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INTEGRATED AND OPTIMIZED
DISTRIBUTED GENERATION AND
INTERCONNECT SYSTEM CONTROLLER

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a national stage application filed
under 35 USC § 371 based on PCT/US07/73900, having an
international filing date of Jul. 19, 2007, which claims priority
to U.S. Provisional Patent Application Ser. No. 60/807,786,
filed Jul. 19, 2006.

TECHNICAL FIELD

[0002] The present invention relates to distributed power
generation systems. More specifically, the present invention
relates to systems that control or include a combination of
distributed generation resources, one or more loads, and util-
ity grids.

BRIEF DESCRIPTION OF THE DRAWING

[0003] FIG. 1 is a block diagram of the functional compo-
nents of a DG system controller described herein.

[0004] FIG. 2 is a block diagram of the hardware compo-
nents of a DG system controller described herein.

[0005] FIG. 3 is a block diagram of a power management
system according to the present disclosure.

[0006] FIG. 4 is a graph of system efficiency versus load
power for optimal, rule-based, and load-following power dis-
tribution in a system having two 75 kw units.

[0007] FIG. 5 is a graph of load power output in a system
having two 75 kw units.

[0008] FIG. 6 is a graph of system efficiency versus
requested load power for optimal, equal-split and load-fol-
lowing power distribution strategies in a system having two
75 kw units.

[0009] FIG. 7 is a graph of unit load power versus total
requested load power for a system of three 75 kw units.
[0010] FIG. 8 is a graph of system efficiency versus
requested load power for optimal, equal-split and load-fol-
lowing power distribution strategies in a system having one
75 kw unit and one 150 kw unit.

[0011] FIG. 9 is a graph of unit load power versus total
requested load power for a system of one 75 kw unit and one
150 kw unit.

[0012] FIG. 10 is a graph of total system efficiency versus
total requested load power for a system of two 75 kw units and
one 150 kw unit.

[0013] FIG. 11 is a graph of unit load power versus total
requested load power for a system of two 75 kw units and one
150 kw unit.

[0014] FIG. 12 is a graph of total system efficiency versus
total requested load power for a system of two 75 kw units and
one 150 kw unit.

[0015] FIG. 13 is a graph of unit load power versus total
requested load power for a system of one 75 kw unit and two
150 kw units.

[0016] FIG. 14 is a block diagram of a fuzzy controller for
use in connection with any DG system.

[0017] FIG. 15 is a Matlab/Simulink model of a rule-based
power distribution implementation for two 75 kw units.
[0018] FIGS. 16 (A) and (B) are Matlab/Simulink models
of'the “IF Action Subsystem” and “ELSE Action Subsystem,”
respectively, for use in the model of FIG. 15, respectively.

Jul. 22,2010

[0019] FIG. 17 is a Matlab/Simulink model of a rule-based
power distribution implementation for three 75 kw units.
[0020] FIGS. 18 (A), (B) and (C) are Matlab/Simulink
models of subsystems for use in the “IF Action Subsystem,”
“ELSEIF Action Subsystem,” and “ELSE Action Subsystem”
of FIG. 17, respectively.

[0021] FIG. 19 is a Matlab/Simulink model of a rule-based
and fuzzy rule-based power distribution implementation for a
system having one 75 kw unit and one 150 kw unit.

[0022] FIGS. 20 (A), (B) and (C) are Matlab/Simulink
models of subsystems for use in the “IF Action Subsystem,”
“ELSEIF Action Subsystem,” and “ELSE Action Subsystem”
of FIG. 19, respectively.

[0023] FIG. 21 is a fuzzy logic controller FIS structure for
an “ELSE subsystem” in a system having two different dis-
tributed generator units.

[0024] FIG. 22 is a graph of fuzzy set membership func-
tions for an “ELSE subsystem” in a system having two dif-
ferent distributed generator units.

[0025] FIG. 23 is a Matlab/Simulink model of a hybrid
fuzzy rule-based power distribution implementation for con-
trolling a system having two 75 kw units and one 150 kw unit.
[0026] FIGS. 24 (a) and (b) are Matlab/Simulink models of
the “2ELSEIF Action Subsystem” and “ELSE Action Sub-
system” for use in the model of FIG. 23.

[0027] FIG. 25 is a fuzzy logic controller FIS structure for
an “ELSE subsystem” in a system having two different dis-
tributed generator units as illustrated in FIG. 23.

[0028] FIG. 26 is a graph of fuzzy set membership func-
tions for an “ELSE subsystem” in a system having two dif-
ferent distributed generator units as illustrated in FIG. 23.
[0029] FIG. 27 is a Matlab/Simulink model of a hybrid
fuzzy rule-based power distribution implementation for con-
trolling a system with one 75 kw units and two 150 kw unit.
[0030] FIGS. 28 (A) and (B) are Matlab/Simulink models
of'the “2ELSEIF Action Subsystem” and “ELSE Action Sub-
system” blocks for use in the model of FIG. 27.

[0031] FIG. 29 is a fuzzy logic controller FIS structure for
an “ELSE subsystem” in a system having two different dis-
tributed generator units as illustrated in FIG. 27.

[0032] FIG. 30 is a graph of fuzzy set membership func-
tions for an “ELSE subsystem” of two different distributed
generator units as illustrated in FIG. 27.

[0033] FIG. 31 is a graph of a rule-based controller imple-
mentation for managing power distribution from two 75 kw
units.

[0034] FIG. 32 is a graph of system efficiency of a rule-
based implementation according to FIG. 31.

[0035] FIG. 33 is a graph of system efficiency for rule-
based implementation and optimal power distributions in a
system having two 75 kw units.

[0036] FIG. 34 is a graph of power output distribution in a
rule-based controller implementation in a system having
three 75 kw units.

[0037] FIG. 35 is a graph of system efficiency of a rule-
based controller implementation for use in a system having
three 75 kw units.

[0038] FIG. 36 is a graph of system efficiency in a rule-
based controller implementation and an optimal power dis-
tribution scenario in a system with three 75 kw units.

[0039] FIG. 37 is a graph of unit power output in a hybrid
fuzzy rule-based controller implementation in a system hav-
ing one 75 kw unit and one 150 kw unit.
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[0040] FIG. 38 is a graph of system efficiency for a hybrid
fuzzy rule-based controller implementation in a system hav-
ing one 75 kw unit and one 150 kw unit.

[0041] FIG. 39 is a graph of system efficiency under a
hybrid fuzzy rule-based implementation and under an opti-
mal power distribution scenario for a system having one 75
kw unit and one 150 kw unit.

[0042] FIG. 40 is a graph of unit power output under a
hybrid fuzzy rule-based controller implementation a system
having two 75 kw units and one 150 kw unit.

[0043] FIG. 41 is a graph of system efficiency in a hybrid
fuzzy rule-based controller implementation in a system hav-
ing two 75 kw units and one 150 kw unit.

[0044] FIG. 42 is a graph of system efficiency under a
hybrid fuzzy rule-based controller implementation and the
optimal power distribution for two 75 kw units and one 150
kw unit.

[0045] FIG. 43 is a graph of unit power output under a
hybrid fuzzy rule-based controller implementation in a sys-
tem having one 75 kw unit and two 150 kw units.

[0046] FIG. 44 is a graph of system efficiency under a
hybrid fuzzy rule-based controller implementation in a sys-
tem having one 75 kw unit and two 150 kw units.

[0047] FIG. 45 is a graph of system efficiency under a
hybrid fuzzy rule-based controller implementation and opti-
mal power distribution in a system having one 75 kw unit and
two 150 kw units.

[0048] FIG. 46 is a block diagram of the functional com-
ponents of a distributed generator system controller in one
embodiment of the present invention.

[0049] FIG. 47 is a block diagram of the hardware compo-
nents of a distributed generator system controller in one
embodiment of the present invention

[0050] FIG. 48 is a block diagram illustrating inputs and
outputs to and from an engine in a distributed generator in one
illustrated embodiment.

[0051] FIG. 49 is a block diagram of a quasi-static engine
model.

[0052] FIG. 50 is a block diagram of an engine speed feed-
back control for use in various embodiments of the disclosed
system.

[0053] FIG. 51 is a schematic diagram of a generator sys-
tem.

[0054] FIG. 52 is a graph of internal voltage to excitor

voltage under an open circuit condition (OCC).

[0055] FIGS. 53 (A) and (B) are a phasor and a schematic
diagram of terminal voltage as used herein.

[0056] FIG. 54 is a block diagram of a generator system
including certain control signals as used in various embodi-
ments of the disclosed system.

[0057] FIG.55is a block diagram of an AVR and generator
module for use some embodiments of the disclosed system.
[0058] FIG. 56 is a Simulink diagram of the AVR and
generator module shown in FIG. 55.

[0059] FIG. 57 is a graph of power, voltage, and current in
a simulated system during a load change event.

[0060] FIG. 58 is a graph of power, voltage, and current in
a sine wave simulation during a load change event.

[0061] FIG. 59 is a graph of power, engine speed bias, and
engine speed in a simulation of an engine speed feedback
control (GIM) of one example system.

[0062] FIG. 60 is a block diagram of the engine speed
feed-forward plus feedback control (GIM) in some embodi-
ments of the disclosed system.
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[0063] FIG. 61 is a graph of power, engine speed bias, and
engine speed signals in a simulation of the control illustrated
in FIG. 60.

[0064] FIGS. 62 (A) and (B) are a schematic diagram and
phasor diagram, respectively, of power flow among a genera-
tor, loads, and tie-line in some embodiments of the disclosed
system.

[0065] FIG. 63 is a block diagram of a feedback control
system for maintaining a minimum power level from the grid.
[0066] FIG. 64 is a graph of simulation results from a
controller in load-following mode (GPM).

[0067] FIG. 65 is a schematic diagram of a classical model
of two generators with matching loads connected by a distri-
bution line.

[0068] FIG. 66 is a graph of simulated frequency measure-
ments from a DG unit before and after an islanding event.
[0069] FIG. 67 is a graph of the magnitude of the 1 Hz
component of the DG signal shown in FIG. 66.

[0070] FIG. 68 is a graph of the trip and reset characteristics
of an over-current relay for use in the disclosed system.
[0071] FIG. 69 is a schematic diagram of a transmission
line in a fault condition.

[0072] FIG. 70 is a block diagram showing GENSETs and
UICs as implemented in one embodiment of the disclosed
system.

[0073] FIG. 71 is a flowchart illustrating error-handling
logic in the controller in certain embodiments of the disclosed
system.

[0074] FIG. 72 is a block diagram of a PC-based controller
implementation of the current system.

[0075] FIG. 73 is a block diagram of functional compo-
nents in the system shown in FIG. 72.

[0076] FIG. 74 is a circuit diagram of a PMU for use in the
system shown in FIG. 72.

[0077] FIG. 75 is a block diagram of communication chan-
nels in a subsystem of the system shown in FIG. 72.

[0078] FIG. 76 is a graph of results obtained from a phasor
calculation program for use in one embodiment of the dis-
closed system.

[0079] FIG. 77is aschematic diagram of'a phasor measure-
ment unit (PMU) according to one embodiment of the dis-
closed system.

[0080] FIG. 78 is a block diagram showing communication
between PMUs and the PC in the system illustrated in FIG.
72.

[0081] FIG. 79 is a one-line system diagram used to simu-

late high-impedance fault (HIF) detection techniques imple-
mented in some embodiments of the disclosed system.

DESCRIPTION

[0082] For the purpose of promoting an understanding of
the principles of the present invention, reference will now be
made to the embodiment illustrated in the drawings and spe-
cific language will be used to describe the same. It will,
nevertheless, be understood that no limitation of the scope of
the invention is thereby intended; any alterations and further
modifications of the described or illustrated embodiments,
and any further applications of the principles of the invention
as illustrated therein are contemplated as would normally
occur to one skilled in the art to which the invention relates.
[0083] Generally, one embodiment of the present system
implements par distribution strategies to improve overall sys-
tem efficiency. Another embodiment provides an integrated
and optimized distributed generation system control (DGSC)
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module that improves overall power generation performance
and lowers the capital cost of distributed generation site
installation in many implementations.

[0084] IEEE Standard 1547 (“the Standard”) provides a
nationally recognized set of rules for connecting distributed
power generation resources to a utility grid. This standard
specifies requirements for voltage regulation, grounding,
synchronization, inadvertent energizing, monitoring, pro-
tected relaying, power quality, islanding, and verification of
compliance with itself. The subsequent IEEE Standard
1547.1 specifies test procedures for establishing and verify-
ing compliance with the requirements of IEEE 1547. Some
aspects of these standards will be discussed in further detail
below.

[0085] Synchronous generators can regulate voltage and
supply power to alocal load even when they are not connected
to the utility grid. DG units operating independently in grid-
isolated mode (GIM) can provide primary or backup power
when utility service is not available. However, DG facilities
with synchronous machines also have the potential to supply
voltage and power to a small piece of the utility grid that has
been disconnected from the rest of the grid. This phenomenon
is called islanding and it should generally be avoided for
safety and other reasons. The IEEE 1547 standard requires
that the DG detect islanded operation and cease to energize
the utility grid within two seconds. The standard allows this
requirement to be met using any of various island-detection
schemes, as long as the selected method passes a test designed
to create the most difficult circumstances for island-detection.
That test requires an island to be detected when the DG and a
matching load are simultaneously disconnected from the
grid. Matching the load and DG output causes minimal fre-
quency change when the grid is disconnected. Some systems
currently on the market presently use the simplest technique
to satisfy the islanding test, but this approach has an unfortu-
nate drawback. The method simply disconnects the DG from
the utility when the power imported from the utility falls
below a preset threshold. The unfortunate drawback of this
method is that it never allows export of power to the grid. As
mentioned above, being able to export power to the grid is
important for achieving maximum CHP efficiency. One
aspect of the present system includes an island detection
scheme that allows power export to the grid.

[0086] Proposed anti-islanding methods can be divided
into two categories, namely, passive schemes and active
schemes. Anti-islanding relays based on passive schemes
include rate of change of frequency (ROCOF) relays and
vector surge (VS) relays. Passive methods tend to perform
poorly when the active power generated by the DG roughly
balances the local load. Active methods overcome this limi-
tation by introducing a small perturbation signal into the DG
system. When the utility remains connected, the small distur-
bance caused by the intentional perturbation is not sufficient
to trip island-detection relays. However, if the connection to
the grid is lost, the response to the perturbation becomes large
enough to activate island-detection relays. The challenge of
active methods is to keep the perturbation small enough to
avoid stability and power quality problems but large enough
to cause a rapidly detectable response once the grid is lost.
[0087] Some forms of the present system include an opti-
mized controller that allows a system to satisfy the require-
ments if IEEE 1547 and still export power to the grid with a
system that could be used in many different jurisdictions.
Built-in regulation features and anti-islanding capability in
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some embodiments provide operational benefits including
more efficient power generation. In addition, the system’s
ability to export unneeded power to the grid allows distributed
generation capacity to be sized by thermal load requirements
for more efficient operation. Still further, some embodiments
of the system provides significant capital- and installation-
cost savings. Some embodiments incorporate relay compo-
nents into a turn-key controller that eliminates the need for a
trained technician to travel to an installation site to program
the controller. Factory testing of some embodiments elimi-
nates costly on-site installation delays. Still further, the super-
visory control scheme in several embodiments allows users to
add distributed power generation modules over time without
undue additional engineering effort.

[0088] The present disclosure is presented in two parts. The
first is directed primarily to a control system that optimizes
distributed generation of power by homogeneous and hetero-
geneous collections of generators. The second part discusses
additional aspects of the distributed power generation system.

Part 1—Optimized Controller

[0089] The power management system plays a key role in
improving the overall system efficiency for multiple distrib-
uted generation units. The system performance, such as fuel
economy, depends in part on the power management system
strategy. The two conventional rule-based power distribution
methods used in one existing design are quite simple, and
only have been applied to two units. One method is to split the
power equally between two identical units, and the other
method is that the master unit always run full load, and the
slave unit takes the rest of the load. These two conventional
methods are not the optimal power distribution strategy.
[0090] This Part describes optimal power distribution strat-
egies to improve overall system efficiency. A sequential qua-
dratic programming method will be applied to find the opti-
mal power distribution among multiple units. The optimal
power management system is an important control function
of'the system control. This Part not only describes the optimal
strategies for two identical units, but also describes strategies
for three identical units, two different units, and three differ-
ent units. Simulation results show that the disclosed optimal
power management system can improve the system efficiency
over the certain rule-based power management system.
[0091] A challenge to the full deployment of distributed
energy is the fact that the electric power grid system is under
the authority of hundreds of utilities and regulatory commis-
sions. Developing a secure distributed generation (DG) sys-
tem of energy production is hindered by the wide variety of
technologies to produce power and the various grid suppliers’
requirements for power acceptance.

[0092] A purpose ofthe present disclosure is to describe an
integrated and optimized DG system controller module that
improves the overall power generation performance
attributes, and lowers the capital cost of a distributed genera-
tion site installation. The proposed system is intended to
leverage the newly released IEEE 1547 Standard for Inter-
connecting Distributed Resources with Electric Power Sys-
tems thathas defined a nationally recognized standard for grid
interconnect for DG resources.

[0093] The overall DG system controller functions units
include a supervisory controller, a DG unit controller, utility
interface controller (UIC), and a DG unit protection functions
and multiple unit configurations. Based on the operation of
the system, the control system can be characterized as a
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hierarchical control structure with three distinct levels: super-
vision, coordination, and execution. The supervisory control-
ler, which includes the UIC, is in the supervision level con-
troller. The DG unit controller is in the coordination level. The
execution level includes engine, engine control module
(ECM), generator, and automatic voltage regulator (AVR)
components.

[0094] This Part describes optimal power management
strategies for multiple DG units, which is a significant func-
tion of the system controller. One objective of the optimal
power management system (PMS) is to find an optimal way to
distribute load power among multiple units to improve sys-
tem efficiency. In this Part the optimal PMS of'the DG system
is described. The optimal rule-based approach, a hybrid fuzzy
rule-based PMS will distribute power among multiple DG
units, which can optimize the entire system efficiently.

[0095] Certain existing power distribution system are only
used for power distribution between two units, and power
distribution methods are quite simple. Two conventional
methods in the existing art to distribute power between two
DG units in industry involve either splitting the power equally
between these two identical units, or a load-following method
(the master unit always runs full load, and the slave unit takes
the rest of the load). These two conventional methods are not
optimal power distribution strategies. In this Part, the optimal
power distribution strategies are shown to improve the overall
system efficiency. The sequential quadratic programming
(SQP) method is applied to find the optimal power distribu-
tion between multiple units. The theoretical derivation is pre-
sented for the problem. Before introducing the optimization,
the overall control structure of the DG system is presented.
The optimization and implementation of the optimal PMS
will be one layer of the system control. This Part develops the
optimal strategies for two identical units, for three identical
units, for two different units and for three different units.

[0096] Optimal rule-based systems and hybrid fuzzy rule-
based systems are designed in this disclosure for different
configurations. In this Part, the fuzzy logic rules are tuned
according to the optimal solution data. The controller for the
DG unit is implemented and tested in hardware and software.

[0097] 1.2. Main Subjects of this Part
[0098] Find optimal power distribution among multiple
units by using SQP.
[0099] Compare optimal PMS with existing power dis-
tribution methods.

[0100] Show design of rule-based PMS for identical
units.
[0101] Show design of Hybrid fuzzy rule-based PMS for

different units.
[0102] 1.3. Organization of the Part

[0103] In this Part, the preceding issues are organized as
follows: Chapter 2 discusses distributed generation systems,
system controller architecture, and simulation model devel-
opment for the DG unit. Chapter 3 describes optimal power
management and control strategies, finds optimal load distri-
bution solutions among multiple DG units, and compares
optimal strategies with the two conventional methods. Chap-
ter 4 describes two implementation methods, which are rule-
based optimal power distribution and hybrid fuzzy rule-based
optimal power distribution. In Chapter 4, the implementation
results also are analyzed. Finally, Chapter 5 summarizes the
teachings of this disclosure.
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2. DG System and System Controller Architecture

[0104] 2.1. Principles of DG

[0105] The DG unit in many embodiments can be used as a
backup power supply for industry, and it also can sell elec-
tricity to the power grid. In one embodiment, a DG unit is an
internal combustion engine generating system with a syn-
chronous generator. In other embodiments DG engines are
gasoline engines, diesel engines, and natural gas engines. The
DG unit discussed in this Part is a natural gas fueled engine
driving a synchronous generator that produces 60 Hz three-
phase electrical power at 277/480 VAC under ISO standard
conditions. Two types of DG units will be discussed in this
Part. Their rated output powers are 75 kw and 150 kw respec-
tively.

[0106] Other embodiments will use other energy sources
and have other output ratings or other characteristics. In these
embodiments, the DG unit can work in grid isolated mode
(GIM) or grid parallel mode (GPM) mode. DG units are
connected to the local utility power grid in GPM or to the local
site distribution bus in GIM.

[0107] 2.2. DG System Control Architecture

[0108] The overall structure of the DG multiple units sys-
tem is a hierarchical system, which is illustrated in FIG. 1.
The DG system controller coordinates the control of one or
more DG units as shown in FIG. 1. The system controller is
capable of controlling up to 8 parallel DG units that are
connected to the local utility grid in GPM or to the local site
distribution bus in GIM. In this Part, controlling 2-3 parallel
units will be discussed. It can be seen from FIG. 1 that the DG
subsystem modules communicate with a supervisory control-
ler. The supervisory controller performs the UIC functions.
[0109] There are two types of controllers in this embodi-
ment: the DG unit controllers and the supervisory controller.
A DG unit controller controls a single DG unit, while the
supervisory controller coordinates the operation of multiple
units in a single location. The functions of the supervisory
controller are:

[0110] Grid synchronization and protection of the DG
unit

[0111] Human/automatic switch between GPM/GIM

[0112] Control of human machine interface (HMI)

[0113] Communication among multiple units and exter-

nal DG gateway

[0114] This Part will discuss the supervisory controller.
There are two major functions of the supervisory controller
that will be mentioned. The first function is controlling the
GIM/GPM mode switch. The second is distributing load
power among multiple units to maximize the system efficien-
cies by using a built-in power management system. The
power management system will be the focus of this Part and
will be discussed in the remaining chapters. Table 2.1 shows
the supervisory control functions for the GIM/GPM mode
switch. The switch is a logic control.

[0115] The DG system can run in GIM or GPM. Each DG
unit will be running at either speed control mode or torque
control mode according to the situation. The supervisory
controller will determine the control mode of each DG unit.
Table 2.1 shows the basic rules.

TABLE 2.1

Supervisory control functions for GIM/GPM mode switch (logic control)

Configuration ~ GIM GPM

Single DG unit Voltage-regulating speed control  Voltage-following
torque control
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TABLE 2.1-continued

Supervisory control functions for GIM/GPM mode switch (logic control)

Configuration ~ GIM GPM
Multiple Determine master unit. All units use Voltage-
DG units One master unit uses Voltage- following
regulating speed control, torque control.
other units use Voltage-
following torque control.
[0116] FIG. 2 shows hardware-oriented block diagram for

this embodiment of a DG system. It can be seen from FIG. 2
that each system controller includes a supervisory controller.
Then supervisory controller communicates with other units to
determine the master unit and slave units, and then determi-
nates the load power percentage to each unit when there are
multiple units. A Phasor Measurement Unit (PMU) was used
to measure the phasor of load power and then control the
circuit break.

[0117] Additionally, the system controller includes a GIM/
GPM switch control, load-following mode control, and UIC
and DG unit controller. The GIM/GPM control is a digital
logical controlused to switch modes between GIM and GPM.
The DG supervisory controller and UIC are preferably
housed in a single enclosure (being in some cases a unitary
housing, and in others a plurality of housings connected
detachably or non-detachably by conduit or other substan-
tially sealed passage), though in some embodiments they are
in unconnected cases.

[0118] A PMS was developed forthe DG system controller.
The PMS is at the supervisory control level. An objective of
the PMS is to manage the power distribution and coordinate
among multiple units to improve the system efficiency. The
execution level includes the DG unit controller, the engine,
and the generator used to perform the specific tasks according
to the desired commands generated by the PMS. The PMS
accepts the signals from the supervisory controller and deter-
mines the splitting power demand to each DG unit controller
using predefined strategies. The PMS also converts the load
power demand to torque commands, which are sent to the DG
unit controller as a load disturbance. There are several ways to
distribute power among multiple units. Equal-split load
power and load-following methods are used in some systems
because they are easy to implement. However, these two
methods are not the optimal power distribution methods. In
this Part, an optimal power distribution system is described to
optimize the entire system efficiency when multiple DG units
are used. Chapter 3 characterizes the system efficiency prob-
lem and solves it mathematically using the Matlab optimiza-
tion toolbox. In Chapter 4, the implementations of the optimal
power management strategies are shown in Matlab/Simulink.
The implementations are rule-based and hybrid fuzzy/rule-
based power distribution.

3. Optimal Load Power Distribution Among Multiple Units

[0119] 3.1. Power Management System Reviews

[0120] Power management is one of the functions in the
supervisory controller. The system performance, such as the
fuel economy, depends on the power management strategy.
[0121] The PMS is at the supervisory control level. The
primary objective of the PMS is to manage the power distri-
bution and coordinate among multiple units to improve sys-
tem efficiency.
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[0122] 3.1.1. Inputs and Outputs

[0123] The inputs and outputs of the PMS module in this
embodiment are illustrated in FIG. 3. Its input signal reflects
the total required load power. Its outputs are the required load
power values for each unit. For example, if there are three
units, then the PMS has three output signals. The PMS
accepts the signals from the supervisory controller and deter-
mines the assignment of power generation to each DG unit
controller using predefined strategies. The PMS then converts
the load power demand to torque commands, which will be
sent to the DG engine controller.

[0124] 3.1.3. Optimal PMS

[0125] Two very simple rule-based methods are used for
power distribution among multiple DG units in some existing
systems. These two methods were developed on the basis of
simple analysis of component efficiencies and these two
modes can be switched manually. One method is load-follow-
ing by a single unit while all the other units are supplying no
load or full load. The other method is to split power equally
between multiple units.

[0126] These rule-based PMSs, although easy to imple-
ment, yield far from the optimal system efficiency. Moreover,
they cannot determine whether the system efficiency is opti-
mal or not.

[0127] There should in fact be an optimal power distribu-
tion among multiple DG units that maximizes the system
efficiency. An optimal PMS can optimize the system-wide
fuel efficiency for multiple units.

[0128] There are several approaches to designing an opti-
mal PMS. Math-optimal PMS (such as SQP or dynamic pro-
gramming (DP)) can achieve the exact optimal efficiency.
However, this is often too time-consuming for online calcu-
lation. Rule-based PMS is easy to use, but it is practically
limited to simple optimization rules; otherwise it will be
difficult to obtain the rules, and will be time consuming to
apply. Fuzzy PMS is not as precise as math-model based PMS
(SQP or DP); however, it is convenient and fast for online
implementation. If a look-up table is used, it can more precise
than a fuzzy system if there is sufficient optimal data in the
look up table. A comparison among these five PMS design
approaches is given in Table 3.1.

TABLE 3.1

Comparison of five PMS design approaches

Method Advantages Disadvantages

Rule-based  Simple, easy to implement Intuitive, difficult to obtain
exact rules

SQp Well developed nonlinear Static optimization

optimization method

Dp Global optimization Time consuming, the future
load profile is needed

Fuzzy rule-  Practical, robust, easy to Difficult to obtain expert

based implement online data to design fuzzy rule

Look up Practical, easy to implement ~ Not robust against
table online environmental variations
[0129] 3.2.Optimal PMS Design Procedure for DG System

[0130] Thedesign procedure preferably begins with formu-
lating the problem, defining a cost function, and then select-
ing a reliable and state-of-the-art optimization algorithm. The
algorithm is preferably applied to minimize the cost function
and optimize power distribution among multiple units.
Finally, the feasible control rules, summarized from the sta-
tistical analysis of the optimal solution, are employed to
develop a PMS for online power distribution implementation.
The performance of the power management strategy is vali-
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dated in the DG unit model, described herein. Finding the
optimal power distribution will be described in this chapter.

[0131] 3.3. Introduction to SQP

[0132] A cost function was developed that included a set of
constraints. The cost function of system efficiency includes
distributed load power for each unit, and an efficiency map of
each unit. The power distribution was formulated as a con-
strained nonlinear optimization problem. In the meantime,
the system efficiency should be maximized and a set of con-
straints should be satisfied.

[0133] SQP techniques are applied to solve the optimiza-
tion problem. The optimizer can make well-informed deci-
sions regarding directions of search and step length. The SQP
subroutine in the Matlab optimization toolbox performs these

steps:
[0134] 1. Initialize;
[0135] 2. Calculate the gradient of the cost function

given the constraints;

[0136] 3. Define a positive definite Hessian matrix using
the BFGS formula based on the cost function and con-
straints;

[0137] 4. Solve the quadratic programming (QP) prob-
lem using a modified simplex method;

[0138] 5. Uselinear search and merit function method to
determine the new search direction and step size;

[0139] 6. Check whether the termination criterion is sat-
isfied; if not, then go to step 2.

[0140] It can be seen that in this embodiment, at each itera-
tion of the SQP method, a QP sub-problem is solved, and an
estimate of the Hessian of the Lagrangian is updated at each
iteration using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) Formula. Therefore, the SQP method converts the
original optimization problem to a QP problem using the
quadratic approximation of the objective function and the
constraints. The SQP method closely mimics Newton’s
method for constrained optimization just as is done for
unconstrained optimization. At each major iteration, an
approximation is made of the Hessian of the Lagrangian
function using a quasi-Newton updating method. This is then
used to generate a QP sub-problem whose solution is used to
form a search direction for a line search procedure.

[0141] 3.4. How to Optimize the Problem in Matlab
[0142] In the Matlab optimization toolbox, the functions
fmincon, fminimax, fgoalattain, and fseminf each use SQP.
Among them, fmincon attempts to find a minimum of a con-
strained nonlinear multivariable function starting at an initial
estimate. This is generally referred to as constrained nonlin-
ear optimization or nonlinear programming.

[0143] 3.5. Initial Value xo

[0144] The fmincon function does work properly, but the
function fmincon will usually return a local minimizer in the
vicinity of the starting point that the user supplies. If the
model has more than one local minimizer, then different
answers may be obtained for different starting points because
the solver may converge to different solutions depending on
the starting point. The user, using knowledge about the prob-
lem, provides the initial start point. Therefore, one should
choose the initial vector xo to be in the feasible set.

[0145] Ifthe problem has more than one local minimizer, a
common approach is to sample the problem domain and
optimize from different initial guesses. Therefore, all the
local minimizers should be found and then the global mini-
mum should be searched from those local minimizers.
[0146] A second option to increase the chances of finding
the global minimizer for a nonlinear function is to run a
genetic algorithm (GA), like the GA solver in the Genetic
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Algorithm and Direct Search Toolbox. However, this algo-
rithm does not admit nonlinear constraints. A third optionis to
run PATTERNSEARCH solver, which admits nonlinear con-
straints.

[0147] A fourth option is to obtain all the local optimizers
of different starting points xo by sampling the domain of the
variables. Because the optimal minimizer is not only one
point, but rather, a sequence of data points, the problem was
divided into several regions. In each region, the problem
domain was sampled from different initial guess xo. The
global minimizer was then obtained.

