Title: PEDESTAL MOUNTING OF SENSOR SYSTEM

Abstract: Examples related to the incorporation of a sensor into an electronic device are disclosed. One example provides a system including a circuit board comprising a first side and a second side opposite the first side, a sensor housed in a package, the mounting pedestal configured to be mounted to a surface in an electronic device.
PEDESTAL MOUNTING OF SENSOR SYSTEM

BACKGROUND

[0001] An electronic device may include various sensors to provide input for device functionalities. Examples include, but are not limited to, motion sensors such as accelerometers and gyroscopes incorporated into an inertial measurement unit (IMU) of the device.

SUMMARY

[0002] Examples related to the incorporation of a sensor into an electronic device are disclosed. One example provides a system including a circuit board comprising a first side and a second side opposite the first side, a sensor housed in a package bonded to the first side of the circuit board, and a mounting pedestal coupled to the circuit board on the second side at a location opposite the package, the mounting pedestal configured to be mounted to a surface in an electronic device.

[0003] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 shows an example electronic device including an inertial measurement unit (IMU).

[0005] FIG. 2A-B schematically show an example FMU system during thermal calibration.

[0006] FIG. 3 schematically shows the example IMU system of FIGS. 2A-B mounted in an electronic device.

[0007] FIG. 4A-B show another example FMU system.

[0008] FIG. 5 shows the IMU system of FIG. 4A-B mounted in an electronic device.

[0009] FIG. 6 is a flow chart illustrating an example method for assembling an electronic device including an IMU system.
DETAILED DESCRIPTION

[0010] Some sensors may be sensitive to movements arising from temperature-induced warpage of the materials to which the sensors are mounted. Temperature-induced warpage may arise, for example, from a mismatch between a coefficient of thermal expansion (CTE) of a circuit board and a sensor package mounted to the circuit board. Temperature fluctuations that can cause such warpage may arise from various sources. For example, the electronic device in which an IMU system is installed may be used in different ambient temperatures during normal usage. Also, heat dissipation inside the electronic device may cause additional temperature changes at various device usage/power conditions, even when the exterior ambient remains unchanged.

[0011] An IMU system thus may be calibrated to compensate for sensor position change as a function of temperature. Sensor calibration may be conveniently performed prior to placing the IMU system in an electronic device. However, a calibration performed prior to installation in an electronic device may not properly compensate for the temperature dependence of the sensors mounted in the device, as the temperature dependence of the sensors may change. For example, once mounted within an electronic device, the board may warp differently, or not at all, depending upon how the circuit board is mounted to the device.

[0012] Accordingly, examples are disclosed herein that may help to mitigate issues arising from the mounting of a pre-calibrated sensor system into another device. Briefly, a sensor system includes a mounting pedestal coupled to a printed circuit board of the sensor system on an opposite side of the circuit board as a sensor package. The mounting pedestal is coupled to the circuit board prior to calibration, and impacts the thermal warpage of the printed circuit board similarly both before and after installation into an electronic device. The sensor system may be installed in the device by fixing the mounting pedestal to a surface within the device, thereby allowing the sensor system to be mounted without adhering the circuit board directly to the surface within the device. This isolates the sensor circuit board from the CTE of the mounting surface in the electronic device. In some examples, the mounting pedestal may be similar in size, shape, and material properties to a sensor mounting package, and may be mounted to the circuit board directly opposite the sensor mounting package. Such a pedestal may negate the warpage arising from the CTE mismatch of the sensor package and circuit board. Each of these features helps to mitigate the effect on a previously performed calibration of installation into an electronic device.
The configuration described herein may be used to mount any suitable sensor or sensors within an electronic device, and is particularly suited for sensors that may be sensitive to intrinsic stresses and that undergo temperature calibration. Example sensors include but are not limited to inertial motion sensors, pressure sensors, image sensors, resonators, filters, and other types of sensors. While the below examples are described with respect to an IMU system having one or more inertial motion sensors, it is to be understood that other sensors could be used without departing from the scope of the disclosure.

An IMU system may be incorporated into any suitable electronic device. Examples include, but are not limited to, wearable computing devices such as head-mounted displays, other wearable computers, mobile devices, tablet computers, laptop computers, automobiles, unmanned aerial vehicles (UAVs), aircraft navigation systems, and attitude and heading reference systems (AHRS). FIG. 1 shows a block diagram of an example of an electronic device 100 that includes an IMU system 102 having one or more inertial motion sensors 104 coupled to an IMU circuit board 106. The IMU system 102 is mounted to a surface 108 of the electronic device 100, such as another circuit board within the electronic device.

