01/13199 A1l

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

22 February 2001 (22.02.2001) PCT WO 01/13199 A1l

(51) International Patent Classification’: GOG6F 1/00 Lynne [GB/GB]; 35 Sandyleaze, Westbury-on-Trym, Bris-
tol BS9 3PZ (GB). CHAN, David [GB/US]J; 16112 Mays

(21) International Application Number: PCT/GB00/03101 Avenue, Monte Sereno, CA 95030 (US).

(22) International Filing Date: 11 August 2000 (11.08.2000) (74) Agent: LAWRENCE, Richard, Anthony; Hewlett-
Packard Limited, Intellectual Property Section, Filton
Road, Stoke Gifford, Bristol BS34 8QZ (GB).

(25) Filing Language: English

(81) Designated States (national): JP, US.
(26) Publication Language: English

(30) Priority Data:

99306415.3 13 August 1999 (13.08.1999) EP

(71) Applicant (for all designated States except US):
HEWLETT-PACKARD COMPANY [US/US]; 3000
Hanover Street, Palo Alto, CA 94304 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): PEARSON, Siani,

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER PLATFORMS AND THEIR METHODS OF OPERATION

121
L

1224 \ 100
1228 s
ADDITIONAL [COMMUNICATIONS HOST COMPUTER
106 X 247 104 102~ 108
AN 1147 Y ya
- RED ZONE
w1 TRUSTED HOD cPU DRAM
118 +] BLACK ZONE
16 N} 120 0
e e NORMAL COMMUNICATIONS]
12 EXTERNAL COMMUNICATIONS e 103
101 ~

(57) Abstract: A computer platform (100) uses a tamper-proof component (120), or "trusted module", of a computer platform in
conjunction with software, preferably running within the tamper-proof component, that controls the uploading and usage of data
on the platform as a generic dongle for that platform. Licensing checks can occur within a trusted environment (in other words,
an environment which can be trusted to behave as the user expects); this can be enforced by integrity checking of the uploading
and licence-checking software. Metering records can be stored in the tamper-proof device and reported back to administrators as
required. There can be an associated clearinghouse mechanism to enable registration and payment for data.

10

15

20

25

WO 01/13199 PCT/GB00/03101

-1-

TITLE

Computer Platforms and their Methods of Operation

DESCRIPTION

This invention relates to computer platforms and their methods of operation and is more
particularly concerned with controlling and/or metering the installation and/or use of data on

computer platforms.

In this specification, ‘data’ signifies anything that can be formatted digitally, such as images,
application software and streaming media. The techniques described in this document can
potentially be used to protect or meter many types of information, from simple text documents

to audio and video clips, software, graphics, photo- and multimedia materials.

In the future, computer systems will be able to achieve a more secure booting, together with
integrity checks on other code to ensure that viruses or other unauthorised modifications have
not been made to the operating systems and mounted software. In addition, a new generation of
tamper-proof devices are already appearing or will soon appear on the market and include both
external or portable components (such as smart cards) and internal components (embedded
processors, semi-embedded processors or co-processors with security functionality, i.e.
including motherboard, USB and ISA implementations). These tamper-proof components will
be used to check that the hardware of the system has not been tampered with, and to provide a
more reliable form of machine identity than currently available (for example, the machine’s
Ethernet name). Yet how to counteract piracy, and how to licence and meter software in a
manner that is acceptable to software developers and end-users will still be a very important

problem.

Software licensing is subject to hackers and piracy, and all the current software licensing
methods used have problems associated with them. Software implementations of licensing (such
as “licence management systems”) are flexible, but not especially secure or fast. In particular,
they suffer from a lack of security (for example, being subject to a generic “hack”) and
difficulty in genuine replacement of software. Conversely, hardware implementations
(“dongles™) are faster and generally more secure than software implementations, but inflexible.

They are tailored only for a particular piece of software and are inconvenient for end-users.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-2.

