation class used for transmitting uplink or downlink data bursts. Alternatively, a FACCH (fast access control channel) or another form of message can be used to set or adjust the modulation class.

75 **Figure 1** is a simplified illustration of a series of transmissions between radio units in an embodiment of the invention. As noted further below, the order of the transmissions may vary in different embodiments of the invention. In the illustration, the transmission sequence **100** between a first radio unit **105** and a second radio unit **110** includes an uplink transmission and a downlink transmission in each of a number of transmission frames. The first radio unit may include a base station and the second radio unit may include a remote terminal, but the radio units are not limited to these particular examples. The transmission frames illustrated are an initial frame, frame **k** **115**, and the following or succeeding frames, frame **k + 1** **120**, frame **k + 2** **125**, and frame **k + 3** **130**.

90 In the uplink transmission **135** of frame k **115**, information regarding the available power of the second radio **110** is transmitted to the first radio **105**. In the downlink transmission **140** of frame k **115**, information regarding the current transmission mode of the first radio unit **105** is transmitted to the second radio unit **110**. In frame $k + 1$ **120**, the current transmission mode of the second radio unit **110** is transmitted in the uplink **145** and a recommended transmission mode for the second radio unit **110** is transmitted in the downlink **150**. Uplink **155** and downlink **160** of frame $k + 2$ **125** and uplink **165** and downlink **170** of frame $k + 3$ **130** then repeat the pattern of the frame k **115** and frame $k + 1$ **120**.

95 In a first embodiment of the invention, the available power of a remote terminal is provided to a base station in the uplink transmission of a first transmission frame. In the downlink transmission of the first transmission frame, the base station transmits the current transmission mode of the base station. The current transmission mode may be the transmission mode used by the base station for the current frame and the next or succeeding frame, but this may vary in other embodiments. In a second embodiment of the invention, the available power of the remote terminal is provided to the base station in the uplink transmission of a first transmission frame, and in the downlink transmission of the first transmission frame, the base station transmits a recommended transmission mode for the remote terminal. The recommended transmission mode is based at least in part on the available power information provided by the remote terminal.

100 In the first embodiment of the invention, in the uplink transmission of a second frame, the remote terminal transmits the current transmission mode of the remote terminal. The current transmission mode may be the transmission mode used by the base station for the current frame and the succeeding frame, but this may vary in other embodiments. In the downlink transmission of the second frame, the base station transmits the recommended transmission mode for the remote terminal.

105 In the second embodiment of the invention, the uplink transmission includes a current uplink transmission mode and the downlink includes a current downlink transmission mode.

110 In the first embodiment of the invention, in the uplink transmission of a second frame, the remote terminal transmits the current transmission mode of the remote terminal. The current transmission mode may be the transmission mode used by the base station for the current frame and the succeeding frame, but this may vary in other embodiments. In the downlink transmission of the second frame, the base station transmits the recommended transmission mode for the remote terminal.

115 In the second embodiment of the invention, the uplink transmission includes a current uplink transmission mode and the downlink includes a current downlink transmission mode.

120 In an embodiment of the invention, the base station selects a transmission mode for the base station. Information regarding the chosen transmission mode is transmitted to the remote terminal as the current transmission mode for the base station. The remote terminal then uses the current transmission mode to decode data transmissions from the base station. The base station also selects a recommended transmission mode for the remote terminal and transmits the recommended transmission mode to the remote terminal. The remote terminal 125 modifies the transmission mode of the remote terminal based at least in part upon the recommended transmission mode and transmits information regarding the current transmission mode to the base station. The base station then uses the current transmission mode of the remote terminal to decode data transmissions from the remote terminal. The remote terminal and base station then continue this process to establish modified transmission modes as conditions change.

130 In one example, a remote terminal transmits information regarding the available power of the remote terminal in the uplink of a first frame, and the base station transmits the current transmission mode of the base station in the downlink of the first frame. In a second frame, the remote terminal transmits the current transmission mode of the base station in the uplink and the base station transmits a recommended transmission mode in the downlink. This process then repeats. 135 As a result, there is a time period of a downlink transmission and an uplink transmission between the transmission of the available power of the remote terminal and the transmission of the recommended transmission mode, allowing a time period for determination of the recommended class. In addition, there is one frame between the transmission of the recommended transmission mode and the next transmission of the current transmission mode for the remote terminal.

140 Therefore, the remote terminal has one frame to react to the recommendation and modify the transmission mode of the remote terminal based at least in part on the recommended transmission mode.

145 In an embodiment of the invention involving a first radio unit and a second radio unit, the intelligence needed to perform link adaptation for both radios is only necessary in one of the radio units. As such, the second radio unit may be

150 simplified. If software or hardware upgrades relating to the transmission mode adaptation process are implemented, the implementation may only be required in the intelligent radio that provides link adaptation both for itself and for the other radio unit.