The IMU system 102 is configured to output data used to determine a position and/or orientation of the electronic device 100, and may include at least three rate axes and three linear acceleration axes. In another example, the IMU system 102 may be configured as a six-axis or six-degree of freedom position sensor system. Such a configuration may include three accelerometers and three gyroscopes to indicate or measure a change in location of the electronic device 100 and a change in device orientation.

The electronic device 100 may include a logic machine and a storage machine. In one example, the storage machine may include instructions that are executable by the logic machine to adjust one or more parameters of the electronic device based on output from the IMU system 102. The IMU system 102 may be calibrated prior to placement in the electronic device to quantify a temperature dependence of the IMU system. Via calibration, the displacement of the IMU sensors that occur as temperature changes may be determined and used to correct output from the IMU when the IMU is placed in the electronic device.

However, as mentioned above, the displacement caused by material warpage may differ when the IMU is mounted outside of the device relative to when the
IMU is mounted in the device. FIGS. 2A-B and 3 illustrate this effect. Referring first to FIG. 2A, an example IMU system 200 without a mounting pedestal is illustrated. The IMU system 200 includes a first package 202 housing one or more inertial motion sensors and a second package 204 housing one or more inertial motion sensors. The first package 202 and second package 204 are mounted to an IMU circuit board 206.

[0018] During calibration, the FMU system 200 may be exposed to a range of temperatures. As the temperature increases, the IMU circuit board 206 may begin to warp from a relatively straighter configuration (FIG. 2A) to a more curved configuration (Fig. 2B) due to CTE mismatch between the IMU circuit board 206 and the first package 202 and second package 204 mounted to it. As illustrated, the first package 202 and the second package 204 may each change position (via rotation and/or displacement) as the IMU circuit board warps, which can affect the output of the IMU. It will be understood that warpage may be shown in exaggerated form in the Figures herein for clarity.

[0019] FIG. 3 schematically illustrates the IMU system 200 mounted in an electronic device 300. The IMU system 200 is directly mounted to a surface 302 of the electronic device 300 via an adhesive (e.g. an epoxy adhesive, solder, etc.). As the bonding of the IMU circuit board to the surface 302 restricts warping of the FMU circuit board 206 in the depicted example, a lesser degree of warpage (dashed lines) of the FMU circuit board 206 occurs at a comparable temperature as that of FIG. 2. It will be noted that, depending upon the material of surface 302, thermal expansion behavior of surface 302 may affect the warpage of the IMU circuit board 206 in other ways.

[0020] In contrast, FIGS. 4A-B and 5 illustrate how an example mounting pedestal may help to maintain the accuracy of thermal calibration of the IMU system after installation into a device. First, FIG. 4A illustrates an IMU system including a first package 402 housing one or more first inertial motion sensors and a second package 404 housing one or more second inertial motion sensors. The first package 402 and second package 404 may each be formed from ceramic or other suitable material(s), which may include polymers, metals, composites, silicon wafer level chip scale packages, etc.

[0021] The first package 402 and second package 404 are mounted to a first side of an FMU circuit board 406. The FMU circuit board 406 may be formed from any suitable material or materials, and may be mounted to the FMU circuit board 406 via any suitable adhesive material, such as an epoxy adhesive, soldering, etc.

[0022] A mounting pedestal 408 is mounted to a second, opposite side of the IMU circuit board 406. The mounting pedestal 408 is mounted at a location directly opposite
the first package 402, and may be similar in composition and configuration to the first package 402 in order to balance the effects of the first package on the expansion of the circuit board 406. As explained above, the presence of the first package 402 constrains the expansion of that surface of the circuit board 406. Thus, by placing a mounting pedestal similar in size, shape, and CTE to the first package on the bottom surface of the circuit board, a similar constraint may be imposed on the opposite circuit board surface, reducing warpage of the circuit board, as illustrated in FIG. 4B. It will be understood that some warpage may still occur due to the second package 404, but this warpage may be the same as when mounted outside of the electronic device (e.g. during device calibration) as when mounted within the electronic device.

[0023] The mounting pedestal 408 may be formed from a material having similar CTE to the first package 402. As one example, the mounting pedestal 408 is formed from the same material (e.g. a ceramic material) as the first package 402. In another example, the mounting pedestal 408 may be formed from a material having a CTE value that is the same or within a threshold similarity of a CTE value of the material of the first package 402. For example, the first package 402 may be formed from alumina, which has a CTE of 7.2 ppm/°C, and the mounting pedestal may be formed from a material with a similar CTE, such as cermet, which has a CTE of 7.4 ppm/°C. The threshold similarity may be have any suitable value, such as the two CTE values being within 5 or 10% of each other, and may be based upon any suitable factors, such a sensor error tolerance of an application using the sensor data. In still further examples, the mounting pedestal may be comprised of a material having a different CTE than the first package, provided the mounting pedestal allows for warpage that is sufficiently similar as when mounted outside of the electronic device (e.g. during device calibration) as when mounted within the electronic device.