[0148] 3.6. Problem Formulations and Solutions
[0149] The optimization problem can be formulated as fol-
lows.

To maximize system efficiency f=f (x,); is the same as mini-
mizing F=1/(x,);

Subject to Constraints:

[0150]

X ¥+ . . +x=P,

ows
0=x,=cy;
0=x,%cy;

=< = .
0=x3%c3;

0=x,=c;

[0151] In the experiments described in this Part, two types
of DG units were used. One type is a 75 kw unit; the other is
a 150 kw unit. Five different configurations are discussed:

[0152] Two identical 75 kw units.

[0153] Three identical 75 kw units.

[0154] Two different units with one 75 kw and one 150
kw

[0155] Three different units with two 75 kw and one 150
kw unit.
[0156] Three different units with one 75 kw unit and two
150 kw units.
[0157] The system efficiency optimization for each of these
five scenarios will be analyzed herein. Each configuration
will be formulated with a certain cost function. With each of
these cost functions, the SQP method was used to obtain the
optimize solutions by using the Matlab optimization toolbox.
Two identical 75 kw units will be evaluated first.

[0158] 3.6.1. Two Identical 75 kw Units
[0159] 3.6.1.1. Problem Formulation
[0160] The total system efficiency is derived as follows:

. Total output power
System efficiency = W

Total load power request

= (unit 1 input power + unit 2 input power)

Total load power request

- (unit 1 output power

unit 2 output power]

efficiency efficiency

_ Piotal 3
T /) + 22 n(x)’
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[0161] Where, P, ,,; is the total load power request, x; and
X, are the distributed load power for unit 1 and unit 2 respec-
tively; m is the efficiency map, which is a curve representing
efficiency vs. output power. Original efficiency data was
obtained from a company, and the efficiency function q was
obtained by curve fitting. For a given P, ;. the above effi-
ciency maximization problem is the same as minimizing the
following cost function:

[0162] Minimize:

F=x,m(x)+x,MEx,);
X +x%,=P
[0163]
0=x,=75 kw;

total

subject to:

0=x,=75 kw.

[0164] It is a nonlinear optimization problem with linear
constraints. The SQP was used to solve this problem in Mat-
lab. The next subsection shows the optimal efficiency solu-
tion.

[0165] 3.6.1.2. Optimal Solution Results for Two Identical
75 kw Units
[0166] The optimal solution results are depicted in FIG. 4.

The X-axis represents the total load power request, and the
Y-axis represents system electrical efficiency. There are three
power distribution methods underlying this graph. The first
method is the optimal power distribution, which is the con-
tinuous line. The second method is the equal split power
method, which is represented by the “+” curve, and the third
method is the load following method, which is represented by
the “0” curve. Load following in this case means one unit runs
as the master unit and always takes the load power. When the
master unit alone is not enough for the total load power
request, then the second unit takes the remaining load power.
This continues when there are more than two units. From the
graph, we can see that the system efficiency of optimal power
distribution has higher performance than that of equal split
method or load following method when power is distributed
between two 75 kw units.

[0167] We also can see that when the total load power
request is less than or equal to 75 kw, the optimal efficiency is
almost the same as load following mode. When the total load
power request is greater than 75 kw, the optimal efficiency is
almost the same as the equal split mode. FIG. 5 shows how
optimal PMS distributes power between these two 75 kw
units.

[0168] There is a pattern in the optimal solution. When the
total load power request is less than or equal to 75 kw, only
unit 1 runs and unit 2 does not run. When the total load power
request is greater than 75 kw, the power is split equally
between unit 1 and unit 2.

[0169] 3.6.2. Three Identical 75 kw Units
[0170] 3.6.2.1. Problem Formulation
[0171] The total system efficiency is derived as follows:

System efficiency=>,, ./ (x /M x +xM(x2)+x3/M(x3));

Where x|, X,, and X; are the power generation assignments for
unit 1, unit 2, and unit 3 respectively. The above efficiency
maximization problem for a given P, ,, is the same as mini-
mizing the following cost function:

[0172]

F=xn ()5 )+xamxs);

Minimize:

Xy +Xo =P s
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[0173]
0=x,=75 kw;

Subject to:

0=x,=75 kw;

0=x,=75 kw;

This is a nonlinear optimization problem with linear con-
straints. The SQP was used to solve it in Matlab.

[0174] 3.6.2.2. Optimal Solution Result for Three Identical
75 kw Units
[0175] The optimal solution results are depicted in FIG. 6.

From the graph, we can see that the system efficiency of
optimal power distribution has higher performance than that
of'the equal split method or the load following method for this
configuration.

[0176] We also can see that when the total load power
request is less than or equal to 75 kw, the optimal efficiency is
almost the same as the load following mode. When the total
load power request is greater than 150 kw, the optimal effi-
ciency is almost the same as the equal split mode. FIG. 7
shows how optimal PMS distributes power among these three
75 kw units.

[0177] There is a logical pattern in the optimal solution.
When the total load power request is in the interval of [0 75]
kw, only unit 1 runs. When the total load power request is in
the interval of (75 150] kw, the power is split equally between
unit 1 and unit 2, and unit 3 does not run. When the total load
power request is in the interval (150 225] kw, the power is
split equally among three units, as in equal split mode. Two
different units will be evaluated now. When identical units are
not used, there is no obvious pattern in some regions.

[0178] 3.6.3.Two Different Units with One 75 kw Unit and
One 150 kw Unit

[0179] 3.6.3.1. Problem Formulation

[0180] The total system efficiency is derived as follows:

System efficiency=>~,, /XM (¥ )+x2/M>(x5));

Where, x, is for 75 kw unit, X, is for 150 kw unit and 1, is the
efficiency map for 150 kw unit. In this configuration ), and ),
are different functions.

[0181] The above efficiency maximization problem for a
given P, ., is the same as minimizing the following cost
function:
[0182]

F=x,m(x)+xma(x0);
[0183]

X +x=P,

Minimize:

Subject to:
total
0=x,=75 kw;

0=x,=150 kw.

This is a nonlinear optimization problem with linear con-
straints. The SQP was used to solve the problem in Matlab.
[0184] 3.6.3.2. Optimal Solution for Two Different Units
with One 75 Kw Unit and One 150 Kw Unit

[0185] The optimal solution results for this configuration
are depicted in FIG. 8. When there are different units, there is
no equal split mode, and there are two different load follow-
ing methods. One method uses the 75 kw unit as the master
unit with a 150 kw unit following. The other method uses a
150 kw unit as the master unit with a 75 kw unit following.
These two load following methods can result in different
system efficiencies. From the graph, we can see that the
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system efficiency of optimal power distribution has higher
performance than that of load following methods when power
is distributed between two different units.
[0186] We also can see that when the total load power
request is in the interval of [0 75] kw, the optimal efficiency is
almost the same as the first load following mode (75 kw unit
as master). When the total load power request is in the interval
of (75 150] kw, the optimal efficiency is almost the same as
the second load following mode (150 kw unit as master).
When the total load power request is in the interval of (150
225] kw, the optimal efficiency is different from either load
following mode. FIG. 9 shows how optimal PMS distributes
power between these two different units.
[0187] There is a pattern in the optimal solution. When the
total load power request is in the interval of [0 75] kw, only the
75 kw unit (unit 1) runs. When the total load power request is
in the interval of (75 150] kw, only the 150 kw unit runs, and
the 75 kw unit does not run. When the total load power request
is in the interval of (150 225] kw, then the total load power
request is distributed between the 75 kw unit and the 150 kw
unit. There is no obvious pattern for P, ,,,;>150kw. Because of
that, a fuzzy logic controller for online implementation was
used in this region.
[0188] 3.6.4. Three Different Units with Two 75 kw Units
and One 150 kw Unit
[0189] 3.6.4.1. Problem Formulation
[0190] The total system efficiency is derived as follows:
System efficiency=~, .,/ (x /M 1 (x)+x2/M (X2)+x3/M
x3));
Where, X,, X,, and x; are for one 75 kw unit, the other 75 kw
unit, and a 150 kw unit respectively. The above efficiency
maximization problem for a given P, , ; is the same as mini-
mizing the following cost function:

[0191] Minimize
F=(xm )M, () +x3Ma(%3);
[0192] Subject to:

Xy +Xo =P s
0=x,=75 kw;
0=x,=75 kw;

0=x,=150 kw.

[0193] This is a nonlinear optimization problem with linear
constraints. The SQP was used to solve it in Matlab.

[0194] The optimal solution results are depicted in FIG. 10.
There are three different load following methods for this
configuration. One method is S-S-B; “S” indicates the small
unit, 75 kw, and “B” indicates the big unit, 150 kw. For S-S-B,
75 kw unit (unit 1) was the master, and the other 75 kw unit
(unit 2) follows as the second unit with the 150 kw unit (unit
3) following as the last unit. The other two methods are S-B-S
and B-S-S. These three different load following methods can
result in different system efficiencies. From the graph, it can
be seen that the system efficiency of optimal power distribu-
tion has higher performance than that of the three load fol-
lowing methods when load power is distributed among these
three different units.

[0195] 3.6.4.2. Optimal Solution Result

[0196] It also can be seen from FIG. 10 that when the total
load power request is less than or equal to 75 kw, the optimal
system efficiency is almost the same as the system efficiency
of the S-S-B and S-B-S load following methods. When the
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total load power request is in the interval of (75 300] kw, the
optimal system efficiency is better than the system efficiency
ofall load following modes. FIG. 11 shows how optimal PMS
distributes power among these three different units.
[0197] There is a logical pattern in the optimal solution.
When the total load power request is in the interval of [0 75]
kw, only the 75 kw unit (unit 1) runs. When the total load
power request is in the interval of (75 150] kw, two 75 kw
units (unit 1 and unit 2) split the total load power equally and
the 150 kw unit (unit 3) does not run. When the total load
power request is in the interval of (150 225] kw, one 75 kw
unit (unit 1) does not run. The load power is distributed
between the other 75 kw unit (unit 2) and the 150 kw unit (unit
3). There is no obvious pattern in this case. Because of that, a
fuzzy logic controller for online implementation was used in
this region. When the total load power request is in the inter-
val of (225 300] kw, the load power is distributed between two
75 kw units and one 150 kw units. There is no obvious pattern
in this case except that the two 75 kw units run at the same
load power. Because of that, a fuzzy logic controller for
online implementation was used in this region to distribute
power between two 75 kw units and one 150 kw unit, and a
mathematical rule is used at the same time to allow the two 75
kw units to provide identical output.
[0198] 3.6.5. Three Different Units with One 75 Kw Unit
and Two 150 Kw Units
[0199] 3.6.5.1. Problem Formulation
[0200] The total system efficiency for this configuration is
derived as follows:

System efficiency=~,,.;/(x,/M 1 (x)+x2/M 1 (X2)+x3/M

x3));
wherex, is for the 75 kw unit, both x, and x are for the 150 kw
units. For a given P, ,,;, the above efficiency maximization
problem is the same as minimizing the following cost func-
tion:
[0201]

F=(x/m () +50Ma () +%3Ma(%3));

Minimize:

Xy +Xo =P par;
[0202]
0=x,=75 kw;

Subject to:

0=x,=150 kw;

0=x,=150 kw.

[0203] This is a nonlinear optimization problem with linear
constraints. The SQP was used to solve the problem in Mat-
lab.

[0204] 3.6.5.2. Optimal Solution Results

[0205] The optimal solution results for this configuration
are depicted in FIG. 12. There are three different load follow-
ing methods for this configuration. For the S-B-B method, 75
kw unit (unit 1) was master and the 150 kw unit (unit 2)
follows as the second with 150 kw unit (unit 3) following as
the last unit. The other two methods are B-B-S and B-S-B.
These three different load following methods can result in
different system efficiencies. From the graph, it can be seen
that the system efficiency of optimal power distribution has
higher performance than that of three load following methods
when load power is distributed among these three different
units.

[0206] It also can be seen that when the total load power
request is less than or equal to 75 kw, the optimal system
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efficiency is almost the same as the system efficiency of the
SB-B load following method. When the total load power
request is in the interval of (75 150) kw, the optimal system
efficiency is the same as the system efficiency of B-S-B and
B-B-S load following methods. When the total load power
request is in the interval of (150 375] kw, the optimal system
efficiency is better than that of all load following methods.
FIG. 13 shows how optimal PMS distributes power among
these three different units.

[0207] Thereis also a pattern in the optimal solution. When
the total load power request is in the interval of [0 75] kw, only
the 75 kw unit (unit 1) runs. When the total load power request
is in the interval of (75 150] kw, only one of the 150 kw units
(unit 3) runs and the other units do not run. When the total load
power request is in the interval of (150 225] kw, one of the 150
kw units (unit 2) does not run and the load power is distributed
between the 75 kw unit (unit 1) and another 150 kw unit (unit
3). There is no obvious pattern in this case. Because of that,
the fuzzy logic controller illustrated in FIG. 14 was used in
this region for online implementation. When the total load
power request is in the interval of (225 300] kw, the 75 kw unit
(unit 1) does not run, and the two 150 kw units (unit 2 and unit
3) equally split the total load power. When the total load
power request is in the interval of (300 375] kw, the load
power is distributed between one 75 kw unit and two 150 kw
units, and there is no obvious pattern in this case except that
the two 150 kw units run at the same load power. Because of
that, a fuzzy logic controller for online implementation was
used in this region to distribute power between one 75 kw unit
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and two 150 kw units, and a mathematical rule is used at the
same time to allow the two 150 kw units to provide identical
output.

[0208] 3.7. Result Analysis and Comparison Between Dit-
ferent Configurations

[0209] 3.7.1. Optimal Results Analysis

[0210] The simulation results of the above five configura-
tions demonstrated that the proposed optimal PMS improved
the system efficiency significantly compared to the current
rule-based PMS. The next step is to implement the optimal
PMS algorithm in real time.

[0211] 3.7.2. Optimal PMS Implementation
[0212] The optimal PMS have several drawbacks:
[0213] 1. The SQP algorithm has a complex structure;

therefore, more computing power would make the PMS
online implementation more feasible.

[0214] 2. The optimal PMS design is not robust enough
against the environmental variations and external distur-
bances. The efficiency map used in the optimization
algorithm was based on a specific temperature and alti-
tude. Therefore, more efficiency and robust PMS should
be developed to distribute power among multiple DG
units.

[0215] In this Part, two methods are developed to imple-
ment optimal PMS. They are rule-based PMS and hybrid
fuzzy rule-based (rule-based and fuzzy rule-based) PMS. The
hybrid fuzzy rule-based PMS combined both crisp logic and
fuzzy logic. Table 3.2 shows the control rules summarized
from the statistical analysis of the optimal solution and the
implementation methods for each configuration.

TABLE 3.2

Comparison of the optimal power distributions
and their implementations for five different configurations

Control rules summarized from the
statistical analysis of the optimal

solutions
# Configuration Powr(kw) Unitl Unit2 Unit3 Implementation
1 Two identical 75 kw units [0 75] P, 0 N/A Rule-based
Unit 1-75 kw (751501 2 /2 N/A
Unit 2-75 kw
2 Three identical 75 kw units [0 75] 0 0 Rule-based
Unit 1-75 kw (751501 2 /2 0
Unit 2-75 kw (1502251 /3 /3 /3
Unit 3-75 kw
3 Two different units with [075] 0 N/A Hybrid fuzzy
one 75 kw unit and one (751501 O N/A rule-based
150 kw unit (150 225] x1 -x1 N/A
Unit 1-75 kw
Unit 2-150 kw
4 Three different units with [075] 0 0 Hybrid fuzzy
two 75 kw units and one (751501 2 /2 0 rule-based
150 kw unit (1502251 0 x2 -x2
Unit 1-75 kw (225300] (-x3)2 (-x3)/2 x3
Unit 2-75 kw
Unit 3-150 kw
5 Three different units with [075] 0 0 Hybrid fuzzy
one 75 kw unit and two (751501 O 0 rule-based
150 kw units (150 2251 =1 -x1 0
Unit 1-75 kw (2253001 0O /2 /2
Unit 2-150 kw (300375] x1 (-x1)/2  (-x1)2

Unit 3-150 kw
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[0216] The rule-based PMS is constructed according to the
math-optimal result; therefore, the resulting rule-based PMS
is exactly the same as the math-optimal PMS. However, the
rule-based PMS can only be used for simple optimization
rules; otherwise it will be difficult to find exact rules and also
will be very time consuming. The fuzzy PMS is not as precise
as the rule-based PMS in this case; however, it approximates
the math-optimal PMS and is convenient and fast for online
implementation.

[0217] Based on the analysis of the optimal solution, the
rule-based PMS was developed for identical units because
there are some obvious patterns in their optimal solutions.
And the hybrid fuzzy rule-based PMS were developed for
different units because in some regions there are no obvious
patterns for different units to split load power. Therefore,
fuzzy logic was used in those regions for online implemen-
tation.

[0218] The implementation result will now be compared
with optimal solution and those obtained from current PMS.

4. Implementation of Optimal Power Management System

[0219] 4.1. Optimal Power Distribution Implementation
[0220] InChapter 3, we used SQP to statically optimize the
power distribution. The remaining problem is how to imple-
ment the PMS online. There are several methods to imple-
ment the optimal power distribution online. According to the
optimal results, rule-based and fuzzy rule-based implemen-
tations are chosen in this Part. The rule-based system is
simple and easy to implement. Generally speaking, it is intui-
tive, but difficult to obtain exact rules, and they apply well
only to certain simple systems. Fuzzy rule-based systems,
generally speaking, are practical, robust, and easy to imple-
ment online, but it is difficult to obtain expert data from which
to design fuzzy rules. In this Part, fuzzy rules will be designed
according to the optimal results that were obtained in Chapter
3.

[0221] 4.1.1.Rule-based and Fuzzy Rule-based Implemen-
tation for Power Distribution

[0222] According to the optimization results, when identi-
cal units were used, certain patterns were apparent, and rules
can be derived based on these results. The rule-based PMS
configurations were thus designed for implementation. How-
ever, when different units are used, rule-based PMS is not so
easily applied for different ranges of P total in certain regions.
The optimal solutions can be divided into several regions. In
some regions, the rule-based implementation was designed.
Inother regions, fuzzy logic was used to implement the power
distribution. This hybrid power distribution was used for dif-
ferent units. The power distribution uses crisp logic and a
fuzzy logic controller at the same time.

[0223] 4.1.2. Introduction to Fuzzy Logic Controller
[0224] 4.1.2.1. Fuzzy Logic System and Fuzzy Logic Con-
troller Scheme

[0225] Fuzzy logic provides a general description and mea-

surement of a system similar human reasoning. In fuzzy
logic, the truth of any statement is a matter of degree. A
membership function is the curve that describes how true a
given statement is for a given input value. Fuzzy logic does
not use crisp values to describe a system; instead, human
reasoning is used. For example, when describing the tempera-
ture, crisp values were not used. Instead, we use a “high”,
“medium”, “low”, etc. fuzzy logic set. Different temperature
values may belong to different fuzzy logic sets with a certain
percentage membership. Fuzzy set membership occurs by
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degree over the range [0, 1]. For example, 100° F. might
belong to a set of “high” temperatures, and its membership to
the “high” fuzzy set is 0.7, and it may also belong to
“medium” at the same time with a membership of 0.2.

[0226] Fuzzy logic systems can be used to make decisions
or control systems by encoding human reasoning. Therefore
a fuzzy logic system can easily be understood and built based
on human understanding. Fuzzy logic comprises fuzzy sets,
fuzzy set membership functions, fuzzy rules, and fuzzy infer-
ence. Fuzzy sets represent non-statistical uncertainty. A
membership function is used to represent the fuzzy set mem-
bership. Triangle, trapezoid, Gaussian and sigmoid functions
are commonly used as fuzzy set membership functions.
Fuzzy rules approximate human reasoning, which used to
make inferences in fuzzy logic. All the fuzzy rules in a fuzzy
system are applied in parallel. The design procedure of the
fuzzy logic controller in this Part works as follows.

[0227] Define input and output variables of a fuzzy logic
controller.
[0228] Fuzzify the input and output variables. Define

fuzzy sets and fuzzy membership functions for each
fuzzy variable.
[0229] Determine fuzzy rule set.
[0230] Defuzzify the fuzzy outputs to obtain the crisp
values for each output variable.
[0231] Inthis Part, the input signal to the fuzzy controller is
the total load power request. The output signal is the load
powerto each single unit (75 kw or 150kw unit). The diagram
below shows the fuzzy logic controller scheme.

[0232] 4.1.2.2. Design Fuzzy System Using Matlab/Fuzzy
Logic Toolbox
[0233] In this work, the fuzzy logic toolbox in Matlab was

used. Its graphic user interface (GUI) is easy to use to design
fuzzy inference system (FIS) structure, fuzzy sets, fuzzy set
membership functions, and fuzzy rule set. As long as the
fuzzy system was properly designed, the fuzzy system can be
represented as a FIS file in the fuzzy toolbox. When designing
afuzzy controller in Matlab/Simulink, the FIS file name must
be provided in the fuzzy controller block parameter window,
and when running the Simulink model, Simulink recalls the
fuzzy system.

[0234] 4.2. Rule-based and Hybrid Fuzzy Rule-based
Implementation for Power Distribution in Matlab/Simulink
for Five Different Scenarios

[0235] According to the optimal power distribution data,
rule-based and fuzzy rule-based power distribution imple-
mentations are designed in a Matlab/Simulink environment.
Simulation results also will be discussed in this section. In
this section, the design of the rule-based and fuzzy rule-based
power distribution Simulink models of each configuration
will be discussed.

[0236] The models for every configuration are built accord-
ing to the optimal power distribution results. The distributed
load power signals were sent to each unit through multiport
switches. Inside each unit there is a subsystem used to calcu-
late input power and fuel consumption. Finally, the system
electrical efficiency was calculated.

[0237] 4.3. Two Identical 75 Kw Units

[0238] FIG. 15 shows the Simulink model of the rule-based
power distribution implementation for two 75 kw units. Con-
ventional logic is used in this model to distribute power
between two 75 kw units (unit 1 and unit 2). FIG. 16 shows the
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IF and ELSE subsystems, which are built according to the
rules obtained from the analysis of optimal power distribution
data.

[0239] 4.4. Three Identical 75 kw Units

[0240] FIG. 17 shows the Simulink model of the rule-based
power distribution implementation for three 75 kw units.
Crisp logic is used in this model to distribute power among
three 75 kw units (unit 1, unit 2, and unit 3). FIG. 18 shows the
IF, ELSEIF, and ELSE subsystems, which are built according
to the rules obtained from the analysis of optimal power
distribution data.

[0241] 4.5. Two Different Units with One 75 Kw and One
150 Kw Unit
[0242] FIG. 19 shows the rule-based and fuzzy rule-based

power distribution implementation for two different units.
Both crisp logic and fuzzy logic are used in this model to
distribute power between a 75 kw unit (unit 1) and a 150 kw
unit (unit 2).

[0243] FIG. 20 shows the IF, ELSEIF, and ELSE sub-
systems, which are built according to the rules obtained from
the analysis of optimal power distribution data. Both IF and
ELSE subsystems are rule-based subsystems, but the ELSEIF
subsystem is a fuzzy rule-based system. Inside this block is a
fuzzy controller. The inputs of the fuzzy controller are the
total load power request and heat request. The output signal is
the load power for the 75 kw unit (unit 1). The load power for
the 150 kw unit (unit 2) is equal to the total load power minus
the load power of the 75 kw unit (unit 1). The fuzzy controller
in this embodiment can only have an output for either the 75
kw unit (unit 1) or the 150 kw unit (unit 2), and cannot have
outputs for each of these two units. Ifthere are two outputs for
the fuzzy controller, and when these two outputs are added
together, the sum may not equal the total load power request.
Because the controller used here applies fuzzy logic, the
fuzzy controller may not provide the output values whose
sum is exactly equal to the input total load power value.

[0244] 4.5.1. Fuzzy Logic Controller Design for ELSE
Subsystem

[0245] 4.5.1.1. FIS Structure

[0246] When designing a fuzzy system, first define the

inputs and outputs and their membership functions. Then
construct fuzzy rules. The FIS structure represented by the
fuzzy toolbox GUI is shown in FIG. 21.

[0247] There are one input, one output, and three rules in
this FIS structure. Each input and output signal of the fuzzy
system is a fuzzy variable, which has several fuzzy sets and
their own fuzzy membership functions. The output signal in
this case is the load power to the 75 kw unit.

[0248] 4.5.1.2. Fuzzy Sets and Fuzzy Membership Func-
tions
[0249] The fuzzy controllers in this Part have one input and

one output as described in the fuzzy controller scheme. Each
input and output has a different number of fuzzy sets; for
example, for two different units, the fuzzy sets for input and
output are:
[0250] Total load power request: Three fuzzy sets—H
(high), M (medium), L. (low)
[0251] Unit 1 load power: Four fuzzy sets—H (high), M
(medium), OK, L (low)
[0252] Infuzzylogic, a value can partially belong to a fuzzy
set with corresponding membership between 0 and 1. In this
Part, trapezoid functions (include left-trapezoid function and
right-trapezoid function) and triangle functions are selected
as the membership functions. The entire rule set is applied in
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parallel, and fuzzification and defuzzification methods are
used to obtain the output signal from the inputs. FIG. 22
shows the fuzzy sets and membership functions for the con-
figuration of two different units.

[0253] 4.5.1.3. Fuzzy Rule Set

[0254] The fuzzy rule set includes a set of fuzzy if-then
rules, which define the fuzzy inference system from the input
to output based on the optimal data.

[0255] The fuzzy control rule set shown in Table 4.1 is built
based on human analysis of the optimal solution in Chapter 3.

TABLE 4.1

Fuzzy rule set

1. If (Total_Required_ Power is L) then (Output_ Power_1 is OK) (1)
2. If (Total__Required__Power is M) then (Output_ Power__1is M) (1)
3. If (Total__Required_ Power is H) then (Output_ Power__1 is H) (1)

[0256] 4.5.1.4. Representation of Fuzzy System (FIS File)

[0257] In Matlab/fuzzy logic toolbox, the following
method is used to represent a fuzzy system as shown in Table
4.2. This is also the FIS file.

TABLE 4.2

The representation of a fuzzy system in Matlab

[System]

Name="PMS__5_ 2DIFF’

Type="mamdani’

Version=2.0

NumInputs=1

NumOutputs=1

NumRules=3

AndMethod="min’

OrMethod="max’

ImpMethod="min’

AggMethod="max’
DefuzzMethod="centroid’

[Inputl]

Name="Total_ Required_ Power’
Range=[150 225]

NumMFs=3

MF1="L":"trapm{’,[150.9 154.5 181.8 186]
MF2="M"""trapm{”,[174.5 182.7 209.1 215.2]
MF3="H’:"trapm{’,[210 214.6 226.4 239 1]
[Output]

Name="Output_ Power_ 1’

Range=[0 75]

NumMFs=4

MF1="L":"trapmf’,[0.5036 17.78 38.14 52.69]
MF2="OK’:’trapm{”,[44.55 50.5 60.45 66.82]
MF3="H’:"trapm{’,[71.49 72.67 77.49 80.22]
MF4="M":"trapm{”,[61.94 66.12 72.12 75.12]
[Rules]

1,2(1):1

2,4(1):1

3,3(1):1

[0258] The first section shows general information about
the system, which includes number of inputs, outputs, and
rules. The first section also includes fuzzification and defuzzi-
fication methods. As the above table shows, there are one
input, one output, and three rules. The remaining sections
show the information about each input and output fuzzy vari-
able, which include the name, fuzzy sets and their member-
ship functions, and fuzzy rules of each input and output
variable. For the membership functions, information about
the name, type, and range of each membership function is
indicated. For the fuzzy rule set, the above FIS file lists three
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rules. Each line was encoded from a rule provided in Table
4.1. The first integer represents the input and the second
integer represents the output. “1” means membership func-
tion 1, which is “L.” (low), and “2”* means membership func-
tion 2, which is “M” (medium) and so on. The number in
parentheses is the weight of the rule. The last number is the
rule connection. For example, the first line shows: “1, 2 (1):
1,” which line represents the first rule listed in Table 4.1. This
rule is as follows:

[0259] If (Total_Required_Power is L) then (Output

Power 1 is OK) (weight 1)

[0260] 4.6. Three Different Units with Two 75 Kw Units
and One 150 Kw Unit
[0261] FIG. 23 shows the hybrid fuzzy rule-based power
distribution implementation for three different units with two
75 kw units and one 150 kw unit. Both crisp logic and fuzzy
logic are used in this model to distribute power among two 75
kw units (unit 1 and unit 2) and a 150 kw unit (unit 3).
[0262] FIG. 24 shows the IF, ELSELF, and ELSE sub-
systems, which are built according to the rules in Table 4.3.
For the ELSEIF2 subsystem, the output signal of the fuzzy
controller is the load power for the 75 kw unit (unit 1). The
load power for the 150 kw unit (unit 3) is equal to the total
load power request minus the load power of the 75 kw unit
(unit 1). The other 75 kw unit (unit 2) does not run. For the
ELSE subsystem, the output signal of the fuzzy controller is
the load power for the 150 kw unit (unit 3). The two 75 kw
units (unit 1 and unit 2) equally share the remaining load
power.
[0263] The fuzzy logic controller in the ELSEIF2 sub-
system in FIG. 24 is the same controller as used for two
different units, but the fuzzy logic controller in the ELSE
subsystem is different.

[0264] 4.6.1. Fuzzy Logic Controller Design for the ELSE
Subsystem

[0265] 4.6.1.1. FIS Structure

[0266] There are one input, one output, and four rules in the

FIS structure illustrated in FIG. 25. The output signal in this
case is the load power to the 150 kw unit (unit 3). The output
is different from that of the previous fuzzy controller.
[0267] 4.6.1.2. Fuzzy Sets and Fuzzy Membership Func-
tions
[0268] The fuzzy sets for input and output are as illustrated
in FIG. 26:
[0269] Total load power request: four fuzzy sets—H
(high), M (medium), OK, L. (low)
[0270] Unit 3 load power: four fuzzy sets—H (high), M
(medium), OK, L (low)
[0271] 4.6.1.3. Fuzzy Rule Set
[0272] The fuzzy rules for this fuzzy logic controller are
shown in Table 4.3.

TABLE 4.3

Fuzzy rule set

1. If (Total__Required_ Power is L) then (unit_ 3 is L) (1)

2. If (Total__Required_ Power is M) then (unit__3 is M) (1)

3. If (Total__Required_ Power is H) then (unit__3 is H) (1)

4. If (Total__Required_ Power is OK) then (unit_ 3 is OK) (1)

[0273] 4.7.Three Different Units with One 75 kw Unit and
Two 150 kw Units

[0274] FIG. 27 shows the hybrid fuzzy rule-based power
distribution implementation for three different units with one
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75 kw unit and two 150 kw units. Both crisp logic and fuzzy
logic are used in this model to distribute power among a 75 kw
unit (unit 1) and two 150 kw units (unit 2 and unit 3).
[0275] FIG. 28 shows the IF, ELSEIF, and ELSE sub-
systems, which are built according to the rule obtained from
the analysis of optimal power distribution data. For the
ELSEIF2 subsystem, the load power for the 150 kw unit (unit
2) is equal to the total load power minus the load power of the
75 kw unit (unit 1). The other 150 kw unit (unit 3) does not
run. For the ELSE subsystem, both 150 kw units (unit 2 and
unit 3) share the remaining load power request equally.
[0276] The fuzzy logic controller in the ELSEIF2 sub-
system is the same controller as used for two different units,
but the fuzzy logic controller in the ELSE subsystem is dif-
ferent from previous fuzzy controllers. The fuzzy sets, mem-
bership functions, and rule set are totally different.