The present invention, in its preferred embodiment, seeks to deliver the best of both worlds: a
hardware implementation that is secure and fast, but with the convenience and flexibility of a
software implementation. Increased security in integrity checking on computer platforms,
together with more secure key storage, cryptographic capabilities and more secure identification
(and hence authentication) within tamper-resistant hardware are provided in the embodiment of

this new, generic concept in software licensing and metering.

A prior patent application (International Patent Application No. PCT/GB00/00528, filed on 15
February 2000) described the use of a Trusted Component to enable verification of the integrity
of a computer platform by the reliable measurement and reliable reporting of integrity metrics.
This enables the verification of the integrity of a platform by either a local user or a remote
entity. That prior patent application described a general method of reporting integrity metrics
and verifying the correctness of the integrity of a platform by comparing reported values of
metrics with proper values of metrics. The present invention uses licence checking code whose
integrity is reported using the method of that prior patent application. This prior patent

application is incorporated by reference herein.

In overview, the embodiment of the present invention uses a tamper-proof component, or
“trusted module” of a computer platform in conjunction with software, preferably running
within the tamper-proof component, that controls the uploading and usage of data on the
platform as a generic dongle for that platform. Licensing checks can occur within a trusted
environment (in other words, an environment which can be trusted to behave as the user
expects); this can be enforced by integrity checking of the uploading and licence-checking
software. Metering records can be stored in the tamper-proof device and reported back to
administrators as required. There can be an associated clearinghouse mechanism to enable

registration and payment for data.

More formally, in accordance with a first aspect of the present invention, there is provided a
computer platform having: a trusted module which is resistant to internal tampering and which
stores a third party’s public key certificate; means storing licence-related code comprising at
least one of: a secure executor (which is preferably generic) for checking whether the platform
or a user thereof is licensed to use particular data and for providing an interface for using the
data and/or for monitoring its usage; and a secure loader (which is preferably generic) for
checking whether the platform or a user thereof is licensed to install particular data and/or for
checking for data integrity before installation; and means storing a hashed version of the

licence-related code signed with the third party’s private key; wherein the computer platform is

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-3-

programmed so that, upon booting of the platform: the licence-related code is integrity checked
with reference to the signed version and the public key certificate; and if the integrity check
fails, the licence-related code is prevented from being loaded. If the integrity check fails, it may

be arranged that the complete platform integrity fails.

In the context of this specification, the term “user” includes may mean an end user of the
y

platform, or a system administrator, or both.

The trusted module or component, as described in the prior patent application mentioned above
is preferably immune to unauthorised modification or inspection of internal data. It is physical
to prevent forgery, tamper-resistant to prevent counterfeiting, and preferably has crypto
functions to securely communicate at a distance. Methods of building trusted modules are, per
se, well known to those skilled in the art. The trusted module may use cryptographic methods to
give itself a cryptographic identity and to provide authenticity, integrity, confidentiality, guard
against replay attacks, make digital signatures, and use digital certificates as required. These
and other crypto methods and their initialisation are well known to those skilled in the art of

security.

Preferably, the integrity checking is performed by: reading and hashing the licence-related code
to produce a first hash; reading and decrypting the signed version using the public key

certificate to produce a second hash; and comparing the first and second hashes.

Preferably, the licence-related code also includes secure key-transfer code for enabling a licence
key to be transferred between the trusted module and a further trusted module of another
computer platform. This key transfer code is particularly useful in improving key management
when using licensing models that involve an unlock key, that is, where the data is transmitted in
an encrypted form and the unlock key is used to allow the protected data to be decrypted and
run. The transfer may be carried out by using a public key infrastructure to encrypt a message
containing an unlock key, and checking for integrity via hashing and digital signatures. There

may be an option to transfer the data itself in this manner, using the secure loader.

Preferably, the licence-related code also includes a library of interface subroutines which can be
called in order to communicate with the trusted module. The client library is a collection of
high-level interface subroutines that applications call to communicate with the trusted module.
The client library may also be used by software executors (see below) for communication with

the trusted module and operating system (‘OS”).