[0024] As mentioned above, the mounting pedestal 408 may be similar in size and/or shape as the first package 402. In one example, the mounting pedestal 408 and first package 402 may have the same footprint (e.g. have mirror symmetry) and be disposed directly opposite one another on the IMU circuit board. In another example, the mounting pedestal 408 and first package 402 may be symmetric in three dimensions. In a further example, the mounting pedestal 408 and first package 402 may not be symmetric, but may have sufficiently similar thermal expansion characteristics to mitigate the calibration issues discussed above. Further, in some examples, the mounting pedestal may be sufficiently stiff to isolate thermal expansion mismatch between the IMU system and an
electronic device in which it is mounted. Such thermal expansion mismatch may occur due to a CTE mismatch between the IMU circuit board and mounting surface of the electronic device.

[0025] In some examples, the mounting pedestal 408 may be coupled to the circuit board 406 using the same adhesive material 410 as the first package 402, such as solder, epoxy adhesive, or other suitable material. In other examples, the mounting pedestal 408 may be mounted to the circuit board with a different adhesive material than the first package 402. Further, while not shown in FIGS. 4A-B, in some examples a second mounting pedestal may be coupled to the circuit board directly opposite the second package 404 to mitigate warpage caused by the second package 404.

[0026] FIG. 5 schematically illustrates the FMU system 400 of FIG. 4 mounted in an electronic device 500. As illustrated, the FMU system 400 is mounted to a surface 502 of the electronic device 500 via the mounting pedestal 408. The surface 502 may be a circuit board of the electronic device 500, or may be any other suitable surface within the electronic device 500. The mounting pedestal 408 may be mounted to the surface 502 via any suitable adhesive material 504, such as a polymeric adhesive (e.g. an epoxy adhesive) or solder. The adhesive material 504 may be a same material or different material than adhesive material 410. The impact of the attachment method 504 on the curvature is reduced given the arrangement of the pedestal 408. FIG. 5 also shows that the warpage of the IMU circuit board 406 as installed in the device is substantially similar to that experienced during calibration (FIGS. 4A-B).

[0027] The isolation of the IMU circuit board warpage from the CTE mismatch between the IMU board and the attachment surface of the electronic device also could be achieved by using soft adhesives for the attachment, instead of or in addition to using a mounting pedestal. However, such an approach may create low-frequency resonance modes. As an example, the resonance frequency of the IMU circuit board after attachment to the electronic device can be as low as 200Hz when a very soft adhesive is used. Such low frequency modes may affect the output of the IMU sensors. Therefore, a relatively stiff adhesive may be used for FMU system attachment to help avoid such low frequency modes.

[0028] Further, if the surface 502 in the electronic device is not sufficiently stiff, the surface 502 can induce low frequency resonance as well. As such, the surface 502 may be configured to be relatively stiff so that its first order natural frequency is above the resonance frequency of accelerometer and gyroscope MEMS (microelectromechanical
system) sensors. As an example, the surface 502 is stiffened by adding ribs 506 over the surface 502 that effectively shift the first order frequency of the surface structure to a much higher frequency than the sensor resonance frequency, with little weight addition to the device. It will be understood that such ribs may be omitted, and/or other stiffening structures may be used.

[0029] FIG. 6 illustrates an example of a method 600 for assembling an electronic device including an IMU system. It will be understood that method 600 also may be used to assemble a device comprising any other position-sensitive pre-calibrated sensor than IMU sensors. At 602, method 600 includes mounting a package housing an inertial motion sensor to a first side of an IMU circuit board. As described above, the inertial motion sensor may comprise an accelerometer, a gyroscope, and/or any other suitable motion sensor(s).

[0030] At 604, method 600 includes fixing a mounting pedestal to a second side of the IMU circuit board. The mounting pedestal may be formed from a material having the same or similar CTE as the package housing, and may have a shape (e.g. footprint on the circuit board, or full three-dimensional shape) that is similar or symmetric to the package housing. The pedestal may be mounted to the circuit board directly opposite to the MEMS package, or at any other suitable location. Once the ceramic pedestal is mounted to the IMU circuit board, a temperature dependence of the IMU unit is calibrated at 606, to capture the effects of temperature-induced warpage.