[0277] 4.7.1. Fuzzy Logic Controller Design for the ELSE
Subsystem

[0278] 4.7.1.1. FIS Structure

[0279] FIG. 29 shows the FIS structure of the fuzzy con-

troller. There are one input, one output, and 5 rules in this FIS
structure. Output signal in this case is the load power request
to the 75 kw unit (unit 1).

[0280] 4.7.1.2. Fuzzy Sets and Fuzzy Membership Func-
tions
[0281] The fuzzy sets for inputs and outputs are as illus-

trated in FIG. 30:
[0282] 'Total load power request: five fuzzy sets—VH
(very high), H (high), M (medium), OK, L. (low)
[0283] Unit 1 load power: five fuzzy sets—VH (very
high), H (high), M (medium), OK, L. (low)
[0284] 4.7.1.3. Fuzzy Rule Set
[0285] The fuzzy rules for this fuzzy logic controller are
shown in Table 4.4.

TABLE 4.4

Fuzzy rule set

1. If (Total__Required_ Power is L) then (unit_1is L) (1)

2. If (Total__Required_ Power is H) than (unit__1 is H) (1)

3. If (Total__Required_ Power is M) than (unit_1 is M) (1)

4. If (Total__Required_ Power is OK) than (unit_1 is OK) (1)
5. If (Total__Required_ Power is VH) then (unit__1 is VH) (1)

[0286] 4.8. Simulation Results of Rule-based and Hybrid
Fuzzy Rule-based Implementations for Power Distribution
with Five Different Configurations.

[0287] 4.8.1. Two Identical 75 kw Units

[0288] For two identical 75 kw units, FIG. 31 shows the
rule-based power distribution implementation design using
Matlab/Simulink according to the optimal power distribution
result FIG. 31 shows how the PMS splits power between two
units.

[0289] The first row shows the total load power request,
which increases with time as a ramp signal. The second row
shows the load power distributed to a 75 kw unit (unit 1). The
third row shows the load power distributed to the other 75 kw
unit (unit 2). It can be seen that when the total load power
request is less than 75 kw, only unit 1 runs and unit 2 does not
run. When the total load power request is greater than 75 kw,
unit 1 and unit 2 split the load power equally.

[0290] FIG. 32 shows the total electrical efficiency by using
this rule-based power management system. The first row
shows the total load power request, which increases with time
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as a ramp signal. The second row shows the total system
electrical efficiency. It can be seen that when the total load
power request reaches 75 kw, unit 1 ran full load, and the
system electrical efficiency achieved its highest point. It is
approximately 31%. When the total load power request is 150
kw, both units run full load, and the system electrical effi-
ciency also achieve its highest point.

[0291] This system electrical efficiency is satisfactory if
compared with the optimal efficiency. This can be seen from
FIG. 33. The continuous line indicates the system total effi-
ciency of rule-based implementation for two 75 kw units. The
“0” curve indicates the system electrical efficiency of optimal
power distribution. It can be seen that the system electrical
efficiency of the rule-based implementation is almost exactly
the same as that of the optimal power distribution. It is noted
that the optimal efficiency is slightly lower than that obtained
in the rule-based implementation at a few points due to
numerical round off error.

[0292] 4.8.2. Three Identical 75 kw Units

[0293] For three identical 75 kw units, FIG. 35 shows the
rule-based performance in a static simulation.

[0294] FIG. 34 shows how the PMS splits power among
three 75 kw units.

[0295] Itcan be seen that when the total load power request
is less than 75 kw, only unit 1 runs, and neither unit 2 nor unit
3 run. When the total load power request is greater than 75 kw
and less than 150 kw, unit 1 and unit 2 split the load power
equally. When the total load power request is greater than 150
kw, three units split power equally.

[0296] FIG. 35 shows the total electrical efficiency by using
this rule-based power management system. It can be seen that
when the total load power request reaches 75 kw, unit 1 ran
full load, and the total electrical efficiency achieve its highest
point. It is approximately 31%. When the total load power
request reaches 150 kw, both unit 1 and unit 2 ran full load,
and the system electrical efficiency also achieve its highest
point. When the total load power request reaches 225 kw,
three units ran full load and the system electrical efficiency
also achieve its highest point.

[0297] This system electrical efficiency is satisfactory if
compared with the optimal efficiency. This can be seen from
FIG. 36.

[0298] Itcanbe seen that the system electrical efficiency of
rule-based implementation is almost the same as that of the
optimal power distribution. This is the power distribution for
three 75 kw units. Power distribution for two different units
with one 75 kw unit and one 150 kw unit will now be evalu-
ated.

[0299] 4.8.3. Two Different Units with One 75 kw Unit and
One 150 kw Unit

[0300] For two different units, hybrid fuzzy node-based
implementation was used for power distribution in Matlab/
Simulink according to the optimal power distribution results.
FIG. 37 shows how the PMS split power between two differ-
ent units.

[0301] Itcanbe seen from the graph that when the total load
power request is less than 75 kw, only the 75 kw unit (unit 1)
runs and the 150 kw unit (unit 2) does not run. When the total
load power request is greater than 75 kw and less than 150 kw,
only the 150 kw unit (unit 2) runs and the 75 kw unit (unit 1)
does notrun. When the total load power request is greater than
150 kw, the 75 kw unit (unit 1) and the 150 kw unit (unit 2)
split the load power corresponding to the fuzzy rules designed

Jul. 22,2010

to approximate the optimal power distribution. FIG. 38 shows
the total electrical efficiency by using this hybrid fuzzy rule-
based PMS.

[0302] Itcan be seen that when the total load power request
reaches 75 kw, the 75 kw unit (unit 1) ran full load, and the
total electrical efficiency achieve its highest point. It is
approximately 31%. When the total load power request
reaches 150kw, the 150 kw unit (unit 2) runs full load, and the
system electrical efficiency achieve its third highest point.
When the total load power request reaches 225 kw, both the
75 kw unit (unit 1) and the 150 kw unit (unit 2) run full load,
and the system electrical efficiency achieve its second highest
point. Identical units can find two or three identical highest
efficiency points. This is not the case for different units
because different units have different efficiency maps, and
their maximum efficiency and the change of efficiency are
different.

[0303] This system efficiency is satisfactory if compared
with the optimal efficiency. This can be seen from FIG. 39 in
the following page.

[0304] Itcan be seenthat the system electrical efficiency of
hybrid fuzzy rule-based implementation is almost exactly the
same as that of optimal power distribution. This is the power
distribution for one 75 kw unit and one 150 kw unit. The
power distribution for three different units with two 75 kw
units (unit 1 and unit 2) and one 150 kw unit (unit 3) will now
be evaluated.

[0305] 4.8.4. Three Different Units with Two 75 kw Units
and One 150 kw Unit

[0306] For three different units, hybrid fuzzy rule-based
implementation is used for power distribution in Matlab/
Simulink according to the optimal power distribution results.
FIG. 40 shows how the power management system split
power among three different units with two 75 kw units and
one 150 kw unit.

[0307] Itcan be seen that when the total load power request
is less than 75 kw, only the 75 kw unit (unit 1) runs, and the
other 75 kw unit (unit 2) and the 150 kw unit (unit 3) do not
run. When the total load power request is greater than 75 kw
and less than 150 kw, the two 75 kw units (unit 1 and unit 2)
run the same load power and the 150 kw unit (unit 3) does not
run. When the total load power request is greater than 150 kw
and less than 225 kw, one 75 kw unit (unit 1) does not run, the
other 75 kw unit (unit 2) and a 150 kw unit (unit 3) split the
total load corresponding to the fuzzy rules designed to
approximate the optimal power distribution. When the total
load power request is greater than 225 kw, two 75 kw units run
identical load power amount, and the power of the 150 kw
unit corresponds to the fuzzy rules designed to approximate
the optimal power distribution. FIG. 41 shows the total elec-
trical efficiency by using this hybrid fuzzy rule-based power
management system.

[0308] Itcan be seen that when the total load power request
reaches 75 kw, the 75 kw unit (unit 1) ran full load, and the
system electrical efficiency achieve its highest point. It is
approximately 31%. When the total load power request
reaches 150 kw, both 75 kw units (unit 1 and unit 2) run full
load, and the system electrical efficiency also achieve its
highest point. When the total load power request reaches 225
kw, the 75 kw unit (unit 1) does not run, the other 75 kw unit
(unit 2) and a 150 kw unit (unit 3) run full load, and the system
electrical efficiency achieve its third highest point. When the
total load power request reaches 300 kw, all units run full load
and the system electrical efficiency achieve its second highest
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point. For three identical units, there are three identical high-
est efficiency points as seen in FIG. 36. This is not the case for
different units because different units have different effi-
ciency maps, and different units have different maximum
efficiency and different change of efficiency.

[0309] This system efficiency curve is satisfactory if com-
pared with the optimal efficiency. This can be seen from FIG.
42.

[0310] From the graph, it can be seen that the hybrid fuzzy
rule-based implementation approximates the optimal power
distribution. This is the power distribution for two 75 kw units
and one 150 kw unit. The power distribution for another
combination, one 75 kw unit and two 150 kw units, will now
be evaluated.

[0311] 4.8.5. Three Different Units with One 75 kw Unit
and Two 150 kw Units

[0312] FIG. 43 shows how the hybrid fuzzy rule-based
power management system distributes power among three
different units with one 75 kw unit (unit 1) and two 150 kw
units (unit 2 and unit 3). All crisp rules and fuzzy rules used
here are based on the optimal power distribution data.

[0313] From the graph, it can be seen that when the total
load power request is less than 75 kw, only the 75 kw unit (unit
1) runs, and neither 150 kw unit (unit 2 and unit 3) runs. When
the total load power request is greater than 75 kw and less than
150 kw, only one of the 150 kw units (unit 3) runs, and neither
the 75 kw unit (unit 1) nor the other 150 kw unit (unit 2) run.
When the total load power request is greater than 1501 cw and
less than 225 kw, one ofthe 150 kw units (unit 3) does not run.
The 75 kw unit (unit 1) and the other 150 kw unit (unit 2) split
the total load corresponding to the fuzzy rules designed to
approximate the optimal power distribution. When the total
load power request is greater than 225 kw and less than 300
kw, the 75 kw unit (unit 1) does not run, and two 150 kw units
(unit 2 and unit 3) equally split the total load power. When the
total load power request is greater than 300 kw, two 150 kw
units run identical load power amount; the load power is split
between one 75 kw unit (unit 1) and the two 150 kw units (unit
2 and unit 3) corresponding to the fuzzy rules designed to
approximate the optimal power distribution. FIG. 44 shows
the total electrical efficiency by using this hybrid fuzzy rule-
based power management system.

[0314] Itcan be seen that when the total load power request
reaches 75 kw as shown in FIG. 44, the 75 kw unit (unit 1) ran
full load, and the total electrical achieve its highest point. It is
approximately 31%. When the total load power request
reaches 150 kw, one of the 150 kw units (unit 3) runs full load
and the system electrical efficiency achieve its forth highest
point. When the total load power request reaches 225 kw, the
75 kw unit (unit 1) and a 150 kw unit (unit 2) ran full load, and
the system electrical efficiency achieve its second highest
point. When total load power request reaches 300 kw, two 150
kw units (unit 2 and unit 3) run full load and the system
electrical efficiency achieve its forth highest point, which is
the same system electrical efficiency as when the total load
power request is 150 kw. When the total load power request
reaches 375 kw, all units run full load and the system electri-
cal efficiency achieve its third highest point.

[0315] The efficiency curve of the hybrid fuzzy rule-based
system for one 75 kw unit and two 150 kw units also is
satisfactory if compared with the optimal efficiency. It can be
seen from FIG. 45.
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[0316] From FIG. 45, it can be seen that the hybrid fuzzy
rule-based implementation approximates the optimal power
distribution.

[0317] 4.9. Analysis of Results

[0318] The simulation results of the above five configura-
tions in this chapter demonstrate that the performance of the
proposed optimal rule-based and hybrid fuzzy rule-based
PMS improve the system efficiency significantly compared to
the rule-based PMS. That is currently used by our industry
partner. These proposed PMS approximate the optimal results
obtained by using the SQP method as described in Chapter 3.
They are also easy to implement online.

5. Conclusion and Recommendations

[0319] 5.1. Conclusion

[0320] In this Part, optimal power management strategies
were designed for DG system with five configurations. First,
SQP was used to find optimal power distribution for each
configuration offline. Then the optimal system efficiencies
were compared with that of existing power distribution meth-
ods. The simulation results shows that the optimal power
distribution is much better than the existing power distribu-
tion methods. It can improve the system efficiency signifi-
cantly. However, because of the time typically needed to
calculate the optimal solution online by using mathematic
methods such as SQP, rule-based and hybrid fuzzy rule-based
systems were used to implement the optimal PMS according
to the summary of the optimal data. The optimal solution
results of some configurations have obvious patterns, around
which rule-based PMS were designed. Some other configu-
rations do not have obvious patterns in certain regions. In
those cases hybrid fuzzy rule-based PMS were designed. The
proposed rule-based and hybrid fuzzy rule-based PMS
approximate the optimal power distribution. It is also easy to
implement online.

[0321] 5.2. Recommendations

[0322] GA can also be used to optimize the fuzzy systems.
Alternatively, other evolutionary techniques such as particle
swarm optimization (PSO) also can be used. Those evolution-
ary techniques can be used to tune fuzzy system parameters
such as fuzzy membership functions and fuzzy rules.

[0323] The fuzzy system is powerful at exploring complex
problems because it can be understood and built easily by
engineers according to their experience since a fuzzy system
encodes human reasoning. However, fuzzy logic lacks preci-
sion. Additionally, when the number of variables of a fuzzy
system increases, the possible number of rules increases
exponentially, and it will be difficult to design a complete rule
set to achieve optimal system performance.

[0324] In the future, for the optimization part as described
in Chapter 3, a DP also can be used to optimize the power
distribution. DP is a global optimization method, and it can
find the global optimizer directly. Additionally, engine start
up cost can be taken into consideration when define the sys-
tem electrical efficiency cost function. For the implementa-
tion part as described in Chapter 4, the hybrid fuzzy rule-
based systems still can be used to design PMS. However, look
up tables also can be used to design the PMS if the environ-
ment is stable. The look up table is easy to implement online,
though it is not robust against disturbance. In addition, the
output of a look up table is generally more precise than the
output of a fuzzy system if there is sufficient optimal data in
the look up table.
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[0325] No matter whether look up table or hybrid fuzzy

rule-based PMS is used, in the future, it is better to take the -continued

site condition into consideration when designing those PMS.

Generally speaking, when site conditions change, the engine Optimization Programs

efficiency map also changes. In this case, the “derate” table of EFF(K)=c(k)/fval;

the engine efficiency can be added into the PMS model to end
calculate the difference in performance based on the actual E?SU1t=§lX1’X2’ x3"EFF’]
iary o

site conditions. And then to make the implementation results

more practical and robust against environmental variation.

Appendix A to Part 1
[0326]

Optimization Programs

Al Two Identical Units
diary eff6.txt
clear all
Pmax=75;
for k=1:35
c(k)=k*2+5;
Acq=[11;
beg=c(k);
1b=[0;07;
ub=[75;75];
if ¢(k)<=Pmax
y0=c(k)-5;
else
y0=c(k)/2+5;%¢c(k)/2+30 for n=2
end
%for n=2;x0=[10;80];%][10;39];[20;401;[20;80];[30;48];[30;80];[40;60];
[40;70];[40;80]
x0=[y0;c(k)-y0];
%x0=[0;12];
options = optimset(‘LargeScale’;off);
[%,fval]=finincon(@myfun6,x0,[ 1,[ ],Aeq,beq,lb,ub,[ ],options);
x1 (k)=x(1);
x2(k)=x(2);
EFF(k)=c(k)/fval;
end
result=[c¢’ x1’x2" EFT]
diary off
—————————————— myfunction6é
function f = rmyfun6(x)
P=[10 14.7 20 23.3 30 40 50 60 70 80];
eff=[0.117 0.150 0.184 0.200 0.226 0.254 0.274 0.292 0.304 0.311];
n=2;
format long
p=polyfit(P,eff,n);
f=(x(1)/polyval(p,x(1))+x(2)/polyval(p,x(2)));
A2 Three Identical Units

diary eff7.txt
Pmax=75;
for k=1:70
c(k)=k*2+5;
Aeq=[111];
beg=c(k);
1b=[0;0;07];
ub=[Pmax;Pmax;Pmax];
if ¢(k)<=Pmax

yl=c(k)-5;

y2=2;
elseif Pmax<c(k)<=2*Pmax

yl=c(k)/2+2;
y2=2;

else

y 1 =c(k)/3+10;

y2=c(k)/3+10; end
x0=[y 1 ;y2;e(k)-y1 -y2];
[%,fval]=finincon(@myfun7,x0,[ 1,[ ],Acq,beq,lb,ub);
x1(k)=x(1);
x2(k)--x(2);
x3(k)=x(3);

function f = myfun7(x)
P=[10 14.7 20 23.3 30 40 50 60 70 80];
eff=[0.117 0.150 0.184 0.200 0.226 0.254 0.274 0.292 0.304 0.311];
n=2;
format long
p=polyfit(P,eff,n);

f=(x(1)/polyval(p,x(1))+x(2)/polyval(p,x(2))}+x(3)/polyval(p,x(3)));

A3 Two different Units
diary eff8.txt
clear all
Pmax1=75;
Pmax2=150;
for k=1:215
c(k)=k*1+10;
Acq=[11;
beq = c(k) ;
1b=[0;0;07;
ub=[Pmaxl;Pmax2];
if e(k)<=PmaxI
y0=c(k)-5;%or c(k)/2;if change to c(k)/4,the result will change

elseif c(k)<=Pmax2

y0=2;%or 12
else

y0=c(k)/4;%or c(k)/3,0r c(k)/3+40,c(k)/2

end
x0=[y0;c(k)-y0];
[x,fval]=finincon(@myfun8,x0,[ 1,[ ],Aeq,beq,lb,ub);
xl (k)=x(1);
x2(k)=x(2);
EFF(k)=c(k)/fval;
end
result=[c¢’ x1’ k2’ EFF’]
diary off

function f= myfun8(x)

P=[10 14.7 20 23.3 30 40 50 60 70 80];

eff[ 0.117 0.150 0.184 0.200 0.226 0.254 0.274 0.292 0.304 0.311];

P2=[20 30 40 60 80 90 100 120 140 150];

eff2=[0.1029 0.14 0.1699 0.2130 0.2410 0.2502 0.2605 0.279

0.2906 0.293];

n=2;

format long

p=polyfit(P,eff,n);

q=polyfit(P2,eff2,n);

f=(x(1)/polyval(p.x(1))+x(2)/polyval(q,x(2)));
A4 Three Different Units with Two 751cw Units and One 150 kw Unit

diary eff9.txt

Pmax1=75;

Pmax2=I50;

for k=1:290

c(k)=k*1+10;

Aeq=[I11];

beg=c(k);

1b=[0;0;07;

ub=[Pmax I ;Pmax! ;Pmax2];

if e(k)<=Pmax 1

yl=c(k)-5;

y2=2;

elseif c(k)<=Pmax2

yl=c(k)/2+2;

y2=c(k)/2+2;

elseif c(k)<=Pmax2+Pmax1

y1=2;

y2=c(k)13+10;

else

yl=c(k)/4;

y2=c(k)/4;

end

x0=[y/;y2;c(k)-y1-y2];
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-continued

Optimization Programs

[xfval]=fmincon(@myfim9,x0,0,[ ],Aerbbeq,lb,ub);
xl(k)=x(1);
x2(k)=x(2);
x3(k)=x(3);
EFF(k)=c(k)/fval;
end
result-lc’ xi’ x2” x3” EFF’]
diary off
myfun9
function f = myfun9(x)
P=[10 14.7 20 23.3 30 40 50 60 70 80];
eff=[0.117 0.150 0.184 0.200 0.226 0.254 0.274 0.292 0.304 0.311];
P2=[ 20 30 40 60 80 90 100 120 140 150];
eff2=[ 0.1029 0.14 0.1699 0.2130 0.2410 0.2502 0.2605
0.279 0.2906 0.293];
n=2;
format long
p=polyfit(P,eff,n);
q=polyfit(P2,eff2,n);
f=(x(1)/polyval(p,x(1))+x(2)/polyval(p,x(2))+x(3)/polyval(q,x(3)));
A5 Three Different Units with One 75 kw Unit and Two 150 kw Units
diary eff10.txt
clear all
Pmax1=75;
Pmax2=150;
for k=1:360
c(k)=k*1+10;
Aeq=[111];
beg=c(k);
1b=[0;0;0];
ub=[Pmaxl ;Pmax2;Pmax2];
if e(k)<=Pmaxl
yi=e(k)-5;
y2=2;
elseif c(k)<=Pmax2
yl=2
y2=2;
elseif c(k)<=Pmax2+Pmax!|
yl=c(k)/3;
y2=2;
elseif c(k)<=2*Pmax2
yl=2;
y2=c(k)/2;
else
yl=c(k)/5;
y2=c(k)/2;%o0r y2=2%c(k)/5
end
x0=[yl ; y2; e(k)-yl-y2] ;
[x,fval]=fmineon(@mmyfunl0, X0, [ ], [ ],Aeq,be g, lb,ub);
xl(k)=x(1);
x2(k)=x(2);
x3(k) =x(3);
EFF(k)=e(k)/fval;
end
result=[c¢’ x1’ k2’ x3’ EPP]
diary off
myfunl0
function f = myfun10(x)
P=[10 14.7 20 23.3 30 40 50 60 70 80];
eff=[ 0.117 0.150 0.184 0.200 0.226 0.254 0.274 0.292 0.304 0.31 IJ;
P2=[ 20 30 40 60 80 90 100 120 140 150];
eff2=[ 0.1029 0.14 0.1699 0.2130 0.2410 0.2502 0.2605 0.279
0.2906 0.293];
n=2;
format Iong
p=polyfit(P,eff,n);
q=polyfit(P2,eff2,n);
f=(x(1)/polyval(p,x(1))+x(2)/polyval(q,x(2))+x(3)/polyval(q,x(3)))
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Appendix B to Part 1

FIS Files

B1 FIS of ELSE subsystem for Three Different Units
with Two 75 kw Units and One 150 kw Unit
[System]
Name=13MS_5_3DIFF_25_2’
Type--‘mamdatur
Version=2.0
Numlnputs=1
NumOutputs=1
NumRules=4
AndMethod="rrin’
OrMethod="max’
ImpMethod=‘min’
AggMethod-‘max.
DefuzzMethod="centroid’
[Inputl]
Name-‘Total_Required_ Power.
Range-[223 300]
NumMFs=4
MF1=1.2:1rapmf,[223 230 250.1944444444-44 258]
MF2="M'T"trapm{,f254 262 280.342592592593 289]
MF3=Th’Crapmf,[278.6 283.8 301A 314.6]
MF4----"01C:trapmf,[248 254259.564814814815 265
[Outputl]
Name--‘unit 3”
Range=[110 150]
NumMFs=4
MF1=1;:lrapmf,[110.2 116.8 129.9 137.9]
MF2="M’ftrapm{,[140.3 142.3 146.5 148.8]
MF3-11°. trapmf,[146.1 1473 150 162.6]
MF4-:0K’ ftrapmf,[134.7 137.6 141.8 144]
[Rules]
1,1(1):1
2,211
3,3(1)1
4,4(1): 1
B2 FIS of ELSE subsystem for Three Different Units
with One 75 kw Unit and Two 150 kw Units
[System]
Name="PIV1S_5_3DI1FF_2B_2’
Type="mamdani’
Version=2.0
NumInputs=I
NumOutputs=1
NumRules=5
AndMethod—=min*
OrMethod="max’
ImpMethod=‘min’
AggMethod="max’
DefuzzMethod=*centroid.
[Inputl]
Name="Total Required_ Power’
Range=[300 375]
NumMFs=5
MF1="12trimf,[297.7 312.3 334.5]
MF2="El’Atimf,[341.1 356.6 372.9]
MF3="MYtriruf,[322.3 338.6 356.8]
MF4=bk’ftrimf,[309.1 3253 341.4]
MF5=VI-1*:*trimf,[359.1 366.6 376.8]
[Outputl]
Name=‘unit_ 1’
Range=[59 75]
NumMFs=5
MF1="H"ftrirnf,[69.42 72.71 73.63]
MF2=TH’:trimf,[73.2 74.54 77.18]
MF3&L*:"trimf,[58.52 62.88 67.2]
MF4="M’Arimf,[65.85 70.3 70.92]
MF5="0K’ftrimf",[63.57 66.45 68.6]
[Rules]
1,3(1):1
2,1(@:1
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-continued
FIS Files
3,4(1):1
4,5():1
5,2(1) 10

Part 2—System Description

1. Introduction

[0328] One object of this design is to provide an integrated
and optimized Distributed Generation System Control
(DGSC) module that improves the overall power generation
performance attributes and lowers the capital cost of a dis-
tributed generation site installation. The described embodi-
ment leverages the IEEE 1547 “Standard for Interconnecting
Distributed Resources with Electric Power Systems” (“Stan-
dard” herein) that has defined a nationally recognized stan-
dard for grid interconnect for distributed generation (DG)
resources.

2. Top Level System Controller Description

[0329] 2.1. Scope

[0330] This section outlines the characteristics of one
embodiment of a top level system control of internal combus-
tion engine generating system production units. Other types
of generators and further variations of the specific design
choices described herein will occur to those skilled in this
technology area without undue experimentation based on this
disclosure.

[0331] 2.2. Applicable Documents
[0332] 2.2.1. Standards
[0333] Commercial production components of the system

may be selected to comply with the relevant aspects of IEEE

1547 and other standards listed below.

[0334] IEEE P1547 Standard for Distributed Resources
Interconnected with Electric Power System

[0335] IEEE 519 IEEE Recommended Practices and
Requirements for Harmonic Control in Electric Power

Systems
[0336] UL 508C Standard for Power Conversion Equip-
ment
[0337] UL 2200 Stationary Engine Generators Assemblies
[0338] NFPA 70 National Electric Code
[0339] 2.2.2. Acronyms

DG Distributed Generator

DGSC Distributed Generator System Controller
HMI Human Machine Interface

[0340] GPM Grid Parallel Mode of operation
GIM Grid Isolated Mode of operation

1/0 Input/Output

ISO International Organization for Standardization

UIC Utility Interface Controller

[0341] 2.3. System Overview
[0342] 2.3.1. System Definition
[0343] A DG unit is an internal combustion engine gener-

ating system with a synchronous generator. The DG system
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controller coordinates the control of one or more DG units as
shown in FIG. 46. With the addition of hardware modules, the
system controller shall be capable of controlling up to 8
parallel DG units that are connected to the local utility grid in
GPM or to the local site distribution bus in GIM. The dem-
onstration prototype will be capable of controlling 2 parallel
units. Researchers will investigate the possibility of including
DG units with induction generators.

[0344] 2.3.2. DG Unit Description

[0345] The DG unit is a natural gas fueled engine driving a
synchronous generator that produces 60 Hz three-phase elec-
trical power at 277/480 VAC under SO standard conditions.
The rated output of each DG unit will be within the range
75-200 kW.

[0346] 2.3.3 Software Coding

[0347] The preferred programming language for system
control functions is C or C++, though many other computing
languages would also be appropriate. Exceptions in various
embodiments include relaying functions written in assembly
language and monitoring software written with Microsoft
Visual Basic.

[0348] 2.3.4 Controller Structure and Communication
[0349] Each DG unit may include a subsystem control
module. There are two main variations of the control structure
presently under consideration.

[0350] Structure A involves DG subsystem modules com-
municating with a supervisory controller. The supervisory
controller will perform the UIC functions as shown in FIG.
47.

[0351] Structure B involves DG subsystem modules com-
municating with each other and one module will assume the
supervisory (i.e. master) control function. There will be an
automatic procedure for determining which machine serves
as the master. The user will also be able to specity a priority
list for selecting the master unit. Within structure B there are
two variants:

[0352] Structure B.1 has a separate UIC, somewhat similar
to FIG. 47.
[0353] Structure B.2 incorporates UIC capabilities into

every subsystem module.

[0354] Regardless of the structure, in these embodiments
every subsystem module and any separate supervisory con-
troller or UIC will be connected to a CAN bus network.
[0355] Regardless of the structure, in these embodiments
every subsystem module and any separate supervisory con-
troller or UIC will have an HMI.

[0356] Regardless of the structure, a password protected
TCP/IP interface will allow a local or remote operator to
monitor performance of the DG system and individual units.
The TCP/IP interface will also allow the operator to upload
and download system and individual unit control specifica-
tion parameters interactively and in .xml file format.

[0357] There may also be dedicated analog and digital sig-
nal channels in addition to the CAN bus.

[0358] 2.3.5 Control of Electrical Connections

[0359] Each DG unit shall be equipped with a motorized
circuit breaker to interface with the site load bus. The DG
system controller will also control the utility tie circuit
breaker. The DG unit breaker and utility breaker control shall
be governed according to the IEEE 1547 standard. Each DG
unit shall be equipped with a fuel solenoid shutoff valve. The
DG system controller will control the turning on and off of an
additional fuel solenoid shutoff valve.
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[0360] 2.3.6 Import/Export Control

[0361] The generator set shall include provisions for con-
trolling the amount of power that is imported from or
exported to the utility grid.

TABLE 2-1

General characteristics of DG unit
General characteristics

Rated Output Power of Each DG Unit: 75 kW <P, 0q < 200 kW
AC Output Voltage: 3-phase, 277/480 VAC
Output Frequency: 60 Hz

Maximum Number of Units: 8 DG units

Net Electric Efficiency at ISO at 75% Load ~ 28%

Base System Output for Pricing Purposes 480 V/60 Hz

Power Factor Capability >0.8

Standard for Grid Interconnection IEEE 1547

[0362] 2.4. DG System Controller Interface Descriptions
[0363] 2.4.1 Human Machine Interface
[0364] Each DG unit and any supervisory controller in this

embodiment is equipped with a Human Machine Interface
(HMI) device to provide a local operator control panel,
parameter settings, system indicators, visual alarm or shut-
down information, and emergency power off. The HMI
devices shall be able to display the following information:
generator voltage and current, frequency, DG output in kw
and kvar, oil pressure, water temperature, synchronization
status, total kilowatt hours, and alarm history.

[0365] 2.4.2. List of /O for System Controller

[0366] Input switches in the preferred system controller
include a run with load switch, mode selection switch (auto-
matic mode or test mode), emergency stop switch, voltage
raise/lower switch, and speed raise/lower switch. Utility
switches include a “Utility source circuit breaker Aux in”
input switch, “Utility source circuit breaker open/close” input
switch, a “Utility/bus PT input” switch, a “Local bus PT
disconnect,” and a “Mains PT disconnect” switch.

