International Application Published Under the Patent Cooperation Treaty (PCT)

(10) International Publication Number
WO 2013/149754 A1

(6) Prior Art Disclosures

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17 (h))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17 (i))

Published:
— with international search report (Art. 21.3)

(21) International Application Number:
PCT/EP2013/053 125

(22) International Filing Date:
15 February 2013 (15.02.2013)

(26) Publication Language:
English

(21) International Patent Classification:
CUD 3/04 (2006.01) CUD 17/00 (2006.01) CUD 3/40 (2006.01)

(71) Applicant (for US only): CONOCPO, INC., d/b/a UNILEVER [US/US]; 800 Sylvania Avenue, AG West, S. Wing, Englewood Cliffs, New Jersey 07632 (US).

(72) In Inventors: BACHELOR, Stephen, Norman; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral Merseyside CH63 3JW (GB). CHAPPLE, Andrew, Paul; Glasfryn Cottage, Ffordd Uchaf, Gwynfryn Wrexham LL1 1 5UN (GB). KENINGLEY, Stephen, Thomas; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral Merseyside CH63 3JW (GB).

(54) Title: LAUNDRY DETERGENT PARTICLE

(57) Abstract: The present invention provides lenticular or disc detergent particles comprising surfactant, inorganic salts and pigment, wherein the inorganic salts are present on the detergent particles as a coating and the surfactant and the pigment are present as a core. The particles show reduced staining.

(74) Agent: AVILA, David, Victor; Unilever PLC, Unilever Patent Group, Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (GB).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17 (h))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17 (i))

Published:
— with international search report (Art. 21.3)
Laundry Detergent Particle

Field of Invention

The present invention relates to large laundry detergent particles.

Background of Invention

There is a desired for coloured solid detergent products, unfortunately it is found that such products can give rise to unacceptable coloured staining.

W09932599 describes a method of manufacturing laundry detergent particles, being an extrusion method in which a builder and surfactant, the latter comprising as a major component a sulphated or sulphonated anionic surfactant, are fed into an extruder, mechanically worked at a temperature of at least 40 °C, preferably at least 60 °C, and extruded through an extrusion head having a multiplicity of extrusion apertures. In most examples, the surfactant is fed to the extruder along with builder in a weight ratio of more than 1 part builder to 2 parts surfactant. The extrudate apparently required further drying. In Example 6, PAS paste was dried and extruded. Such PAS noodles are well known in the prior art. The noodles are typically cylindrical in shape and their length exceeds their diameter, as described in example 2.

US 7,022,660 discloses a process for the preparation of a detergent particle having a coating.

WO 201 0/1 22051 discloses coated detergent particles and a dye.

EP 2166 077 discloses particles comprising a core and a dye.
Pigments are coloured particles, which are practically insoluble in aqueous medium that contain surfactants. Pigments have zeta potential because they are suspended in the liquid medium containing surfactant unlike dyes which are soluble therein.

Summary of the Invention

Surprisingly we have found that large coated laundry detergent particles coloured with pigments in the core give low levels of staining.

In one aspect the present invention provides a coated detergent particle having perpendicular dimensions \(x\), \(y\) and \(z\), wherein \(x\) is from 0.5 to 2 mm, \(y\) is from 2 to 8 mm, and \(z\) is from 2 to 8 mm, wherein the particle comprises:

(i) from 20 to 39 wt % of a surfactant selected from: anionic and non-ionic surfactants;
(ii) from 10 to 40 wt % of inorganic salts selected from: sodium carbonate and/or sodium sulphate of which at least 5 wt % of the inorganic salt is sodium carbonate; and,
(iii) from 0.0001 to 0.1 wt % pigment, wherein the pigment is selected: from organic and inorganic pigments, and

wherein the inorganic salts are present on the detergent particle as a coating and the surfactant and the pigment are present as a core.