[0031] At 608, the mounting pedestal is mounted to a surface of the electronic device. The electronic device may be any suitable electronic device, including but not limited to a head-mounted see-through display device, a mobile computing device such as a smartphone, or other portable electronic device. The pedestal may be mounted to the surface of the electronic device with any suitable adhesive. As mentioned above, the use of stiff adhesives may help to avoid the introduction of low frequency vibrational modes.

[0032] Another example provides a system including a circuit board comprising a first side and a second side opposite the first side; a sensor housed in a package bonded to the first side of the circuit board; and a mounting pedestal coupled to the circuit board on the second side at a location opposite the package, the mounting pedestal configured to be mounted to a surface in an electronic device. In such an example, the package alternatively or additionally may be formed from a first material and the mounting pedestal may be formed from a second material, the first and second materials each having a coefficient of thermal expansion value that is within a threshold similarity based upon a
sensor error tolerance. In such an example the package alternatively or additionally may have a first footprint and the mounting pedestal may have a second footprint symmetric to the first footprint. In such an example, the mounting pedestal additionally or alternatively may be coupled to the circuit board on the second side at a location directly opposite the package. The package alternatively or additionally may be soldered to the circuit board, and the mounting pedestal alternatively or additionally may be soldered to the circuit board. In such an example, the sensor alternatively or additionally may be a first inertial motion sensor, and a second inertial motion sensor may be coupled to the circuit board. In such an example, the first inertial motion sensor may additionally or alternatively includes a gyroscope, and the second inertial motion sensor may alternatively or additionally include an accelerometer. Any or all of the above-described examples may be combined in any suitable manner in various implementations.

[0033] Another example provides an electronic device comprises a surface; and an inertial measurement unit (IMU) system coupled to the surface, the IMU system comprising an IMU circuit board comprising a first side and a second side opposite the first side; an inertial motion sensor housed in a package bonded to the first side of the IMU circuit board; and a mounting pedestal coupled to the IMU circuit board on the second side at a location directly opposite the package, the mounting pedestal mounted to the surface, in such an example, the surface may additionally or alternatively includes a surface of a circuit board within the device. In such an example, the package and the mounting pedestal may additionally or alternatively include a same coefficient of thermal expansion, in such an example. The package and the pedestrian may additionally or alternatively comprise a same material, in such an example, the package may additionally or alternatively have a first footprint and the mounting pedestal may have a second footprint symmetric to the first footprint, in such an example, the inertial motion sensor may additionally or alternatively be a first inertial motion sensor, and a second inertial motion sensor may be coupled to the IMU circuit board, in such an example, the first inertial motion sensor may additionally or alternatively be a gyroscope, and the second inertial motion sensor may be an accelerometer. In such an example, the mounting pedestal may be mounted to the surface via an epoxy adhesive. Any or all of the above-described examples may be combined in any suitable manner in various implementations.

[0034] An example provides a method for assembling an electronic device comprising an inertial measurement unit (EVIU) system. The example method comprises mounting the IMU system to a surface of the electronic device, the IMU system
comprising a package housing an inertial motion sensor, an IMU circuit board having a
first side and a second side opposite the first side, and a mounting pedestal, the package
mounted to the first side of the IMU circuit board and the mounting pedestal mounted to
the second side of the IMU circuit board directly opposite the package. In such an
element, mounting the IMU system to the surface of the electronic device may
additionally or alternatively comprise mounting the mounting pedestal to the surface of the
electronic device. In such an example, mounting the mounting pedestal to the surface of
the electronic device may additionally or alternatively include mounting the mounting
pedestal to the surface of the electronic device via an epoxy adhesive. Such an example
additionally or alternatively may comprise calibrating output from the inertial motion
sensor as a function of IMU system temperature, in such an example, the package may
have a first footprint, and wherein the mounting pedestal may have a second footprint that
is symmetric to the first footprint. Any or all of the above-described examples may be
combined in any suitable manner in various implementations.

[0035] It will be understood that the configurations and/or approaches described
herein are exemplary in nature, and that these specific embodiments or examples are not to
be considered in a limiting sense, because numerous variations are possible. The specific
routines or methods described herein may represent one or more of any number of
processing strategies. As such, various acts illustrated and/or described may be performed
in the sequence illustrated and/or described, in other sequences, in parallel, or omitted.
Likewise, the order of the above-described processes may be changed.

[0036] The subject matter of the present disclosure includes all novel and
nonobvious combinations and subcombinations of the various processes, systems and
configurations, and other features, functions, acts, and/or properties disclosed herein, as
well as any and all equivalents thereof.
CLAIMS

1. A system comprising:
 a circuit board comprising a first side and a second side opposite the first side;
 a sensor housed in a package bonded to the first side of the circuit board; and
 a mounting pedestal coupled to the circuit board on the second side at a location opposite the package, the mounting pedestal configured to be mounted to a surface in an electronic device.