[0367] The generator portion of the system controller in
this embodiment includes these inputs: “Generator circuit
breaker Aux in,” “Generator circuit breaker open/close,”
“Generator CT,” and “Generator PT.” Outputs are included
for voltage bias and a Generator On/off Switch.

[0368] Engine-related /O in this embodiment includes
inputs for Engine warning, Engine fault, MPU pickup, Idle/
rated speed, and Engine crank, as well as outputs for Speed
bias, Fuel shutoff valve, and Engine On/off Switch.

[0369] 2.5. Summary of System Functions
[0370] 2.5.1 Summary of System Controller Functions
[0371] The system controller (DGSC) in the present

embodiment provides several functions. At the system level,
the DGSC provides grid synchronization and protection of
the DG Unit, Regulation in GPM and GIM, and a human/
automatic switch between GPM/GIM. Internally, the DGSC
provides control of power to ENI auxiliary loads, provides
gas shutoff valve control, monitors utility voltage, and imple-
ments lower-voltage power supply control. Further, the
DGSC adds communication functionality in controlling the
HMI, communicating with an external DG gateway, and con-
trolling import and export of power.

[0372] 2.5.2. Summary of UIC Functions

[0373] The UIC in the present embodiment complies with
the IEEE 1547 Standard for Interconnecting Distributed
Resources with Electric Power Systems.
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[0374] 2.5.3 Summary of DG Unit Protection Functions
[0375] The DG units in the present embodiment include
current limit protection, emergency power shutdown, protec-
tive power shutdown, warning indications, generator over/
under voltage indications, generator over/under frequency
indications, anti-islanding protection, loss of mains detec-
tion, loss of generator excitation, speed/frequency mismatch
protection, reverse power protection, and short circuit protec-
tion.

[0376] 2.6 Mode of Operations and Regulations
[0377] 2.6.1 Single Unit Configurations
[0378] Single units in the present embodiment may operate

in GIM (voltage-regulating speed control mode) or GPM
(voltage-following torque control mode).

[0379] 2.6.2 Multiple Unit Configurations

[0380] Likewise, multiple-unit configurations of the
present embodiment can also operate in GIM or GPM. In
GIM, one unit uses voltage-regulating speed control, while
other units use voltage-following torque control. In GPM, all
units use voltage-following torque control.

[0381] 2.6.3 Loss of Utility Power

[0382] Intheeventofautility power outage, the DG system
automatically disconnects from the utility and continues to
provide power to the load. If the engines are not operating at
the time of the outage, they start automatically, disconnect
from the utility, and provide power to the load. Upon return of
the utility power, the DG system synchronizes to the utility
grid, reconnects to the utility, and continues as instructed
prior to the outage.

[0383] 2.6.4 Starting Parallel Units

[0384] In multi-unit operation, when a start command is
sent to the DGSC, all units start and operate parallel to each
other, then to the utility grid as needed to supply the load.
[0385] 2.6.5.50/60 Hz Operation

[0386] The DG system is capable of operating at either 60
Hzor 50 Hz with a gearbox changes and appropriate electrical
component changes.

[0387] 2.6.6. Automatic and Manual/Test Modes

[0388] The DG system controller is capable of operating in
either Manual/Test Mode or Automatic Mode.

[0389] 2.6.7. Regulation in Grid Isolated Mode (GIM)
[0390] The total harmonic distortion of the DG system
electrical output is less than 5% at no load. The DG system
controller is capable of regulating the output voltage within a
maximum range of +/-0.5% of nominal voltage in GIM (per
ANSI84.1B). The DG system controller is capable of main-
taining a maximum output voltage deviation of +20% to
-25% given a 25% load pickup or a 100% load rejection in
GIM. The frequency operating range of DG system in GIM is
defined as +/-3% for 50 Hz or 60 Hz systems.

[0391] 2.6.8 Regulation in Grid Parallel Mode (GPM)
[0392] The DGSC includes provisions for controlling the
amount of power that is imported from or exported to the
utility grid. The DGSC complies with the IEEE 1547 Stan-
dard for Interconnecting Distributed Resources with Electric
Power Systems.

3. Modeling Overview

[0393] An integrated system model for the present embodi-
ment was developed and validated in Matlab/Simulink. The
modeling of the system included four major parts: engine,
generator, load/grid, and system controller. Models for each
individual component were developed and all of them were
integrated into a system model.
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[0394] 3.1. Engine and Engine Control Module (ECM)

[0395] Theengine model in this embodiment is a simplified
inertia model based on the simple engine model illustrated in
FIG. 48. The input parameter is the throttle angle command.
The output parameter is engine torque generated and actual
engine speed. The engine load torque is regarded as a distur-
bance to the engine system.

[0396] A quasi-static engine model (shown in FIG. 49) was
applied in the simulation of the DG system because the engine
operates at an approximately constant speed (e.g., at 1800
rpm).

[0397] The engine control module (ECM) is an indepen-
dent control executing all of the engine management func-
tions, including fuel/air ratio, governor, ignition and health
monitoring. In the case of original engine speed closed-loop
control, only a PID (or PI) feedback control was considered to
maintain desired engine speed by controlling the engine
throttle angle. It should be emphasized that the engine speed
fluctuation should be kept to a minimum in order to achieve an
expected grid frequency.

[0398] FIG. 50 shows a block diagram of the engine speed
feedback control. By controlling the engine throttle angle, the
engine speed can be maintained a set point. For example, if
the load torque increases suddenly for some reason, the
engine speed will drop. Via feedback and PID controller, an
engine speed drop will cause increase of the throttle angle.
Therefore, more engine torque will be generated to make the
engine speed return to a set point.

[0399] It should be noted that when engine is running at
torque control mode, the output speed is not determined by
the engine itself. The output speed will follow the speed in the
grid. The system controller will monitor the output power and
adjust the speed bias command to control the system.

[0400] 3.2. Automatic Voltage Regulator (AVR) and Gen-
erator Module

[0401] 3.2.1. Introduction to the AVR

[0402] The controller will send a command signal to the

AVR to regulate the voltage. Because the present embodiment
uses a brushless generator, the AVR cannot control the field
voltage (V) directly. The field voltage (V) will be controlled
pass through the exciter part. Therefore, the controller will
control the exciter voltage (V,) in instead of the field voltage
(V). The process of controlling voltage in the AVR starts
from receiving the signal from controller, changing that sig-
nal to the exciter voltage (V,). And the exciter voltage (V,)
creates flux which in this step, the process still happens in
stator part and this flux will create the field voltage from the
rectifier which is in the rotor part. The process of the system
is shown in FIG. 51.

[0403] In the next step, we simplify the above system by
using the relationship between the AVR and Generator in
which we know as the graph of OCC (Open Circuit Condi-
tion). The relationship illustrated in FIG. 52 helps us to trans-
late from exciter voltage (V,) to internal voltage (Ea). Below,
we show the simulation results from this graph. After that, we
can calculate the terminal voltage (Vt) from the relationship
between the output power, the armature reactance and the
internal voltage assuming the power factor (PF) equals to 1.
The formulas used to calculate the terminal voltage are
derived from the phasor and schematic diagrams in FIG. 53:
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[0404] 3.2.2. AVR Model

[0405] We use the relationship above to generate the Sim-
ulink block diagram. As illustrated in FIG. 54, the input to the
AVR is the error voltage signal from the controller. The output
of the AVR and the input of the generator are the exciter
voltage. And the output of the generator is the terminal volt-
age (V).

[0406] Instead of using the exciter and rectifier, we will use
graph of OCC (Open Circuit Condition) to build the relation-
ship. Then, we use close loop control with PID to build the
model below.

[0407] In the example embodiment, the model of FIG. 55
takes 480V as the reference input value. After simulation with
the step function of output power signal, we get the steady-
state output at 480V also.

[0408] 3.2.3. Simulation Results

[0409] The model that is shown in FIG. 56 is the AVR
model by Matlab/Simulink program. This model is based on
the model from FIG. 55.

[0410] The simulation results are shown in FIGS. 57 and
58. These figures illustrate the same data, but FIG. 55 is
plotted with frequency 60 Hz. FIGS. 57-58 each include 3
graphs: Load Power (kw) vs. Time (s), Terminal Voltage (V)
vs. Time (s) and Current (A) vs. Time (s).

[0411] For this simulation, we look closely at the effect of
the terminal voltage (V,) and current when the load power
changes. We assume that the load power drops from 60 KW to
50 KW and suddenly increases from 50 KW to 60 KW at 6
and 12 seconds, respectively. And the figures show the
changes of both voltage and current graphs.

[0412] 3.3. System Controller Model

[0413] The list of system 1/O for the system controller in
this embodiment appears in Section 2.4 of this Part. The list of
system functions appears in Section 3.3.2. In this example
embodiment, most of those functions are implemented in a
state machine.

[0414] 3.3.1. PARAMETERS for the system controller
[0415] The parameters provided to the system controller in
the present embodiment include: DG unit auxiliary load
parameters, maximum current, maximum voltage, maximum
engine speed, maximum load, maximum power, and maxi-
mum generator frequency.

[0416] 3.3.2. System Function

[0417] There are two types of controllers in the system: DG
Unit Controllers and one or more Supervisory Controllers.
The former control a single DG unit while the latter coordi-
nate the operation of multiple units in a single location or
portion of a DG system.

[0418] DG Unit Controllers regulate the engine in GPM
and GIM, control power to ENI auxiliary loads, control the
gas shutoff valve, monitor utility voltage, control the lower
voltage power supply, provide current limit protection, con-
trol emergency power shutdown and protective power shut-
down, generate warning indications, detect and indicate gen-
erator over/under voltage and generator over/under frequency
conditions, provide anti-islanding protection and loss of
mains detection, detect and indicate loss of generator excita-
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tion and speed/frequency mismatch, provide reverse power
protection, detect and indicate short circuit conditions, and
control the unit’s import and export of power.

[0419] The Supervisory Controller controls grid synchro-
nization and protection of the DG Unit, provides a human/
automatic switch between GPM/GIM, controls the HMI, and
communicates with an external DG Gateway. The UIC Con-
troller complies with the IEEE 1547 Standard for Intercon-
necting Distributed Resources with Electric Power Systems.
[0420] 3.3.3. GPM/GIM Mode Regulation

[0421] The DG system can run at GIM mode or GPM
mode. Each DG unit will be running at either speed control
mode or torque control mode according to the situation. The
supervisory controller will determine the control mode of
each DG unit. The basic rules are as follows

TABLE 3-1

Control mode rules in GIM and GPM mode

GIM GPM

Single DG unit speed control torque control

Multiple DG units one master unit uses speed control, all units use
other units use voltage-following  torque control
torque control

[0422] When running in speed control mode, DG unit con-
troller will send out constant speed bias command to the
Engine Control Module (ECM). The constant speed bias will
be 1800 rpm (translated from 60 Hz frequency). DG unit
controller also sends out constant voltage bias command to
the Automatic Voltage Regulator (AVR).

[0423] When running at torque control mode, DG unit con-
troller will monitor the output power of dg unit and adjust the
speed bias command to control the output torque. The speed
bias command sent to the ECM would change the output
torque instead of the speed of the engine. The engine speed
will follow the grid speed automatically. DG unit controller
also sends out voltage bias command, which is same as the
grid voltage, to the Automatic Voltage Regulator (AVR).
[0424] 3.3.4. Feed-Forward Controller in GIM Mode
[0425] It can be seen from the FIG. 50, by controlling the
engine throttle angle, the engine speed can be maintained a set
point. For example, if the load torque increases suddenly for
some reason, the engine speed will drop. Via feedback and
PID controller, an engine speed drop will cause increase of
the throttle angle. Therefore, more engine torque will be
generated to make the engine speed return to a set point.
[0426] It can be also seen from the FIG. 50 that the engine
speed definitely drops when the load torque increases sud-
denly no matter how the PID controller was designed. That is,
an engine speed bias was sensed firstly, and then the PID
controller takes effect to maintain the engine speed. The
simulation results (as shown in FIG. 59) prove that the engine
speed is subject to the changing load torques when only a
feedback control is used.

[0427] Combined feed-forward plus feedback control is
proposed to reduce the effect of the measurable disturbance
(such as load torque) on the engine speed output. In the most
ideal situation, feed-forward control can entirely eliminate
the effect of the measurable disturbance on the engine speed
output. Even when there are modeling errors, feed-forward
control can often reduce the effect of the measurable distur-
bance on the output better than that achievable by feedback
control alone.
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[0428] In the DG system, the engine load torque can be
calculated based on the local consumed power and the
amount of power that is imported from or exported to the
utility grid. FIG. 60 gives the block diagram of a feed-forward
plus feedback engine speed control system considering the
engine torque is a measurable disturbance.

[0429] InFIG. 60, the load torque can be calculated by the
summary of various load powers. Therefore, the engine load
torque can be regarded as a measurable signal, rather than a
disturbance signal.

[0430] FIG. 61 gives the simulation results of the feed-
forward plus feedback engine control system. It can be seen
that feed-forward control is able to rapidly suppress the
changes of the engine load torque. For example, if the load
torque increases suddenly for some reason, the feed-forward
control goes into action and the throttle angle will increase
immediately even without engine speed drop. The engine
speed is robust against the changing engine load torque.
Therefore, the engine speed fluctuation is little subject to the
changing engine load torque via feed-forward control.
[0431] 3.3.5. Engine Control in GPM Mode

[0432] When considering the problem of frequency control
of interconnected areas, we assume that the utility grid is an
infinite power pool. That is, the generator can not change the
grid frequency. The following block diagram gives the power
flows among the generator, various loads and tie-line and also
gives the phasor diagram for the generator and utility grid.
[0433] In FIG. 62, we can obtain the formula for the real
(not including reactive) generator power, as follows:

[EIV .
Po=P,—Py = T sind

where the angle d is the phase angle between the generator
emf E and the utility voltage Vt. Here the power angle 0 is
defined positive when E leads Vt; P, P,, P, are the real
power of the generator, various loads and utility grid respec-
tively.

[0434] In the present embodiments, before the generator is
connected with the grid, the two are synchronized. Synchro-
nization can take place if the following conditions are all
satisfied:

1. The generator and grid frequencies are equal.

2. The phase sequence of the generator matches that of the
grid.

3. The generator emf E and the grid voltage U are of equal
magnitude.

4. E and U have equal phase.

If and only if all these conditions are satisfied, the voltage
across the circuit breaker 52G1 and 52-1 is zero. At this time,
the generator can be smoothly “locked” onto the grid by
closing the circuit breakers.

[0435] Once the synchronous generator is synchronized
onto the grid network, its speed will always synchronize with
the grid frequency as long as the grid power is large enough.
That is, the speed of the engine coupling with the generator
can not be changed either.

[0436] It can be observed that the magnitude and direction
of the power flow of the machine will be determined accord-
ing to the power angle d. In reality, the power angle 9 is
controlled by means of the engine torque (or engine power).
If the engine produces more power than consumed by various
loads, the rest of power will flow to the grid.
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[0437] To sum up, when DG units are interconnected with
the grid, though the engine speed cannot be changed by the
throttle, the throttle can still control the engine torque (or
engine power) so as to control the power flow between the
generator and the tie-line. FIG. 63 gives the block diagram of
the feed-forward control for maintaining a minimum import
power from the grid.

[0438] The engine speed controller (inner PID) accepts an
engine speed bias as an input, but the engine speed is com-
pletely determined by the grid. So if we set the engine speed
bias equal to 5 rpm and the synchronous engine speed is
actually 1800 rpm, then engine speed controller might tell the
engine we want to run at 1805 rpm. Then the engine would try
harder, thus increasing power, but would still turn at grid
synchronous speed 1800 rpm.

[0439] The outer PID controller monitors the grid power (or
generator output power minus load power) in load-following
mode to determine the engine speed bias sent to the engine
speed controller (inner PID). As mentioned above, the inner
PID can control the engine torque (or engine power) output,
thus controlling the amount of the power imported from the
grid indirectly.

[0440] Assuming the minimum import power in the utility
contract is 10 kW, the simulation results (shown in FIG. 64)
show how the outer PID controller works to maintain 10 kW
import power.

[0441] 3.4. Load/Grid Module

[0442] The grid is modeled as a voltage source and imped-
ance, while the load is modeled as an impedance. The input
parameters for the load/grid are the impedance ofthe grid, the
working voltage of the grid, the maximum voltage of the grid,
and the impedance of the load.

[0443] 3.5. Islanding Detection

[0444] The dynamic model of a DG connected to the grid
resembles that of a network containing one small generator
connected by a distribution line to a much larger generator.
The small generator represents the DG and the large generator
represents the grid. All the synchronous generators in a power
system operate in lock step synchronism because the AC
voltage results in synchronization of torques between the
machines. Therefore, all machines in an interconnection have
nearly identical average frequencies. However, there can still
be differences in the instantaneous frequencies of intercon-
nected machines. The present islanding-detection scheme
uses the fact that deviations in frequency caused by a delib-
erate perturbation signal are much smaller when a DG is
connected to the grid than when it is in an island.

[0445] The circuit diagram in FIG. 65 shows the classical
model of two synchronous generators connected by a distri-
bution line. The voltage source in series with reactance jx, on
the right hand side represents the DG unit synchronous gen-
erator. Resistance R, represents a load that matches the DG
real power output. The corresponding elements on the left
hand side of the diagram represent a generator having 100
times the inertia of the DG along with its matching load.
Reactance jx; represents a power distribution line. Islanding
is simulated by disconnecting the distribution line.

[0446] FIG. 66 shows simulated frequency measurements
from the DG unit before and after the distribution line is
disconnected. A 1 Hz perturbation signal is superimposed on
the DG unit’s throttle signal during the entire simulation. The
perturbation signal produces a 1% variation of the DG
mechanical input power. The horizontal axis indicates mea-
surement samples that have a frequency of 720 Hz. Discon-
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nection of the distribution line occurs after 5 seconds (3600
samples). Measurement noise has been simulated by adding
actual frequency data from a PMU. Frequency deviations
caused by the perturbation signal are almost completely
obscured by noise before the DG and its matching load
become an island. The 1 Hz frequency deviation is easily
observed after the distribution line between the two machines
is removed.

[0447] FIG. 67 shows the magnitude ofthe 1 Hz component
of'the signal in FIG. 66. This simulation shows that a simple
threshold test of this magnitude should work as the islanding
detection algorithm.

[0448] After the DGSC has been modified to inject a 1 Hz
perturbation signal into the throttle of a synchronous DG unit,
experimentation, simulations and analysis can be carried out
to determine appropriate thresholds for the algorithm.
Research on such details of the algorithm will proceed in
parallel with most of the engineering tasks. Ultimately, the
supervisory controller will be programmed to determine an
appropriate setting for the threshold test depending on the
number and type of DG units connected in parallel. The
island-detection scheme will be validated in the test cells at I
Power according to the IEEE 1547 conformance test proce-
dures. Possible additional variations in an island configura-
tion, such as off-site DG units connected to the same feeder,
will be studied in simulation to determine whether any addi-
tional logic is required.

4. Utility Interface Controller (UIC)

[0449] IEEE Standard 1547, “Standard for Interconnecting
Distributed Resources with Electric Power Systems”, pro-
vides for the first time a nationally recognized set of rules for
connecting distributed generation (DG) resources to a utility
grid. This standard has the potential to be used by federal
legislators, by state public utilities commissions, and by over
3000 utilities in formulating technical requirements for grid
interconnection of DG. This standard specifies requirements
for synchronization, protective relaying, and switching coor-
dination that were formerly determined on a utility-by-utility
basis.

[0450] There is a large amount of redundancy between the
basic functions used in DG operation and those required for
compliance with the IEEE 1547 standard. Both require and/or
can be partially met through the proper use of over/under
voltage relays, over/under frequency relays, fault current
detection relays, and synchronization check relays. The fol-
lowing section summarizes aspects of the UIC specification
for use in many embodiments of this system.

[0451] 4.1. Partial Summary of IEEE 1547 Standard
[0452] 4.1.1 Synchronization (Section 4.1.3)
[0453] The Standard states that the DR must synchronize

with the EPS without causing a voltage magnitude fluctuation
at the Point of Common Coupling (PCC) greater than +5% of
the operating voltage. PCC is defined as “the electrical con-
necting point or interface between the utility distribution sys-
tem and the customer’s or user’s electrical distribution sys-
tem.”

[0454] The output of the DR and the input of the EPS at the
PCC have substantially the same voltage magnitude, the same
frequency, and the same phase angle. IEEE Standard 1547
requires that the difference between the voltage of the distrib-
uted generator and the EPS not be more than 10%, the differ-
ence between their frequencies not exceed 0.3%, and the
difference between their phase angles not exceed 20°. Only if
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these conditions are satisfied can the distributed generator be
connected into the electric power system. The following table
illustrates the requirements of the Standard.

TABLE 4-1

IEEE 1547 Requirements and conditions

Aggregate Rating of  Frequency Voltage Phase Angle
DR Units Difference Difference Difference
(kVA) (Af, Hz) (AV, %) (Aw, ©)
0-500 0.3 10 20
500-1,500 0.2 5 15
1,500-10,000 0.1 3 10

[0455] In order to adhere to this requirement, we can use
relays to estimate the magnitudes and phase angles of the
voltages, and frequencies on the DR side and the EPS side. It
can then be checked if the differences between the estima-
tions are within the ranges mentioned above. If they exceed
the mentioned values then the DR will not be connected to the
EPS. In order to ensure that the distributed resource will
synchronize with the EPS with a voltage fluctuation limited to
+5% of the operating voltage, we can carry out the test by
connecting the DR to the EPS a couple of times and checking
if the voltage fluctuation is within 5% of the operating
voltage.

[0456] 4.1.2. Inadvertent Energizing of Area EPS (Section
4.1.5):
[0457] The Standard states that the distributed resource

must not connect to the PCC if the Area EPS is in the de-
energizing state. It also states that the distributed resource
must not connect to the PCC until the voltage of the EPS is in
the range of 106V-132V and the frequency is in the range of
59.3 Hz to 60.5 Hz. After the EPS has regained the normal
voltage and frequency, the Standard requires that the distrib-
uted resource wait for up to 5 minutes before it reconnects to
the EPS. The following table illustrates this requirement and
conditions.

TABLE 4-2

EPS status and conditions

Whether the DR

is connected to the PCC EPS Status and Conditions

EPS in a deenergized state.

EPS in a normal state:

106V <V <132V

and 59.3 Hz < f < 60.5 Hz.

EPS in an abnormal state:
V=106VorV =132V
orf=593Hzorf= 60.5Hz
Connected with a 5-minute delay EPS recovered from an abnormal state
to a normal one.

Not connected
Connected

Not connected

This requirement may be satisfied by each time checking the
voltage magnitude and frequency of the EPS after the occur-
rence of an outage. We can then compare these values
obtained with the above mentioned threshold limits. If they
are within the limits then wait for 5 minutes and then check
again the voltage and frequency values. If they are still within
the limits then close the circuit breaker between the DR and
the EPS else keep the circuit breaker open and carry out the
same procedure until the condition is satisfied.
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[0458] 4.1.3. Voltage Disturbances (Section 4.2.1)

[0459] The standard states that the protective functions of
the interconnection system must measure the fundamental
frequency component of the phase to phase or the phase to
neutral voltage. If the measured quantity is less than/equal to
106V or greater than/equal to 132V then the distributed
resource must stop energizing the EPS within the clearing
times as indicated in the table below.

TABLE 4-3

Voltage clearing times per IEEE 1547

Voltage range (V) Clearing times (sec)

V<60 0.16
60 <V <106 2
132<V <144 1
144 <V 0.16

[0460] Voltage disturbances bring about a change in the
voltage of the power system. Relays can be used to check the
voltage at the PCC. Whenever the voltage goes beyond the
limits mentioned, the Standard requires that the relays dis-
connect the DR from the EPS within the respective clearing
times as mentioned in the table above.

[0461] 4.1.4. Frequency Disturbances (Section 4.2.2):
[0462] The Standard states that the protective functions of
the interconnection system must measure the frequency. Ifthe
measured frequency goes out of the normal range (59.3
Hz<{<60.5 Hz) then the distributed resource must stop ener-
gizing the EPS within the clearing times as indicated in the
table below.

TABLE 4-4

Frequency disturbances requirements

DR “Cease to
DR Size EPS Frequency Energize” Time
=30 kW >60.5 Hz .16 sec.
<59.3 Hz .16 sec.
>30 kw >60.5 Hz .16 sec.
59.3-57.0 Hz Time Delayed
<57.0 Hz .16 sec.

[0463] Frequency disturbances bring about a change in the
frequency of the power system. Over-/under-frequency relays
can be used to check the frequency at the PCC. Whenever the
frequency goes beyond the limits mentioned, the relays must
disconnect the DR from the EPS within the respective clear-
ing times as mentioned in the table above. Note that DR units
with a total capacity larger than 30 kW can have an impact on
distribution system security. Thus, the IEEE 1547 require-
ment leaves this question to the Area EPS operator who
specifies the frequency setting and time delay for under-
frequency trips down to 57 Hz.

[0464] 4.1.5. Disconnection of Faults

[0465] The Standard states that the distributed resource
must disconnect from the area EPS for faults on the area EPS
it is connected to. It requires the DR to have a current based
protection and a ground fault protection suitable for detection
of area EPS faults.

[0466] To provide current based protection, over current
relays following the inverse definite minimum type (I.D.M.
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T.) characteristics will be used. The trip and reset character-
istics of the over current relay is as shown in FIG. 68.
[0467] The time taken by the relay to operate depends on
the torque, which in turn varies with respect to the current in
the relay coil. The more torque, the less time taken by the
relay to operate. Hence the relay is said to have inverse time
characteristics.

[0468] In order to emulate an induction-type over-current
relay, the various phenomena occurring in an induction disk
of the electromagnetic relay can be represented in terms of
mathematical equations. The equations used to simulate the
trip and reset characteristics are as follows:

T, =TD(R/|MP=1)-mmmmmmmmmmeeeee —for O<M<1---
—Reset characteristic

T, =TD(A/(ME =~ C)4BY+K--mmmmmnmm —for
M>1--m —Trip Characteristic
Where:
[0469] M=Multiple of PICKUP setting (0 to 40)

T,=Time to trip when M=1

T,=Time to reset if relay is set for integrating reset when M<1.
Otherwise, reset is 50 milliseconds or less

TD=TIME DIAL setting (0.0 to 9.9)

A, B, C, p, K=Constants for the particular curve
R=Constant defining the reset time.

[0470] 4.1.6. Implementation Using Matlab Code

[0471] The source code is attached in Appendix A.

[0472] 4.2. Phasor Estimation Methods

[0473] Inphasor estimation we want to find the fundamen-

tal frequency sinusoid that best represents a set of measure-
ment samples. We can estimate phasors using either least
squares or orthogonal projection methods. Both methods give
the same result when orthogonal vectors are used to represent
the sample data. The orthogonal projection method is perhaps
more intuitive and is explained in more detail below.

[0474] 4.2.1. Orthogonal Projection Method

[0475] The orthogonal projection of a vector V onto the
span of {V,V,} is given by

<V, V>V <V, V>V,

Vest = +
(AR AR

where < > represents inner product of vectors. Orthogonal
projection gives closest vector in the span of {V,, V,} to V.
[0476] With K samples of data per fundamental frequency
period, we use the following vectors

V,(L)=[cos((L-K+1)0)cos((L-K+2)0) . . . cos(LO)]

Vo (L)=[sin(L-K+1)0)sin((L-K+2)8) . . . sin(L0)]
to approximate the most recent vector of samples

V) Wr-geVr-gez - - Vil
where 0=2/K=wm, At, w, is the nominal fundamental fre-
quency, and At is the sampling interval. Then

Vest(L)=[4 cos((L-K+1)0+¢)4 cos((L-K+2)6+¢) . ..
A cos(LB+¢)]

is the best fundamental frequency sinusoidal approximation
to the vector of samples, where the following expressions
correspond with the most recent window of measurements:
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PN
¥s
.

@ = tan’l( 7 ) +0.57(1 — sign(Y,))

<V, V>
AR
<V,V,>

V2l

5=

[0477] Therefore Ae/®(L) is the phasor estimate for the
signal after sample L is received. The calculation is equivalent
to the Discrete Fourier Transform with an assumed funda-
mental frequency equal to the nominal power system fre-
quency w,. The actual power system frequency can be esti-
mated from the rate of rotation of the calculated phasors:

SD=YL)-L-1))/2nAT)

Averaging a few successive f(IL) estimates is sufficient for
filtering out the noise that is amplified by the derivative cal-
culation.

[0478] 4.2.2 Recursive Calculation of Phasors

[0479] Recursive forms of Fourier algorithms are used to
reduce the number of calculations compared with the non-
recursive Fourier algorithm. For a full-cycle window
(Kf=2mn):

T o= Dt [, o] COSLO)
1,00=F DLy~ Vora) SIN(LO)

where y,,.., s the newest sample corresponding to L. and y ,;
is the oldest sample corresponding to a full cycle earlier.
[0480] 4.2.3. Least Squares Formulation and the Transient
Monitor Function

[0481] When the data window spans the instant of fault
inception, the results obtained from almost any algorithm are
unreliable as the data contains both pre-fault and post-fault
samples. The least squares formulation of the sinusoidal esti-
mate is convenient for calculating the error between the
samples and the estimate. The sample values corresponding
to the phasor estimate can be calculated as:

FD)=S(STS) TSI

where S is a matrix with two columns: V(L) and V,(L)~.
Thereason L is not shown in the expression involving S is that
the matrix S (S7S)~'S” turns out to be independent of L. The
residual error vector is calculated as:

LY=Ly D=[SETS) ST-Iy(L)=My(L)

The sum of the absolute values of the elements of r(L) is
defined as the transient monitor function. A recursive calcu-
lation can also be derived for the residual error vector.

[0482] 4.3. Application of Symmetrical Component Calcu-
lations
[0483] A fault causes unbalanced current and voltages in

the phases of a polyphase circuit. Three unbalanced phasors
of a three-phase system can be resolved into three balanced
system of phasors and are called symmetrical components of
unsymmetrical phasors. The balanced sets of components
are:

[0484] 1. Positive-sequence components consisting of
three phasors equal in magnitude, displaced from each
other by 120° in phase and having the same phase
sequence as original phasors.
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[0485] 2. Negative-sequence components consisting of
three phasors equal in magnitude, displaced from each
other by 120° in phase and having the phase sequence
opposite to that of original phasors.

[0486] 3. Zero-sequence components consisting of three
phasors equal in magnitude and with zero displacement
from each other.

V.= Va(0)+ Va( Dy Va(2)
V=V OV, D4y, @

V.=V, Oy Dy @

In matrix form: (a=14£120°)

11 17vo

Va

Vo |=|1 & a Vél)
Ve 1 a & Véz)

Vo

=A| vV

v

In matrix form:

v L1 1y,
yi _%1 a @y,
Véz) 1 & al|lVe

Va

=A"! Vi

Ve

Zero sequence components are never present in line voltages
regardless of the degree of unbalance because the sum of
line-to-line voltage phasors in a three-phase system is always
Zero.