Link Adaptation

155 In an embodiment of the invention, a wireless data system uses multiple transmission modes, with each transmission mode (also referred to as a modulation class or mod class) including a combination of a modulation scheme and a coding scheme. The transmission mode may also include puncturing and other factors. The transmission mode used by a radio unit may be changed based upon the conditions of the propagation channel and available transmission power. 160 Link adaptation may be used to maximize the throughput of data transmission as it is restrained by the quality of the transmission channel. Link adaptation for a transmission may be performed by either the transmitting radio unit or the receiving radio unit.

165 The suite of mod classes available for link adaptation may allow operation over a span of signal qualities. Each mod class is assigned to a band of signal qualities. Signal qualities may be evaluated using a variety of different quality measures. In one embodiment, the signal quality is evaluated using signal to interference plus noise ratio, thereby allowing rapid evaluation of signal quality. Signal quality may be expressed as the difference between a measured signal quality and a target signal quality.

170 A list of mod classes may be ordered such that the redundancy in coding decreases through the list. For example, the mod class with the lowest redundancy can be at the highest point in the list. This mod class can be used for conditions with the highest relative signal qualities. The mod class at the highest point in the list will also generally have the highest modulation scheme, such as 175 24-QAM (quadrature amplitude modulation). The mod class at the lowest point in the list, for conditions with the lowest signal qualities, then may have the highest redundancy and the lowest modulation scheme, as BPSK (binary phase-shift keying). If SINR is used to evaluate signal quality, the highest mod

180

185 class would be used for signals with the highest SINR values and the lowest mod class would be used for signals with the lowest SINR values. Intermediate mod classes may be chosen to span the signal qualities between the highest mod class and the lowest mod class. The intermediate mod classes may be chosen to be equally spaced over the span of signal qualities.

190 In one embodiment of the invention, mod classes are mapped to SINR values so as to obtain a certain frame error rate (FER) in each mod class. For example, the mod classes may each result in an FER of approximately one percent.

195 The modulation classes provide different types of modulation and coding which together vary the number of bits per symbol. The modulation classes can be selected based on terminal capabilities, channel quality, data queue length, or a variety of other factors. The modulation classes can be changed in any number of different ways. The particular number and type of modulation classes can take many different forms as appropriate to accommodate network capacities, channel quality, and cost targets.

200 **Figure 2** is a graphical illustration of transmission mode operation. In the graph 205, the throughput that is achieved at various SINR values is shown for varying mod classes. Figure 2 is intended for the purpose of illustration, and is not drawn to scale and does not necessarily reflect actual values. In this illustration, the mod classes are graphed according to data throughput on a first axis and SINR on a second axis. For data throughput, each mod class curve rises steeply as SINR is increased and then levels out to a gradual increase. However, the curve for each individual mod class is dependent on the actual modulation and coding schemes that are used and may not be represented by the curves shown in Figure 2. The 210 Mod Class 1 curve **205** is the lowest mod class shown, requiring the lowest SINR and generally providing the lowest data throughput. The Mod Class 3 curve **215** represents the highest of the three mod classes, requiring the highest SINR values and generally providing the highest data throughput. The Mod Class 2 curve **210** represents an intermediate mod class. As seen in Figure 2, a greater throughput 215 may be obtained by changing to a higher or lower mod class, depending on the SINR value. The most desirable operation for data throughput at a given SINR is

the highest mod class curve for the SINR value. In additionally there are advantages to operating on the gradually increasing upper portion of a mod class curve, as opposed to the rapidly increasing lower portion of a mod class curve. In
215 a first example, a radio device operating at point **220** on the upper portion of the Mod Class 2 curve **210** may be changed to the Mod Class 3 at point **225** on the upper portion of the Mod Class 3 curve **215**, thereby increasing the data throughput. In a second example, a radio device operating at point **230** in the lower portion of the Mod Class 2 curve **210** can increase throughput by lowering
220 the mod class to point **235** on the upper portion of Mod Class 1 curve **205**.

In an embodiment of the invention, available transmission power may be used in conjunction with signal quality to select the mod class, and thereby potentially increasing the data throughput of signal transmission and increasing the flexibility of the system. For example, a radio unit may be operating using Mod Class 2 at
225 point **240** on the upper portion of the Mod Class 2 curve **210**. An increase in transmission power generally results in an increase in SINR. The radio unit may estimate the change in signal quality that will result from a change in transmission power, as limited by the available transmission power. If the available transmission power is sufficient to increase the SINR to point **245**, then the data
230 throughput may be further increased by changing from Mod Class 2 to Mod Class 3 at point **250** on the upper portion the Mod Class 3 curve **215**. The examples provided here demonstrate instances in which the data throughput may be increased. However, many other factors may be included in the determination of which mod class is chosen.

