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1
TRANSPARENT SOFTWARE-DEFINED
NETWORK MANAGEMENT

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/865,316 filed on Aug. 13, 2013, incorporated
herein by reference.

BACKGROUND

Technical Field

The present invention relates to network management,
and more particularly, to transparent software-defined net-
work management.

Description of the Related Art

A fundamental goal in data center network operation is
detecting and reacting to application traffic demands to
optimize application performance while keeping the net-
work highly utilized, yet not congested. As such, it is highly
desirable that a network management platform have com-
plete, continuous, and up-to-date information about both
current network utilization as well as current and future
application demand.

There have been several attempts to incorporate applica-
tion traffic demands into network traffic optimization. In one
approach, several network management frameworks require
input from users or applications: either using a set of
application programming interface (API) calls to a network
controller, or through tagging packets at servers according to
some traffic priority class. In another approach, steps are
taken towards automation by relying on software installed
on end-hosts to determine current and upcoming application
demand.

SUMMARY

A method for network management, including adaptively
installing one or more monitoring rules in one or more
network devices on a network using an intelligent network
middleware, detecting application traffic on the network
transparently using an application demand monitor, and
predicting future network demands of the network by ana-
lyzing historical and current demands. The one or more
monitoring rules are updated once counters are collected;
and network paths are determined and optimized to meet
network demands and maximize utilization and application
performance with minimal congestion on the network.

A system for network management, including an intelli-
gent middleware configured to adaptively install one or
more monitoring rules in one or more network devices on a
network; an application demand monitor configured to
detect application traffic on the network transparently; and a
predictor module configured to predict future network
demands of the network by analyzing historical and current
demands. An updating module is configured to update the
one or more monitoring rules once counters are collected;
and an optimization module is configured to determine and
optimize network paths to meet network demands and
maximize utilization and application performance with
minimal congestion on the network.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.
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2
BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1is a block/flow diagram of a system and method for
network management in accordance with an exemplary
embodiment of the present principles;

FIG. 2 is a block/flow diagram of a system and method for
network management in accordance with an exemplary
embodiment of the present principles; and

FIG. 3 is a flow diagram of a system and method for rule
monitoring in accordance with an exemplary embodiment of
the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The system and method according to the present prin-
ciples may completely automate application demand predic-
tion and optimizing the data center network operation.
Specifically, an intelligent network middleware may be
employed that can adaptively install monitoring rules in the
network devices with the explicit purpose of calculating the
amount of bytes that the network forwards on behalf of each
application that runs in the network. Our system uses the
capabilities of software-defined networking (e.g., the Open-
Flow protocol) to detect application traffic transparently,
predict future demand, and optimize network paths such that
the demand is met and the network utilization is maximized.

The system and method according to the present prin-
ciples may improve the utilization of the underlying network
infrastructure and the performance of applications running
on it. At the same time, it does not require application
modifications or any involvement from the user or network
operator and runs completely automated, thereby reducing
operation costs while improving profit. Because applications
are not involved in the monitoring and optimization pro-
cesses, the invention reduces complexity and speeds up the
operation of data center networks.

It should be understood that embodiments described
herein may be entirely hardware or may include both
hardware and software elements, which includes but is not
limited to firmware, resident software, microcode, etc. In a
preferred embodiment, the present invention is implemented
in hardware.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. A
computer-usable or computer readable medium may include
any apparatus that stores, communicates, propagates, or
transports the program for use by or in connection with the
instruction execution system, apparatus, or device. The
medium can be magnetic, optical, electronic, electromag-
netic, infrared, or semiconductor system (or apparatus or
device) or a propagation medium. The medium may include
a computer-readable storage medium such as a semiconduc-
tor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an
optical disk, etc.

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
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code, bulk storage, and cache memories which provide
temporary storage of at least some program code to reduce
the number of times code is retrieved from bulk storage
during execution. Input/output or I/O devices (including but
not limited to keyboards, displays, pointing devices, etc.)
may be coupled to the system either directly or through
intervening I/O controllers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG.
1, a system and method for network management 100 is
illustratively depicted in accordance with the present prin-
ciples. In one embodiment, the system 100 preferably
includes one or more processors 118 and memory 108, 116
for storing applications, modules and other data. The system
100 may include one or more displays 114 for viewing. The
displays 114 may permit a user to interact with the system
100 and its components and functions. This may be further
facilitated by a user interface 120, which may include a
mouse, joystick, or any other peripheral or control to permit
user interaction with the system 100 and/or its devices, and
may be further facilitated by a controller 112. It should be
understood that the components and functions of the system
200 may be integrated into one or more systems or work-
stations.

The system 100 may receive input data 102 which may be
employed as input to a plurality of modules 105, including
a demand monitor module 104, a demand predictor module
106, a data storage module 108, and a network optimizer
module 110. The system 100 may produce output data 122,
which in one embodiment may be displayed on one or more
display devices 114. It should be noted that while the above
configuration is illustratively depicted, it is contemplated
that other sorts of configurations may also be employed
according to the present principles.