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-4

The licence-related code may include, for at least one group of data, a (or a respective) software
executor which specifies the respective group of data and which is operable to act as an
interface to that group of data. This allows methods of licensing protection specific to the
protected data, and therefore potentially a greater level of protection. If a software executor is
associated with an application, optionally it processes queries (API calls) submitted by the

application.

Preferably, if space permits, the means storing the licence-related code and/or the means storing
the hashed version of the licence-related code are provided, at least in part, by the trusted

module.

Preferably, the trusted module and an operating system of the platform have a dedicated
communications path therebetween which is inaccessible to other parts of the computer

platform.

Next the way in which these components interact to form a system for general-purpose data
licensing will be considered. There are several stages in which such a system can be
constructed, which may be considered as progressing from each other. The first stage is to
improve upon current licensing methods such as dongles to make the trusted module act as a
generic dongle, governed by generic licence-related software (as detailed above) that performs
licence checking and is protected against bypassing by integrity checking. Such licence-checking
software need not run within the trusted module itself. A preferred stage is the logical extension
of such a system in which the licensing software runs within the trusted module. A request to
load or execute some data will be sent to the trusted module, preferably from the software
executor. The licensing software in the trusted module will evaluate such a request and decide
whether to allow this, based on details of licensing rights. If the request is to be allowed, this
information is conveyed to the OS via a hardware communications path from the trusted module
to the CPU. The communications path is preferably inaccessible to ordinary applications and

non-OS software. The OS then starts the process to load or execute the data, as appropriate.

Various methods are now considered in which the system components may interact to perform
useful licensing functionality. First consideration is given to the way in which the secure loader

operates to install data.

In one installation mode: the operating system is operable to request the secure loader to
licence-check whether the platform or a user thereof (e.g. an end user or a system

administrator) is licensed to install that particular data and/or to check the integrity of that data;

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
-5-

in response to such a request, the secure loader is operable to perform such a check and respond
to the operating system with the result of the check; and in dependence upon the response, the
operating system is operable to install or not to install the particular data. This check on the
platform or user may be performed by various methods, such as checking for the presence of a
private application key or other secret in the trusted module or in a smart card, or checking for
the identity and presence of the trusted module or smart card. Such an identity could be made
known to the developer, or such a secret could be inserted into the trusted module or smart card
during a registration process. This is analogous to the process which will be described later in

Example A.

In this mode, preferably the operating system is programmed to install the particular data only
in response to the secure loader. Also, in this mode, preferably: the trusted module stores a
public key certificate for a party associated with the particular data to be installed; the operating
system is operable to include, in the request to check, the particular data together with a hashed
version thereof signed with a private key of the associated party; in performing the check, the
secure loader is operable: to hash the particular data included in the request to produce a third
hash; to decrypt the signed hashed version in the request using the public key certificate for the
associated party to produce a fourth hash; and to generate the response in dependence upon

whether or not the third and fourth hashes match.

This checks for integrity of the message. The integrity checking mechanism also prevents replay
attacks by using a standard mechanism, such as challenge/response, or introducing a history of
the communications in the hash. The problem of non-repudiation can be avoided by keeping
private keys in tamper proof hardware. Preferably, the request to check includes the software

executor for the particular data.

In another installation mode: the software executor (or at least one of the software executors) is
operable to request the trusted module to install particular data; in response to such a request,
the secure loader within the trusted module is operable to licence-check whether the platform or
a user thereof is licensed to install that particular data and/or to check the integrity of that data
and to respond to the operating system with the result of the check; and in dependence upon the

response, the operating system is operable to install or not to install the particular data.

The check may be carried out in a similar fashion to that described above in relation to said one

installation mode.

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-6-

In this other mode, preferably the operating system is programmed to install the particular data
only in response to the trusted module. Also, in this mode, preferably the response from the
trusted module to the operating system is supplied via the dedicated communications path, as

described above.