235 In one embodiment, there are nine different predetermined modulation classes as shown in Table 1. The different modulation classes differ in modulation scheme as well as in encoding. The encoding can include error detection and correction, puncturing, block coding, and block shaping. Other types of modulation and encoding can be used depending on the needs of a particular application. The bit per symbol rates are approximate in Table 1 but provide an
240 indication of a range of data rates that can be accomplished using the same number of symbols. Using values of 182 uplink and 460 downlink information

245 symbols per burst, a modulation class 0 burst would carry 91 or 230 bits, respectively. A modulation class 8 burst, on the other hand, carries 728 and 1840 bits, respectively.

Mod Class	Bits/Sym	Bits/Uplink Burst	Bits/Downlink Burst	Signal Set
0	0.5	91	230	BPSK
1	0.67	121	308	BPSK
2	1.0	182	460	QPSK
3	1.5	273	690	QPSK
4	2.0	364	920	8-PSK
5	2.5	455	1150	8-PSK
6	3.0	546	1380	12-QAM
7	3.5	637	1610	16-QAM
8	4.0	728	1840	24-QAM

Table 1 - Modulation Classes

250 The modulation classes can also be adjusted to achieve a particular data rate ratio between uplink and downlink, as well as to accommodate the greater capabilities of a base station as compared to a remote terminal. In an example, the ratio of downlink symbols per uplink symbol is approximately 2.5:1. This is believed to be a practical data rate ratio for many Internet applications. If the base station and the remote terminal use the same modulation class, then the data rate ratio will also be about 2.5:1. However, by using different modulation classes, the data rate ratio can be varied between about 0.32:1 (remote terminal at

260 mod class 8, base station at mod class 0) to about 20:1 (remote terminal at mod class 0, base station at mod class 8). In some applications, the base station may frequently transmit all user data using a modulation class that is one step higher than the remote terminal. This provides a data rate ratio between 2.9:1 to 3.8:1. As can be seen, the modulation classes provide a great amount of flexibility in setting the operating parameters of the system.

265 Another factor that may be considered is that the lower modulation classes generally require less energy to transmit and cause less interference with other users at a base station. Accordingly, the system can be configured to prefer lower modulation classes. On the other hand, the higher modulation classes transmit at higher data rates so that data buffers will be emptied sooner. For many types of data transfer, the higher data rate will mean shorter sessions so that more users can be accommodated. If a user is sending and receiving E-mail, for example, a 270 higher data rate will transfer the E-mail faster, allowing the data transfer to be closed more quickly and making the system resources available to another user.

275 The selection of mod classes may depend not only on the amount of data to be transferred but the relative amount in each direction. If the data to be transferred in one direction is much less than the data to be transferred in the other direction, then the direction with the lesser amount of data can be operated at a much lower modulation class. Since the data transfer will remain open until the larger data buffer is empty, this will not delay closing the data transfer.

280 The modulation classes are mapped to signal qualities, such as signal to noise ratio. Table 2 illustrates exemplary mod classes established for an uplink transmission, with nominal target SINR values for each mod class. Table 2 illustrates exemplary mod classes established for a downlink transmission, with nominal target SINR values for each mod class. As shown in Tables 2 and 3, the mod classes used and the target signal qualities may vary between the uplink and downlink transmissions.

Mod Class	SINR Target (dB)
-----------	------------------

Mod Class	SINR Target (dB)
0	2.2
1	3.8
2	5.5
3	8.4
4	10.6
5	12.9
6	14.9
7	16.2

285

Table 2 Nominal Uplink Target SINR's

Mod Class	SINR Target (dB)
0	2.5
1	4.3
2	5.8
3	8.7
4	10.9
5	13.1
6	15.2
7	16.5

Mod Class	SINR Target (dB)
8	18.4

Table 3 Nominal Downlink Target SINR's**Base Station Structure**

290 The present invention relates to wireless communication systems and may be a fixed-access or mobile-access wireless network using spatial division multiple access (SDMA) technology in combination with multiple access systems, such as time division multiple access (TDMA), frequency division multiple access (FDMA) and code division multiple access (CDMA). Multiple access can be combined with frequency division duplexing (FDD) or time division duplexing (TDD). **Figure 3** shows an example of a base station **300** of a wireless

295 communications system or network suitable for implementing the present invention. The system or network includes a number of subscriber stations, also referred to as remote terminals or user terminals, such as that shown in **Figure 4**. The base station **300** may be connected to a wide area network (WAN) through its host DSP **331** for providing any required data services and connections external to

300 the immediate wireless system. To support spatial diversity, a plurality of antennas **303** is used, for example four antennas, although other numbers of antennas may be selected.