The coated detergent particle preferably comprises from 15 to 40 wt %, preferably 20 to 35 wt%, more preferably 25 to 30 wt%, of an active selected from: citric acid and sodium salts thereof and from 2 to 8 wt %, preferably 3 to 6 wt%, of a phosphonate sequestrant.

Unless otherwise stated all wt % refer to the total percentage in the particle as dry weights.
Detailed Description of the Invention

SHAPE
Preferably the coated laundry detergent particle is curved.

The coated laundry detergent particle may be lenticular (shaped like a whole dried lentil), an oblate ellipsoid, where \(z \) and \(y \) are the equatorial diameters and \(x \) is the polar diameter; preferably \(y = z \).

The coated laundry detergent particle may be shaped as a disc.

Preferably the coated laundry detergent particle does not have hole; that is to say, the coated laundry detergent particle does not have a conduit passing there though that passes through the core, i.e., the coated detergent particle has a topologic genus of zero.

CORE

SURFACTANT

Preferably the surfactants used are saturated.

Anionic Surfactants
Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable
synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C₈ to C₉₈ alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C₈ to C₂₀ benzene sulphonates, particularly sodium linear secondary alkyl C₉ to C₂₀ benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. Most preferred anionic surfactants are sodium lauryl ether sulfate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C₁₀ to C₁₅ alkyl benzene sulphonates and sodium C₁₂ to C₁₅ alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides. The chains of the surfactants may be branched or linear.

Soaps may also be present. The fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration. The anionic contribution from soap is preferably from 0 to 30 wt% of the total anionic.

Preferably, at least 50 wt % of the anionic surfactant is selected from: sodium C₉ to C₁₅ alkyl benzene sulphonates; and, sodium C₁₂ to C₁₅ alkyl sulphates. Even more preferably, the anionic surfactant is sodium C₁₁ to C₁₅ alkyl benzene sulphonates.

Preferably the anionic surfactant is present in the coated laundry detergent particle at levels between 15 to 85 wt%, more preferably 40 to 60 wt% on total surfactant.

Nonionic Surfactants

Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive
hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are C₆ to C₂₂ alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C₈ to C₁₈ primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO. Preferably, the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.

Preferably all the surfactants are mixed together before being dried. Conventional mixing equipment may be used. The surfactant core of the laundry detergent particle may be formed by extrusion or roller compaction and subsequently coated with an inorganic salt.

Calcium Tolerant Surfactant System

In another aspect the surfactant system used is calcium tolerant and this is a preferred aspect because this reduces the need for builder.

Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.

Calcium-tolerance of the surfactant blend is tested as follows:

The surfactant blend in question is prepared at a concentration of 0.7 g surfactant solids per litre of water containing sufficient calcium ions to give a French hardness of 40 (4 x 10⁻³ Molar Ca²⁺). Other hardness ion free electrolytes such as sodium chloride, sodium sulphate, and sodium hydroxide are added to the
solution to adjust the ionic strength to 0.05M and the pH to 10. The adsorption of light of wavelength 540 nm through 4 mm of sample is measured 15 minutes after sample preparation. Ten measurements are made and an average value is calculated. Samples that give an absorption value of less than 0.08 are deemed to be calcium tolerant.

Examples of surfactant blends that satisfy the above test for calcium tolerance include those having a major part of LAS surfactant (which is not of itself calcium tolerant) blended with one or more other surfactants (co-surfactants) that are calcium tolerant to give a blend that is sufficiently calcium tolerant to be usable with little or no builder and to pass the given test. Suitable calcium tolerant co-surfactants include SLES 1-7EO, and alkyl-ethoxylate nonionic surfactants, particularly those with melting points less than 40°C.

Water Soluble Inorganic Salts

The water-soluble inorganic salt is present as a coating on the particle. The water-soluble inorganic salt is preferably present at a level that reduces the stickiness of the laundry detergent particle to a point where the particles are free flowing.