In one embodiment, the application demand monitoring
module 104 may compute the traffic matrix corresponding to
each application by polling the counters of the rules that
match application traffic. A key step here is the rule spe-
cialization, where wildcard rules, that could ambiguously
match the traffic of more than one application into special-
ized rules, each corresponding to a single application, may
be broken. The data storage module 108 may be the storage
for monitoring data stores all measurement data collected by
the previous component.

In one embodiment, the demand predictor module 106
may read and analyze current and historical traffic demands
and may attempt to predict the traffic category to which the
application belongs. The network optimizer module 110
may consider the network topology, current utilization,
current and predicted application demands to computes the
paths that maximize utilization and application performance
without creating congestion according to the present prin-
ciples. The network optimizer module 110 may generates a
set of forwarding rules, which it may pass to the controller
112 for installation into the switches.

Referring now to FIG. 2, a block/flow diagram of a system
and method for network management is illustratively
depicted in accordance with the present principles. In one
embodiment, demand monitoring 202 may infer the current
traffic demand for each application running in the data center
network. The traffic demand may include the network uti-
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4

lization incurred by each pair of origin-destination (OD pair)
endpoints for each application running in the network.
Knowing and recording the current demand of an applica-
tion enables informed decisions about how to best route the
application’s traffic to improve performance and network
utilization. The procedure may include the following steps:
discovering the network topology 204, discovering the net-
work forwarding information (e.g., network routing) 206,
generating monitoring rules 208, and collecting and storing
the monitoring results (e.g., rule updating) 210.

In one embodiment, the network topology step 204 may
infer the physical network topology by sending packets
(e.g., Link Layer Discovery Protocol (LLDP) packets—
specified in standards document IEEE 802.1AB) from each
switch (e.g., to infer links between switches) and by exam-
ining rules (e.g., OpenFlow rules) installed on each switch
(e.g., to infer to which switch is an endpoint connected). A
key step is detecting where on the network is an endpoint
collected. The procedure may be started with a switch that
has a rule matching the endpoint IP (e.g., as a destination)
and proceed in several ways.

In one embodiment, if the action of the rule is to forward
to an out port, the corresponding link may be followed. If the
link is present in the topology then the destination switch of
the link may be selected, and the process repeated. If the link
is not present in the topology, then it may be concluded that
it leads to the endpoint, and it may be inferred that the
endpoint is connected to the current switch. In another
embodiment, if the action of the rule is other than forward
to an outport, another switch in the topology that has a rule
that matches the endpoint IP as a destination may be selected
according to the present principles.

In one embodiment, the network routing step 206 may be
employed to identify how the traffic of a specified applica-
tion is routed in the network. For this, poll each switch may
be polled, and the forwarding rules may be requested to be
installed in the flow tables. Because the IP and MAC
addresses of the application endpoints and the application
port numbers are known, the forwarding rules to apply to
each application may be inferred according to the present
principles.

In one embodiment, the monitoring rules step 208 may
measure the traffic demand incurred on the network by each
application, the counters associated with the forwarding
rules that match against application traffic may be polled.
There are several challenges in this approach. First, many
forwarding rules may contain wildcards, which means that
flows from more than one application or flows between
different endpoints of the same application can match
against them. This makes it difficult to completely disam-
biguate traffic among multiple applications or multiple
application endpoints. Second, polling switch counters may
be expensive both in terms of control channel bandwidth and
switch computation. Polling may also impact scalability, and
polling less frequently may miss important shifts in demand.

In one embodiment, the present principles address these,
and other, challenges by employing an adaptive method that
may automatically installs monitoring rules such that col-
lecting their counters yields accurate results at low overhead.
Each monitoring rule may overlap one wildcard rule but
may have higher priority such that it matches the intended
flow. It may have a limited duration to reduce the impact on
the switch rule storage and computation and may count the
bytes that match against it during that duration.

Once a monitoring rule 208 becomes inactive (e.g., after
it expires or when it is not necessary any longer), the flow
may return to being matched by the original wildcard rule,
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without any performance penalty. For rules that are exact
matches at the start, a user may choose to either re-install the
same rule with a higher priority, same action, but smaller
duration or proactively, and periodically poll the original
rule counters. Thus a monitoring rule can either be a
temporary rule installed for the purpose of counting the
bytes of a single flow (e.g., on demand monitoring rule) or
an exact-match original rule for which we poll the byte
counters (e.g., in situ monitoring rule).