305 A set of spatial multiplexing weights for each subscriber station are applied to the respective modulated signals to produce spatially multiplexed signals to be transmitted by the bank of four antennas. The host DSP **331** produces and maintains spatial signatures for each subscriber station for each conventional channel and calculates spatial multiplexing and demultiplexing weights using received signal measurements. In this manner, the signals from the current active subscriber stations, some of which may be active on the same conventional channel, are separated and interference and noise suppressed. When

310 communicating from the base station **300** to the subscriber stations, an optimized multi-lobe antenna radiation pattern tailored to the current active subscriber

station connections and interference situation is created. Suitable smart antenna technologies for achieving such a spatially directed beam are described, for 315 example, in U.S. Patents Nos. 5,828,658, issued Oct. 27, 1998 to Ottersten et al. and 5,642,353, issued June 24, 1997 to Roy, III et al. The channels used may be partitioned in any manner. In one embodiment the channels used may be partitioned as defined in the GSM (Global System for Mobile Communications) air interface, or any other time division air interface protocol, such as Digital 320 Cellular, PCS (Personal Communication System), PHS (Personal Handyphone System) or WLL (Wireless Local Loop). Alternatively, continuous analog or CDMA channels can be used.

The outputs of the antennas are connected to a duplexer switch 307, which in a 325 TDD embodiment, may be a time switch. Two possible implementations of the duplexer switch are as a frequency duplexer in a frequency division duplex (FDD) system, and as a time switch in a time division duplex (TDD) system. When receiving, the antenna outputs are connected via the duplexer switch to a receiver 305, and are converted down in analog by RF receiver ("RX") modules 305 from the carrier frequency to an intermediate frequency ("IF"). This signal then is 330 digitized (sampled) by analog to digital converters ("ADCs") 309. Final down-converting to baseband is carried out digitally. Digital filters can be used to implement the down-converting and the digital filtering, the latter using finite impulse response (FIR) filtering techniques. This is shown as block 313. The invention can be adapted to suit a wide variety of RF and IF carrier frequencies 335 and bands.

There are, in the present example, eight down-converted outputs from each 340 antenna's digital filter 313, one per receive timeslot. The particular number of timeslots can be varied to suit network needs. While GSM uses eight uplink and eight downlink timeslots for each TDMA frame, desirable results can also be achieved with any number of TDMA timeslots for the uplink and downlink in each frame. For each of the eight receive timeslots, the four down-converted outputs from the four antennas are fed to a digital signal processor (DSP) 317 (hereinafter "timeslot processor") for further processing, including calibration,

according to one aspect of this invention. Eight Motorola DSP56300 Family
345 DSPs can be used as timeslot processors, one per receive timeslot. The timeslot
processors 317 monitor the received signal power and estimate the frequency
offset and time alignment. They also determine smart antenna weights for each
antenna element. These are used in the SDMA scheme to determine a signal from
a particular remote user and to demodulate the determined signal.

350 The output of the timeslot processors 317 is demodulated burst data for each of
the eight receive timeslots. This data is sent to the host DSP processor 331 whose
main function is to control all elements of the system and interface with the higher
level processing, which is the processing which deals with what signals are
required for communications in all the different control and service
355 communication channels defined in the system's communication protocol. The
host DSP 331 can be a Motorola DSP56300 Family DSP. In addition, timeslot
processors send the determined receive weights for each remote terminal to the
host DSP 331. The host DSP 331 maintains state and timing information, receives
uplink burst data from the timeslot processors 317, and programs the timeslot
processors 317. In addition it decrypts, descrambles, checks error correcting
code, and de-assembles bursts of the uplink signals, then formats the uplink
signals to be sent for higher level processing in other parts of the base station 300.
Furthermore DSP 331 may include a memory element to store data, instructions,
or hopping functions or sequences. Alternatively, the base station 300 may have a
365 separate memory element or have access to an auxiliary memory element. With
respect to the other parts of the base station 300 it formats service data and traffic
data for further higher processing in the base station 300, receives downlink
messages and traffic data from the other parts of the base station 300, processes
the downlink bursts and formats and sends the downlink bursts to a transmit
controller/modulator, shown as 337. The host DSP also manages programming of
other components of the base station 300 including the transmit
370 controller/modulator 337 and the RF timing controller shown as 333.

375 The RF controller 333 reads and transmits power monitoring and control values, controls the duplexer 307 and receives timing parameters and other settings for each burst from the host DSP 331.