It will be appreciated by those skilled in the art that while multiple layered coatings, of the same or different coating materials, could be applied, a single coating layer is preferred, for simplicity of operation, and to maximise the thickness of the coating.

The coating is preferably applied to the surface of the surfactant core, by deposition from an aqueous solution of the water soluble inorganic salt. In the alternative coating can be performed using a slurry. The aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt. An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles
during the fluidisation process. Drying and/or cooling may be needed to finish the process.

PIGMENT

The pigment is added to the surfactant and agitated before forming the core of the particle.

Pigments may be selected from inorganic and organic pigments, most preferably the pigments are organic pigments.

Pigments are practically insoluble coloured particles, preferably they have a primary particle size of 0.02 to 10⁻¹⁰ m, where the distance represent the longest dimension of the primary particle. The primary particle size is measured by scanning electron microscopy. Most preferably the organic pigments have a primary particle size between 0.02 and 0.2⁻¹⁰ m.

By practically insoluble we mean having a water solubility of less than 500 part per trillion (ppt), preferably 10 ppt at 20°C with a 10 wt% surfactant solution.

Organic pigments are preferably selected from monoazo pigments, beta-naphthol pigments, naphthol AS pigments, benzimidazolone pigments, metal complex pigments, isoindolinone and isoindoline pigments, phthalocyanine pigments, quinacridone pigments, perylene and perinone pigments, diketopyrrolo-pyrrole pigments, thioindigo pigments, anthraquinone pigments, anthrapyrmidine...
pigments, flavanthrone pigments, anthanthrone pigments, dioxazine pigments and quinophthalone pigments.

Azo and phthalocyanine pigments are the most preferred classes of pigments.

Preferred pigments are pigment green 8, pigment blue 28, pigment yellow 1, pigment yellow 3, pigment orange 1, pigment red 4, pigment red 3, pigment red 22, pigment red 112, pigment red 7, pigment brown 1, pigment red 5, pigment red 68, pigment red 51, pigment 53, pigment red 53:1, pigment red 49, pigment red 49:1, pigment red 49:2, pigment red 49:3, pigment red 64:1, pigment red 57, pigment red 57:1, pigment red 48, pigment red 63:1, pigment yellow 16, pigment yellow 12, pigment yellow 13, pigment yellow 83, pigment orange 13, pigment violet 23, pigment red 83, pigment blue 60, pigment blue 64, pigment orange 43, pigment blue 66, pigment blue 63, pigment violet 36, pigment violet 19, pigment red 122, pigment blue 16, pigment blue 15, pigment blue 15:1, pigment blue 15:2, pigment blue 15:3, pigment blue 15:4, pigment blue 15:6, pigment green 7, pigment green 36, pigment blue 29, pigment green 24, pigment red 101:1, pigment green 17, pigment green 18, pigment green 14, pigment brown 6, pigment blue 27 and pigment violet 16.

The pigment may be any colour, preferably the pigment is blue, violet, green or red. Most preferably the pigment is blue or violet.

If the pigment is added to the core precursor in a solution/slurry that reduces the viscosity of the core precursor such that forming of the core is not optimal then excess solution, e.g., water, is removed, for example, by a white film evaporator.
The coated laundry detergent particle
Preferably, the coated laundry detergent particle comprises from 10 to 100 wt %, more preferably 50 to 100 wt %, of a laundry detergent formulation in a package.

The package is that of a commercial formulation for sale to the general public and is preferably in the range of 0.01 kg to 5 kg, preferably 0.02 kg to 2 kg, most preferably 0.5 kg to 2 kg.

Preferably, the coated laundry detergent particle is such that at least 90 to 100 % of the coated laundry detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated laundry detergent particle.

Water content
The particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.

Other Adjuncts
The adjuncts as described below may be present in the coating or the core. These may be in the core or the coating.

Fluorescent Agent
The coated laundry detergent particle preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %.