The method according to the present principles may adapt
the monitoring rule 208 installation or polling continually,
according to the byte counters of current rules. In one
embodiment, four parameters are employed to govern the
monitoring rule 208 installation and update process. The first
parameter may be granularity—The installed monitoring
rules may be able to unambiguously collect statistics asso-
ciated with one source-destination pair for one application.
The second parameter may be frequency: (e.g., how often an
origin-destination pair is monitored) Keeping the monitor-
ing rules installed all the time is inefficient. If the monitoring
rules are stored in Telecommunications Access Method
(TCAM), they waste valuable space that could be used for
other forwarding rules. If they are exact matches, and are
stored in static random-access memory (SRAM), a large
number of monitoring rules could have negative effects on
the forwarding performance compared to the forwarding
done by the TCAM-stored wildcards. In one embodiment,
monitoring rules are installed temporarily, thus trading-off
accuracy and completeness in measurement for forwarding
performance

The third parameter may be duration: (e.g., for how long
each origin-destination pair is monitored) Varying the dura-
tion of a monitoring rule allows for a trade-oft of the amount
of traffic that is captured (and thus the accuracy of the
measurement) for scalability. It is noted that this situation
does not apply to in situ monitoring rules. The fourth
parameter may be switch: (e.g., where to install monitoring
rules). It may be ensured that two monitoring rules installed
on different switches are not redundant (e.g., measure the
same traffic). It is noted that although four parameters are
discussed in the above illustrative embodiment, it is con-
templated that any number of parameters may be employed
according to the present principles.

In one embodiment, each monitoring rule may be asso-
ciated with one or more of the following properties:

match (M)

action (A)

frequency (F)

duration (D) (does not apply to the in-situ monitoring

rules)

bandwidth (B): the estimated bandwidth last measured for

the match

active/inactive: whether the rule should be installed or not

inactive_threshold: utilization of traffic matching the rule

under which the rule becomes inactive (e.g., if there is
little traffic matching a monitoring rule, it is not worth
maintaining it)

stability_threshold: fraction of rate change between cur-

rent and last rule counters over which the rule becomes
unstable

update speed (c): parameter that determines how the

frequency of a rule changes between instantiations.

In an illustrative embodiment, the method to install and
update monitoring rules 210 may include initialization and
measurements. During initialization, edge switching for all
rules may be performed. For wildcard rules, all wildcards
may be broken down into exact matches for each OD
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(Origin-Destination) pair that is selected to be monitored In
one embodiment, the action of each match is that of the
associated wildcard rule, the frequency and duration have
default values, and all exact matches may be installed. For
exact match rules, the rule may be replicated and re-installed
as a monitoring rule with the default duration, or the
monitoring rule may not be installed, but instead, a sched-
uling to poll the rule’s counters with the default rule fre-
quency F may be performed (e.g., the exact match rule may
become an in situ monitoring).

In one embodiment, measurements may be taken as
follows:

collect FlowRemoved messages for the expired monitor-

ing rules (FlowRemoved messages are triggered by
switches when a forwarding rule expires) or ReadState
replies for exact match rules which don’t have a
corresponding monitoring rule

calculate new bandwidth B'

if B'<inactive_threshold, mark rule as inactive

if IB-B'I/B>stability_threshold, mark rule as unstable

update rules

In one embodiment, rule updating 210 may update each of
one or more measurement rules once the counters of its last
instantiation has been collected. If a rule is unstable, the
frequency may be updated from F to F' where F'=a*F and
a is a constant, o>1. If a rule is stable, the frequency may be
updated from F to F' where F'=1/a*F, where a is a constant,
a>1. If a rule is inactive, no traffic matches against the rule
and thus, the rule may not be installed in the network.
However, it is desirable to detect when a new flow that
matches the rule starts. For this, various embodiments to
update an inactive rule may be implemented according to the
present principles.

One embodiment for rule updating 210 includes an aggre-
gate/install, and may perform the following steps:

check if other similar rules are inactive (similar rules

could be rules for OD-pairs connected to the same pair
of ToR switches, or rules that could be easily aggre-
gated into one more general rule)

if several inactive similar rules exist, aggregate them (e.g.,

we aggregate multiple inactive flows from different
hosts under the same ToR to the same destination or
from the same hosts to different destinations, as long as
their actions are the same)

install the aggregate rule.

Another embodiment for rule updating 210 includes an
aggregate/wait, and may include the following steps:

check if other similar rules are inactive (similar rules

could be rules for OD-pairs connected to the same pair
of ToR switches, or rules that could be easily aggre-
gated into one more general rule)

if several inactive similar rules exist, aggregate them (e.g.,

we aggregate multiple inactive flows from different
hosts under the same ToR to the same destination or
from the same hosts to different destinations, as long as
their actions are the same)

do not install the aggregated rule right away; instead

modify the action of the initial wildcard rule to send a
Packetln to the controller in addition to its initial action.
When the controller receives the Packetln it installs the
aggregate rule.

The aggregate/install method and the aggregate/wait
method achieve similar functionality (e.g., that of detecting
and monitoring new traffic for which there are no monitoring
rules. The aggregate/install method installs an aggregate rule
that matches the part of the rule space not covered by
monitoring rules and checks the counters of the rule every
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fixed period. However, this may incur a high level of
overhead if no traffic matches the aggregate monitoring rule
for a lengthy period of time.