380 The transmit controller/modulator 337, receives transmit data from the host DSP 331. The transmit controller uses this data to produce analog IF outputs which are sent to the RF transmitter (TX) modules 339. Specifically, the received data bits are converted into a complex modulated signal, up-converted to an IF frequency, sampled, multiplied by transmit weights obtained from host DSP 331, and converted via digital to analog converters ("DACS") which are part of transmit controller/modulator 337 to analog transmit waveforms. The analog waveforms are sent to the transmit modules 339. The transmit modules 339 up-convert the signals to the transmission frequency and amplify the signals. The amplified transmission signal outputs are sent to antennas 303 via the duplexer/time switch 307.

385

Remote Terminal Structure

390 Figure 4 depicts an example component arrangement in a remote terminal 400 that provides data or voice communication. The remote terminal's 400 antenna 445 is connected to a duplexer 446 to permit the antenna 445 to be used for both transmission and reception. The antenna can be omni-directional or directional. For optimal performance, the antenna can be made up of multiple elements and employ spatial processing as discussed above for the base station 500. In an alternate embodiment, separate receive and transmit antennas are used eliminating the need for the duplexer 446. In another alternate embodiment, where time division duplexing is used, a transmit/receive (TR) switch can be used instead of a duplexer as is well known in the art. The duplexer output 447 serves as input to a receiver 448. The receiver 448 produces a down-converted signal 449, which is the input to a demodulator 451. A demodulated received sound or voice signal 467 is input to a speaker 466.

395

400 The remote terminal 400 has a corresponding transmit chain in which data or voice to be transmitted is modulated in a modulator 457. The modulated signal to be transmitted 459, output by the modulator 457, is up-converted and amplified

405 by a transmitter 460, producing a transmitter output signal 461. The transmitter output 461 is then input to the duplexer 446 for transmission by the antenna 445.

410 The demodulated received data 452 is supplied to a remote terminal central processing unit 468 (CPU) as is received data before demodulation 450. The remote terminal CPU 468 can be implemented with a standard DSP (digital signal processor) device such as a Motorola series 56300 Family DSP. This DSP can also perform the functions of the demodulator 451 and the modulator 457. The remote terminal CPU 468 controls the receiver through line 463, the transmitter through line 462, the demodulator through line 452 and the modulator through line 458. It also communicates with a keypad 453 through line 454 and a display 456 through line 455. A microphone 464 and speaker 466 are connected through the modulator 457 and the demodulator 451 through lines 465 and 467, respectively for a voice communications remote terminal. In another embodiment, the microphone and speaker are also in direct communication with the CPU to provide voice or data communications. Furthermore remote terminal CPU 468 may also include a memory element to store data, instructions, and hopping functions or sequences. Alternatively, the remote terminal 400 may have a separate memory element or have access to an auxiliary memory element.

415 In one embodiment, the speaker 470, and the microphone 464 are replaced or augmented by digital interfaces well-known in the art that allow data to be transmitted to and from an external data processing device (for example, a computer). In one embodiment, the remote terminal's CPU 468 is coupled to a standard digital interface such as a PCMCIA interface to an external computer and the display, keyboard, microphone and speaker are a part of the external computer. The remote terminal's CPU 468 communicates with these components through the digital interface and the external computer's controller. For data only communications, the microphone and speaker can be deleted. For voice only communications, the keyboard and display can be deleted.

420

425

430

General Matters

In the description above, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present

435 invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form.

440 The present invention is described in the context of TDD (time division duplexing), but the invention is not limited to this context. The invention is also application to wireless systems in which a pilot signal typically is shared among multiple users at the same time, as is commonly required in standards for CDMA (code division multiple access) systems. Current examples of such wireless systems include WCDMA (wideband CDMA), cdma2000, IS-95, and HDR (high data rate) communications. The present system may also be applied to TDMA (time division multiple access) systems such as GSM (global system for mobile communications).

445 The present invention includes various steps. The steps of the present invention may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor or logic circuits programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software. The steps have been described as being performed by either the base station or the remote terminal. However, many of the steps described as being performed by the base station may be performed by the remote terminal and vice versa.

450 Furthermore, the invention is equally applicable to systems in which terminals communicate with each other without either one being designated as a base station, a remote terminal, a user terminal, or a subscriber station. Thus, the present invention is equally applicable and useful in a peer-to-peer wireless network of communications devices using spatial processing. These devices may be cellular phones, PDA's, laptop computers, or any other wireless devices. Generally, since both the base stations and the terminals use radio waves, these communications devices of wireless communications networks may be generally referred to as radios.