[0487] Line currents into a delta connected circuit have no
zero-sequence currents. For a delta circuit:

LO=1-a)l,
LO=(1-a ),

Line-to-line voltages in a star connected circuit have no zero-
sequence components. For a star circuit:

Vs =(1-a2) V0

VarP=(1-a)V,,®

In the absence of a neutral connection, zero-sequence cur-
rents are not present. Also, there cannot be any positive or
negative sequence currents in the connections from neutral to
ground.

[0488] Sequence networks are developed for various com-
ponents of a power system like transmission line, transformer
or synchronous machine based on these symmetrical compo-
nents.

[0489] 4.3.1. SCDFT: Symmetrical Component Discrete
Fourier Transform

[0490] The computational burden associated with the com-
putation of the symmetrical components can be greatly
reduced by the choice of sampling frequency. If the sampling
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frequencies that correspond to 8=30°, 60°, or 120° are used
then the DFT and the symmetrical component calculation can
be effectively combined. If 6=30° and A y,;=[v,,..,~V.:.l (for
full cycle algorithm) we can produce full-cycle SCFDT with
these expressions:

Y, oc(L+1): Y, oc(L)+(Aya,L+Ayb,L+Ayc,L)COS(Le)
Yos(L+ b= Yos(L)+(Aya,L+Ayb,L+Ayc,L)Sin(l’e)

Y, & 0=y, 1Ay, ; cos(LO)+AY, ; cos(L-4)0+Ay, ;
cos(ZL+4)0

Y, E b=y, DAy, sin(LO)+AY, ; sin(L-4)0+Ay, ,
sin(L+4)0

1, E =Y, DAy, ; cos(LO)+AY, 1 cos(L+4)0+Ay, 1
cos(L-4)0

Y5, &=, DkAy, ; sin(LO)+Ay, ; sin(L+4)0+Ay,

sin(L-4)0
[0491] 4.3.2 Power in Terms of Symmetrical Components
[0492] The total complex power (in volt-amperes) flowing
into a three-phase circuit through the lines a, b and ¢ is:

Sa6=PHO=V I VI, *+V I *=3V, O Ox3p, O
x] (Dxy 3y O O

The transformation of a-b-c voltages and currents to sym-
metrical components is power-invariant.

[0493] 4.3.3 Symmetrical Component Distance Relay
[0494] The use of phasor calculations permits the use of
symmetrical components in the detection of fault type and
distance. For all possible fault types a general expression for
the fractional distance to the fault is:

_ k1 + kzké + k0k6

k= L+kp+K + K

where all the quantities k (see FIG. 69) can be calculated from
the symmetrical components of the voltage and current pha-
sors at one end of the transmission line.

[0495] 4.4. UIC Algorithm Development
[0496] 4.4.1. Problem Description
[0497] The schematic in FIG. 70 shows a typical structure

of Gensets and UICs. Up to 8 distributed generation Gensets
each via a circuit breaker (CB) are connected to a local bus.
The functionality of a UIC is implemented in two modules,
namely, Phasor Measure Unit (PMU) module and Main Util-
ity Interface Controller (Main UIC or simply UIC) module.
[0498] Each CB in this embodiment is equipped with a
PMU that implements the following functions:

[0499] Checking the status ofthe CB, e.g., determining if

the CB is open or closed;

[0500] Sampling 3-phase currents flowing in the CB;

[0501] Sampling 3-phase voltages on both terminal
sides;

[0502] Calculating current and voltage phasors;

[0503] Calculating frequencies on both terminal sides;

[0504] Buffering calculation results;

[0505] Communicating with Main UICs and sending

results to them.

[0506] The Main UIC, an integrated part of the DG Genset
controller, is helpful in many embodiments that are designed
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to satisfy the requirements of IEEE 1547. In the present
embodiment, it implements the following two kinds of func-
tions:

Slave functions:

[0507] Communicating with PMUs and retrieving cur-
rent phasors, voltage phasors, frequencies, and CB sta-
tuses;

[0508] Sending commands to break/make the CB that is
directly connected to the Genset controlled by its inte-
grated DG controller; and

[0509] Receiving commands from the UIC performed as
the master and executing the commands;

Master functions:

[0510] Communicating with PMUs and retrieving cur-
rent phasors, voltage phasors, frequencies, and CB sta-
tuses;

[0511] Sending commands to break/make the CB that is
directly connected to the Genset controlled by its inte-
grated DG controller;

[0512] Sending commands to other UICs performed as
slaves;

[0513] Performing under-/over-voltage protection;

[0514] Performing under-/over-frequency protection;

[0515] Performing fault detection and protection;

[0516] Timing synchronization and changing operation

mode from isolated to parallel;
[0517] Detecting loss of synchronism and changing
operation mode from parallel to isolated;
[0518] Performing other relaying functions required by
IEEE 1547.
The communication protocol among Main UICs and PMUs is
a CAN bus.

[0519] 4.4.2. Inputs and Outputs
[0520] Input signals to UIC include the following:
[0521] 3-phase currents, provided by Current Trans-

formers (CTs), flowing through each CB;

[0522] 3-phase voltages, provide by Potential Trans-
formers (PTs), appearing on both terminal sides of each
CB;
[0523] Status of each CB.
Output signals from UIC include the following:
[0524] Break/Make signals to CBs;
[0525] Values need to be sent the human machine inter-

face (HMI) or human computer interface (HCI) includ-
ing currents, voltages, frequencies, etc.
[0526] 4.4.3. Programming [.anguages
[0527] Algorithms run on PMUs will be coded in PIC
assembly language. Algorithms run on Main UICs will be
coded in high level programming language, such as C, Mat-
lab, etc.
[0528] 4.4.4. Logic Flow
[0529] The PMU’s main logic flow is illustrated in the
flowchart in FIG. 71.

5. Prototype Design

[0530] 5.1. System Controller Design

[0531] Illustrated in context as a block diagram in FIG. 72,
the controller system consists of a number of PMUs (Phasor
Measurement Unit) and a mainstream desktop computer with
a PCI CAN card and a PCI I/O card. The PC will be the
workhorse of the controller that undertakes all computing
tasks of UIC (Utility Interface Controller) and the system
controller. A PMU acts as a digital sensor that measures
3-phase currents or voltages. The PCI CAN card has two
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ports. One port is for local communications with PMUs in the
same DG unit. The other is for communications between DG
units as well as communications between DG unit and PMUs
at Common Coupling Point (CCP). The PCI IO card takes
care of all other local inputs, such as oil pressure, and outputs,
such as speed bias to Engine Control Module (ECM).
[0532] This exemplary embodiment of the hardware
includes: 3.0 GHz, Pentium 4 processor with 800 MHz front
side bus; 1 GB DDR2 RAM; 300 GB, 7200 rpm, 8 MB buffer
SATA hard drive; 16x, double layer DVDxR/RW drive; 4
available PCI slots; 1 serial port, 1 parallel port, and 1 LAN
port; 2 USB ports; Integrated audio and video; and 19-inch
digital LCD. The PC’s software in this embodiment includes:
MS Windows XP Professional with SP2; MS Visual Studio
NET; and the Math Works Matlab with Simulink and an
appropriate collection of toolboxes as will occur to those
skilled in the art. Example PC hardware systems include
DELL OPTIPLEX GX520 and the HP Compaq Business
Desktop 5000 series.

[0533] CAN Cards in this embodiment use a PCI interface,
provide 2 separate ports for data exchange, and a Windows
DLL library. For example, the Advantech PCI-1680U-A:
2-Port CAN Interface Universal PCI Communication Card
with Isolation works well.

[0534] The 1/O Cards in this embodiment preferably have
the following characteristics: A/D sampling rate of 720
samples per second per channel; A/D sampling resolution of
12-bit A/D converter; 3 A/D input channels; 16 digital input
channels; 12 digital output channels; D/A resolution of 12-bit
D/A converter; 2 D/A out put channels; and a corresponding
Windows DLL library. In various embodiments, these /O
Cards include Advantech PCI-1710-B 100 KS/s, 12-bit High-
gain PCI-bus Multifunction DAS Card; Advantech PCLD-
8710-A Wiring Terminal Board for PCI-1710/1710HG; and/
or Advantech PCL-10168 68-Pin SCSI Cable, 1 m.

[0535] The connection between EGCP-2’s Inputs and Out-
puts and the PC-Based Controller’s Inputs and Outputs in this
embodiment as follows:

TABLE 5-1

PC-based solution wiring diagram

PC-Based Controller

EGCP-2 #of
/O A/D Description Location Counterpart units
I A Input Power 1-2 N/A
I A PT Inputs 40-48  PMUs + CAN card port 4+1
I A CT Inputs 89-94  PMUs + CAN card port 2+1
I A MPU (Speed) 70-72  A/D channel on I/O card 1
I A Process 86-88 N/A
I A Coolant Temp 66-67  A/D channel on /O card 1
I A Oil Pressure 68-69  A/D channel on I/O card 1
O A Speed Bias 73-75  D/A channel on I/O card 1
O A Voltage Bias 37-39  D/A channel on I/O card 1
I D Discrete Inputs 49-65  Digital input channel 16
O D Relay Outputs 5-35  Digital output channel 12
/O D RS-485 76-80  CAN card port 1
/O D RS-422 81-85 N/A
[0536] 5.2. System Controller Design
[0537] 5.2.1 System Structure
[0538] The system controller includes following function
modules

[0539] Supervisory control functions
[0540] DG Unit control functions
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[0541] UIC Control functions
[0542] Local protection functions
[0543] User Interface

The system platform is Microsoft Windows XP Professional.
The software development platform is Microsoft Visual .Net.
The main programming language is C++

[0544] The major control system runs on an event driven
mechanism, wherein each module communicates with others
through the event engine. The advantage of the approach is

[0545] Minimize global variables to improve system
reliability
[0546] Modularize each sub system and make whole

system scalable
[0547] Easy for debugging

[0548] Dueto the time constraints, the UIC module will run
on an interrupt based module. The interrupt will activate 720
times per second, it will receive data from PMU and check
whether they satisfy IEEE 1547. In case of emergency, an
emergency handling module will be called to control the DG
unit directly, otherwise, event information will be sent to the
event engine.

[0549] As shown in FIG. 73, there are several major func-
tional blocks in the main system controller of the present
embodiment: an event engine, HMI, supervisory control,
engine control, generator control, local protection, and /O
card API. These functional blocks will control part of the
hardware through the API to get inputs and send output infor-
mation. These functional blocks communicate with each
other by sending events and receiving events from the event
engine.

[0550] 5.2.2 The Structure of the Event Engine and Sub
Module
[0551] As mentioned before, different functional blocks

communicate with each other through events. Following is a
definition of the event.

struct sysEvent

{
unsigned short sysPriority;
unsigned short sysObjectFrom;
unsigned short sysObjectTo;
unsigned short sysCommand;
union

struct

int iHigh;
int iLow;
} Integer;
long longInfo;
float floatInfo;
} message;

[0552] The event engine is a FIFO event queue. Each mod-
ule can push events to the queue, and the engine will send the
events to every module to check.

class sysEventQueue

protected:
static sysEvent eventQueue[MAX__EVENTS];
static int sysQueueHead, sysQueueTail;
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-continued

public:
sysEventQueue ( );
~sysEventQueue ( );
static void putEvent (sysEvent event);
static void replaceEvent (sysEvent event)
{ eventQueue[sysQueueTail] = event; }
static void getEvent (sysEvent& event);
static int isEmpty ();

1

[0553] Each submodule will be a class inherited from the
class of sysObject. The major module in the class is the
handleEvent function, the function that will execute normal
monitor functions and communicate with other modules by
sending events to the event engine and handling events from
the engine.

class sysObject

Private:
unsigned short objectType;
unsigned short objectID;
public:
sysObject () { J;
~sysObject () { };
virtual void handleEvent (sysEvent& event) { }
virtual void clearEvent (sysEvent& event)
{ event.sysCommand = evNothing; }
virtual void pushEvent (sysEvent& event)

sysEventQueue::putEvent (event);
clearEvent (event);

¥
i
[0554] 5.3. Phasor Measurement Unit (PMU) Develop-
ment
[0555] 5.3.1 Hardware
[0556] The Phasor Measurement Unit (PMU) acts as an

interface that converts the standard substation measurements
into digital measurements that can be processed by the con-
troller. To attain a higher rate of data transmission between the
PMU and the controller, a CAN bus will be the media con-
necting them. The circuit diagram is as shown in FIG. 77.
[0557] The PMU control software was developed using
assembly language and implemented in a PIC16C773 chip,
which is shown in FIG. 74. Specifications of this exemplary
PMU include:

[0558] Sampling rate: 720 samples per second per chan-
nel.

[0559] Sampling resolution: 3 channel 12-bit A/D con-
verters.

[0560] 4K-Byte program memory and 256-Byte data
memory.

[0561] 2 Timers except watchdog timer.

[0562] 1 CAN port.

[0563] 5.3.2. Testing of Prototype PMU

[0564] An SR 232 interface was developed to test the func-
tionality of Phasor Measurement Unit (PMU). It includes an
SP232 chip and four 0.1° F. capacitors. The purpose of intro-
ducing the interface into the test is to convert the CMOS
outputs into the correct SR 232 signals. Thus, the computer
can poll the outputs of PMU via its serial port. To poll data
using a computer via its serial port is only a method to do
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testing. Some embodiments of the PMU do not include serial
communication capabilities, implementing CAN communi-
cation instead. A block diagram of'this subsystem is shown in
FIG. 75.

[0565] 5.3.3. PMU Software Re-Development

[0566] The PMU algorithm in one embodiment included a
flaw, in that it did not consider accumulated errors caused by
truncations and iterations. The new algorithm does its calcu-
lations recursively, which causes the accumulated errors, and
non-recursively at the same time. After each cycle, the non-
recursive results are copied to replace the recursive ones,
thereby eliminating accumulated errors while still keeping
the efficiency of the old algorithm.

[0567] 5.3.4 Converting Coefficients into Phasors and Fre-
quencies

[0568] The outputs of PMU are sine and cosine coeffi-
cients. More calculations based on these coefficients are
needed to yield phasors and frequencies. In various embodi-
ments, this conversion is implemented using a Visual Basic
program or using C++ consistent. The code for one embodi-
ment is provided in Appendix B.

[0569] A diagram showing the frequencies vs. time is
shown in FIG. 76. The average of frequencies is very close to
60 Hz.

6. Additional Improvements

[0570] 6.1. System Controller
[0571] 6.1.1. Summary
[0572] The following activities have been accomplished:
[0573] Tested digital analog I/O board
[0574] Developed protection module and implemented
PLC function in VC++
[0575] Developed engine/generator control module in
VC++
[0576] Developed DG unit control function in VC++
[0577] Developing system controller user interface in
C++
[0578] 6.1.2. Protection and PL.C Function
[0579] Some protection functions were implemented in a
PLC module in some embodiments because sufficiently low-
level access to the system controller was unavailable. In
another embodiment those functions were implemented in
and will be incorporated into a new controller. The code for
the PLC is attached in Appendix F.
[0580] 6.1.3. Engine and Generator Controller
[0581] Following is an example of a method of calculating.
To calculate Voltage Bias

percent_ref = 10; /] +/—- 10% of reference voltage
volt_ range = 9; /] +/- 9 Vde of voltage bias
refvoltage = 480; // normal voltage 480 Vac
detected__volt = 0; // initial value

volt__bias = 0;

max__volt =0;
min_volt=0;

Find limits of volt

(100 + percent_ref)
max_volt= — xref_voltage

(100 — percent_ref)

i It=
min_vo 00

xref_voltage
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-continued

If (min__volt = detected__volt = max__volt)

. (detected_volt—ref_voltage)
volt_bias= X percent_ref X volt_range
ref_voltage

Elseif (detected__volt <min_ volt)

. (min_volt—ref_voltage)
volt_bias= —————————— X percent_ref X volt_range
ref_voltage

Else

i (max_volt—ref_voltage)
volt_bias= ————————— Xpercent_ref X volt_range
ref_voltage

End
Return  volt_ bias

To Calculate Speed Bias

[0582] The Throttle Position Sensor (TPS) provides a volt-
age signal that changes relative to the position of the throttle
valve. Signal voltage will vary from less than 1.0 volt at idle
to about 4.6 volts at wide open throttle (WOT). The TPS
signal is an input used by the ECM for fuel control and for
many of the ECM-controlled outputs.

kp=1; // proportional gain

ki=15; // Integral gain

imin = -100; // minimum value before multiplying ki
imax = 100; // maximum value before multiplying ki
kd =0; // derivative gain

max__power = 85000;
min_ power = 0;
speed__range = 4;
// speed range and offset show speed bias from 0.5 to 4.5
offset = 0.5;

needed__power = 0; // needed power from power management
present__power = 0; // power that this generator is producing
freq = 60; // frequency

rad_speed = 0; // omega rad/sec

ref torque = 10;
feed_back_ torque = 0;
error = 0;
pterm =0.1;
istate = 0;
iterm = 0;
dterm = 0;
old__error = 0;
pid__result =0;
instant_ power = 0;
speed__bias =0.5;
if (needed__power == 0)
speed__bias =0.5
else
rad__speed = freq x 3.14159

needed_power
ref_torque= ——
rad_speed

present_power
feed_back torque= ———
rad_speed

// PID Control
error = ref_torque — feed__back_ torque
//Calculate Proposition term
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-continued

pterm = kp x error;
//Calculate Integral term
if (istate > imax)
istate = imax;
if (istate < imin)
istate = imin;
iterm = ki * istate;
// some papers use iterm = ki * (istate + error)
// Calculate Derivative term
dterm = kd * (error — old__error)
// Remember old data
old__error = error;
istate = istate + error;
// PID output
pid__result = pterm + iterm + dterm;
//Calculate Power for Throttle position need
instant__power = (ref__torque + pid__result) x rad__speed;
// Check for security
If (instant__power > max__power)
instant_ power = max__power;
if (instant power < min_ power)
instant__power = min__power;
//Calculate Speed Bias

instant_power

speed_bias = X speed_range + offset

max_power

End
Return Speed__bias

[0583] 6.1.4. Updated System Controller Schematics
[0584] The functional diagram of a system controller in
FIG. 73 has also been applied in a second embodiment. There
are seven major functional blocks in this main system con-
troller: event manager, HMI, supervisory control, engine con-
trol, generator control, local protection, and /O card API.
These functional blocks control part of the hardware through
the API to get inputs and send output information. These
functional blocks communicate with each other by sending
events to and receiving events from the event manager. The
UIC communicates with the event manager through an event
loop or an interrupt.

[0585] A test unit was placed in a test cell. A computer
controller was connected to the unit through the digital and
analog I/O card. Testing included three major tasks: /O con-
nection testing, functional module testing, and integrated sys-
tem testing. /O connection testing checked each input signal
and each output signal to make sure that they were correctly
connected and respond properly. Functional module testing
tested each software module described in the previous section
and performed functions as designed. Integrated system test-
ing tested the system as a whole.

[0586] 6.2. Utility Interface
[0587] 6.2.1. Summary
[0588] The following research and development activities

have been undertaken:

[0589] Tested the stability/reliability of PMU by running
it continuously for approximately 50 days.

[0590] Developed CAN communication.

[0591] Revised PMU Assembly code for the CAN com-
munication.

[0592] Programmed UIC functions in VC++.

[0593] Compared compliance of existing technology
with IEEE 1574

[0594] Refined and tested the UIC functions.
[0595] Constructed a PMU unit.
[0596] Developed HIF detection technology
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[0597] 6.2.2. Test of the Stability and Reliability of a Pro-
totype PMU

Overview

[0598] Since the PMU units will be running continuously
for months once putinto use in practice, a prototype PMU had
been put online to test its stability and reliability. The data the
PMU acquired were transmitted to a PC via SR 232 commu-
nication. A VB program running on the PC converted data
into meaningful variables with time stamps and recorded
them on the hard drive.

Test Results

[0599] Analyzing a small portion of the recorded frequen-
cies showed that there were no frequencies that were appar-
ently absurd. This initial result indicated that the PMU
worked properly during the test. It also indicated that the
PMU assembly code is stable and reliable.

[0600] 6.2.3. Development of CAN Communication
Overview
[0601] In this embodiment, the Phasor Measurement Unit

(PMU) acts as an interface that converts the standard substa-
tion measurements into digital measurements that can be
processed by the controller. To attain a higher rate of data
transmission between the PMU and the controller, a CAN bus
is used as the media connecting them.

Schematics

[0602] The circuit diagram is shown in FIG. 78.

Code for CAN Communication

[0603] CAN communication is implemented using

PIC18F4580 chips. MCP2551 is used as CAN transceiver.
The assembly code running on the PIC18F4580 for CAN
communication is shown in Appendix D.

[0604] 6.2.4. Revision of PMU Assembly Code for CAN

Overview

[0605] After successful testing of the functionality of Pha-
sor Measurement Unit (PMU) with RS-232 interface, PMU
with CAN bus interface had been developed as a final design.
In this design two PMU units are connected to the PC via a
CAN bus.

[0606] PMU sends calculated phasors to a CAN chip using
Parallel Slave Port (PSP). Weused PSP instead of serial posts
to achieve fast data communication. The CAN chip sends this
data to PC using CAN bus. A CAN transceiver is used
between the CAN chip and the CAN bus to convert voltage
levels. Synchronization between the PMUs is a challenging
task in this project. To achieve proper synchronization, one
PMU works as the master PMU and all others (in current case
only one) are slave PMUs. The master PMU will send syn-
chronization pulses to slave PMU and slave PMU will use this
pulse for synchronization.

[0607] After analyzing data transmitted to PC, we can see
good synchronization between both PMU. Results will be
better after using filters.

Schematics

[0608] The circuit diagram is shown in FIG. 79.

Code

[0609] The current version is developed to address the prac-

tical CAN communication. Since more than one PMU shares
the same CAN channel, the first revision is to incorporate an
id number into the data each PMU sends to the computer.
Therefore, the PC can distinguish and assemble data cor-
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rectly. Since we also need to make all PMUs sample at sub-
stantially the same instant, the second revision is to introduce
a master PMU and let all others be slave PMUs. The master
PMU will send synchronization signals to slave PMUs to
guarantee the substantial simultaneity of corresponding
samples on all PMUs. This improves the operation of the UIC
and other control functions. The code is attached in Appendix
B.

[0610] 6.2.5. Programming of UIC Functions in VC++
[0611] The UIC functions were programmed for simulation
using Matlab, then were rewritten in VC++. The new version
also generalized some cases and provided many default
parameters. The code is in Appendix E.

[0612] 6.2.6. Comparison of Compliance of Basler and
Woodward Productions with IEEE 1574

[0613] One current system uses a Woodward EGCP-2 as
the Genset controller and a Basler relay as the UIC. The newly
developed integrated controller meets the IEEE 1574 require-
ments into the product.

[0614] The following table compares the Basler relay’s
characteristics and requirements of IEEE 1574.

Requirement IEEE 1547 Standard Basler Relay
Synchronization Af=0.3Hz Af=0.01-0.5Hz

AV =10% AV =120V

Ao =20 degrees Ao = 1-45 degrees
Voltage V<160 — 0.16 sec Pickup: 10-300 V
disturbances 60 <V <106 — 2 sec Time delay: 0.05-600 sec

132<V <144 — 1 sec

144 <V — 0.16 sec
Frequency F>60.5—0.16 sec Pick up: 40-70 Hz
disturbances 59.3>F>57.0 - user Time delay: 0-600 sec

Disconnection of
faults

Surge withstanding
capability

Influence of EMI
Prevention of
unintentional
islanding
Inadvertent
energization

Measurement of
Voltage current and
Frequency

F<57—=0.16 sec
Overcurrent protection
and ground fault
protection

Comply with conditions
of ANSI C62.41 or IEEE
C37.90.1

Not influenced by EMI

Area EPS Voltage and
frequency must be in the
range 106 V-132 V and
59.3 Hz-60.5 Hz.
Reconnection can be
delayed up to 5 minutes
after EPS has regained
normaley

All the 3 phases need to
be measured

Time overcurrent
protection available with
pick up to drop out

ratio = 95%

Complies with IEEE
C37.90.1

Qualified to C37.90.2
Has a reverse power
protection which can be
used to prevent islanding
Recloses between 100
milliseconds to 600
seconds

All 3 phases are
measured

The following table shows the comparison of Woodward
EGCP-2’s characteristics and IEEE 1574

Requirement IEEE 1547 Standard EGCP2
Synchronization Af=0.3Hz Af=0.01-0.5Hz
AV =10% Volt window =
0.1-10% V

A6 =20 degrees

Default Voltage: 10%
Ag = 2-20 degrees
Default Ao = 10 degrees
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Requirement IEEE 1547 Standard EGCP2
Voltage V<160 — 0.16 sec Pickup: 50-30000 V
disturbances 60 <V <106 — 2 sec Default
132<V <144 — 1sec  Pickup(high): 250 V
144 <V — 0.16 sec Default
Pickup(low): 200V
Time delay: 0.1-30 sec
Default time delay: 5 sec
Gen volt Hi limit: 10%
above rated
Gen volt low limit: 10%
below rated
Frequency F>60.5—0.16 sec Pickup: 40-75 Hz
disturbances 59.3>F>57.0 »user  Time delay: ?

Disconnection of
faults

Surge withstanding
capability

Influence of EMI
Prevention of
unintentional
islanding
Measurement of
Voltage current and
Frequency

Voltage Regulation

F<57—=0.16 sec

Overcurrent protection
and ground fault
protection

Comply with conditions
of ANSI C62.41 or IEEE
C37.90.1

Not influenced by EMI

All the 3 phases need to
be measured

Must not degrade
customer voltage beyond
+ or - 5% of nominal

Default
Pickup(High): 65 Hz
Default Pickup(low):
55 Hz

Pick up: 5-30000 A
Default pickup: 30 A
Delay: 0.1-20 sec
Default delay: 1 sec
Complies with IEEE
C37.90.1

Qualified to C37.90.2
No islanding feature

Only 1 phase of the
utility is measured and 3
phases of the Genset is
measured

Does not degrade
voltage beyond 2-5%
of nominal voltage

voltage

[0615] 6.2.7. Test and Refinement of the UIC Functions
[0616] In this experimental embodiment, the overcurrent
relay function has been integrated into our main UIC func-
tion. The development of ground fault detection function is
being developed as a standalone relay function independent
from main UIC functionality.

[0617] 6.2.8 Development of HIF Detection Technology
[0618] High Impedance Fault (HIF) is a concern in the
implementation of DG, even though it has not yet been offi-
cially addressed by the IEEE Standard 1547. An HIF condi-
tion occurs when a device (and, perhaps, a portion of the
utility grid) becomes electrically isolated from the remainder
of the grid. When the device (or portion of the grid) is not
electrically isolated from the remainder of the grid, the device
is in a “non-HIF” (non-high-impedance-fault) condition. For
public safety and the potential huge expenses resulting from
an energized downed conductor, DG operators should pay
some attention to HIFs. We have developed a Decision Tree
(DT) based technology that addresses this concern. It showed
excellent performance in a simulation study. FIG. 80 shows a
one-line system diagram based on which HIF-related simu-
lations have been performed.

[0619] With the integrated controller, the Decision Tree
(DT) based detection technology can use a simplified version
of PMU to provide raw current data samples. DTs are typi-
cally trained oftf-line from simulated HIF and non-HIF data
first, then are tested and trained using experimental data to
further improve performance. The DT foruse with the present
system uses only current signals measured at Point of Com-
mon Coupling (PCC), though other electrical characteristics
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are used in alternative embodiments. Current harmonics are
also used to train the DTs. The DTs apply the training to real
data that characterizes the current (or other characteristic) at
the PCC to determine whether or not a HIF condition exists,
and provides an HIF Detection Output as a function of that
determination. The DGSC receives the HIF Detection Output
and modifies operation of the DG system accordingly, as
discussed herein. Simulations of this subsystem were done
with the aid of the Electromagnetic Transients Program
(EMTP).

[0620] While the system and methods have been illustrated
and described in detail in the drawings and accompanying
description, they are to be considered as illustrative and not
restrictive in character, it being understood that the preferred
embodiment has been shown and described and that changes
and modifications that come within the spirit of the invention
are desired to be protected.

Appendix A to Part 2: Source Code for CHECKING
CONFORMANCE WITH IEEE 1547

[0621]

% Function BTRIP implements IEEE 1547 requirements:

% over/under voltage relays, over/under frequency relays

% synchronization check relays, inadvertent energization relays

% Functions in Task 3.1 remain to be implemented

% reverse power relays, fault current detection relays

% Function BTRIP is called every new sample

% Function BTRIP=1 means breaker ordered open

% Function BTRIP=0 means breaker permitted closed

% input Vars:

% VMAREA, VMLOCAL (formerly V)

% FAREA, FLOCAL

% VPHAREA, VPHLOCAL

% IM, IPH

% BOPENSTAT (BOPENSTAT=1 means breaker open)

% output vars:

% BOPEN (BOPEN=1 means breaker ordered open)

% relay functions:

% over/under voltage relays ---- VMLOCAL

% over/under frequency relays ---- FLOCAL (use time-threshold table)
% reverse/min power relays ---- VMLOCAL, VPHLOCAL, IM, IPH
% (threshold=0, time=0.5s)

% synchronization check relays ---- VM, F, VPH (both sides) (table,

time=0.1s)
% fault current detection relays ----- ™M
BTRIP(args) % gets called every new sample

% args include all of above plus NEWSTART

if (NEWSTART==1) % initialize counters

% casevdl=Voltage Disturbance, casefd1=Freq Disturbance
% casescl=Synch Check, caseiel=Inadvertent Energization
casevd1=0; casevd2=0; casevd3=0; casevd4=0;

casefd1=0; casefd2=0; casefd3=0;

casescl=0; caseial=0;

end

if (BOPENSTAT==0) % breaker closed

% check stuff, set BOPEN=1 if violation

% OVER/UNDER VOLTAGE RELAY LOGIC

% Voltage Range (Volts-RMS value)  Clearing Time(sec.)