In contrast, the aggregate/wait method does not install an
aggregate monitoring rule until it detects a new flow not
covered by existing monitoring rules. It detects such flow by
modifying the action of the original wildcard rule (e.g.,
installed by the operator for the regular forwarding opera-
tion) to redirect a matched packet to the controller, in
addition to sending it according to the original action. Once
this first packet arrives, the controller may change the action
back. The advantage of this method is that it saves network
overhead from constantly installing an aggregating moni-
toring rule and receiving the corresponding FlowRemoved
message when it expires. The downside is that there may be
a small window of time when the controller sees several
PacketIn messages, and this may introduce overhead both at
the controller and on the controller-to-switch channel.

In one embodiment, demand prediction may be performed
in block 212. When the demand monitoring in block 202 has
collected a sufficient number of measurements about an OD
pair, this procedure discovers known patterns in the demand
that could be used to predict future traffic between the OD
pair. The determination of what amounts to a sufficient
number of measurements may be a case-by-case decision by
an end user. For example, some users may trade-off accuracy
for speed and will need fewer measurements, while others
may value accuracy more and wait for more measurements
to become available to better estimate the demand.

There are a plurality of methods to predict demand, but
for illustrative purposes, two methods to predict future
demand according to the present principles. The procedure
may take as input a list of tuples (e.g., Bi, t,, t), which may
represent the bandwidth measured for an OD pair between
times t, and t. It then may attempt to fit the demand into
several dimensions.

In one embodiment, bandwidth-based modeling 214 may
be employed to fit the demand based on the bandwidth
measured using, for example, one of the following four
models:

constant: constant or slightly varying bandwidth (Bi var-

ies less than x % across the monitoring period)
single peak: higher bandwidth only during one or more
adjacent intervals

multiple peaks with fixed height: higher bandwidth during

several non-adjacent intervals, with the bandwidth in
each of these intervals constant or slightly varying
multiple peaks with variable height: higher bandwidth
during several non-adjacent intervals
Because the monitored demand may not fit exactly in any of
the four models above, the system and method according to
the present principles may compute the efficiency of the fit
and choose the model with the best efficiency. In addition, it
may refine the fit as more and more measurements are
added. In one embodiment, the efficiency of the fit may be
computed as the least squares fit (e.g., for each monitoring
interval we compute the difference between the monitored
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value and the value of the model, we then square each
individual value and take the sum of all squares. The model
with the smallest sum is the chosen one).

In one embodiment, frequency-based modeling 216 may
be employed to identify any periodicity in the traffic. The
frequency-based modeling 216 may begin by fixing a moni-
toring interval T, which may be the minimum of all fre-
quencies F associated with all instantiation of rules that
match traffic for the OD pair. Each measurement may then
be considered as extending until the end of the current period
for which it monitors traffic (and thus, beyond the duration
after which the associated monitoring rule expires).

Next, all measurements with F>T may be split into F/T
measurements, each with the same bandwidth, and with
period T. In this way, measurements of the same duration for
the OD pair may be obtained. Then, the set of measurements
may be considered as a signal, and its Fourier transform may
be computed, and its frequency domain may be obtained.
The frequency domain enables identification of periodicity
in the signal (e.g., if the signal is periodic, a specific
frequency will have many more samples than others). Iden-
tifying periodicity in demand may be employed to predict
future transfers between the OD pair. In one embodiment,
Network optimization may be performed in block 222, and
may include optimization 224, scheduling 226, and rule
management 228 according to the present principles.

Referring now to FIG. 3, a block diagram of a system and
method for rule monitoring 300 is illustratively depicted in
accordance with the present principles. In one embodiment,
each active rule may be received as input in block 302. A
new bandwidth B' may be computed in block 304, and if
B'<inactive_threshold in block 306, the rule is marked
inactive in block 308, and the rule will not be installed in this
network since no traffic matches against the rule, and thus,
move to block 316 to aggregate and wait. In one embodi-
ment, if IB-B'l/B>stability_threshold in block 310, the rule
is marked as unstable. If the rule is unstable, then F=F*a in
block 314, and if the rule is stable, then F=(1+a*F)/F in
block 312.

The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and
the scope of the invention disclosed herein is not to be
determined from the Detailed Description, but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws. Additional information is
provided in an appendix to the application entitled, “Addi-
tional Information”. It is to be understood that the embodi-
ments shown and described herein are only illustrative of the
principles of the present invention and that those skilled in
the art may implement various modifications without depart-
ing from the scope and spirit of the invention. Those skilled
in the an could implement various other feature combina-
tions without departing from the scope and spirit of the
invention. Having thus described aspects of the invention,
with the details and particularity required by the patent laws,
what is claimed and desired protected by Letters Patent is set
forth in the appended claims.
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ADDITIONAL INFORMATION:

PROBLEM/SOLUTION

Al Deseribe the problem that the present invention attempis to solve.

A fundamental goal in data center network operation is detecting and reacting to
application traffic demands to optimize application performance while keeping the
network highly utilized vet not congested. This requires that the network management
platform have complete, continuous, and up-to-date informaticn about both current

network atilization as well as current and folure apphication demand.

A2, How have others attempted 1o solve the problem described in A1?