With either of these installation modes, if the check succeeds, the trusted module is preferably
operable to generate a log for auditing the particular data. Also, if the check succeeds, the

secure loader is preferably operable to perform a virus check on the particular data.

Upon installation, the particular data may be installed into the trusted platform. Alternatively,
the platform may include a further, removable, trusted module (such as a smart card) and be
operable to perform an authentication check between the first-mentioned trusted module and the
removable trusted module, in which case, upon installation, the particular data may be installed

into the further trusted module.

The software executor may itself be protected via integrity checks, carried out by the secure

loader. For example, this procedure may work as follows:

(a) The software executor is customised such that the public key corresponding to the

client’s trusted module is included within it.
(b) The data, associated with a customised software executor, is sent to the client.

(© Both the data and the software executor are hashed and signed with the
clearinghouse/developer’s private key, and this is sent in conjunction with the data and software

executor.

(d) The secure loader integrity checks the software executor when it is received - upon
installation of the software executor, the package is verified by hashing and comparison with the
decrypted signature (using the public key in the trusted module). The software executor is not
loaded if the digital signature does not match what is expected, and in this case the secure loader
signals an error. The secure loader also integrity checks the data itself, using the same

procedure.
Now, consideration is given to the way in which the secure executor operates to use data.

In a first execution mode: the software executor (or at least one of the software executors)
contains a public key of the trusted module and a licensing model for the respective data; the

operating system is operable to request that software executor that its respective data be used; in

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-7.

response to such a request, that software executor is operable to request the secure executor to
licence-check, using its licensing model, whether the platform or a user thereof is licensed to
use that data; in response to such latter request, the secure executor is operable to perform the
requested licence-check, to sign the result of the licence check using a private key of the trusted
module, and to respond to that software executor with the signed result; in response to such a
response, that software executor is operable: to check the integrity of the signed result using the
public key of the trusted module; and upon a successful integrity check of a successful licence-

check result, to request the operating system to use that data.

In a second execution mode: the software executor (or at least one of the software executors)
contains a public key of the trusted module and a licensing model for the respective data; the
operating system is operable to request the secure executor that particular data be used; in
response to such a request, the secure executor is operable to send to the respective software
executor a request, signed using a private key of the trusted module, for a licensing model for
the particular data; in response to such latter request, that software executor is operable: to
check the integrity of the request using the public key of the trusted module; and upon a
successful integrity check, to send the licensing model to the secure executor; and upon receipt
of the llcensmg model, the secure executor is operable: to perform a licence-check using that
licensing model; and upon a successful licence-check, to request the operating system to use that

data.

In a third execution mode: the secure executor contains at least one licensing model; the
operating system is operable to request the secure executor that particular data be used; and in
response to such a request, the secure executor is operable: to perform a licence-check using
the, or one of the, licensing models; and upon a successful licence-check, to request the

operating system to use that data.

With any of these three execution modes, preferably the operating system is programmed to use

the particular data only in response to the secure executor or the software executor.

In a fourth execution mode: the secure executor contains at least one licensing model; the
software executor (or at least one of the software executors) is operaﬁle to request the trusted
module that its respective data be used; in response to such a request, the secure executor within
the trusted module is operable: to perform a licence-check using the, or one of the, licensing
models; and upon a successful licence-check, to request the operating system to use that data. In
this case, preferably, the operating system is programmed to use the particular data only in

response to the trusted module.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-8-

With any of the second to fourth execution modes, the request from the secure executor to the

operating system to use the data is preferably supplied via the dedicated communications path.