465 In portions of the description above, only the base station is described as performing spatial processing using an adaptive antenna array. However, the remote terminals can also contain antenna arrays, and can also perform spatial processing both on receiving and transmitting (uplink and downlink) within the scope of the present invention. Any step or process attributed to the uplink can be instead performed on the downlink and vice versa. Furthermore, in portions of the description above, certain functions performed by a base station could be coordinated across the network, or assigned to other components of the system. The invention does not require the use of adaptive antennas, and may be implemented in any system in which two radios are in communication with each other.

470

475 The present invention may be provided as a computer program product, which may include a machine-readable medium having stored thereon instructions, which may be used to program a computer (or other electronic devices) to perform a process according to the present invention. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, flash memory, or other type of media / machine-readable medium suitable for storing electronic instructions. Moreover, the present invention may also be downloaded as a computer program product, wherein the program may be transferred from a remote computer to a requesting computer by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).

480

485 Many of the methods are described in their most basic form, but steps can be added to or deleted from any of the methods and information can be added or subtracted from any of the described messages without departing from the basic scope of the present invention. It will be apparent to those skilled in the art that many further modifications and adaptations can be made. The particular embodiments are not provided to limit the invention but to illustrate it. The scope of the present invention is not to be determined by the specific examples provided above but only by the claims below.

490

495

It should also be appreciated that reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature may be included in the practice of the invention. Similarly, it should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention

- 5 are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive
- 10 aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.

The reference in this specification to any prior publication (or information derived from it),

- 15 or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge.

Throughout this specification and the claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will

- 20 be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

2003270855 04 Jan 2010

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method comprising:
 - obtaining data regarding a quality measurement for a transmitted signal that is transmitted from a first radio to a second radio;
 - obtaining data regarding available power for transmission of the signal by the first radio, the available power for transmission of the signal being a difference between a maximum transmission power level for the first radio and a current transmission power level for the first radio; and
 - selecting a transmission mode from a plurality of predetermined transmission modes to provide a highest data throughput based at least in part on the quality measurement for the transmitted signal and on the available power for transmission of the signal by the first radio, each transmission mode including signal modulation and signal coding for the transmission of the signal, wherein the selection of the transmission mode includes
 - estimating how much the signal quality can be improved using the available transmission power and estimating a data throughput at the improved signal quality provided by each transmission mode available at the improved signal quality.
2. The method of claim 1, wherein the information regarding the quality of the transmitted signal comprises a measure of signal to interference plus noise ratio.
3. The method of claim 1, wherein each transmission mode in the plurality of transmission modes is mapped to predetermined signal quality levels.
4. The method of claim 3, wherein selecting the transmission mode comprises applying the signal quality data to a lookup table.
5. The method of claim 3, further comprising modifying transmission power for the first radio based at least in part on the estimation of the improvement in signal quality resulting from an increase in transmission power.

6. A method comprising:
 - transmitting a first signal from a first radio to a second radio;
 - receiving information regarding a quality measurement of the first signal;
 - selecting a transmission mode for the transmission of signals from a plurality of predetermined transmission modes to provide a highest data throughput based at least in part on the information regarding the quality of the first signal and on available transmission power for the first radio, each transmission mode including a modulation scheme and a coding scheme for transmission of a signal by the first radio, wherein the available transmission power is a difference between a maximum transmission power level for the first radio and a current transmission power level for the first radio, and wherein the selection of the transmission mode includes estimating how much the signal quality can be improved using the available transmission power and estimating the data throughput provided at each available transmission mode at the estimated improved signal quality, wherein the transmission mode comprises a modulation scheme and a coding scheme for transmission of a signal by the first radio; and
 - transmitting a second signal from the first radio to the second radio using the selected transmission mode.
- 20 7. The method of claim 6, wherein the information regarding quality of the first signal comprises a measure of signal to interference plus noise ratio.
8. The method of claim 6, wherein the each transmission mode of the plurality of predetermined transmission modes is mapped to a band of signal quality levels.
- 25 9. The method of claim 6, wherein each predetermined transmission mode is mapped to a band of signal quality levels.
10. The method of claim 9, wherein the mapping of each predetermined transmission mode is based at least in part on frame error rate.

2003270855 04 Jan 2010

- 22 -

11. The method of claim 6, further comprising modifying transmission power based at least in part the estimation of improvement in signal quality.

12. The method of claim 6, wherein a selection of a transmission mode is performed 5 for each frame of transmission.

13. A radio unit comprising:

a transmitter to transmit a signal to a second radio unit;

a receiver to receive from the second radio unit a quality measurement data for the 10 transmitted signal; and

a processor to select a transmission mode from a plurality of predetermined transmission modes to provide a highest data throughput, the processor to select the transmission mode based at least in part on the signal quality measurement data received from the second radio unit and on available transmission power for the radio unit, each

15 transmission mode including a modulation scheme and a coding scheme, wherein the available transmission power for the first radio unit is a difference between a maximum transmission power level for the first radio unit and a current transmission power level for the first radio unit, and wherein the selection of the transmission mode by the processor includes estimating how much the signal quality can be improved using the available 20 transmission power and determining the data throughput provided by each available transmission mode with the estimated improvement in signal quality.