Preferred fluorescers are selected from the classes distyrylbiphenyls, triazinylaminostilbenes, bis(1,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2-yl)biphenyls, 1,3-diphenyl-2-pyrazolines and courmarins. The fluorescer is preferably sulfonated.

Preferred classes of fluorescer are: Distyryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2(4-styryl-3-sulfophenyl)-2H-naphth[1,2-d]triazole, disodium 4,4'-bis{[4-anilino-6-(N-methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl]amino}stilbene-2-2’ disulfonate, disodium 4,4'-bis{[4-anilino-6-morpholino-1,3,5-triazin-2-yl]amino} stilbene-2-2’ disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.

Tinopal® DMS is the disodium salt of disodium 4,4'-bis{[4-anilino-6-morpholino-1,3,5-triazin-2-yl]amino} stilbene-2-2’ disulfonate. Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.

Perfume

Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.

It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there...
will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.

In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.

It is preferred that the coated laundry detergent particle does not contain a peroxxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.

Polymers
The composition may comprise one or more further polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol, polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

Enzymes
One or more enzymes are preferred present in a composition of the invention. Preferably the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein on product.

Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.

Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from *Humicola* (synonym *Thermomyces*), e.g. from *H. lanuginosa* (*T. lanuginosus*) as described in EP 258 068 and EP 305 216 or from *H. insolens* as
described in WO 96/1 3580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 2 18 272), P. cepacia (EP 3 31 376), P. stutzeri (GB 1,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/1 201 2), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/1 6422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01 541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/1 4783, WO 95/2261 5, WO 97/04079 and WO 97/07202, WO 00/60063, WO 09/1 07091 and WO09/1 11258.

Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ (Novozymes A/S) and Lipoclean™.

The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1 .32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.

Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A_1 and A_2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™ (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).

The method of the invention may be carried out in the presence of cutinase. Classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.

Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).

Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307. Commercially available cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™ (Novozymes A/S),
Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).

Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).

Enzyme Stabilizers

Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.

Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.

The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise. The singular encompasses the plural unless otherwise specified.

Sequesterants may be present in the coated laundry detergent particles.
It is preferred that the coated detergent particle has a core to shell ratio of from 3 to 1:1, most preferably 2.5 to 1.5:1; the optimal ratio of core to shell is 2:1.

5 EXPERIMENTAL

Example 1: particle manufacture

Laundry detergent particles coloured with Pigment blue 15:1 (Pigmosol blue 6900 ex BASF) were manufactured as follows. Particle 1 had the pigment in the core and Particle 2 was a reference particle with the pigment in a coating with SOKOLAN CP5 (a copolymer of about equal moles of methacrylic acid and maleic anhydride, completely neutralized to form the sodium salt). The particles were oblate ellipsoids which had the following approximate dimensions x = 1.0 mm y = 4.0 mm z = 5.0 mm.

Core Manufacture

Surfactant raw materials were mixed together to give a 69 wt% active paste comprising 85 parts of anionic surfactant linear alkyl benzene sulphonate (Ufasan 65 ex Unger) LAS, and 15 parts Nonionic Surfactant (Slovasol 2430 ex Sasol). The paste was pre-heated to the feed temperature and fed to the top of a wiped film evaporator to reduce the moisture content and produce a solid intimate surfactant blend, which passed the calcium tolerance test.

After leaving the chill roll, the cooled dried surfactant blend particles were milled. The resulting milled material is hygroscopic and so it was stored in sealed containers. The cooled dried milled composition was fed to a twin-screw co-rotating extruder fitted with a shaped orifice plate and cutter blade. A number of other components were also dosed into the extruder as shown in the table below:
The resultant core particles were then coated as outlined below:

Coating

The core particles were coated with Sodium carbonate (particle 1) or CP5 (particle 2 reference) by spray. The extrudates above were charged to the fluidising chamber of a Strea 1 laboratory fluid bed drier (Aeromatic-Fielder AG) and spray coated using the coating solution using a top-spray configuration. The coating solution was fed to the spray nozzle of the Strea 1 via a peristaltic pump (Watson-Marlow model 101 U/R). The conditions used for the coating are given in the table below:

<table>
<thead>
<tr>
<th></th>
<th>Particle 1</th>
<th>Particle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS'30 B3 Base</td>
<td>40.3%</td>
<td>40.3%</td>
</tr>
<tr>
<td>Dequest 2016</td>
<td>7.7%</td>
<td>7.7%</td>
</tr>
<tr>
<td>atricacid</td>
<td>10.6%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Na Citrate</td>
<td>32.3%</td>
<td>32.3%</td>
</tr>
<tr>
<td>enzyme</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Soil Release Polymer</td>
<td>2.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Perfume</td>
<td>1.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Moisture</td>
<td>1.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Rgment Blue</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Example 2: Spotting Properties

25 of each particle were scattered on to a 20 by 20 cm piece of wet white woven cotton laid flat on a table. The wet white woven cotton had been submerged in 500ml of demineralised water for 2 minutes, removed wrung and used for the experiment. The particles were left for 40 minutes at room temperature then the cloth rinsed and dried. Clearly visible blue stains were given a score of 3. Faint stains were given a score of 1. The total stain score was then calculated as

\[
\text{Total Stain Score} = \cdot (\text{score})
\]

<table>
<thead>
<tr>
<th></th>
<th>Particle 1 Pigment in core</th>
<th>Particle 2 (reference) Pigment in coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass extrudate [g]</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Coating Solution [g]</td>
<td>225 Na\textsubscript{2}CO\textsubscript{3} 525 H\textsubscript{2}O 2.9 Fluorescer</td>
<td>56.3 CP5 225 H\textsubscript{2}O 2.9 Fluorescer 0.9 Pigment Blue</td>
</tr>
<tr>
<td>Air Inlet Temperature [°C]</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Air Outlet Temperature [°C]</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Coating Feed Rate [g/min]</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>Coating Feed temperature [°C]</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Total Stain Score</td>
<td>10</td>
<td>42</td>
</tr>
</tbody>
</table>
We claim:

1. A coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 0.5 to 2 mm, y is from 2 to 8 mm, and z is from 2 to 8 mm, wherein the particle comprises:
 (i) from 20 to 39 wt % of a surfactant selected from: anionic and non-ionic surfactants;
 (ii) from 10 to 40 wt % of inorganic salts selected from: sodium carbonate and/or sodium sulphate of which at least 5 wt % of the inorganic salt is sodium carbonate; and,
 (iii) from 0.0001 to 0.1 wt % pigment, wherein the pigment is selected: from organic and inorganic pigments, and wherein the inorganic salts are present on the detergent particle as a coating and the surfactant and the pigment are present as a core.

2. A coated detergent particle according to claim 1, wherein the pigment is selected from organic pigments.

3. A coated detergent particle according to claim 1 or 2, wherein the pigment is selected from: monoazo pigments; beta-naphthol pigments; naphthol AS pigments; azo pigment lakes; benzimidazolone pigments; metal complex pigments; isoindolinone and isoindoline pigments; phthalocyanine pigments; quinacridone pigments; perylene pigments; perinone pigments; diketopyrrolopyrrole pigments; thioindigo pigments; anthraquinone pigments; anthrapyrmidine pigments; flavanthrone pigments; anthanthrone pigments; dioxazine pigments; and, quinophthalone pigments .