% V<60 0.16 % ten cycles (120 samples)
% V<106 2.0 % two cycles (1440 samples)
% 132<V<144 1.0 % onecycle (720 samples)
%  144=<V 0.16
if (VMLOCAL<60)

casevdl=casevd1+1;
else

casevd1=0;
end
if (VMLOCAL <106)

casevd2=casevd2+1;
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else
casevd2=0;
end
if (VMLOCAL >132 & VMLOCAL <144)
casevd3=casevd3+1;
else
casevd3=0;
end
if (VMLOCAL >=144)
casevdd=casevd4+1;
else
casevd4=0;
end
BOPEN=(casevd1>120 | casevd2>1440 | casevd3>720 | casevd4>120);
% OVER/UNDER FREQUENCY LOGIC
if (FLOCAL>57.0&FLOCAL<59.3)
casefdl=casefd1+1;
else
casefd1=0;
end
if (FLOCAL>60.5)
casefd2=casefd2+1;
else
casefd2=0;
end
if (FLOCAL<57.0)
casefd3=casefd3+1;
else
casefd3=0;
end
BOPEN=(case1>120 | case2>120 | case3>120 | case4>120 | case5>120);
end
if (BOPENSTAT==1) % breaker open
% SYNCH CHECK AND INADVERTANT ENERGIZATION LOGIC
% check synchronism and VMAREA, set BOPEN=0 if OK to close
%measure the voltage magnitude on both sides of Circuit breakers CB1,
%CB2 ... CB8
%let voltage magnitude measured on the EPS side be VMAREA and that
%measured on DG side be VMlocal
%Measure the Voltage Phase on both sides of Circuit breakers
%CB1,CB2....CB8 let voltage phase measured on the EPS side be
%VPHAREA and that measured on DG side be VPHLOCAL
%To check for synchronisation we need to do the following:
% 1. (VMLOCAL-VMAREAI/120)*100 must not be greater than 10
% 2. (FLOCAL-FAREAI) must not be greater than 0.3
% 3. ((VPHLOCAL-VPHAREA| must not be greater than 20)
%It is checked if the parameters are maintained in the their respective
%ranges for 0.1 sec=72 samples
% VMAREA constraints for inadvertent energization also required for
72 samples
Vdiff=(abs(tVMLOCAL-VMAREA)/120)*100;
VPHdiff=abs(VPHLOCAL-VPHAREA);
Fdiff=abs(FLOCAL-FAREA);
if (VMAREA>106 & VMAREA<132 & FAREA>59.5 & FAREA<60.5)
caseiel =min(caseiel+1,1000);
else
caseiel=0;
end
if (Vdiff<10 & VPHdiff<20 & Fdiff<0.3)
casescl =min(casescl+1,1000);
else
casescl=0;
end
if(casesc1>72 & caseiel>72)
BOPEN=0;
end
return BOPEN

Appendix B to Part 2: Source code of PMU

[0622] The current version is developed to address the prac-
tical CAN communication. Since there are more than one
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PMU sharing the same CAN channel, the first revision is to
incorporate an id number into the data each PMU sends to the
computer. Therefore, the PC can distinguish and assemble
data correctly. Since we also need to make all PMUs sample
at substantially the same instant, the second revision is to
introduce a master PMU and let all others be slave PMUs. The
master PMU will send synchronization signals to slave PMUs
to guarantee the substantial simultaneity of all samples on all
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PMU . This might be done, for example, in order to improve
the operation of the UIC and other control functions.

[0623] The assembly code for a master PMU is as follows.
[0624] The assembly code for a slave PMU is as follows.
[0625] A program coded in VC++ running on the PC to

convert data into the correct format for this embodiment is as
follows.

// data__logger.cpp : Defines the entry point for the console application.
/A#include “windows.h”

#include “stdafx.h”

#include “..\..\..\include\CanBus2.0.h”

#include “stdio.h”
#include “math.h”

#include <iostream>
#include <fstream>
using namespace std;

typedef struct
{
UCHAR rtr; //Remote Transmit Request
ULONG id;
UCHAR dlen;
UCHAR data[8];

} CAN_MSG_T, *PCAN_MSG_T;
PCAN_MSG_T g_pData;

ULONG g_Index = 0;

int _tmain(int arge, _ TCHAR* argv[ ])

ofstream myfile;

UINT m__DevNum ;

UINT m_ nBtr0 = 0x03;

UINT m__nBtrl = 0xl¢; //baud rate = 125k

UINT m__nAcpCode = 0;

UINT m__nAcpMask = Oxff;

UINT m__ nOutCtrlCode = 250;

UINT m__nIntMask = 0;

UINT m__nPort;

UINT m__nHostID;

UINT m__nPreBaudRate;

BOOL bReady = FALSE;

unsigned int nData0;

unsigned int nDatal;

unsigned int nData2;

unsigned int nData3;

int sWord__A,cWord__A sWord_ B,cWord_B,sWord_ C,cWord__C;
double aSin;

double aCos;

long double aAmp,aAng,bAmp,bAng,cAmp,cAng;

std::cout <<

“Enter Device number 3 or 4 \n”;

std::ein >> m__ DevNum;
myfile.open (“data.txt”);
if (CANPortOpen(
m__DevNum,
(WORD *)&m_ nPort,
(WORD *) &m_ nHostID,
(WORD *) &m_ nPreBaudRate) {= SUCCESS)

printf(“Open port failed!\n”);
return O;

i}f (CANInit(
m__nPort,
m__nBtr0,
m_ nBtrl,
(UCHAR) m_ nIntMask) != SUCCESS)

printf(*Init can failed!\n);
CANPortClose(m__nPort);
return O;

if (CANSetOutCtrl(
m__nPort,
m nOutCtrlCode) = SUCCESS)
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-continued

32

¥
if

if

printf(“Set out ctrl failed!\n);

CANPortClose(m__nPort);
return O;

(CANSetAcp(
m__nPort,
m_ nAcpCode,

m_ nAcpMask) != SUCCESS)

printf(“Set acp code failed!\n”);

CANPortClose(m__nPort);
return 0;

(CANSetBaud(
m__nPort,
m__nBtr0,
m_ nBtrl) {= SUCCESS)

printf(“Set baudrate failed!\n);

CANPortClose (m__nPort);
return 0;

if (CANSetNormal(m_ nPort) != SUCCESS)

{

printf(“Set normal failed!\n”);

CANPortClose(m__nPort);
return 0;

CANEnableRxInt( m_ nPort );

g_ pData = ( PCAN_MSG__T )GlobalAlloc( GPTR, 10000*sizeof(CAN_MSG_T) );

if( g pData == NULL )

printf(*“Out of memory!\n”);
CANPortClose(m__nPort);
return 0;

// lock the memory
GlobalLock( g_ pData );
CANSetBufferPtr( m_ nPort, g_ pData, 10000, &bReady );// set the receive

buffer
if (!
{

bReady )

//enable receive interrupt

printf(“Again CanSetBufferPtr failed!\n”);

CANPortClose(m__nPort);
return 0;

CANSetCountPtr( m_ nPort, &g Index, &bReady );

if (1

printf (“CAN set CountPtr error!”);

bReady )

CANEnableEvent( m_ nPort, TRUE ); //enable system event
printf(*“Open port successful, Begin to receive data!\n);
bReady = FALSE;

CANWaitForFIFOEvent( m_ nPort, INFINITE, &bReady);// wait for the

messages

if ( bReady )

printf(“Receive Data Buffer half full!\n” );

bReady = FALSE;
CANWaitForFIFOEvent( m_ nPort, INFINITE, &bReady);
if ( bReady )

printf( “Receive Data Finished!Below is data:\n”);

for (inti = 0; i < 10000; i++)

nData0=g_ pData[i].data[0
nDatal=g_ pData[i].data[1
nData2=g_ pData[i].data[2
nData3=g_ pData[i].data[3];

>

1

>

1
I3
]
]
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-continued

33

if(g_pData[i].id == 419)
{ if(nDatal > 127) // Negative Value
sWord__A = —((255-nDatal )*256+(255-nData0)+1);
else
// positive values
sWord__A = nDatal* 256 + nData0;
if(nData3 > 127) // Negative Value
cWord__ A = —((255-nData3)*256+(255-nData2)+1);
else
// positive values
cWord__A = nData3 * 256 + nData2;
aSin = static__cast<double>(sWord__A * 5)/ 4096 ;
aCos = static__cast<double>(cWord__A * 5)/ 4096;
aAmp = (sqrt( aSin*aSin + aCos*aCos ))/6;
if (aCos ==0)
if (aSin>=0)
aAng = 90;
else
aAng = -90;
else if (aCos > 0)
aAng = atan(aSin / aCos) * 180/ 3.14159265;
else
if (aSin >= 0)
aAng = 180 + atan(aSin / aCos) * 180/ 3.14159265;
else
aAng = (atan(aSin / aCos) * 180 / 3.14159265) — 180;
cout << “amplitude of Phase A is ” << aAmp << endl;
cout << “angle of Phase A is ” << aAng << endl;

myfile <<i << \t*<< “PMUI amplitude” << << aAmp << “\t” <<
PMUI angle” <<* << aAng<<“\n";

// myfile << *\t” << nData0 << “\t” << nDatal<< “\t” <<
nData2 << “\t” << nData3 << “\t” << sWord_ A <<*¢” << cWord_ A << “\7"<<

aSin << “\t ?<< aCos << “It << aAmp<< “\n”;

if(g_pData[i].id == 427)
{ if(nDatal >127)// Negative Value
sWord__A = —((255-nDatal )*256+(255-nData0)+1);
else
// positive values
sWord__A = nDatal* 256 + nData0;
if(nData3 > 127) // Negative Value
cWord__ A = —((255-nData3)*256+(255-nData2)+1);
else
// positive values
cWord__ A = nData3 * 256 + nData2;
aSin = static__cast<double>(sWord_A * 5)/ 4096 ;
aCos = static__cast<double>(cWord_A * 5)/ 4096;
aAmp = (sqrt( aSin*aSin + aCos*aCos ))/6;
if (aCos ==0)
if (aSin>=0)
aAng = 90;
else
aAng = -90;
else if (aCos > 0)
aAng = atan(aSin / aCos) * 180/ 3.14159265;
else
if (aSin >=0)
aAng = 180 + atan(aSin / aCos) * 180/ 3.14159265;
else
aAng = (atan(aSin / aCos) * 180 / 3.14159265) — 180;
cout << “amplitude of Phase A is ” << aAmp << endl;
cout << “angle of Phase A is ” << aAng << endl;

myfile <<i << \£’<< “PMU2 amplitude” << << aAmp << “\t” <<

PMU2 angle” <<* << a Ang<<“\n";

// myfile <<*\t” << nData0 <<*“\t” << nDatal<< “\t” <<

¥
¥

myfile.close( );
CANPortClose(m__nPort);
return O;

nData2
<< << pData3 <<t << sWord_ A <<*¢” << cWord_A << “\t”<< aSin
<< << gCos << N << a Amp<< “\n”

Jul. 22,2010



US 2010/0185336 Al

Appendix C to Part 2: Source Code for Calculating
Phasors and Frequencies

[0626]

34

Public gNum As Integer
Public dAngl As Double
Public dAng2 As Double
Public dAng3 As Double
Public dAng4 As Double
Public dAng5 As Double
Public dAng6 As Double
Public gInd As Integer
Private Sub cmdStop_ Click( )
Close #1
MsgBox “Stopped”
Unload Me
End Sub
Private Sub cmdStart_ Click( )
¢ Fire Rx Event Every Four Bytes
MSComm]1.RThreshold = 4
¢ When Inputting Data, Input 4 Bytes at a time
MSComml.InputLen = 4
¢ Optional settings: 9600 Baud, No Parity, 8 Data Bits, 1 Stop Bit
¢ Preferred settings: 115200 Baud, No Parity, 8 Data Bits, 1 Stop Bit
MSComml.Settings = “115200,N,8,1” “Set baud rate value for the chip.
‘MSComm1.Settings = “9600,N,8,1” ‘Set baud rate value for the chip.
‘ Disable DTR
MSComml.DTREnable = False
* Open COM1
MSComml.CommPort = 1
MSComml.PortOpen = True
cmdStop.Enabled = True
Shapel.FillColor = vbRed
¢ Initialize gNum
gNum =1
¢ Initialize gInd
glnd =1
¢ Initialize angles
dAngl =0
dAng2 =0
dAng3 =0
dAng4 =0
dAng5 =0
dAng6 =0
End Sub
Private Sub crtCommand_ Click( )
On Error GoTo FileOpenError
If txtFilename.Text = “”” Then
MsgBox “Please Enter the File name .”

Else
Open “C:\pmu\vikram\” & txtFilename.Text & “.txt” For Output As #1
cmdStart.Enabled = True
End If
Exit Sub
FileOpenError:
MsgBox “There was a problem in creating the file.”
End
End Sub
Private Sub MSComm1__OnComm( )
Dim sData As String ¢ Holds incoming data
Dim sHighByte As Byte ¢ Holds sin HighByte
value
Dim sLowByte As Byte ‘ Holds sin LowByte
value
Dim sWord As Long ¢ Holds sin result
Dim cHighByte As Byte ‘ Holds cos HighByte
value
Dim cLowByte As Byte ¢ Holds cos LowByte
value
Dim ¢Word As Long ¢ Holds cos result
Dim sSin As Double * Holds sin coeff
Dim c¢Cos As Double * Holds cos coeff

Dim sAmp As Double
Dim sAng As Double
Dim sFre As Double
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Select Case MSComm1.CommEvent
¢ Handle each event or error by placing
¢ code below each case statement
¢ Errors
Case comEventBreak
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
received.”
Case comEventFrame
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
Case comEventOverrun
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
Case comEventRxOver
overflow.
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
overflow.”
Case comEventRxParity
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
Case comEventTxFull
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
full.”
Case comEventDCB
retrieving DCB
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
error retrieving DCB.”
* Events
Case comEvCD
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
Case comEvCTS
line.
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
CTS line.”
Case comEvVDSR
line.
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
DSR line.”
Case comEvRing
Indicator.
Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™),
Ring Indicator.”
Case comEvReceive

of chars.

sData = MSComm1.Input

cHighByte = Asc(Mid$(sData, 4, 1))
value

cLowByte = Asc(Mid$(sData, 3, 1))
value

sHighByte = Asc(Mid$(sData, 2, 1))
value

sLowByte = Asc(Mid$(sData, 1, 1))
value

¢ Combine bytes into a word for sin
If sHighByte > 127 Then
¢ negative values

¢ A Break was received.
“Error: A Break was

¢ Framing Error
“Error: Framing Error.”
* Data Lost.
“Error: Data Lost.”
* Receive buffer
“Error: Receive buffer
¢ Parity Error.
“Error: Parity Error.”
¢ Transmit buffer full.
“Error: Transmit buffer
¢ Unexpected error
“Error: Unexpected
¢ Change in the CD line.
“Event: Framing Error”
¢ Change in the CTS
“Event: Change in the
¢ Change in the DSR
“Event: Change in the
¢ Change in the Ring
“Event: Change in the

¢ Received RThreshold #

¢ Get data (4 bytes)
¢ get 1st byte ASCII

¢ Get 2nd byte ASCII
¢ get 3rd byte ASCII

¢ Get 4th byte ASCII

sWord = —((255 - sHighByte) * 256 + (255 — sLowByte) + 1)

Else
¢ positive values
sWord = sHighByte * 256 + sLowByte
End If
¢ Combine bytes into a word for cos
If cHighByte > 127 Then
¢ negative values

cWord = —((255 - cHighByte) * 256 + (255 — cLowByte) + 1)

Else
¢ positive values
cWord = cHighByte * 256 + cLowByte
End If
sSin = sWord * 5/ 4096
c¢Cos = cWord * 5 /4096
sAmp = (Sqr(sSin * sSin + cCos * cCos)) / 6
If cCos = 0 Then
If sSin >= 0 Then
sAng =90
Else
sAng =-90
End If
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ElseIf cCos > 0 Then
sAng = Atn(sSin / cCos) * 180 / 3.14159265
Else
If sSin >= 0 Then
sAng = 180 + Atn(sSin / cCos) * 180/ 3.14159265
Else
sAng = Atn(sSin / cCos) * 180/ 3.14159265 - 180
End If
End If
¢ Calculate frequency
If gInd = 1 Then
sFre = 60 — (sAng - dAngl)/3
dAngl =sAng
Elself gInd = 2 Then
sFre = 60 — (sAng - dAng2?)/3
dAng2 =sAng
Elself gInd = 3 Then
sFre = 60 — (sAng - dAng3)/3
dAng3 =sAng
Elself gInd = 4 Then
sFre = 60 — (sAng - dAng4)/3
dAng4 = sAng
Elself gInd = 5 Then
sFre = 60 — (sAng - dAng5)/3
dAng5 =sAng
Else
sFre = 60 — (sAng - dAng6) /3
dAng6 = sAng
glnd=0
End If
glnd = gInd + 1
If gNum >= 12 Then
“0.000000”), Format(sAng, “000.0000”), Format(sFre, “000.00")
Write #1, sFre
gNum =1
Else
gNum = gNum + 1
End If
Case comEvSend ° There are SThreshold number of
¢ characters in the transmit
* buffer.

Write #1, Format(Now, “mm/dd/yyyy - hh:mm:ss”), Format(sAmp,

Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss”), “Event: There are

SThreshold number of characters in the transmit buffer.”
Case comEVEOF  * An EOF charater was found in
¢ the input stream

Write #1, Format(Now, “mm/dd/yyy - hh:mm:ss™), “Event: An EOF charater

was found in the input stream.”
End Select
End Sub

Appendix D to Part 2: Code for CAN
Communication
[0627] CAN communication is implemented using
PIC18F4580 chips. MCP2551 is used as CAN transceiver.
The assembly code running on the PIC18F4580 for CAN
communication is as follows.

list p=1814580

list n=0 ; list directive to define processor
radix dec
#include <p18f4580.inc> ; processor specific variable definitions

CONFIG OSC=HS ,PWRT=ON,BOR=OFF, BORV=20, WDT = OFF, WDTPS = 1,LVP =

OFF,STVREN = OFF,PBADEN=OFF
;* baudrate and other parameters
; READ DATA SHEET AND CAN DOCUMENTS FOR SETTINGS.
;DO NOT CHANGE THESE ,IF NOT SURE.
; Baud Rate 1 Mbits/sec
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BRGCONI_CONST
BRGCON2_CONST

seg=6Tq
BRGCON3_CONST
START_CAN
TXBOCON_SEND
DLC_CONST
CIOCON__CONST

EQU 0xc0;0x04; STW =1Tqg, BRP =4
EQU 0x9a; Seg?2 freely programmable,
;1 samples/bit,Ph1=7 Tq, Prop

EQU 0x01; Seg2 = 2 Tq ---> Sample at 80%
EQU 0x03; request normal mode
EQU 0x0B; requests that TXBO be sent on CAN bus
EQU 0x04; value for DLC field of message
EQU 0x20; value to load into CIOCON
; Drive TX pin to Vdd, no CAN Capture function on RC2
; Register Variables

;Reset Vector

sinterrupt vector

;disable following feature to avoid conflict with CAN or PSP

CBLOCK 0x020
varl:1
var2:1
var3:1
ENDC
org 0000h
goto Start
org 0008h
goto int_ser
Start
LFSR 0, 100h
clrf CCPR1H
clrf CCPRIL
clrf CCP1CON
clrf ECCPR1H
clrf ECCPRIL
clrf ECCP1CON
clrf ECCP1DEL
clrf ECCP1AS
movlw 0x07
movwf  CMCON
movlw 0x0f
movwf  ADCONI1
movlw
(CANTX)
movw{
movlw OxFF
movwf  TRISD
CLRF PORTD
movlw b*00010110°
movwf  TRISE
bsf LATE,0
movlw 0x00

movwf TRISC
CLRF WDTCON

; initialize CAN for TX Buffer 0

b*11111011° ; RB2 is output
TRISB
;Set Port_ D to all inputs
;Set RD, WR, and CS as

; inputs, Enable Parallel Slave port

;Set Port_ C to all outputs

movlw CIOCON__CONST

movwf  CIOCON
movlw 0x88
selected.
movwf CANCON
checkl:

;Configuration mode with buffer 0

btfss CANSTAT, OPMODE2 ;select configuration mode
bra checkl

movlw ~ BRGCONI_CONST

movwf  BRGCON1

movlw ~ BRGCON2_CONST

movwf  BRGCON2

movlw ~ BRGCON3__CONST

movwf  BRGCON3

movlw START__CAN

movwf  CANCON

; start CAN in Normal Mode

;Standard Identifiers 11-bits.
; set up TX Buffer O with Identifier for 301 H= 0x25, L = 0xA0; 201 H=0x19,
L=0x20; 101 H=0x0C, L=0xA0;

BANKSEL TXBOCON
movlw 0x19

movff WREG, TXBOSIDH

movlw 0x20

movff WREG, TXBOSIDL

movlw 0x08

movff WREG, TXBODLC
; set up TX Buffer 1 with identifier 302 H= 0x25, L = 0xC0; 202 H=0x19,
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L=0x40; 102 H=0x0C, L=0xC0;
BANKSEL TXBOCON
movlw 0x19
movff WREG, TXB1SIDH
movlw 0x40
movff WREG, TXB1SIDL
movlw DLC_CONST
movff WREG, TXB1DLC
; set up TX Buffer 2 with identifier 303 H= 0x25, L = 0xE0O; 203 H=0x19,
L=0x60; 103 H=0x0C, L=0xEO0;
BANKSEL TXBOCON
movlw 0x19
movff WREG, TXB2SIDH
movlw 0x60
movff WREG, TXB2SIDL
movlw DLC_CONST
movff WREG, TXB2DLC
;CAN intiliasation finished
;***************************************************************************
;enable Parallel Slave Port
movlw OxFF
movwf{ INTCON2
movlw 0xCO
movwf INTCON3
bsf INTCON,PEIE ; Enable peripheral interrupts
bsf INTCON,GIE ; Enable global interrupts
bef INTCON,RBIE
bef PIR1,PSPIF
movlw 0x80
movw{ IPR1
bsf PIE1,PSPIE
movlw  0x0C
movwf varl
loop nop
CLRF WDTCON
goto loop
int_ser
btfss PIR1,PSPIF stest if
interrupt due to PSP
bra nothing
bef PIR1,PSPIF
btfss TRISE,IBF
bra finish
call delay
MOVFF PORTD,LATC
NOP
NOP
MOVF LATC,w
MOVWF POSTINCO ; store data into memory block
DCFSNZ varl
call CAN ; Call CAN subroutine to send data
goto finish
nothing
goto $
finish
bef PIR1,PSPIF jclear PSP flag
bef TRISE,IBF
retfie
CAN ;store data for CAN communication
LFSR 0, 100h
movlw 0x0C
movwf varl
MOVF POSTINCO,w
movw{ TXBODO
MOVF POSTINCO,w
movwf{ TXBOD1
MOVF POSTINCO,w
movw{ TXB0OD2
MOVF POSTINCO,w
movw{ TXB0OD3
;;Adding 8 bytes in one messege.*# ¥ F kbR Rk
MOVF POSTINCO,w
movw{ TXBOD4
MOVF POSTINCO,w
movw{ TXBODS
MOVF POSTINCO,w
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movw{ TXBOD6
MOVF POSTINCO,w
movw{ TXBOD7

3SR R SRR S R SR ST SR SR SR R SRR KR SRR IO K SRR SRR KR SRR KK SOHOIK SR RO O
>

MOVF POSTINCO,w
movw{ TXB1DO
MOVF POSTINCO,w
movw{ TXB1D1
MOVF POSTINCO,w
movw{ TXB1D2
MOVF POSTINCO,w
movw{ TXB1D3

oot CAN MESSAGE SENDING® ## s st o s oo o o soporsof g ok

bus

bus

delay

movlw TXBOCON__SEND
movif WREG, TXBOCON

BTFSC TXBOCON, TXREQ ; Is it transmitted?

BRA $-2 ; No. Continue to wait...
moviff WREG, TXB1CON

BTFSC TXB1CON, TXREQ ; Is it transmitted?

BRA $-2 ; No. Continue to wait...
LFSR 0, 100h
RETURN

movlw 0x04

loop1 decfsz

movwf var3
var3,1 ;Subtract 1
goto loop1
return
end

; request sending TXBO on

; request sending TXBO on

Appendix E to Part 2: Code for UIC Functions

[0628] The UIC functions were programmed for simulation
using Matlab. Those functions have been rewritten in VC++.
The new version also generalized some cases and provided

many default parameters.
[0629] The header file is as follows:

#ifndef _ UIC__
#define __ UIC__

class UIC {
public:
UTC(

double BaseVoltage = 120.0,

double DGSize = 85.0,

double AdjUFTripFrequency = 59.8,

double AdjUFTripClearingTime = 300.0,
double AggregateRatingofDGUnits = 100.0,
double ReversePowerThreshold = 10.0,

double OverCurrentRelayPickUpCurrent = 5.0,
double OverCurrentRelaySettingA = 28.0,
double OverCurrentRelaySettingB = 0.13

); // Constructor
~UIC(); // Destructor
bool CBTrip(

const bool CBStatus,

const bool NewStart,

const double VCurrentAreaEPS[3][2],
const double ICurrentAreaEPS[3][2],
const double VCurrentLocal[3][2],

const double VOIdLocal[3][2],

const double VOIdAreaEPS[3][2],
const double ICurrentLocal[3][2]

); // Circuit Breaker Trip Function

double Difference;

double fAreaEPS; // frequency of Area EPS
double fLocal; // frequency of DG
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double rPower; // Active power exchange with the utility,
// negative values mean output power to utility,
// and positive values mean input power from utility
double xPower;
//Amplitude Filter Coeff
double Y1oldGen[3]; double Y2o0ldGen[3];
double Y3oldGen[3]; double Y4oldGen[3];
double Y1newGen[3]; double Y2newGen[3];
double Y3newGen[3]; double Y4newGen[3];
double YdataGen[3]; double Y4PrimeGen[3];
double Y1oldGrid[3]; double Y20ldGrid[3];
double Y30ldGrid[3]; double Y4oldGrid[3];
double Y1newGrid[3]; double Y2newGrid[3];
double Y3newGrid[3]; double Y4newGrid[3];
double YdataGrid[3]; double Y4PrimeGrid[3];
// Angle Filter Coeff.
double aY1loldGen[3]; double aY2o0ldGen[3];
double aY3oldGen[3]; double aY4oldGen[3];
double aY1newGen[3]; double aY2newGen[3];
double aY3newGen[3]; double aY4newGen[3];
double aYdataGen[3]; double aY4PrimeGen[3
double aY1loldGrid[3]; double aY2oldGrid[3];
double aY3oldGrid[3]; double aY4oldGrid[3];
[
[3

5

>

double aY1newGrid[3]; double aY2newGrid[3];

double aY3newGrid[3]; double aY4newGrid[3];

double aYdataGrid[3]; double aY4PrimeGrid[3];

double CoeffAmpGenX[3][2];

double CoeffAmpGenY[3][2];

double CoeffAmpGenZ[3][2];

double CoeffAmpGridX[3][2];

double CoeffAmpGridY[3][2];

double CoeffAmpGridZ[3][2];
2];
21;
[

>

double CoeffAmpCurrX[3
double CoeffAmpCurrY[3
double CoeffAmpCurrZ[3
bool GridFlag,GenFlag,first;
// Frequency Filter Coeff.
double CoeffGridA[3][1
double CoeffGridB[3][1
double CoeffGridC[3][1
double CoeffGenA [3][
double CoeffGenB [3][
double CoeffGenC [3][
int WindNumberGen[3];
int WindNumberGrid,v;
// Filter Coeff.
double IAreaEPS[3][2];
double ILocal[3][2];
double VLocal[3][2];
double VAreaEPS[3][2];// 3 phase voltages/current of Area EPS/Local,
// where, column 0 -> Amplitudes, and column 1

>

]
1
1
]
1
11215

1];
1];
1];
11];
11];
11];

-> Angles;
// row 0 -> phase A, row 1 -> phase B, and row
2 ->phase C;
private:
// Variables
double BaseVoltage; // Base voltage in Volts
double DGSize; // DG size in kilo Watts
double AdjUFTripFrequency; // Adjustable under-frequency trip settings
double AdjUFTripClearingTime;
double AggregateRatingofDGUnits; // Aggregate rating of DG units in kVA
double ReversePowerThreshold; // Threshold of Reverse Power Relay in kW
//double VAreaEPS[3][2];
//double IAreaEPS[3][2]; // 3 phase currents of Area EPS
//double VLocal[3][2]; // 3 phase voltages of DG
double VLocalOld[3][2];
//double ILocal[3][2]; // 3 phase currents of DG
double Power;
double ReactivePower;
int CaseVoltageDisturbance[3][4]; // counters for 3 phase voltages under
4 circumstances
int CaseFrequencyDisturbance[3];  // counters for frequency under 5
circumstances

// 2 circumstances are for DG size <=
30 kW
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/'3 circumstances are for DG size > 30
kW
// First 2 case
counters are shared.
int CaseSynchronizationCheck; // counters for sychronization check
int CaselnadvertentEnergization; // counters for inadvertent
energization
double AreaPreviousAngles[3][2]; // 3 phase area angle history of 100 ms
or 6 cycles
double LocalPreviousAngles[3][72]; // 3 phase local angle history of 100
ms or 6 cycles
int IndexOfPreviousAngles; // index showing which previous angle is
currently used in calculation
double OverCurrentRelayPickUpCurrent; // Overcurrent relay pick up
current
double OverCurrentRelaySettingA; // Overcurrent relay setting A
double OverCurrentRelaySettingB; // Overcurrent relay setting B
double CaseOverCurrentRelay[3]; // 3 phase overcurrent relay’s induction
disk positions
// Functions
void ResetCounters( ); // function to reset all counters
void InitializePreviousAngles( ); // function to initialize previous
angle array
double FrequencyCalculationl(double V[3][2]);
double FrequencyCalculation2(double V[3][2]);// Calculate frequency from
3 phase angle history
double GetThreePhaseReActivePower( );
double GetThreePhaseActivePower( );
//double GetThreePhaseActivePower( ); // Retrieve 3 phase active power
bool RelayofOverUnderVoltage( ); // Over/Under-voltage relay logic
bool RelayofOverUnderFrequency( ); // Over/Under-frequency relay logic
bool RelayofSynchronizationCheckandInadvertentEnergization( ); //
Sycnroniztion check and inadvertent energization relay logic
bool RelayofReversePower( ); / Reverse power relay logic
bool RelayofOverCurrent( ); // Overcurrent relay logic
bool RelayofGroundFaultDetection( ); // Ground fault detection relay
logic
void InitializeCaseOverCurrentRelay( ); // Initialize induction disk
positions
g
#endif

[0630] The implementation file is as follows:

#include “stdafx.h”
#include “UIC.h”
#include “globals.h”
#include <cmath>
#define PI 3.14159265359
#define DELTA_ T 1.0/720
#define CONSTANT 5*2%3.14159265
#define SAMPLE_ CONSTANT 0.0013888 //(1/720)
extern Variables allStatus;
UIC::UIC(double BV, double DGS, double AUFTF,
double AUFTCT, double ARoDGU, double RPT,
double OCRPUC, double OCRSA, double OCRSB)
: BaseVoltage(BV), DGSize(DGS), AdjUFTripFrequency(AUFTF),
AdjUFTripClearingTime(AUFTCT), AggregateRatingofDGUnits(ARoDGU),
ReversePowerThreshold(RPT),
OverCurrentRelayPickUpCurrent(OCRPUC),
OverCurrentRelaySetting A(OCRSA), OverCurrentRelaySettingB(OCRSB)
{

ResetCounters( );
InitializePreviousAngles( );
IndexOfPreviousAngles = 0;
InitializeCaseOverCurrentRelay( );

UIC:~UIC( ) {

double UIC::GetThreePhaseReActivePower( ) {
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double ReactivePower3 = 0.0;
// Calculate 3 phase active power
for(int i=0;i<3;i++)
ReactivePower3 += VLocal[i][0] * ILocal[i][0] * sin((VLocal[i][1]
- ILocal[i][1]) * PI/ 180);
ReactivePower = ReactivePower3;
return ReactivePower;

double UIC::GetThreePhaseActivePower( ) {
double RealPower3 = 0.0;

// Calculate 3 phase active power

for(int i=0;i<3;i++)

RealPower3 += VLocal[i][0] * ILocal[i][0] * cos((VLocal[i][1] -

ILocal[i][1]) * PI/ 180);

Power = RealPower3;

return Power;

void UIC::ResetCounters( ) {
for(int i=0;i<4;i++)
for(int j=0;j<3;j++)
CaseVoltageDisturbance[i][j] = 0;
for(int i=0;i<5;i++)
CaseFrequencyDisturbance[i] = 0;
CaseSynchronizationCheck = 0;
CaselnadvertentEnergization = 0;
return;

void UIC::InitializePreviousAngles( ) {

first=0
v=0;
GridFlag=0;
GenFlag =0;
for(int i=0;i<3;i++)
{
YloldGen[i]=0; Y2oldGen[i]=0;
Y3oldGenli]= Y4oldGenli]=0;
YlnewGen[l] 0;  Y2newGenli]=0;
Y3newGen[i]=0; Y4newGenl[i]=0;
YdataGen[i]=0; Y4PrimeGenli]=0;
Y1loldGrid[i]= 0; Y20ldGrid[i]= 0;
Y3oldGrid[i]= 0; Y4oldGrid[i]= 0

Y1newGrid[i]= 0; Y2newGrid[i]
Y3newGrid[i]= 0; Y4newGrid[i]=
]=

YdataGrid[i]= 0; Y4Pr1meGr1d[1 = 0,
aYloldGen[i]= aY2oldGenli]=0;
aY3oldGenl[i]= aY4oldGenli]=0;
aYlneWGen[l] 0; aY2newGen[i]=0;
aY3newGen[i]=0; aY4newGenli]=0;
aYdataGen[i]=0; aY4PrimeGen[i]=0;
aY1oldGrid[i]= 0; aY2oldGrid[i]= 0;
aY3oldGrid[i]= aY4oldGr1d[ i]=0;
aY1newGrid[i]= 0; a¥2newGrid[i]= 0;

aY3newGrid[i]= 0 aY4newGrid[i
aYdataGrid[i]= 0; aY4PrimeGrid[
for(int j=0;j<2;j++)

{//Initialize Generator voltage Amp Filter coeff.
CoeffAmpGenX[i][j] = 0;
CoeffAmpGenYTi][j] = 0;
CoeffAmpGenZ[i][j] = 0;

//Initialize Grid Voltage Amp Filter coeff.
CoeffAmpGridX[i][j] =
CoeffAmpGridYTi][j] =
CoeffAmpGridZ[i][j] =0;

//Initialize Current Amp Filter coeff.
CoeffAmpCurrX[i][j]= 0;
CoeffAmpCurrY[i][j]= 0;
CoeffAmpCurrZ[i][j]= 0;

]
1=
1],

for(int i=0;i<3;i++)
for(int j=03j<11;j++) {
CoeffGenA[i][j] = 0;
CoeffGenBl[i][j] =
CoeffGenCli][j] = 0;
CoeffGridA[i][j] = 0;

>
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CoeffGridB[i][j] = 0;
CoeffGridC[i][j] =0

>

return;

void UIC::InitializeCaseOverCurrentRelay( ){
for(int i=0;i<3;i++)

CaseOverCurrentRelay[i] = 0.0;

return;

bool UIC::RelayofOverUnderVoltage( ) {
// Over/Under-voltage relay logic
// Sampling rate is 720 samples per second for a 60 Hz system.
// Based on Table 1 of IEEE 1547 (p8).