With any of the first to fourth execution modes, preferably the trusted module is operable to log
the request to the operating system to use the data. The security and reliability of licensing or
metering is enhanced by securely logging data usage within the trusted module. Logging of
licensing-related activity is carried out and recorded securely in the tamper-proof component.
There is the option to carry this out at a number of different stages during licensing. The most
common would be at the stage at which the data was allowed to run by the secure executor or
software executor. Another common point would be at the stage at which the secure loader has
successfully completed its integrity checks on the data to be installed, and has successfully
installed this data onto the client machine. Since the secure executor, software executor and
secure loader are protected by integrity checks, some protection is given against hackers trying
to bypass or edit the logging process. Such logs would provide both secure auditing information
and the possibility of flexible licensing and payment models such as pay-per-use, renting, time-
dependent charges, and so on. Such audit logs would form the basis for usage reports and
information accessible to third parties such as the machine user’s IT department or company
auditors. They would also have commercial value, such as for advertising or giving feedback on

ratings.

In the case where the platform includes a further, removable, trusted module (such as a smart
card) as mentioned above, it preferably includes a user identity, and, upon licence-checking the
Secure executor or software executor is operable to perform the licence-check with reference to

the user identity.

When the user asks to run software or access protected data, the secure executor can perform

the licence-check, for example, by:
(a) Checking for a secret corresponding to a software or data reference, in a device, or

(b) Using an unlock key to decrypt data and allowing it to execute (there are various

options for differing functionality of the unlock key, including partial unlocking of the code), or

(c) Checking for licensing rights in a database, corresponding to a data reference and a

device identity, or

@ Retrieving a key from a database, corresponding to a data reference and a device

identity, and using this to unlock the data.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-9.

When the user tries to run an application, it may be arranged that the secure executor assumes
overall control, and that it retrieves information from the software executor, if one is present,
associated with the data to find out which specific check is preferred by the developer. If a type
of check is specified, the secure executor will carry this out; otherwise it will use a default
check, as described below. If the check succeeds, the secure executor will execute the data. If

the check fails, the secure executor will prevent the data from being executed.

If the software executor does not specify a licensing method, or there is no software executor
attached to the application, the secure executor may use a default protocol that will have been
defined for the particular machine. This will have been set by the machine’s administrator with
the machine’s environment in mind; for example, if the machine is only used by one person, a
licensing model corresponding to the internal trusted module would probably be most
appropriate. It will not be possible to bypass the secure executor, and hence the licensing
checks, because the secure executor code will have been included within the platform integrity

check as part of the boot integrity procedure.

Different models of licensing use the secure executor and software executor in different ways.
As will be appreciated from the above, it is possible to use them in combination, or with either

performing the licensing checks. There are two main preferred options:

)] The first option is to have different software executors attached to each piece of data,
governing licence checking within the secure executor for those particular pieces of data. In
some of the examples in the next section, the software executors communicate directly with the

operating system in this way.

(¥3)] An alternative approach is to place more emphasis upon the secure executor, by
building up the generic code within the platform which carries out the checks, and having the
Secure executor act as a bridge between the OS and any software executors. This alternative
avoids putting the burden of the protocol-writing on the developer, allows the developer to
specify licensing choices very easily and makes use of integrity checking of licence checking

code when the platform integrity check is made.

The software executor associated with a piece of data may include any particular information to
be checked for (obtained during the registration process) together with information notifying the
Secure executor within the computer platform about the method of licensing to be used, the
particular trusted device on which to make the check, and a reference to the data which is to be

protected. For example, licensing_method(secret,sc,k, w) and licensing_method(secret,tc,k,w)

PCT/GB00/03101

WO 01/13199

10

15

20

25

-10-

indicate that the software referenced by w should be allowed to run on a machine only if the
secret k is found stored within the current smart card or internal trusted component,

respectively, of the machine.

Different software executors are attached to data, with software executors indicating which type
of licensing model is to be used. The secure executor carries out a check at runtime, according
to this licensing model, and does not allow the software w to run unless the check succeeds. By
these means, communication from the clearinghouse to the trusted module specifies which

licensing protocol the clearinghouse wishes to use.