14. The radio unit of claim 13, wherein the radio unit comprises a base station.

25 15. The radio unit of claim 13, wherein the second radio unit comprises a remote terminal.

16. The radio unit of claim 13, wherein each predetermined transmission mode is mapped to a band of signal quality levels.

30

17. The radio unit of claim 16, wherein the mapping of each predetermined

transmission mode is based at least in part on frame error rate.

18. The radio unit of claim 13, wherein the radio unit increases transmission power to allow selection of a higher transmission mode, the selected transmission mode being
5 unavailable at a prior transmission power level.

19. The radio unit of claim 13, wherein the signal quality data comprises a measure of signal to interference plus noise ratio.

1/4

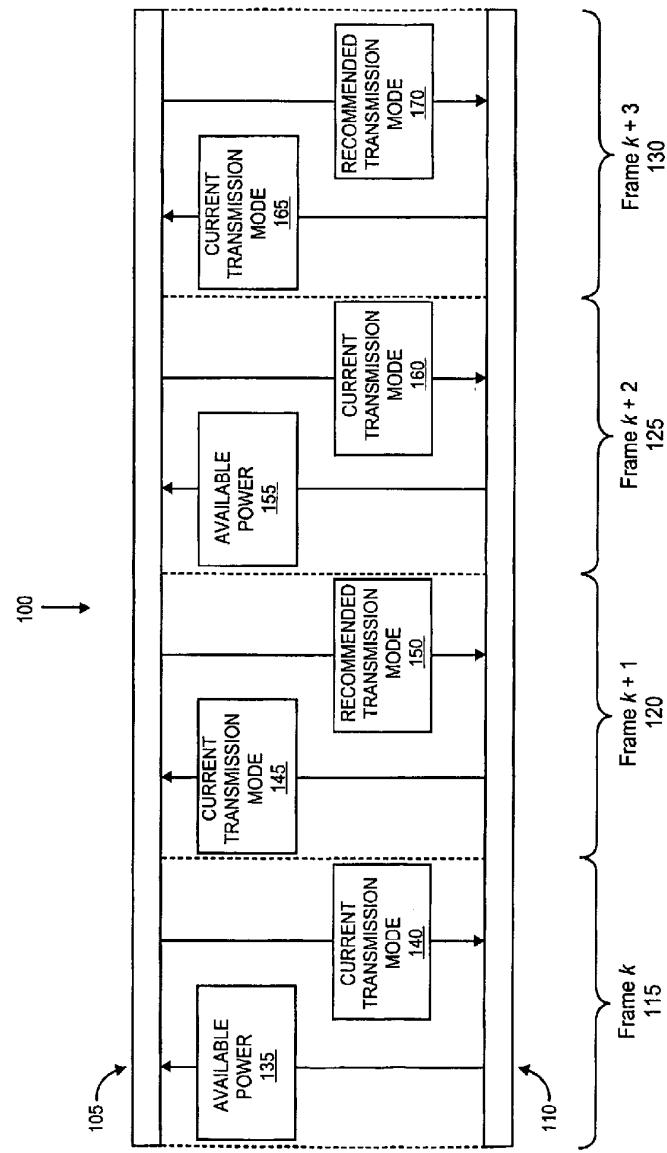


FIG. 1

SUBSTITUTE SHEET (RULE 26)