// Voltage Range (% of base voltage - rms)

/
samples
/
samples
/
samples
/

samples

V<50 0.16s/ 10cycles/ 120
50 <=V <88 2.00s/120 cycles / 1440
110 <V <120 1.00s/ 60cycles/ 720
V>=120 0.16s/ 10cycles/ 120

for(int i=0;i<3;i++) { // 3 phase

if(VAreaEPS[i][0] < 0.5*BaseVoltage) {
if(++CaseVoltageDisturbance[i][0] >= 120)
return 1;
¥
else
CaseVoltageDisturbance[i][0] = 0;
if(VAreaEPS[i][0] < 0.88*BaseVoltage) {
if(++CaseVoltageDisturbance[i][1] >= 1440)
return 1;
¥
else
CaseVoltageDisturbance[i][1] = 0;
if(VAreaEPS[i][0] > 1.1*BaseVoltage) {
if(++CaseVoltageDisturbance[i][2] >= 720)
return 1;
¥
else
CaseVoltageDisturbance[i][2] = 0;
if(VAreaEPS[i][0] >= 1.2*BaseVoltage) {
if(++CaseVoltageDisturbance[i][3] >= 120)

return 1;
¥
else
CaseVoltageDisturbance[i][3] = 0;
return O;

bool UIC::RelayofOverUnderFrequency( ) {
// Over/Under-frequecny relay logic
// Sampling rate is 720 samples per second for a 60 Hz system.
// Based on Table 2 of IEEE 1547 (p9).
if(DGSize <=30.0) {

else {

// For DGs of size <= 30 kW

// Frequency Range (Hz) Clearing Time
/ <593 0.16 s/ 10 cycles / 120 samples
/ f>60.5 0.16 s/ 10 cycles / 120 samples

if(fLocal < 59.3) {
if(++CaseFrequencyDisturbance[0] >= 120)
return 1;
¥
else
CaseFrequencyDisturbance[0] = 0;
if(fLocal > 60.5) {
if(++CaseFrequencyDisturbance[1] >= 120)
return 1;
¥
else
CaseFrequencyDisturbance[1] = 0;

// For DGs of size > 30 kW
// Frequency Range (Hz) Clearing Time

Clearing Time
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/ f<57.0 0.16 s / 10 cycles / 120 samples
// 57.0<f<=159.8 Adjustable 0.16 s / 10 cycles / 120
samples
/ to 300 s/ 18000 cycles / 216000
samples
/ f>60.5 0.16 s / 10 cycles / 120 samples

if(fLocal < 57.0) {
if(++CaseFrequencyDisturbance[0] >= 120)
return 1;
¥
else
CaseFrequencyDisturbance[0] = 0;
if(fLocal < AdjUFTripFrequency) {
if(++CaseFrequencyDisturbance[1] >=
720*AdjUFTripClearingTime)
return 1;
¥

else
CaseFrequencyDisturbance[1] = 0;
if(fLocal > 60.5) {
if(++CaseFrequencyDisturbance[2] >= 120)

return 1;
¥
else
CaseFrequencyDisturbance[2] = 0;
return O;

bool UIC::RelayofSynchronizationCheckandInadvertentEnergization( ) {
/
double MaxVAmplitudeDifference = 0.0;
double MaxVAngleDifference = 0.0;
double MaxVAmplitudeAreaEPS = 0.0;
for(int i=0;i<3;i++) {
// Get the maximum difference of voltage amplitudes in 3 phases
double temp = abs(VAreaEPS[i][0] - VLocal[i][0])/BaseVoltage*100;
if(MaxVAmplitudeDifference < temp)
MaxVAmplitudeDifference= temp;
// Get the maximum difference of voltage angles in 3 phases
temp = abs(VAreaEPSJ[i][1] - VLocal[i][1]);
if(MaxVAngleDifference < temp)
MaxVAngleDifference = temp;
// Get the maximum Area EPS voltage in 3 phases
temp = VAreaEPS[i][0];
if(MaxVAmplitudeAreaEPS < temp)
MaxVAmplitudeAreaEPS = temp;

//MaxVAngleDifference = abs(VAreaEPS[0][1] - VLocal[0][1]);
double fDifference = abs(fAreaEPS—f{Local);
if(MaxVAmplitudeAreaEPS > 0.88 * BaseVoltage

&& MaxVAmplitudeAreaEPS < 1.1 *BaseVoltage

&& fLocal > 59.3

&& fLocal < 60.5) {

if(++CaselnadvertentEnergization > 300000)

CaselnadvertentEnergization = 300000;
¥

CaselnadvertentEnergization = 0;
double fDifferenceTolerance, VAmplitudeDifferenceTolerance,
VAngleDifferenceTolerance;
if(AggregateRatingofDGUnits <= 500) {
fDifferenceTolerance = 0.5;
VAmplitudeDifferenceTolerance = 10;
VAngleDifferenceTolerance = 20;

else

else if(AggregateRatingofDGUnits <= 1500) {
fDifferenceTolerance = 0.2;
VAmplitudeDifferenceTolerance = 5;
VAngleDifferenceTolerance = 15;

¥

else {
fDifferenceTolerance = 0.1;
VAmplitudeDifferenceTolerance = 3;
VAngleDifferenceTolerance = 10;
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if(fDifference < fDifferenceTolerance
&& MaxVAmplitudeDifference < VAmplitudeDifferenceTolerance
&& MaxVAngleDifference < VAngleDifferenceTolerance) {
if(++CaseSynchronizationCheck > 1000)
CaseSynchronizationCheck = 1000;
¥

CaseSynchronizationCheck = 0;
if(CaselnadvertentEnergization > 21600 && CaseSynchronizationCheck >

else

720)
return O;
return 1;

bool UIC::RelayofReversePower( ) {
double RealPower3 = 0.0;
// Calculate 3 phase active power
for(int i=0;i<3;i++)
RealPower3 += VAreaEPS[i][0] * [AreaEPS[i][0] *
cos((VAreaEPS[i][1] - IAreaEPS[i][1]) * PI/180);
Power = RealPower3;
if(RealPower3 < ReversePowerThreshold * 1000)
return 1;
else
return O;

bool UIC::RelayofOverCurrent( ) {
for(int i=0;i<3;i++) { // Update induction disk positions for each phase
// Define two temperary variables
double ApplitudeMultiplierl =
TAreaEPS[i][0]/OverCurrentRelayPickUpCurrent;
double ApplitudeMultiplier2 =
ApplitudeMultiplier1* ApplitudeMultiplierl - 1;
// If phase current is greater than or equal to pick up current,
position increases
if(IAreaEPS[i][0]>=OverCurrentRelayPickUpCurrent) {
CaseOverCurrentRelay[i] +=
1/((OverCurrentRelaySetting A/ ApplitudeMultiplier2)+OverCurrentRelay-
SettingB)*DELTA__T;
// Return trip if the phase’s induction disk position is
great than 1
if(CaseOverCurrentRelay[i]>1.0)
return 1;

// If phase current is less than pick up curren, postion decreases
else {
CaseOverCurrentRelay[i] +=
1/(OverCurrentRelaySettingA/ApplitudeMultiplier2)* DELTA__T;
// Stop decreasing if the phase’s induction disk position is

less than O
if(CaseOverCurrentRelay[i]<0.0)
CaseOverCurrentRelay[i]=0.0;
¥
¥
return O;

bool UIC::RelayofGroundFaultDetection( ) {
return O;

bool UIC::CBTrip(const bool CBStatus,

const bool NewStart,

const double VCurrentAreaEPS[3][2],
const double ICurrentAreaEPS[3][2],
const double VCurrentLocal[3][2],

const double VOIdLocal[3][2],
const double VOIdAreaEPS[3][2],
const double ICurrentLocal[3][2]
)

{
//Filter Coeff
float a3 = 280.0;
float a2 = 34400.0;
float al = 2072000.0;
float a0 = 54760000.0;
// Localize all measurements.
for(int i=0;i<3;i++)
for(int j=0;j<2;j++)
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VAreaEPS[i][j] = VCurrentAreaEPS[i][j];

TAreaEPS[i][j] = ICurrentAreaEPS[i][j];

VLocal[i][j] = VCurrentLocal[i][j];
VLocalOld[i][j]= VOldLocal[i][j];

ILocal[i][j] = ICurrentLocal[i][j];

AreaPreviousAngles[i][j] = VOIdAreaEPS[i][j];

// Calculate area frequency, Local Freq, Real Power and Reactive Power
fAreaEPS = FrequencyCalculation2(VAreaEPS);
fLocal = FrequencyCalculationl (VAreaEPS);

//double Const = 5%2*3.14159265;

for(int i=0;i<3;i++)

Y1oldGrid[i]= VAreaEPS[i][0];
YloldGenl[i]= VLocal[i][0];

>

for(int i=0;i<3;i++)

YdataGen[i] = VLocal[i][0];

YdataGrid[i] = VAreaEPS[i][0];
YinewGen[i]=Y1oldGen[i][+SAMPLE_CONSTANT*Y2oldGen[i]
Y2newGen[i]=Y2oldGen[i][+SAMPLE_ CONSTANT*Y3o0ldGen[i]
Y3newGen[i]=Y3oldGen[i][+SAMPLE_ CONSTANT*Y4oldGen[i]
Y4PrimeGen[i]=a0*(YdataGen[i]-Y1loldGen[i])-al *Y2oldGen[i]-

a2*Y3oldGen[i]-a3*Y4oldGenli];

Y4newGen[i]=Y4oldGen[i]+SAMPLE_ CONSTANT*Y4PrimeGen[i];
Y1newGrid[i]=Y1oldGrid[i]+SAMPLE_ CONSTANT*Y2oldGrid[i];
i]
]

>
>
>

i]= ;
Y2newGrid[i]="Y20ldGrid[i]+SAMPLE_ CONSTANT*Y3oldGrid[i];
Y3newGrid[i]="Y30ldGrid[i]+SAMPLE_ CONSTANT*Y4oldGrid[i
Y4PrimeGrid[i]=a0*(YdataGrid[i]- Y 1oldGrid[i])-al*Y20ldGrid[i]-
a2*Y3o0ldGrid[i]-a3*Y4oldGrid[i];
Y4newGrid[i]=Y4oldGrid[i]+SAMPLE_ CONSTANT*Y4PrimeGrid[i];
VLocal[i][0] =Y1newGenli];
VAreaEPS[i][0]=Y lnewGrid[i];
// ILocal[i][0] = CoeffAmpCurrZ[i][1];
// 1AreaEPS[i][0]= CoeffAmpCurrZ[i][1];
allStatus.FilteredPMU.VLocal[i][0] = Y1newGenli];
allStatus.FilteredPMU.VLocal[i][1] = VCurrentLocal[i][1];
allStatus.FilteredPMU. VAreaEPS[i][0] = Y 1newGrid[i];
allStatus.FilteredPMU. VAreaEPS[i][1] = VCurrentAreaEPS[i][1];

YloldGenl[i] = Y1newGenli];

Y2oldGenli] = Y2newGenli];

Y3oldGenli] = Y3newGenli];

Y4oldGenli] = Y4newGenli];

Y1loldGrid[i] =Y 1newGrid|
Y2oldGrid[i] = Y2newGrid|
[
[

>

>

i];
il;
i i]
]

Y3oldGrid[i] =Y3newGrid|
Y4oldGrid[i] = Y4newGrid)|

1

11

>

allStatus.FilteredPMU.FLocal = flLocal;
rPower = GetThreePhaseActivePower( );
xPower = GetThreePhaseReActivePower( );
allStatus. UIC.rPower = rPower;
allStatus. UIC.xPower = xPower;
// Initialize counters if necessary
if(NewStart == 1)
ResetCounters( );
if(CBStatus ==0)
// Circuit breaker is closed.
return RelayofOverUnderVoltage( );/* Il
RelayofOverUnderFrequency( )|l RelayofReversePower( )
Il RelayofReversePower( ) || RelayofOverCurrent( ) ||
RelayofGroundFaultDetection( );*/
else
// Circuit breaker is open.
return RelayofSynchronizationCheckandInadvertentEnergization( );

double UIC::FrequencyCalculation2( double V[3][2]) {
double freq[3] = {0.0};
double Freq,diffl,diff2;
//Filter Coeff
float a3 = 120.0;
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float a2 = 5600.0;
float al = 120000.0;
float a0 = 1000000.0;
// Start Looping here//
if(GridFlag == 0){
GridFlag =1;
for(int i=0;i<3;i++)

{
aYloldGrid[i]= V[i][1];
// aYloldGen[i]= VLocal[i][1];
¥

for(int i=0;i<3;i++)

/faYdataGen[i] = VLocal[i][1];
aYdataGrid[i] = V[i][1];
/% diffl = abs(aYdataGen[i] — aY1loldGen[i] — 360);
diff2 = abs(aYdataGen[i] - aYloldGen[i] + 360);*/
diffl = abs(aYdataGrid[i] - aY1oldGrid[i] — 360);
diff2 = abs(aYdataGrid[i] - aY1oldGrid[i] + 360);
double PhaseShift = 0.0;
if ( diffl <180.0)
PhaseShift = 360.0;
else if (diff2 <180.0)
PhaseShift = -360.0;
aY1oldGrid[i] = aY1oldGrid[i] + PhaseShift;
aY1newGrid[i]= aY1oldGrid[i[+SAMPLE__ CONSTANT*aY?2oldGrid[i];
aY2newGrid[i]= aY20ldGrid[i][+SAMPLE__ CONSTANT*aY30ldGrid[i];
aY3newGrid[i]= aY30ldGrid[i[+SAMPLE__ CONSTANT*aY4oldGrid[i];
aY4PrimeGrid[i]=a0*(aYdataGrid[i] — aY1loldGrid[i]) — al *aY2o0ldGrid[i] -
a2*aY3oldGrid[i] — a3*aY4oldGrid[i];
aY4newGrid[i] = aY4oldGrid[i
freq[i] = 60.0 + (aY2newGrid[i
aY1oldGrid[i] = aY1newGrid
aY?2o0ldGrid[i] = aY2newGrid
aY3o0ldGrid[i] = aY3newGrid
aY4oldGrid[i] = aY4newGrid

+SAMPLE_CONSTANT*aY4PrimeGrid[i];
/360.00);

i];

il;
i];
i]

11

Freq = (freq[0]);//+freq[1]+freq[2])/3;
return Freq;

double UIC::FrequencyCalculationl(double V[3][2]) {
double freq[3] = {0.0};
double New,Freq,Diff1,Diff2, PhaseShift;
// Start Looping here//
for(int i=0;i<1;i++){
New = V[i][1];
if(GenFlag == 0){
GenFlag =1;
for(int j=0;j<9;j++){
CoeffGenBl[i][j]= New;}

)
Diffl = abs(New — CoeffGenBJi][0] — 360.0);
Diff2 = abs(New — CoeffGenBJi][0] + 360.0);
PhaseShift = 0.0;
If(Diff1 <180.0)
PhaseShift = 360.0;
else if (Diff2 < 180.0)
PhaseShift = -360.0;
for(int j=0;j<9;j++){
CoeffGenBli][j]= CoeffGenBl[i][j]+ PhaseShift;}
CoeffGenA[i][0]= CONSTANT*(New — CoeffGenB[i][0]);
CoeffGenC[i][0] = CoeffGenB[i][0] + SAMPLE_ CONSTANT* CoeffGenA[i][0];
for(int j =1 ; j <9; j++){
CoeffGenA[i][j] = CONSTANT*(CoeffGenBJ[i][j-1]-CoeffGenBJ[i][j]);
CoeffGenCli][j] = CoeffGenBJi][j]+ SAMPLE__CONSTANT*CoeffGenAli][j];

freq[i] = 60 + (CoeffGenA[i][8]/360.0);
for(int j=03j< 9;j++){
CoeffGenB[i][j]=CoeffGenCl[i][j];}
}/Finish Looping here//
Freq = (freq[0]);
return Freq;
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[0631] One UIC implementation software file in the illus-
trated embodiment is:

// DG.cpp : Defines the entry point for the console application.
/
#include <iostream>
#include <fstream>
#include <cmath>
#include <time.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <sys/timeb.h>
#include “UIC.h”
#include “Protection.h”
#include “DGIO.h”
#include “stdafx.h”
#include “Globals.h”
#include “Control.h”
#include “debugging.h”
#define PI 3.14159265359
PCAN_MSG_Tz
PMUDatafromCAN *PMUTI;
UIC *uig;
static DGIO *myio;
Protection *protect;
Control *dgControl;
Debugging *debug;
Variables allStatus;
Settings setting;
bool SyncCheckLoop;
bool GPMControlLoop;
bool perturbationLoop;
using namespace std;
int initPMU ( );
void UICCheck ( );
void menu ( );
int interactive ( );
void SyncCheckPIDControl ( );
void GPMPIDControl ( );
double PIDOutput (double error, PIDData& pid);
void allStatusReset ( );
double perturbation (double Amplitude);
void PerturbationLoop ( );
int _tmain(int arge, _ TCHAR* argv[ ])
{
printf (“Start initialization ...\n");
debug = new Debugging (57600, true);
allStatusReset ( );
nitPMU ();
myio = new DGIO(2, 4);
if (myio->errorCode != 1000)

printf (“IO cards initialization error!!!\n”);
getch ();
exit (0);

protect = new Protection ( );

dgControl = new Control ( );

uic = new UIC(277.,85.,59.8,300.,100.,0.1,5.,28.,0.13); // Define an
instance of UIC

printf (“Initialization completed...\n”);

menu ( );

int loop =1;

int counterl = 0;

int counter2 = 0;

SyncCheckLoop = false;

GPMControlLoop = false;

perturbationLoop = false;

while (loop)

{

loop = interactive ( );
counterl ++;
counter?2 ++;
if (counterl >= 100)

{
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myio->readInputs ( );
counterl = 0;

PMU1->CANUpdateStatus( ); // Check for PMU status
// If data is there get values, otherwise skip.
if (PMU1->bReady)
PMU1->getData(allStatus.PMU.Data); // Read all data in buffer*/
UICCheck ( );
" protect->doEvents ( );
dgControl->doEvents ( );
if (counter2 >= 20)
{
counter2 = 0;
if (perturbationLoop == true)
PerturbationLoop ( );
if (SyncCheckLoop == true)
SyncCheckPIDControl ( );
if (GPMControlLoop == true)
GPMPIDControl ( );
debug->recording (allStatus);
myio->writeOutputs ( );

if (debug->reachLimit ( ))
loop = 0;

struct tm *newtime;

struct _timeb64 timebuffer;

__ftime64(&timebuffer);

newtime = __gmtime64(&timebuffer.time);

char fileName[30];

sprintf (fileName, “%02d%02d%02d%02d”, newtime->tm__mon+1,
newtime->tm__mday,newtime->tm__hour-5, newtime->tm__min);

debug->writeFile (fileName);

void menu ()

printf (“\n: Menu \n”);
printf (“e: exit\n”);

printf (“z: syncControl\n”);

printf (“x: GPM Power Control\n”);

printf (“t: Test Mode\n™);

printf (“b: perturbation GIM mode\n”);
printf (“u: CB Status, power, frequencies\n”);
printf (“i: IO values\n™);

printf (“y: Sync Check\n™);

printf (“p: PMU values'\n”);

printf (“s: start or stop recording\n);

printf (“enter a command: ”);

int interactive ()

char ¢;
if (_kbhit ()
{

c=_getch ();
switch (c)

case ‘z’:
printf (“\nSync Control Mode:\n);
debug->recording ( );
SyncCheckLoop = true;
GPMControlLoop = false;
break;

case ‘X":
printf (“GPM Power Control Model: \n”);
debug->recording ( );
SyncCheckLoop = false;
GPMControlLoop = true;
break;

case ‘t’:
printf (“\nTest Mode:\n");
allStatusReset ( );
SyncCheckLoop = false;
GPMControlLoop = false;
break;
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case ‘b’
perturbationLoop = true;
break;
case ‘d’:
setting.RealLoadReference —= 2000;
if (setting.ReallL.oadReference < 0)
setting.RealLoadReference = 0;
printf (“RealLoadReference: %f\n”, setting.Reall.oadReference);
break;
case ‘e’:
return O;
break;
case 's’:
debug->startRecording = ! debug->startRecording;
if (debug->startRecording == true)
printf (“start recording data...”);
else
printf (“Stop recording data!”);
break;
case ‘u’:
printf (“\nPower: CB status %d\n”,
allStatus.JO.digitalOut.genBreaker);
printf (“Real Power: %f\n”, allStatus. UIC.rPower);
printf (“Reactive Power: %fin”, allStatus.UIC.xPower);
printf (“Frequencies: Grid: %f, Local: %f\n”, uic->fAreaEPS,
uic->fLocal);
break;
case ‘y’:
printf (“\nSync Check: \n”);
printf (“SpeedBias:%4.2f, %4.2f\n”,
allStatus.JO.analogMonitoring.speedBias, allStatus.IO.analogOut.speedBias);
printf (“VoltageBias:%4.2f, %4.2f\n”,
allStatus.JO.analogMonitoring.voltageBias,
allStatus.JO.analogOut.voltageBias);
printf (“%4.21)”, allStatus.PMU.Data[3].Phase-
allStatus.PMU.Data[6].Phase);
printf (“%4.21)”, allStatus.PMU.Data[4].Phase-
allStatus.PMU.Data[7].Phase);
printf (“%4.21)”, allStatus. PMU.Data[5].Phase-
allStatus.PMU.Data[8].Phase);
printf (“\n”);
break;
case ‘p’:
printf (“\nPMU reading:\n");
printf (“Current All (A, B, C):™);
for (int i =0;1<3;i++)
printf (“%6.41(%4.21),”, 0.0335*4*allStatus. PMU.Data[i]. Amp,
allStatus.PMU.Data[i].Phase);
printf (“\nVoltage Grid (A, B, C): ”);
for (int i =0;1<3;i++)
printf (“%6.41(%4.21),”, uic->VAreaEPS[i][0],
allStatus.PMU.Data[3+i].Phase);
printf (“\nVoltage Gen (A, B, C): ”);
for (int i =0;1<3;i++)
printf (“%6.4f(%4.21),” ,uic->VLocal[i][0],
allStatus.PMU.Data[6+i].Phase);
printf (“\n”);
break;
case ‘i’
printf (“\nDigital Inputs: »);
for (int i = 0; i <DIGITAL_IN; i ++)

printf (“%1d”, allStatus.IO.digitalIn.value[i]);

printf (“\n”);
printf (“Digital Outputs: »);
for (int i = 0; i < DIGITAL_ OUT; i ++)

printf (“%1d”, allStatus.IO.digitalOut.value[i]);

printf (“\n”);
printf (“Analog Inputs: Coolant %7.2f C, Oil %7.2f PSI, MPU %7.2f
rpm'\n”,
allStatus.JO.analogIn.CoolantTemp,
allStatus.JO.analogIn.OilPressure,
allStatus.JO.analogIn. MPUSpeed);
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printf (“Analog Output: SPD__BIAS %7.2f, VOL__BIAS %7.2f”,
allStatus.JO.analogOut.speedBias, allStatus.IO.analogOut.voltageBias);

break;

default:

printf (“wrong input\n”);

break;

menu ( );
return 1;
int initPMU ()

UINTx=0;

bool y = false;
z = ( PCAN_MSG__T )Global Alloc( GPTR, BUFFER *sizeof(CAN_MSG_T) );
if(z==NULL)

cout<<“Out of memory!”<<endl;
CANPortClose(x);
return —1;

PMU1 = new PMUDatafromCAN(x,y,z);
PMU1->CANOpen(1);
return O;

¥
void UICCheck ()

double VCurrentAreaEPS[3][2], ICurrentAreaEPS[3][2]; // Area EPS or grid
voltage and current
double VCurrentLocal[3][2],ICurrentLocal[3][2]; // Local or gen voltage and
current
double VOIdLocal[3][2], VOIdAreaEPS[3][2];
double GridFactor[3];
double GenFactor[3];
GenFactor[0]= 0.2336;GenFactor[1]= 0.2331;GenFactor[2]= 0.2323;
GridFactor[0]=0.2391;;GridFactor[1]=0.2379;;GridFactor[2]=0.2382;
bool NewStart = 0;
// The status of the circuit breaker should be a digital input.
// 1 means CB is open, and 0 indicates CB is closed.
bool CBStatus;
//check if the logic is consistant with egep2 board
if (allStatus.JO.digitalIn.genCBAuxSwitch==0)
CBStatus = 0;
else
CBStatus = 0;
for(int j=0;j<3;j++)

// 3 phase current either Area EPS (grid) or Local (gen)
ICurrentAreaEPS[j][0]= 0.0335*4*allStatus.PMU.Data[j]. Amp;
ICurrentAreaEPS[j][1]= allStatus.PMU.Data[j].Phase;
ICurrentLocal[j][0]= 0.0335*4*a|IStatus.PMU.Data[j]. Amp;
ICurrentLocal[j][1]= allStatus.PMU.Data[j].Phase;

// 3 phase voltage for Area EPS (grid)

VCurrentAreaEPS[j][0]= GridFactor[j]*allStatus.PMU.Data[3+]].Amp;
VCurrentAreaEPS[j][1]=allStatus.PMU.Data[3+j].Phase;

// 3 phase voltage for Local (gen)

VCurrentLocal[j][0]= GenFactor[j]*allStatus.PMU.Data[6+]]. Amp;
VCurrentLocal[j][1]=allStatus.PMU.Data[6+]].Phase;

// Call UIC functions by Yong Sheng
bool trip=uic->CBTrip(CBStatus, NewStart, VCurrentAreaEPS, ICurrentAreaEPS,
VCurrentLocal, VOldLocal, VOldAreaEPS, ICurrentLocal);
//check the following logic !!!!
allStatus. UIC.freqGrid = uic->fAreaEPS;
allStatus. UIC.freqLocal = uic->fLocal;
//allStatus.JO.digitalOut.genBreakerTrip = trip;
if(trip==1 && CBStatus==0) // Trip CB if it is closed initially.

allStatus.JO.digitalOut.genBreakerTrip = 1; // cout<<* Trip
the circuit breaker!”<<endl;
allStatus.JO.digitalOut.genBreaker = 1;
allStatus.]O.digitalOutChanged = 1;
// CBStatus = 1;

¥
else if(trip==0 && CBStatus==1) // Close CB if it is open initially.
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// else if(trip==0 && CBStatus==0) original code from Sheng, changed CBStatus

from O to 1 in the code.