Various specific protocols may be employed by the secure executor. For example, in a first

protocol:

* the secure executor checks the trusted module ID entry or smart card ID entry;

* optionally, the secure executor downloads database entries into a profile stored within

the trusted module;

e the secure executor checks in an external database or a profile stored within the trusted
module against a data reference and the trusted module ID entry (or smart card ID entry)

for an unlock key for the data;

* the secure executor retrieves this key and decrypts the associated data so that it may be

executed by the operating system;

K optionally, the secure executor stores the unlock key within the trusted module, along

with the data reference;
* the data is protected via encryption or partial encryption using the corresponding key;
* there are various options for differing functionality of the unlock key; and

* inreturn for payment, the database entry corresponding to the trusted module ID will be

updated with this key.

In a second protocol:

* optionally, the secure executor downloads database entries into a profile stored within

the trusted module;

PCT/GB00/03101

WO 01/13199

10

15

20

25

S11-

* the secure executor checks in an external database or a profile stored within the trusted
module for licensing rights, corresponding to a data reference and the trusted module ID

entry (or smart card ID entry);

* only if there are appropriate licensing rights, the secure executor authorises the OS to

execute the data; and

* in return for payment, the database entry corresponding to the trusted module ID or

smart card ID will be updated with an appropriate permission.

In a third protocol:

e the secure executor checks for a secret corresponding to a software or data reference in

a trusted module (including a smart card);

* the secret to be checked for is specified by the software executor associated with the

data whose licence is being checked; and

* only if the secret is present in the trusted module will the secure executor authorise the

OS to execute the associated software or data.

In a fourth protocol:

» the secure executor uses an unlock key associated with some data stored within the
trusted module or smart card to decrypt the data so that it may be executed by the operating

system; and

e there are various options for differing functionality of the unlock key, including partial

unlocking of the code.

In a fifth protocol:

¢ the secure executor uses a key associated with some data stored within the trusted
module or smart card, or else inputted from the end-user via the keyboard, the trusted

module or smart card ID and a pre-defined algorithm to calculate a decryption key;

» the secure executor uses the decryption key to decrypt the data so that it may be

executed by the operating system;

WO 01/13199 PCT/GB00/03101

-12-

e there are various options for differing functionality of the decryption key, including

partial unlocking of the code.
In a sixth protocol:
* the secure executor allows use of floating licences for a group of users;

5 * the secure executor checks in a database against the trusted module ID or smart card ID

entry for a licence key for the data;

e the secure executor retrieves a licence key (if one were available) in order to allow that

particular execution; and

e the secure executor returns the licence key to the pool when the data execution is
10 closed.

In a seventh protocol:

e the secure executor performs a combination of any the first to sixth protocols, such that

different methods of licence checking can be used for different data entities;
* the choice of protocol can be determined by the secure executor itself;
15 * adefault or overriding protocol can be defined by an administrator; and

® the protocol to be used when checking licensing for particular data is determined by any

software executor associated with that data

Some licensing models later described in this document do not prevent copying of data, but just
inhibit unauthorised use of data and secure the logging of usage on machines that have the
20 tamper-proof device as part of the platform. The desired level of data protection depends upon
the business model. Data can be sent via traditional and other non-secure channels. However, it

is most important that the licence key transfer is secure.

In accordance with a second aspect of the present invention, there is provided a method of
transferring a licence (or a key therefor) from a first to a second computer platform each in
25 accordance with the first aspect of the invention, the method comprising the steps of: setting up
secure communication between the trusted modules; sending the licence or the key therefor
from the first trusted module to the second trusted module using the secure communication; and

deleting the licence or the key therefor from the first trusted module.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-13-

There are many situations in which a Customer might wish to transfer a licence to another
person or to another machine. For example, if a new PC were purchased, if software is
upgraded or replaced, or if the customer wishes to run an application on a portable instead of a
desktop. Moving a hardware dongle specific to each application is the easy solution and there is
the analogous solution of using specific smart cards. However, all systems which provide a
generic dongle, and therefore are more practical in most situations for end-users, are faced with
a major problem of key management in this situation. Wave System’s WaveNet and licence
management systems (‘LMFs’) are no exception. Software-only methods require an
installation/deinstallation process, or else have to trust the end user to use only the number of

licences legitimately purchased when a second password is issued for the same licence.