2. The system of claim 1, wherein the package is formed from a first material and the mounting pedestal is formed from a second material, the first and second materials each having a coefficient of thermal expansion value that is within a threshold similarity based upon a sensor error tolerance.

3. The system of claim 1, wherein the package has a first footprint and the mounting pedestal has a second footprint symmetric to the first footprint.

4. The system of claim 1, wherein the mounting pedestal is coupled to the circuit board on the second side at a location directly opposite the package.

5. The system of claim 1, wherein the package is soldered to the circuit board, and wherein the mounting pedestal is soldered to the circuit board.

6. The system of claim 1, wherein the sensor is a first inertial motion sensor, and further comprising a second inertial motion sensor coupled to the circuit board.

7. The system of claim 6, wherein first inertial motion sensor is a gyroscope, and wherein the second inertial motion sensor is an accelerometer.

8. A method for assembling an electronic device comprising an inertial measurement unit (IMU) system, the method comprising:
 mounting the IMU system to a surface of the electronic device, the IMU system comprising a package housing an inertial motion sensor, an IMU circuit board having a first side and a second side opposite the first side, and a mounting pedestal, the package mounted to the first side of the IMU circuit board and the mounting pedestal mounted to the second side of the IMU circuit board directly opposite the package.

9. The method of claim 8, wherein mounting the IMU system to the surface of the electronic device comprises mounting the mounting pedestal to the surface of the electronic device.

10. The method of claim 9, wherein mounting the mounting pedestal to the surface of the electronic device comprises mounting the mounting pedestal to the surface of the electronic device via an epoxy adhesive.
11. The method of claim 8, further comprising calibrating output from the inertial motion sensor as a function of IMU system temperature.

12. The method of claim 8, wherein the package has a first footprint, and wherein the mounting pedestal has a second footprint that is symmetric to the first footprint.
FIG. 1
MOUNT PACKAGE HOUSING SENSOR TO FIRST SIDE OF IMU CIRCUIT BOARD

MOUNT MOUNTING PEDESTAL TO SECOND SIDE OF IMU CIRCUIT BOARD

CALIBRATE SENSOR BASED ON TEMPERATURE

MOUNT PEDESTAL TO SURFACE OF DEVICE

FIG. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01P1/02 G01C19/5783 G01D11/24

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014/063753 AI (CHINO TAKETO [JP]) 6 March 2014 (2014-03-06) page 2, paragraph 40 - page 6, paragraph 106; figures 1-6</td>
<td>1-12</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 908 363 A2 (TOYODA AUTOMATIC LOOM WORKS [JP]) 14 April 1999 (1999-04-14) page 3, paragraph 17 - page 7, paragraph 41; figures 1, 2</td>
<td>1-12</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 523 862 AI (TEXAS INSTRUMENTS INC [US]) 20 January 1993 (1993-01-20) page 3, paragraph 54 - page 7, paragraph 58; figures 1-6</td>
<td>1-12</td>
</tr>
<tr>
<td>X</td>
<td>US 2011/139987 AI (KROEMER ROBERT [DE]) 16 June 2011 (2011-06-16) page 3, paragraph 42 - page 4, paragraph 53; figures 2a, 3a</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"S" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search 29 August 2016

Date of mailing of the international search report 13/09/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer

Sprienger, Oliver
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014063753 Al</td>
<td>06-03-2014</td>
<td>JP 2014048090 A</td>
<td>17-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014063753 Al</td>
<td>06-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8706298 A</td>
<td>22-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2249619 Al</td>
<td>06-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1215025 A</td>
<td>28-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0908363 A2</td>
<td>14-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H11108948 A</td>
<td>23-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 505612 B</td>
<td>11-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6398252 Bl</td>
<td>04-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69202113 T2</td>
<td>17-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0523862 Al</td>
<td>20-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H05164777 A</td>
<td>29-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5233873 A</td>
<td>10-08-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5343748 A</td>
<td>06-09-1994</td>
</tr>
<tr>
<td>US 2011139987 Al</td>
<td>16-06-2011</td>
<td>DE 102008028487 B3</td>
<td>07-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2286275 Al</td>
<td>23-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5303641 B2</td>
<td>02-10-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011524012 A</td>
<td>25-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011139987 Al</td>
<td>16-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2009150080 Al</td>
<td>17-12-2009</td>
</tr>
</tbody>
</table>