There have been several attempts to incorporate application traffic demands into network
fraffic optimazation. On one had, several network management frameworks regutre input
from users or applications either using a set of AP calls to the network controller or
through tagging packets at servers according to some traffic priovty class. On the other
hand, some approaches take steps towards antomation by relying on software installed on

end-hosts to determine current and upcoming application demand.
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A3, How does the invention solve the problem deseribed in 417

We propose to completely automate the application demand prediction and optimize the
data center network operation. Specifically, we develop an intelligent network
middieware that can adaptively install monitoring rules in the network devices with the
explicit purpose of caleulating the amsount of bvtes thar the network forwards on behalf of
each application that runs in the network. Oar system uses the capabilities of software-
defined networking {specifically. the Open¥Flow protocol) to detect application traffic
transparently, predict futyre demand, and optimize network paths such that the demand 8

et and the nerwork unilization s maximized.

B. What is the specific competitivescommercial value of the solution achieved by the
present imvention {e.g., less complexity, faster operation, lower cost, higher quality,

ete.}?

Chur system boproves the witlization of the voderlying network infrastrocture and the
parformance of applications running on it At the same time, it does not reguirve
application modifications or any involvement from the yser or network operator and runs
completely automated, thereby reducing operation costs while improving profit. Because
applications are not involved in the monttoring and optimization processes, the invention

reduces complextty and speeds up the operation of data center networks,
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D, DESCRIBE THE INVENTION

ba. - Flow chartor block diagram the key stepsffeatures to show their selationship
or sequence. Please use piai fn words rathey than mathematical expressions, if

possible.

¥ B
L o R S A S S o T S i

OpenFlow controller

The svstem architecture 1s iustrated above and consists of four major components: 1)
application demand montior, 2) storage for monitormg data, 3) application demand

predictor, and 4) network optimizer. We describe each component helow:
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the application demand monitor computes the fraffic matoix correspondmng to each
application by polling the counters of the rules that match application traffic, A
key step here is the rule specialization, where we break wildcard rules, that could
ambiguously match the waffic of more than ove application, into specialized rules,

¢ach corresponding o a single application;

the storage for monitoring data stores all measurement data collected by the

prev tous compongnt;

the demand predictor reads cutrent and historical traffic demands and attempis to

predict the teaffic category that the application belongs to;

the network optimizer considers the network topology, corrent utilization, current
and predicted application demands and computes the paths that maximize
utilization and application performance without creating congestion. The network
optimizer generates a set of forwarding rules which it passes to the controller for

instatiation into the switches.
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The process 15 tHustrated in the following flow chart

Frogedas 13 s Procadurs 2.1 ;2 Procadure 31
Metwork kpodugy © o Bendwicth-bavest o A Cdinization

Procedure 1 Demand monttoring

This procedure mfers the current raffic demand for each application running in the data
center network. The traffic demand consists of the network utilization meurred by each
pair of origin-destination {OD pair) endpoints for each application ranning in the
network, Knowing the carrent demand of an application allows us to make decisions
aboot how 1o best ronte the application’s traffic to improve performance and network
utilization. The procedwre consists of the following steps: discovering the network
topology (Procedure 1.1}, discovering the network forwarding imnformation {Procedure
1.2), penerating moniloring rules {Procedure 1.3), and collecting and storing the

mownitoring results (Procedure 1.4).
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Procedure 1.1: Network topology

{The procedure is the same as presented i IR 120531 we nclude it for completeness)

This procedure wnfers the physical network topology by sending LLDP packets (specifiad
in standards document 1IEEE 802, 1AB) frow each switch (1o infer links between
switches) and by examining OpenFlow rules installed on each switch (o infer to which

switch i3 an endpomnt connected).

The key step here 1s defecting where on the network 1v an endpoint collected. We stan
with a switch that has 4 rule matcling the endpoint IP {gs a destination) and proceed in
several ways. A) If the action of the rale is to forward to an out port, we follow the
corresponding link. If the link is present in the topology then we select the destination
switch of the link aud repeat the process. 1 the link is not present in the wopology, then
we conclude it leads 1o the endpoint and infer that the endpoint is connected to the current
switch. B} If the action of the rule is other than forward to an outport, we select another

switch in the topology that has a rule that matches the endpoint IP as a destination.

Procedure 1.27 Network routing

The goal of this procedure is o identify bow the traffic of a specified application is
routed in the network. For this, we poll each switch and request the forwarding rules
installed in the flow tables. Because we know the IF and MAC addresses of the

application endpoints and the application pont manbers, we can then infer which
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forwarding rules apply to each application.

Procedure 1.3 Monitorine rules

To measure the traffic demand incurred on the network by each application, we can poll
the counters associated with the forwarding wules that match against application waffic,
There are several challenges in this approach. Furst, many forwarding rules contain
witdeards, which means that flows from more than one application or flows between
different endpoints of the same application can match agamst them. This makes #
impossible to compleely disambiguate traffic among multiple applications or multiple
application endpoiats. Second, polling switch counters is expensive both in terms of
control channe! bandwidth and switch computation. Polling too often impacts scalability,

polling less frequently may miss important shifis in demand.