The options for licence transferral using trusted modules depend upon the licensing aspect that

is adopted. In general, these are as follows:

For licensing using a database check, the database entries corresponding to both machine trusted
module IDs (if the licence is changed to another machine) or both smart card IDs (if the licence

is changed to another person) should be changed.

For licensing involving a trusted module related finger-print check or using code tailored to the
trusted module, the new device (i.e. a smart card, if changing a licence to another person; the
internal trusted module, if changing a licence to another machine) should be re-registered with
the vendor, and another key or tailored software issued based on the new device ID obtained

respectively.

For methods involving encryption and an unlock key, if there is one smart card per application,
the appropriate smart card (and any pins) should be given to the new licensee. Otherwise, the
unlock key and data can be transferred between trusted modules automatically, without the need
for the vendor to be involved beyond receiving a report of the transfer (as described in the
eighth method). This involves integrity checking of associated data, copying a licence key from

one trusted module to another, and deinstalling the licence from the original trusted module.

The stages in transferring a licence (i.e. unlock key L) for data S from TC1 in client machine

M1 to TC2 in machine M2 are, for example, as follows:

A. Secure key transfer code (‘SKT’) is integrity checked as an extension of the BIS
procedure. The licence transfer code is hashed and signed with the manufacturer’s private key.

Upon boot/installation of the platform, the package is verified by hashing, and comparison with

PCT/GB00/03101

WO 01/13199

10

15

20

25

-14-

the decrypted signature to check integrity, using a public key certificate installed into the trusted
module by the manufacturer. The licence transfer code will not be loaded if the digital signature

does not match what is expected, and the platform integrity check will fail.

B. Initialisation. The content provider already has the public key of TC1 via the original

registration and data installation process; if not, this is sent to him.

1. If the owner of TC1 wishes to transfer the licence to TC2, there is a call from
the OS of machine M1 to the SKT within M1 to transfer the licence for data Sto TC2.

2. SKT in M1 generates a random number R and sends a message to M2 asking
for the licence to be transferred, containing a reference to the data S, together with the

public key certificate of TC1.

3. If M2 obtains authorisation from an appropriate source, SKT in M2 replies in
the affirmative, including R, the public key certificate of TC2, a reference to S, and a

new nonce T that it has generated.

4. SKT in M1 then sends to M2 the public key certificate of the content provider
of S, together with T.

These communications are appended to a hashed version of the communication signed by the
trusted module’s private key in the sender’s machine, so that the receiver SKT can check the
integrity of the message. If the integrity checks fail, messages are sent by each SKT to the OS

within their machines and the protocol stops.

C. Program upload. If the above authentication is successful, TC1 hashes the data S
(opnonally a version already signed by the content provider) and signs it with the private key of
TCI (for example, using Microsoft’s Authenticode). TC1 then uploads this signature together
with the data into TC2. Optionally, the data is encrypted.

D. Code verification. The secure loader within TC2 verifies the signatures of the data S: it
checks the signature using TC1’s public key, thereby retrieving the message hash; next it
computes the hash of S to check that it is the same as the decrypted message hash. If this
validation is successful, the secure loader installs the program into the machine corresponding to
TC2. If not, it generates an error message to the SKT which blocks further passage of the

licence transfer protocol.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-15-

E. Transfer key. The SKT in M1 generates a symmetric key using a random number
generator, and uses it to encrypt a message transporting the unlock key. The SKT in M1 sends
this message to the SKT in M2, together with the symmetric key encrypted with TC2’s public
key and also a hash of all this information, signed with TC1’s private key. Only TC2 will have
the RSA private key to decrypt the symmetric key, which will allow decryption of the unlock
key.