2/4

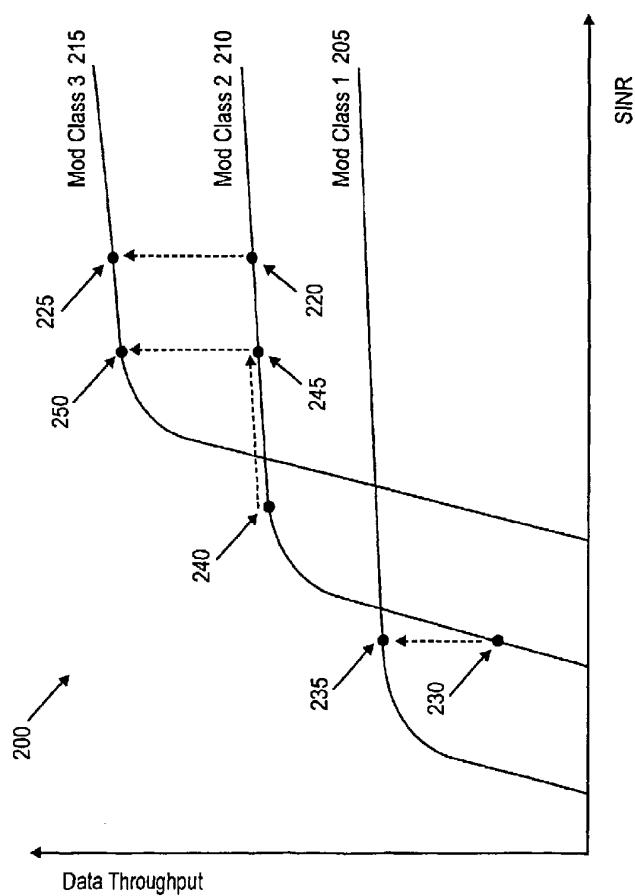
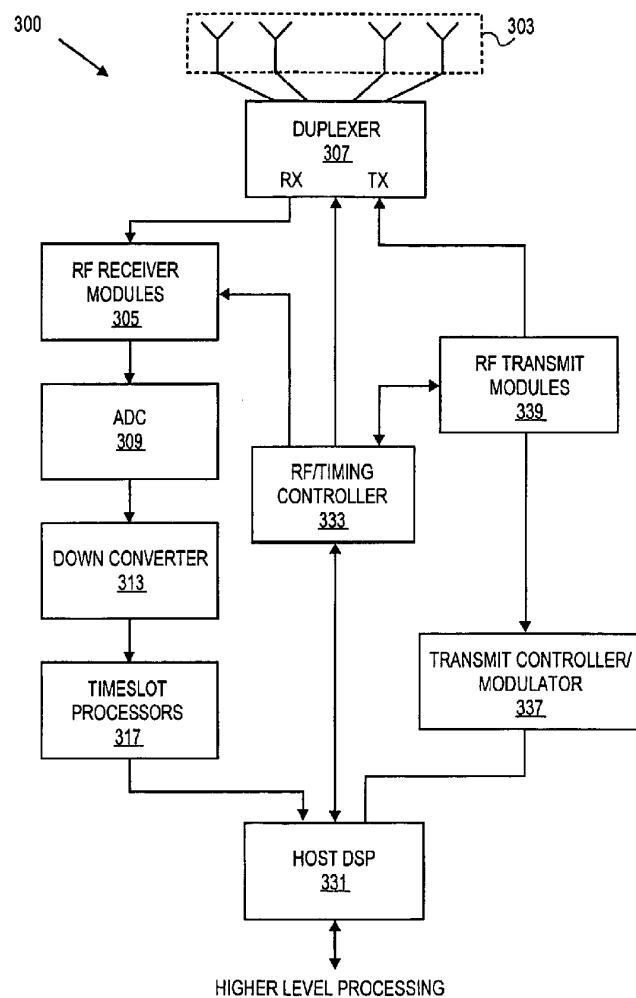



FIG. 2

SUBSTITUTE SHEET (RULE 26)

3/4

FIG. 3**SUBSTITUTE SHEET (RULE 26)**

4/4

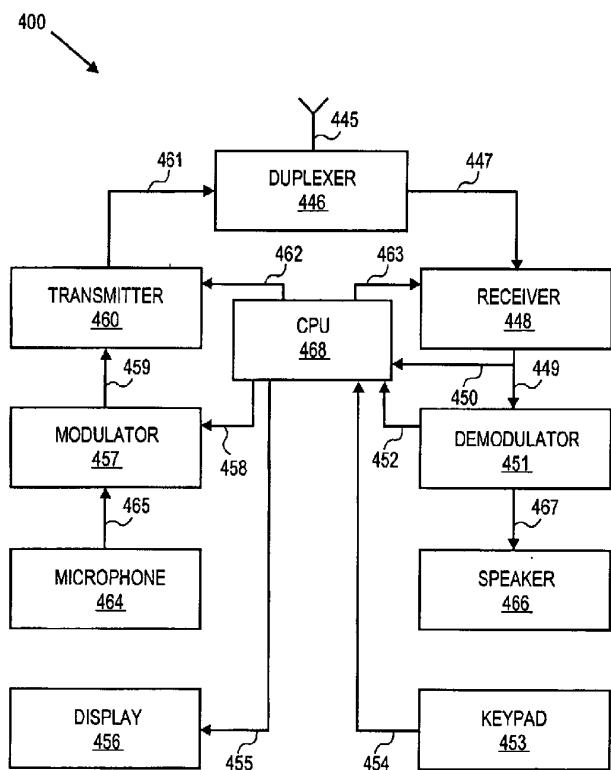


FIG. 4

SUBSTITUTE SHEET (RULE 26)