To address these challenges we propose an adaptive algorithm that automatically installs
moniforing rules such that collecting their counters yields acourate results at low
overhead. Each monitoring rule overlaps one wildeard rule but has higher priority such
that it matches the intended flow. It has a limited duration to reduce the wapact on the
switch rule storage and computation and counts the bytes that match against it during that
duration. Once a monitoring rule becomes inactive (i, after it expires or when 1 ig not
necessary any longer), the flow can return to being matched by the original wildeard rule,

without any performance penalty. For rules that are exact matches to begin with we can

choose to either re-install the same nde with a higher prionty, same action, but smaller
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duration or proactively and periodically poll the original yule counters. Thus a monitoring
rule can either be » temporary rule installed for the purpose of counting the bvtes of a
single flow {on demand monitoring rule} or an exact-match original rale for which we

poil the byte cownters {in situ momtosing rule).

Qur algorithm adapts the monttoring rule installation or polling continually, according to
the byte counters of current rules. We consider four parameters that govern the

monitoring nide installation and update process:

- granularity: The installed monitoring rules should be able to unambignously

coltect statistios assotiated with one source-destination pair for one application.

- frequency: (how offen we monitor an origin-destination pair) Keeping the
monitoring rules installed all the ime s inefficient. If the momitormg rules are
stored in TCAM, they waste valuable space that could be ased for other
forwarding niles. f they are exact matches and stored in SRAM, a large number
of moniforing rules could have negative effects on the forwarding performance
compargd to the forwarding done by the TCAM-stored wildcards, We sesk to
install monitoring rales temporarily thus trading-off acewracy and completeness in

measurement for forwarding performance

= ghuration: (for how long we monitor each origin-destination pair) Varying the

duration of a monitoring nide allows us o frade-off the amownt of taffic that we
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capture (and thus the accuracy of the measwrement) for scalabulity. {does not

apply to in situ monioring rules]

- switch: {(where to mstall montoring rules) We must ensure that two monitoring

rules instatled on different switches are not redundant (Le ., measure the same

wraffic)

Thus, each monitoring role 1s associated with the following properties:

- match (M)

- action (A}

- freguency {(F)

- cheration (D) {does not apply to the n-situ monttoring rules}

- bandwidth (B): the estimuated bandwidth last measured for the match

- active/inactive: whether the rule should be installed or not

- mactive threshold: ntilization of taffic matching the rule under which the rule
becomes nactive {e.g., if there is hittle traffic matching a monitoring rule, i is not
worth maimntaining 11}

- stability threshold: fragction of rate change between current and last rule counters
over which the rule becomes unstable

- update speed (o} parameter that determines how the frequency of a rale changes

between instantiations
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We describe the algorithm to install and update monitormg rules:

Inttialization
~ poll edge switches for all rules
~ for wildeard rules
o break down all wildeards tnro exact matches for rach OD {arigin-
destination) pair that we want to monitor; the action of each match is that
of the associated wildeard rule, the frequency and duration have defanht
values
o install all exact maiches
- for exact match rudes, we consider two options
1} replicate the rule and re-install # as a montoring rule with the default
duration
2} do not install the monitoring rule; instead schedule 1o poll the rale’s
connters with the default rule frequency F {the exact match rule becomes
an in sity monttoring rule)
Measuraments:

- collect FlowRemoved messages for the expived monttoring rules (FlowRemoved
messages are triggered by switches when a forwarding role expires) or ReadState
replies for exact match rules which don’t have a corvesponding monitoring role

- calculate new bandwidth B

- B’ <inactive_threshold, mark rule as inactive

- IB-B'YB > stability threshold, mark rule as unstable
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~  update rules {see Procedwre 14}

Procedwre 14; Rule upndating

Thix procedure describes how we update each measurement rule once we have collected

the counters of s last instantiation,

If a rule is unstable, update the frequency Fio F7 where 7 = o*F and 1 15 a constant, 1.

If a rule is stalde, update the frequency F o F" where Fi=Vo * F, where a is a constant,

i1,

Ifa rule 1s mactive, no fraffic matches against the rule amd thus, we will not install the

rade in the network, However, we want to detect when a new flow that matches the rule

starts. For this, we consider several possibilities to npdate an mactive rule

Procedure 141 Aguresate/install

gy check i other simdlar rules are tnsctive (similar rules could be rales for OD-pairs
connected to the same pair of ToR switches, or roles that could be easily
aggregated into one more general rule)

by if several inactive similar rules exist, aggregate them (e.g., we aggregate multiple

inactiva flows from different hosts under the same ToR 1o the same destination o

from the same hosts io different destinations, as long as thewr actions are the same)
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¢} install the aggregate rule

Procedure 1.4.2 Agerecatelvait
a} same as Procedure 1.4.1
by same a§ Procedwe 1,41
¢}y do not install the aggregated rule right away; inxtead modify the action of the
inttial wildcard rale o send a Packetin to the controller in addition to its initial

action. When the controller receirves the Packetin it installs the aggregate rule