4. A coated detergent particle according to claim 3, wherein the pigment is selected from: pigment green 8; pigment blue 28; pigment yellow 1; pigment yellow 3; pigment orange 1; pigment red 4; pigment red 3; pigment red 22; pigment red 112; pigment red 7; pigment brown 1; pigment red 5; pigment red 68;
pigment red 51; pigment 53; pigment red 53:1; pigment red 49; pigment red 49:1; pigment red 49:2; pigment red 49:3; pigment red 64:1; pigment red 57; pigment red 57:1; pigment red 48; pigment red 63:1; pigment yellow 16; pigment yellow 12; pigment yellow 13; pigment yellow 83; pigment orange 13; pigment violet 23; pigment red 83; pigment blue 60; pigment blue 64; pigment orange 43; pigment blue 66; pigment blue 63; pigment violet 36; pigment violet 19; pigment red 122; pigment blue 16; pigment blue 15; pigment blue 15:1; pigment blue 15:2; pigment blue 15:3; pigment blue 15:4; pigment blue 15:6; pigment green 7; pigment green 36; pigment blue 29; pigment green 24; pigment red 101:1; pigment green 17; pigment green 18; pigment green 14; pigment brown 6; pigment blue 27; and, pigment violet 16.

5. A coated detergent particle according to any one of the preceding claims, wherein the pigment has a primary particle size of 0.02 to 10-6 m.

6. A coated detergent particle according to any one of the preceding claims, wherein the particle comprises from 0 to 15 wt % water.

7. A coated detergent particle according to claim 6, wherein the particle comprises from 1 to 5 wt % water.

8. A plurality of coated detergent particles according to any one of the preceding claims, wherein at least 90 to 100 % of the coated detergent particles in the in the x, y and z dimensions are within a 20 % variable from the largest to the smallest coated detergent particle.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C11D3/04 C11D3/40 C11D17/00

ADD.

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2010/122051 Al (UNI LEVER PLC [GB]; UNI LEVER NV [NL]; UNI LEVER HINDUSTAN [IN]) 28 October 2010 (2010-10-28) cited in the application on page 3, line 20 - page 4, line 12 page 9, lines 1-7 examples claims 1-6</td>
<td>1-8</td>
</tr>
<tr>
<td>X</td>
<td>EP 2 166 077 Al (PROCTER & GAMBLE [US]) 24 March 2010 (2010-03-24) cited in the application on paragraphs [0001] - [0005], [0011], [0025], [0032], [0060], [0087], [0088] examples ----- ----</td>
<td>1-8</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance.
 * "E" earlier application or patent but published on or after the international filing date.
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another application or other special reason (as specified).
 * "O" document referring to an oral disclosure, use, exhibition or other means.
 * "P" document published prior to the international filing date but later than the priority date claimed.
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
 * "X" document of particular relevance: the claimed invention cannot be considered as novel or cannot be considered to involve an inventive step when the document is taken alone.
 * "Y" document of particular relevance: the claimed invention cannot be considered as involving an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 * "A" document member of the same patent family.

Date of the actual completion of the international search: 13 March 2013

Date of mailing of the international search report: 28/03/2013

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer:
Bertran Nadal, Josep
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 1 546 139 A (PROCTER & GAMBLE) 16 May 1979 (1979-05-16) page 1, lines 11-18, 74-89 page 2, lines 11-34, 53-62</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US 4 671 886 A (MUELLER FRANK J [US]) 9 June 1987 (1987-06-09) column 1, lines 24-38 column 2, lines 34-41 claims</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>Wo 99/32599 AI (MANRO PERFORMANCE CHEMICALS LTD [GB]) 1 July 1999 (1999-07-01) cited in the application page 3, line 13 - page 4, line 6 page 10, lines 5-20 example 5</td>
<td>1-8</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2010122051</td>
<td>28-10-2010</td>
<td>AR 076394 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010122051 Al</td>
</tr>
<tr>
<td>EP 2166077</td>
<td>24-03-2010</td>
<td>AR 073577 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2735599 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102149805 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2166077 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012502168 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010069282 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010030540 Al</td>
</tr>
<tr>
<td>GB 1546139</td>
<td>16-05-1979</td>
<td>DE 2632367 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2318924 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1546139 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1075019 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 52049208 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7608122 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2183666 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4671886 A</td>
</tr>
<tr>
<td>WO 9932599</td>
<td>01-07-1999</td>
<td>NONE</td>
</tr>
</tbody>
</table>