CBStatus = 0;

allStatus.JO.digitalOut.genBreaker = 0; // cout<<* Close the

circuit breaker!”<<endl;

allStatus.JO.digitalOut.genBreakerTrip = 0; // cout<<* Close the

circuit breaker!”<<endl;

}

void SyncCheckPIDControl ()

//Phase sync
double error = allStatus.FilteredPMU.VAreaEPS[0][1] -
allStatus.FilteredPMU.VLocal[0][1];
// double error = allStatus.PMU.voltageLocal A.Phase —
allStatus.PMU.voltageGridA.Phase;
if (error > 180)
error —= 360.0;
if (error <-180.0)
error += 360.0;

double speedBias = PIDOutput (error, setting, PID.syncCheckSpeedBiasPID);

speedBias = speedBias *4/10.0+2.50;
if (speedBias > 3.5)
speedBias = 3.5;
if (speedBias < 1.5)
speedBias = 1.5;
if (speedBias != allStatus.IO.analogOut.speedBias)

allStatus.JO.analogOut.speedBias = speedBias;
allStatus.JO.analogOutChanged = true;

/fvoltage Bias
error = allStatus.FilteredPMU.VAreaEPS[0][0]-
allStatus.FilteredPMU. VLocal[0][0];
double voltageBias = PIDOutput (error,
setting. PID.syncCheckVoltageBiasPID);
voltageBias = voltageBias *4.5/20.0+4.50;
if (voltageBias > 9.0)
voltageBias = 9.0;
if (voltageBias < 0.0)
voltageBias = 0.0;
if (voltageBias != allStatus.]O.analogOut.voltageBias)

allStatus.JO.analogOut.voltageBias = voltageBias;
allStatus.JO.analogOutChanged = true;

}

void GPMPIDControl ()

//realPower Control
double error = setting.Reall.oadReference-allStatus. UIC.rPower;
if (error > 20000.0)
error = 20000.0;
if (error <-20000.0)
error = —20000.0;
error /= 1000;
double speedBias = PIDOutput (error, setting. PID.realPowerPID);
speedBias = speedBias+2.50;
if (speedBias > 4.5)
speedBias = 4.5;
if (speedBias < 0.5)
speedBias = 0.5;
// speedBias += perturbation(0.1);
if (speedBias != allStatus.IO.analogOut.speedBias)

allStatus.JO.analogOut.speedBias = speedBias;
allStatus.JO.analogOutChanged = true;

double voltageBias;
/fvoltage Bias
error = setting.ReactiveLoadReference-allStatus. UIC.xPower;
error /= 1000;
if (error >20.0)
error = 20.0;
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¥

if (error <-20.0)
error = -20.0;

voltageBias = PIDOutput (error, setting. PID.reactivePowerPID);

voltageBias = voltageBias+4.50;
if (voltageBias > 7.5)
voltageBias =7.5;
if (voltageBias < 1.5)
voltageBias = 1.5;
if (voltageBias != allStatus.]O.analogOut.voltageBias)

allStatus.JO.analogOut.voltageBias = voltageBias;
allStatus.JO.analogOutChanged = true;

}

double PIDOutput (double error, PIDData& pid)

{

double proportional = error*pid.Gains.p;

double derivative = (error — pid.lastError) * pid.Gains.d;
pid.lastError = error;

pid.accumulatedError += error;

double accumulated = pid.accumulatedError*pid.Gains.i;
double output = proportional+derivative+accumulated;
return output;

void allStatusReset ( )

{

¥

allStatus.JO.analogOut.speedBias = 2.50;
allStatus.JO.analogOut.voltageBias = 4.50;
setting.RealLoadReference = 20000.0;
setting.ReactiveLoadReference = 0.0;

setting. PID.syncCheckSpeedBiasPID.accumulatedError = 0;
setting. PID.syncCheckSpeedBiasPID.lastError = 0;
setting. PID.syncCheckSpeedBiasPID.Gains.p = 0.005;
setting. PID.syncCheckSpeedBiasPID.Gains.i = 0.0005;
setting. PID.syncCheckSpeedBiasPID.Gains.d = 0.01;
setting. PID.syncCheckVoltageBiasPID.accumulatedError = 0;
setting. PID.syncCheckVoltageBiasPID.lastError = 0;
setting. PID.syncCheckVoltageBiasPID.Gains.p = 0.08;
setting. PID.syncCheckVoltageBiasPID.Gains.i = 0.0008;
setting. PID.syncCheckVoltageBiasPID.Gains.d = 0.01;
setting. PID.realPowerPID.accumulatedError = 0;
setting. PID.realPowerPID.lastError = 0;

setting. PID.realPowerPID.Gains.p = 0.05;

setting. PID.realPowerPID.Gains.i = 0.002;

setting. PID.realPowerPID.Gains.d = 0.02;

setting. PID.reactivePowerPID.accumulatedError = 0;
setting. PID.reactivePowerPID.lastError = 0;

setting. PID.reactivePowerPID.Gains.p = 0.06;

setting. PID.reactivePowerPID.Gains.i = 0.004;

setting. PID.reactivePowerPID.Gains.d = 0.1;

double perturbation (double Amplitude)

{

}

struct __timeb64 tstruct;

_ ftime64( &tstruct );

double msec = tstruct.millitm;

double results = Amplitude*sin (msec*PI/500.0);
return results;

void PerturbationLoop ()

{

}

double speedBias = 2.50 + perturbation (0.1);
if (speedBias != allStatus.IO.analogOut.speedBias)
{
allStatus.JO.analogOut.speedBias = speedBias;
allStatus.JO.analogOutChanged = true;

}
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Appendix F to Part 2: Code for Protection and PLC
Functions

[0632] A header file in an exemplary embodiment is:

class Protection

private:
double OilPressSensorlnput,CoolTempSensorInput, EngineSpeedSensorInput;
bool
e_ stop__cre,EmergencyStop,auto_on_ ssl,test_on_ ss2,run_ with_ load_ ss3,voltage_inc
rease_ss4,voltage_ decrease_ ss4;
bool
speed__increase_ ss6,speed_decrease_ss6,process_on_ ss8,egep2_engine_ fuel sol on,
egep2__fuel sol21,egep2_engine_ crank;
bool ecm__idle_ rated_ output,egep2_ visual__alarm,egep2__idle_ rated;
bool egep2__generator_cb__close,egep2__generator__cb_ trip;
bool
egep2__mains_ cb_ close,egep2__mains_ cb__trip,generator__cb__aux,mains_ cb_ aux;
bool ecm_ warning,ecm__fault_ cr103 protective__relay_ cr102;
bool
crankcase_high press_ psll,chp_ coolant pump_on_m401,chp_coolant normal flow_ fls32,
chp__box__high temp_ ts;
bool
system__fault,egep2__auto__mode,egep2_test__mode,egep2__run_ w__load__mode,egep2_ proce
ss__mode;
bool egep2__voltage_ raise__mode,egep2_ voltage_ lower__mode;
bool egep2__speed__raise__mode,egep2__speed__lower__mode;
bool generator cb_ close_cr24,generator__cb__trip_ cr25,
egep2__generator_ cb_aux;
bool mains_ cb__close,mains_ cb__trip, egep2__mains_ cb__aux;
bool ecm__key_on_ cr28, undelayed__ecm_ key on_ cr28,
ecm_ crank_ cr29idle_rated_ delay;
bool chp__box_ vent_ blower_ fault, undelayed_ chp_ box_ vent_ blower_fault;
bool chp__coolant_ low_ flow_ fault,chp_ coolant_pump_ fault;
bool egep2__remote__fault 1,egep2__remote_ fault_ 2;
bool ecm_ warning_ fault,undelayed ecm_ warning_ fault;
bool oil__level low_ fault,undelayed_ oil_level low_ fault;
bool protective__relay_ fault,undelayed_ protective_relay_ fault;
bool
protective__cb107__alarm_ fault,undelayed_ protective__cb107__alarm_ fault;
bool
ecm__fault,undelayed__ecm_ fault,inlet gas_ low_ psi_ fault;undelayed__inlet_ gas_ low_ psi_ fault;
bool crankcase__high_ psi_ fault,undelayed_ crankcase_ high psi_ fault;
bool
undelayed_ chp_ coolant_pump_ fault,undelayed_ chp_ coolant_ low_ flow_ fault;
bool chp__box__high temp_ fitundelayed_ chp_ box_ high temp_ fit;
bool visual__alarm,reset_ faults,last egep2_ visual alarm_ status;
void ModifyingCtrlInputs ( );
void hardShutdown( );
void softShutdown( );
bool ResetFault( );
public:
Protection( );
~Protection ( );
void doEvents ( );
//meed to change following functions.
bool timerFunction_p2sec(bool q);
bool timerFunction__1sec(bool q);
bool timerFunction_ 2sec(bool q);
bool timerFunction_ 3sec(bool q);
bool timerFunction_ 5sec(bool q);
bool timerFunction__10sec(bool q);

[0633] An implementation file is:

#include “Protection.h”
#include “Globals.h”
#using <mscorlib.dll>
using namespace System;
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extern Variables allStatus;
extern Settings setting;
Protection::Protection( )

)
Protection::~Protection( )
{
}

void Protection::doEvents ()

ModifyingCtrlInputs( );
hardShutdown ( );
softShutdown ( );

void Protection::ModifyingCtrlInputs ( )
{
auto__on_ss1 = Convert::ToBoolean(allStatus.IO.digitalIn.manual AutoSwitch);
test_on_ ss2 = Convert:: ToBoolean(allStatus.IO.digitalIn.testEngineSwitch);
run_ with_ load_ ss3 =
Convert::ToBoolean(allStatus.IO.digitalIn.runWithLoadSwitch);
voltage_increase_ ss4 =
Convert::ToBoolean(allStatus.IO.digitalIn.voltageRaiseSwitch);
voltage decrease_ ss4 =
Convert::ToBoolean(allStatus.IO.digitalIn.voltageLowerSwitch);
speed__increase__ss6 =
Convert::ToBoolean(allStatus.IO.digitalIn.speedRaiseSwitch);
speed__decrease_ss6 =
Convert::ToBoolean(allStatus.IO.digitalIn.speed LowerSwitch);
generator__cb_aux =
Convert::ToBoolean(allStatus.IO.digitalIn.genCBAux Switch);
mains_ cb__aux = Convert:: ToBoolean(allStatus.1O.digitalIn.mainsCBAuxSwitch);
process_on_ ss8 =
Convert::ToBoolean(allStatus.IO.digitalIn. ProcessModeSwitch);
egep2__remote_ fault_ 1 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFaultl);
egep2__remote_ fault 2 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFault2);
EmergencyStop = Convert::ToBoolean(allStatus.IO.digitalln.remoteFault3);
e_stop__cre = !EmergencyStop;
egep2__mains_ cb_ close =
Convert::ToBoolean(allStatus.IO.digitalOut.mains Breaker);
egep2__mains_ cb_ trip =
Convert::ToBoolean(allStatus.IO.digitalOut.mainsBreakerTrip);
egep2__generator__cb_close =
Convert::ToBoolean(allStatus.IO.digitalOut.genBreaker);
egep2_generator__cb_ trip =
Convert::ToBoolean(allStatus.IO.digitalOut.genBreakerTrip);
egep2__engine_ fuel sol_on =
Convert::ToBoolean(allStatus.IO.digitalOut.fuelSolenoid);
egep2__engine_ crank =
Convert::ToBoolean(allStatus.IO.digitalOut.engineCrank);
egep2_idle_rated =
Convert::ToBoolean(allstatus.IO.digitalOut.idleRatedSwitch);
egep2__auto__mode = (e_stop__cre & (!system__ fault)) & auto__on_ ssl;
egep2__test__mode = (e_stop__cre & (Isystem__fault)) & test_on_ ss2;

egep2_run_ w__load__mode = (e_stop__cre & (!system__fault)) & run_ with_ load_ ss3;

egep2__process__mode = (e__stop__cre & (Isystem__fault)) & process_on_ ss8;

egep2_voltage raise__mode = (e_stop__cre & (Isystem__fault)) &
voltage_ increase_ ss4;

egep2_voltage  lower__mode = (e_stop__cre & (!system__fault)) &
voltage_ decrease_ ss4;

egep2_speed__raise__mode = (e__stop__cre & (Isystem__fault)) &
speed__increase_ ss6;

egep2__speed__lower__mode = (e__stop__cre & (!system__fault)) &
speed__decrease_ ss6;

generator__cb_ close__cr24 = e_ stop_ cre & egep2__generator__cb_ close;

generator__cb_ trip_ c125 = egep2__generator__cb__trip;

egep2__generator_cb__aux = generator__cb__aux;

mains_ cb_ close = e_stop__cre & egep2__mains_ cb_ close;

mains_ cb__trip = egep2__mains_ cb_ trip;

egep2__mains_ cb_ aux= mains_ cb__aux;

egep2__fuel sol21=e_stop_cre & egep2__engine_ fuel__sol_on;

ecm_key_on_ cr28 = timerFunction_ 3sec(egep2__fuel sol21);

ecm__crank_ cr29 =e_ stop_ cre & egep2__engine_ crank;

ecm__idle_ rated_ output=egcp2_idle_ rated;

idle_ rated_ delay = timerFunction_ Ssec(ecm__idle_ rated_ output);
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system__fault = egep2__remote__fault_1 Il egep2__remote__fault_ 2;
allstatus.JO.digitalIn.manual AutoSwitch =
Convert::Tolnt16(egep2__auto__mode);
allStatus.JO.digitalIn.testEngineSwitch =
Convert::Tolnt16(egep2__test__mode);
allStatus.JO.digitalIn.runWithLoadSwitch =
Convert::Tolnt16(egep2__run_w__load__mode);
allstatus.JO.digitalIn.ProcessModeSwitch =
Convert::Tolnt16(egep2__process__mode);
allStatus.JO.digitalIn.voltageRaiseSwitch =
Convert::Tolnt16(egep2__voltage  raise__mode);
allStatus.JO.digitalIn.voltageLowerSwitch =
Convert::Tolnt16(egep2__voltage lower__mode);
allStatus.JO.digitalIn.speedRaiseSwitch =
Convert::Tolnt16(egep2__speed__raise__mode);
allStatus.JO.digitalIn.speedLowerSwitch =
Convert::Tolnt16(egep2__speed__lower__mode);
allStatus.JO.digitalIn.genCBAuxSwitch =
Convert::Tolnt16(egep2__generator_ cb_ aux);
allStatus.JO.digitalIn.mainsCBAuxSwitch =
Convert::Tolnt16(egep2__mains_ cb__aux);
allstatus.JO.digitalOut.genBreaker =
Convert::Tolnt16(generator_cb_ close_cr24);
allStatus.IO.digitalOut.genBreaker Trip =
Convert::Tolnt16(generator_cb__trip_ cr25);
allStatus.JO.digitalOut.mainsBreaker = Convert::Tolnt16(mains_ cb_ close);
allStatus.JO.digitalOut.mainsBreakerTrip = Convert::Tolnt16(mains__cb__trip);
allStatus.JO.digitalOut.fuelSolenoid = Convert::Tolntl 6(ecm__key__on_ cr28);
allStatus.JO.digitalOut.engineCrank = Convert:: ToIntl 6(ecm__crank_ c129);
allStatus.JO.digitalOut.idleRated Switch =
Convert::Tolnt16(idle_ rated_ delay);

void Protection:: hardShutdown( )
{

CoolTempSensorInput =allStatus.JO.analogIn.CoolantTemp;

EngineSpeedSensorInput = allStatus.IO.analogIn. MPUSpeed;

EmergencyStop = Convert::ToBoolean(allStatus.IO.digitalln.remoteFault3);

egep2_fuel sol21 =
Convert::ToBoolean(allStatus.IO.digitalOut.fuelSolenoid);

idle__rated_ delay =
Convert::ToBoolean(allStatus.IO.digitalOut.idleRated Switch);

e_stop__cre = ({EmergencyStop);

ecm__fault_crl03 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFaultl);//Remote_ Fault__1

crankcase__high_press_ psll =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFault3);//Emergency__stop
connected in series

chp__coolant_ pump_ on_ m401 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFault5);//R_F_ 6

chp_ coolant_normal flow_ fls32 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFault6);//R_F_ 6

if  (CoolTempSensorInput > setting.ProtectionLimits.Cool TempMaxLimit)

allStatus.Alarms.limitsErrorCode = 1;
allStatus.Alarms.hardShutdown = true;

if (EngineSpeedSensorlnput > setting.ProtectionLimits.EngineSpeedMaxLimit)

allStatus.Alarms.limitsErrorCode = 2;
allStatus.Alarms.hardShutdown = true;

if (Convert:: ToBoolean(EmergencyStop) == true)

allStatus.Alarms.limitsErrorCode = 3;
allStatus.Alarms.hardShutdown = true;

reset__faults = ResetFault( );

egep2__remote__fault_ 2 = ecm__fault || inlet__gas low__psi__fault ||
crankcase__high psi_ fault || chp_ coolant_pump_ fault ||
chp__coolant__low__flow__fault || chp__box__high_ temp__fit;

if (egep2__remote__fault_ 2 == true)

allStatus.Alarms.limitsErrorCode = 4;
allStatus.Alarms.hardShutdown = true;

undelayed__ecm__fault = (ecm__fault || ((fecm__fault_cr103) &
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egep2__fuel sol21)) & (Ireset__faults);
ecm__fault = timerFunction_1sec(undelayed__ecm__ fault);
if (ecm__fault == true)

allStatus.Alarms.limitsErrorCode = 5;
allStatus.Alarms.hardShutdown = true;

undelayed inlet gas low_ psi_fault= (inlet gas_low_psi_fault ||
egep2_fuel sol21) & (Ireset_faults);

inlet_gas_ low_ psi_ fault=
timerFunction_ p2sec(undelayed__inlet_ gas_ low_ psi_ fault);

if (inlet_gas_ low_ psi_ fault == true)

allStatus.Alarms.limitsErrorCode = 6;
allStatus.Alarms.hardShutdown = true;

undelayed__crankcase__high_ psi_fault = (crankcase__high_psi_ fault ||
((tcrankcase__high press_ psll ) & egep2__fuel_sol21)) & (Ireset_faults);
crankcase_high psi_ fault =
timerFunction_ Ssec(undelayed_ crankcase__high psi_ fault);
if ( crankcase__high_ psi_ fault == true)

allStatus.Alarms.limitsErrorCode = 7;
allStatus.Alarms.hardShutdown = true;

undelayed_ chp_ coolant_pump_ fault = (chp__coolant_pump_ fault) &
(Ireset__faults);

chp__coolant_ pump_ fault =
timerFunction_10sec(undelayed_ chp_ coolant_ pump__ fault);

if ( chp__coolant_ pump_ fault == true)

allStatus.Alarms.limitsErrorCode = §;
allStatus.Alarms.hardShutdown = true;

undelayed_ chp_ coolant_low_ flow__fault = (chp__coolant_ low__flow_ fault ||

(!chp__coolant_normal_flow_ fls32)) & (!reset_ faults);
chp__coolant_ low_ flow_ fault =

timerFunction_10sec(undelayed_ chp_ coolant_ low_ flow_ fault);
if ( chp__coolant_ low_ flow_ fault == true)

allStatus.Alarms.limitsErrorCode = 9;
allStatus.Alarms.hardShutdown = true;

¥

undelayed__chp__box__high_temp_ flt = (chp__box__high_temp_ fit ||
(!chp_box__high temp_ ts)) & (Ireset__faults);

chp_box__high temp_ fit=
timerFunction_ Ssec(undelayed_ chp_ box__high  temp_ flt);

if (chp__box__high temp_ fit == true)

allStatus.Alarms.limitsErrorCode = 10;
allStatus.Alarms.hardshutdown = true;

allStatus.JO.digitalIn.remoteFault2 =
Convert::Tolnt16(egep2__remote_ fault 2);

void Protection::softShutdown( )

OilPressSensorInput =allStatus.IO.analogIn.Oil Pressure;

egep2_fuel sol21 =
Convert::ToBoolean(allStatus.IO.digitalOut.fuelSolenoid);

idle__rated_ delay =
Convert::ToBoolean(allStatus.IO.digitalOut.idleRated Switch);

EmergencyStop = Convert::ToBoolean(allStatus.IO.digitalln.remoteFault3);

e_ stop__cre = ({EmergencyStop);

protective_relay crl02 =
Convert::ToBoolean(allStatus.IO.digitalIn.remoteFault4);//R_F_ 4

if  ((OilPressSensorInput > setting.ProtectionLimits.OilPressMaxLimit) ||

(OilPressSensorInput < setting.ProtectionLimits.OilPressMinLimit))

allStatus.Alarms.limitsErrorCode = 11;
allStatus.Alarms.softShutdown = true;

reset__faults = ResetFault( );

egep2__remote__fault 1 = ecm__warning fault || oil__level _low__fault ||
protective__relay_ fault || protective__cb107_alarm__fault ||
chp__box_ vent_ blower_ fault;
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if (egep2__remote__fault_ 1 == true)

allStatus.Alarms.limitsErrorCode = 13;
allStatus.Alarms.softShutdown = true;

undelayed__ecm__warning fault = (ecm__warning_ fault || (egep2__fuel_sol21 &
ecm_ warning)) & (lreset__faults);

ecm_ warning_ fault = timerFunction_ 2sec(undelayed ecm_ warning fault);

if (ecm__warning fault == true)

allStatus.Alarms.limitsErrorCode = 14;
allStatus.Alarms.softShutdown = true;

undelayed_ oil_level low_ fault = (oil__level_low_ fault) & (1reset_faults);
oil_level low_ fault = timerFunction_ 2sec(undelayed_ oil_level low_ fault);
if (oil__level_low__fault == true)

allStatus.Alarms.limitsErrorCode = 15;
allStatus.Alarms.softShutdown = true;

undelayed__protective__relay__fault = (protective__relay_ fault ||
protective__relay_ crl02) & (reset__faults);
protective_relay  fault =
timerFunction_ 2sec(undelayed_ protective_ relay_ fault);
if (protective__relay_ fault == true)

allStatus.Alarms.limitsErrorCode = 16;
allStatus.Alarms.softShutdown = true;

undelayed_ protective__cb107__alarm_ fault = (protective__cb107_alarm_ fault ) &
(Ireset__faults);

protective__cb107__alarm_ fault =
timerFunction_ 2sec(undelayed_ protective__cb107__alarm_ fault);

if ( protective__cb107__alarm_ fault == true)

allStatus.Alarms.limitsErrorCode = 17;
allStatus.Alarms.softShutdown = true;

undelayed_ chp_ box_ vent_ blower_ fault = chp_ box_ vent_blower_ fault &
(Ireset__faults);

chp__box_ vent_ blower_ fault =
timerFunction_10sec(undelayed chp_ box_ vent blower_fault);

if ( chp__box__vent_ blower_ fault == true)

allStatus.Alarms.limitsErrorCode = 18;
allStatus.Alarms.softShutdown = true;

allStatus.JO.digitalIn.remoteFaultl =
Convert::Tolnt16(egep2__remote_ fault 1);

bool Protection::ResetFault( )
{
egep2__visual__alarm = allStatus.Alarms.hardShutdown ||
allStatus. Alarms.softShutdown;
if (reset__faults == false)
if (egep2__visual__alarm == false && last__egep2_ visual_alarm_ status
== false)
reset__faults = true;
else
if (egep2__visual__alarm == true && last__egep2_ visual__alarm_ status
== false)

reset_ faults = false;

last__egep2_visual_alarm_ status = egep2__visual__alarm;
return reset__faults;

bool Protection::timerFunction_ p2sec(bool q)

int counter = 0;
while (q == true)

counter ++;
if (counter >= 720%0.2)
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q = false;
return true;

return false;

bool Protection::timerFunction__1sec(bool q)

{

int counter = 0;
while (q == true)

counter ++;
if (counter >= 720)

q = false;
return true;
}
}
return false;

bool Protection::timerFunction_ 2sec(bool q)

{

int counter = 0;
while (q == true)

counter ++;
if (counter >= 720%2)

q = false;
return true;

}

return false;

bool Protection::timerFunction_ 3sec(bool q)

//This timer is a TOF type timer function; therefore, the output of

the function is different than the others.
int counter = 0;
while (q == true)

counter ++;
if (counter >= 720%*3)

q = false;
return false;
¥
¥

return true;

bool Protection::timerFunction_ Ssec(bool q)

{

int counter = 0;
while (q == true)

counter ++;
if (counter >= 720*5)

q = false;
return true;

return false;

)

bool Protection::timerFunction__10sec(bool q)

{

int counter = 0;
while (q == true)

counter ++;
if (counter >= 720*10)

q = false;
return true;

}
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return false;

Appendix G to Part 2: Code for Engine and
Generator Control

[0634]

Class Control

public:
Control ();
~Control ( );
int doEvents ( );
void speedBias ( );
void voltageBias ( );

H

#include “Globals.h”

#include “Control.h”

#define SPEED_ BIAS_ CONSTANT 2.50

#define VOLTAGE_ BIAS_ CONSTANT 4.50

extern Variables allStatus;

Control::Control ()

{
allStatus.JO.analogOut.speedBias = SPEED_ BIAS_ CONSTANT;
allStatus.JO.analogOut.voltageBias = VOLTAGE_ BIAS_ CONSTANT;
allStatus.JO.analogOutChanged = true;
for (inti=0; i < DIGITAL_OUT; i ++)

allStatus.1O.digitalOut.value[i] = 0;

allStatus.JO.digitalOut.audible Alarm = 0;
allStatus.JO.digitalOut.engineCrank = 0;
allStatus.JO.digitalOut.genBreakerTrip = 0;
allStatus.JO.digitalOutChanged = true;

Control::~Control ()

{
¥

int Control::doEvents ( )

voltageBias ( );
/I speedBias( );
return O;

void Control::voltageBias ( )

double voltageBias = 0.0;
double Range = 10.0;
double Limit = 2.0;
double tolerance = 6.0;
double p =0.1;

if (tallStatus.Modes.GPM)

{
¥

else

return;

if (allStatus.Modes.SyncCheck)

voltageBias = allStatus.PMU.voltageGridA. Amp—
allStatus.PMU.voltageLocal A. Amp;
if (voltageBias < tolerance && voltageBias > —1.0*tolerance)

return;
¥

else

voltageBias = voltageBias * p;
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if (voltageBias > Range) voltageBias = Range;

if (voltageBias < —1.0*Range) voltageBias = —1*Range;
voltageBias = voltageBias * Limit/Range;
allStatus.JO.analogOut.voltageBias = voltageBias;

void Control::speedBias ()
{
/*  double speedBias = SPEED_ BIAS_ CONSTANT;
double error = 0;
double Range = 10.0;
double Limit = 2.0;
if (allStatus. Status.GPM)

if (allStatus.Status.SyncCheck)

error = allStatus.PMU.voltageGridA.Phase—
allStatus.PMU.voltageLocal A.Phase;

double proportional =
error*allStatus.Data.PowerLoopPID.Gains.p ;

double derivative = (error —

allStatus.Data.PowerLoopPID.lastError) * allStatus.Data.PowerLoopPID.Gains.d;

allStatus.Data.PowerLoopPID.lastError = error;
allStatus.Data.PowerLoopPID.accumulatedError += error;
double accumulated =

allStatus.Data. PowerLoopPID.accumulatedError*allStatus. Data.PowerLoopPID.Gains.i;

speedBias = proportional+derivative+accumulated;

¥

if (speedBias > Range) speedBias = Range;

if (speedBias < —-1.0*Range) speedBias = —1*Range;
speedBias = speedBias * Limit/Range+2.50;
allStatus.JO.analogOut.speedBias = speedBias;*/

What is claimed is:

1. A power management system, comprising:

a heterogeneous plurality of generators powering a load;

and
a controller that controls the power output of each of the
plurality of generators
at a first point in time as a function of a first rule; and
at a second point in time as a function of two or more
fuzzy rules.
2. The system of claim 1,
further comprising an input signal to the controller charac-
terizing the amount of power demanded by the load; and

wherein the controller produces one or more output signals
that collectively indicate the power to be output by each
of the plurality of generators.

3. The system of claim 1, wherein the controller comprises
a plurality of controller units.

4. A distributed power generation system adapted to inter-
face with an electric utility distribution system at a point of
common coupling, comprising:

a plurality of distributed power generation resources, col-

lectively having an aggregate output rating; and

a controller;

wherein the distributed power generation resources export

power at a first time to the electric utility distribution
system, and

wherein, if a first portion of the electric utility distribution

system that includes the distributed power generation
resources becomes electrically disconnected from the
remainder of the electric utility distribution system, the
controller causes the distributed power generation

resources to export power to the first portion of the
electric utility distribution system for not more than
about two seconds.

5. The system of claim 4, wherein the distributed power
generation system complies with IEEE Standard 1547, sec-
tion 4.4.

6. The system of claim 4 wherein, while the first portion of
the electric utility distribution system is electrically discon-
nected from the remainder of the electric utility distribution
system, the controller prevents the distributed power genera-
tion resources from beginning to export power to the first
portion of the electric utility distribution system.

7. The system of claim 4, further comprising:

a decision tree that is trained at least in part on training data
characterizing the electrical characteristics during HIF
and non-HIF conditions at the point of common cou-
pling, then configured to accept real data characterizing
the electrical characteristics at the point of common
coupling and provide an HIF detection output; and

a control system that modifies the operation of the distrib-
uted power generation system based on the HIF detec-
tion output.

8. The system of claim 7, w herein the training data and real
data are measurements of one or more currents at the point of
common coupling.

9. A method, comprising:

measuring the current through or line-to-neutral voltage of
the electrical signals on each line in a three-phase AC
circuit;

computing from the measurements phasors associated
with the electrical signals; and

communicating data relating to the phasors with a control-
ler via a Controller Area Network (CAN).
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10. The method of claim 9, wherein the measuring occurs
at a phase of the AC signal offset from a most recent sample
on the same respective line by an angle selected from the
group consisting of 30°, 60°, and 120°.

11. The method of claim 9, further comprising determining
from the symmetrical components of the phasors the distance
from the point of measurement to the fault relative to the
length of the transmission line.

12. The system of claim 9, wherein the data relating to the
phasors includes the magnitude and direction of either the
current or voltage of each phase of the AC circuit.

13. A device, comprising:

adistributed generation system controller (DGSC) for con-

trolling the power outputs of a plurality of generators;
and

autility interface controller (UIC) that selectively connects

the plurality of generators to a utility power grid and to
an electrical load;

wherein the DGSC and UIC are contained in a single

enclosure.

14. The system of claim 13, further comprising:

adecision tree that is trained at least in part on training data

characterizing the electrical characteristics at the point
of common coupling during HIF and non-HIF condi-
tions, then configured to accept real data characterizing
the electrical characteristics at the point of common
coupling and provide an HIF detection output; and

a control system that modifies the operation of the distrib-

uted power generation system based on the HIF detec-
tion output.

15. The system of claim 13, wherein the training data and
real data are measurements of one or more currents at the
point of common coupling.

16. A kit, comprising:

a generator; and

a device according to claim 13.

17. A system comprising:

a device according to claim 13; and

one or more distributed generation units, each including:

a distributed generation controller in communication
with the DGSC;

a generator controlled by the distributed generation con-
troller;

wherein power output by the generator in each distributed

generation unit supplies
a load at a first point in time, and
the utility power grid at a second point in time.
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18. The system of claim 17, wherein at least the generator
in at least one distributed generation unit supplies both the
load and the utility power grid at the same point in time.

19. A distributed generation subsystem that detects island-
ing of the subsystem, comprising:

a plurality of generators that produce AC output power for

a load, in parallel with a power grid that has a first
frequency characteristic; and

a controller that controls the output level of each of a

plurality of generators using one or more control signals;
wherein the controller superimposes a perturbation signal
on the control signals,

the controller detects the frequency characteristic of the AC

output power;

the effect of the perturbation on the AC output power has a

second frequency characteristic that is detectably differ-
ent from the first frequency characteristic; and

the controller produces a first signal if the detected fre-

quency characteristic is sufficiently like the first fre-
quency characteristic, and a second signal if the detected
frequency characteristic is sufficiently like the second
frequency characteristic.

20. The subsystem of claim 19, wherein:

in response to the first signal, the controller allows export

of power from the generators to the power grid; and

in response to the second signal, the controller

ceases export of power from the generators to the power
grid, if such export is occurring when the second
signal begins to be produced, and

prevents export of power from the generators to the
power grid while the second signal is being produced.

21. The subsystem of claim 20, wherein the cessation of the
export of power from the generators to the power grid occurs
within two seconds of the time at which the second signal
begins to be produced.

22. The subsystem of claim 20, wherein the cessation of the
export of power from the generators to the power grid occurs
within two seconds of the time at which the frequency char-
acteristic sufficiently like the second frequency characteristic
begins to be detected.

23. The subsystem of claim 19, wherein the controller
comprises a supervisory controller and, for each generator, a
subordinate controller that receives control signals from the
supervisory controller and controls the output level of that
generator.