Procedures 14,1 and 1.4.2 achivve the same functionality, that of detecting and
monitoring new taffic for which there are no monitoring rules, Procedure 141 mstalls
an aggregate rale that matches the part of the rule space not covered by monitoring rules
and checks the counters of the rule every fixed period. This may incur a lot of overhead if
no traffic matches the aggregate monitoring rule for a long time. On the other hand,
Procedure 1.4.2 does not install an aggregate monitoring rule unul it detects a new flow
not covered by existing monttoring rules. It detects such How by modifying the action of
the original wildcard rule {installed by the operator for the vegular forwarding operation)
to redivect a matched packet to the controller, in addition 1o sending 1 according to the
original action. Onee this first packet arrives, the controller changes the action back. The
advantage of this method 15 that it saves network overhead from constantly installing an
aggregating monitoring rule and recetving the corresponding FlowRemoved message
when it expires. The downside is that there is a small window of time when the controlier

sees several Packetln messages. This may introduce overhead both ar the controfter and
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on the controtier-tn-switch channel.

The rule monitoring mechanism is Mlusirated below:

For sach sotive rule

Compute new bandwidth &

P o . 3
8«

jnactive threshold Rule Inactive
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When the demand monitor has collected enongh measurements about an OD pair, this

procedure attempts to discovery known patierns in the demand that could be wsed to
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predict future traffic between the OD pair. We consider two methods to predict future

demand.
The procedure takes as input a list of taples (Bi, , ), which represents the bandwidth
measured for an OG0 paiy between times tand & 1t then triss to it the demmand into along

several dimensinas

Procedure 2.1: Bandwidth-based modeling

First, wi seek to fit the demand based on the bandwidih messured one of the following
fowr modely:
~  constant: constant or sHghtly varying bandwadth (Byvaries less than x% across the
monttoring period)
- single peak: higher bandwidth only during one or more adiscent mtgrvals
- multiple peaks with fixed height: higher bandwidth duwring several non-adjacent
wtervals, with the bandwidih in each of these intervals constant or shightly
varying
- multiple peaks with variable height higher bandwidth during several non-
adjacent intervals
These models are similar to the ones defined by Xie et al. [1] Because the monitored
demand may not fit exactly in any of the four models above, the procedure computes the
efficiency of the fit and chooses the model with the best efficiency. In addition, it may

vefine the fit as more aad more measarements are added.
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Procedure 2.2: Freguency-based modeling

This procedure tries to tdentify any pentodicity in the fraffic. It starts by fixing a
monitoring interval T, which s the minimuin of all F assoctated with all instastiation of
rules that mateh traffic for the OD pair. We then consider each measurement as extending
until the end of the current pertod for which it monitors wraffic (and thus, beyond the
duration after which the associated monttoring rule expires). Next, all measurements with
F =T ave sphit into F/T measurements each with the same bandwadth and with period T,
In this way we obtain measurements of the same duration for the OD pair. We then
consider the set of measurements as g signal and compate its Fourier yransform and
obtain s frequency domain. The frequency domain allows os to dentify periodicity in
the stgnal (e g, it the signal is pariodic, a specific frequency will have many more
sampley that others). Identifving pertodicity in demand helps predict futwre transfers

between the OD pair.

Procedure 3: Network optimization

This procedure is stmlar to Procedure 3: Decision engine and Procedure 41 Rule

management from IR 12051

Ih. — If possible, please provide a claim tree or diagram starting from a mamn

claim showing progression from broadest mventive features to lower level
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detailed featuwres that vou think should be protected (patent counsel can assist, if

needed).

Output

Input
Fraffic froen distribuled
applioations deploved

o an GpenFlow-based
piyek

utlization

Fracedure 3.3

Opsimbratinn

s‘k Procedure 3.8

Hohagduibg

H
éh  Brovedurs ¥
e management

gre 14
ahaie

Optinization

e, - What specific parts of the solution to the problem shown in la and 1b above
are NEW and DIFFERENT from what i3 already known (prior art)? Explamn flow
or operation sequence or diagram blocks or steps and how problem is solved or

advantage is achieved.
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Procedures 1 and 2 {in particular 1.3, 1.4, 2.2y are all new. When combined, they can

measure amd predict the waffic demand between two application endpoinis in an
OpenFlow network with accuracy and at scale. Existiug methods to monitor the fraffic
demand of an application are limited to traditional networks and use tools such as SNMP
or NetFlow, which are not scalable and/or do not capture the full traffic mawix. In
OpeaFlow networks, existing methods to compute the teaffic mawix are lmited
actworks with exact match rules. Our invention works for any type of forwarding rules
mstalled v the network. In addition, because it adapts to traffic conditions, it can trade-

off measurement overhead with accuracy.

1d. ~ Idemify keylessentigl steps or features from la or 1bh 1) that enable
henefiis/advantages over what 18 known and/or it) that solve an impornant preblem

in the art

The key steps of this invention are Procedures 1 and 2 (especially Procedures 1.3 and

1.4},
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2. - Prior Ast. List patents, articles, or publications you believe are closest to
steps/features in 1¢/1d andior provide a block diagram of what is known with respect to

stepsifeatures i to/td

{1} " The Ounly Constant is Change: Incorporating Tune-Varying Network Reservations m
Data Centers”, i Xie, Ning Ding, Y. Charlie Hu, Ramana Kompella, ACM Sigcomm

2012

{21 “Hedera: Dynamic Flow Scheduling for Data Ceuter Networks™, Mohammad Al
Fares, Sivasankar Radbakrishnan, Barath Raghavan, Nelson Husng, Annn Vahdat,

Usenix NSDI 2010

3] “Transparent and Flexible Network Management for Big Data Processing in the
Cloud”, Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofet Hang,
Curtis Yo, HotCloud 2013

{41 “OpenT™M: Traffic Matrix Estimator for OpenFlow Networks” Amin Tootoonchian,

Monig Ghobadi, Yashar Ganjalt, PAM 2010

{1 “Robust Traffic Matrix Estimation with Imperfect Information: Making Use of

Multiple Data Sources”™, (Ot Zhao, Zihui Ge, hia Wang, Jun Xu, ACM Sigmetrics 2006

i

{6} “Fast Accurate Computation of Large-Scale IP Traffic Matrices from Link Loads™,
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Yin Zhang, Matthew Roughan, Nick Duffield, Albect Greenberg, ACM Sigmetrics 2003
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What is claimed is:

1. A method for network management, comprising:

adaptively installing one or more monitoring rules in one

or more network devices on a network using an intel-

ligent network middleware,

wherein the one or more monitoring rules are generated
by breaking wildcard rules into specialized rules,
each corresponding to a single application;

wherein each of the one or more monitoring rules
overlaps, and has a higher priority than one distinct
wildcard rule so that it matches a particular traffic
flow for a particular duration; and

wherein a wildcard rule that is an exact match for one
or more Origin-Destination pairs on initialization is
reinstalled as a same rule with a higher priority, same
action, after the wildcard rule becomes inactive;

detecting application traffic on the network transparently

using an application demand monitor;

predicting future network demands for the network by

analyzing historical and current demands;

updating the one or more monitoring rules once counters

are collected,
the updating the one or more monitoring rules comprising
updating a frequency F to F', wherein F'=a*F, if the one or
more monitoring rules are unstable, wherein o is an update
speed and F' is an updated frequency; and

determining and optimizing network paths to meet net-

work demands and maximize utilization and applica-
tion performance with minimal congestion on the net-
work.

2. The method according to claim 1, wherein the predict-
ing future network demands includes bandwidth-based mod-
eling.

3. The method according to claim 1, wherein the predict-
ing future network demands includes frequency-based mod-
eling.

4. The method according to claim 1, wherein the one or
more monitoring rules are at least one of a temporary rule
which counts bytes of a single flow and an exact-match
original rule which polls byte counters.

5. The method according to claim 1, wherein the one or
more monitoring rules are governed by granularity, fre-
quency, duration, and switch.

6. The method according to claim 1, wherein the updating
the one or more monitoring rules further comprises updating
a frequency F to F', wherein F'=1/a, if the one or more
monitoring rules are stable, wherein a is an update speed
and F' is an updated frequency.
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7. A system for network management, comprising:
an intelligent middleware configured to adaptively install
one or more monitoring rules in one or more network
devices on a network,
wherein the one or more monitoring rules are generated
by breaking wildcard rules into specialized rules,
each corresponding to a single application;

wherein each of the one or more monitoring rules
overlaps, and has a higher priority than one distinct
wildcard rule so that it matches a particular traffic
flow for a particular duration; and

wherein a wildcard rule that is an exact match for one
or more Origin-Destination pairs on initialization is
reinstalled as a same rule with a higher priority, same
action, after the wildcard rule becomes inactive;

an application demand monitor configured to detect appli-
cation traffic on the network transparently;

a predictor module configured to predict future network
demands of the network by analyzing historical and
current demands;

an updating module configured to update the one or more
monitoring rules once counters are collected, the
update of the one or more monitoring rules comprising
updating a frequency F to F', wherein F'=a*F, if the one
or more monitoring rules are unstable, wherein o is an
update speed and F' is an updated frequency; and

an optimization module configured to determine and
optimize network paths to meet network demands and
maximize utilization and application performance with
minimal congestion on the network.

8. The system according to claim 7, wherein the predict-
ing future network demands includes bandwidth-based mod-
eling.

9. The system according to claim 7, wherein the predict-
ing future network demands includes frequency-based mod-
eling.

10. The system according to claim 7, wherein the one or
more monitoring rules are at least one of a temporary rule
which counts bytes of a single flow and an exact-match
original rule which polls byte counters.

11. The system according to claim 7, wherein the one or
more monitoring rules are governed by granularity, fre-
quency, duration, and switch.

12. The system according to claim 7, wherein the updating
the one or more monitoring rules further comprises updating
a frequency F to F', wherein F'=1/a, if the one or more
monitoring rules are stable, wherein o is an update speed
and F' is an updated frequency.
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