F. Message verification. The SKT in M2 checks the signature using the public key of TC1,
and decrypts the message using the symmetric key obtained by decryption using TC2’s private
key, thus obtaining the unlock key. If the signature is correct, the key is stored within the
trusted component, and associated with the data S. If the signature is not correct, an error

message is sent to the SKT in M1 and the protocol stops.

G. Key deleted from TCI1, and content provider notified. The SKT in M1 deletes the
unlock key from TC1 and makes a log of this in TC1. The SKT in M1 sends a message to the
content provider, signed using the private key of TC1, informing the content provider that the
licence for code S has been transferred to M2. Optionally, SKT in M! or in M2 sends a
message to the data vendor giving details of how the owner of M2 may be contacted for

registration.

There is an option for the trusted component, and the software executor, to act as a new part of
the operating system, and form a bridge between the operating system and applications, by
providing an environment for certain functions. For example, API calls can be made to the
trusted module such as ‘save’ and ‘restore’. ‘Save’ will pass data through the trusted module,
which will encrypt the data in the trusted module and store it either in the trusted module or on
the hard disk. It will not be possible to access this data without the permission of the trusted
module. There is an additional option to carry out some transformations within the trusted
module using such data, and for the software to use API calls to request information from the
trusted module and get an answer exported. In summary, API calls can be used from the
software executor or application code to the trusted module to check the presence of the trusted
module or a private application key stored on the trusted module (analogous to existing dongle
methods), and further, to use the trusted module for providing an environment for certain

functions or data storage.

More specifically, API calls may be added to the application code or the software executor and
used to query the OS, trusted module or secure executor via the client library. For example,

API calls may be added to the application code or the software executor and used to query the

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

- 16 -

trusted module or secure executor via the client library to check for the presence of a private
application key or other secret in the trusted module or smart card or to check for the identity

and presence of the trusted module or smart card.

In one particular model which will be described in more detail later, a licensing model is
employed in which an entry in a licensing-related database corresponding to the trusted
module’s ID is updated, and the secure executor will only allow data to run once permissions on
this database have been checked. In this case, the software executor associated with an
application calls the secure executor (possibly in the trusted module), the secure executor checks
the licensing rights, and if this check succeeds, passes the call to the operating system (‘OS’) in
order for the application to be run in the normal manner. In other words, the OS accepts calls to
execute data only if the call comes from secure licence-related code such as the secure executor

or software executor.

In another particular model which will be described in more detail later, the trusted module
preferably stores hardware and/or software used to implement the invention and the OS accepts
calls to execute data if the call comes from the trusted module. In particular, the trusted module
preferably acts as a bridge between an application and the OS and the OS preferably ignores all

requests to load applications except for those from the trusted module.

One possible licensing model would be for the secure executor to check in a database against the
trusted module ID entry for an unlock key for the data. In this case the data is protected via
encryption or partial encryption using the corresponding key, and hence can be freely
distributed without fear of piracy. Once payment is made, the database entry corresponding to
the trusted module’s ID will be updated with this key. When the user wishes to run the
application, the key can be retrieved to allow the data to be unlocked. The key may then be
stored in the tamper-proof device so that the database look-up need only happen once. However,
in licensing models where floating licences are desired, it would be more appropriate to siore
such keys centrally and allow access only on each execution, so that the licence can then be
restored to the appropriate group for use by another user. Thus, a model for licence “exchange”

is provided.

Accordingly, the present invention extends to the case in which there is optional interaction
between the secure executor, the software executor and the trusted module to use floating
licences for a group of users via the secure executor or software executor instigating a check in

a database against the trusted module ID entry for a licence key for the software, retrieving a

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-17-

licence key (if one were available) in order to allow that particular execution, and returning the

licence key to the pool when the application is closed.

In order to accommodate more flexible situations such as hot-desking, when a variety of users
use generic terminals, a combination of multiple trusted devices can be used. In particular, a
combination of fixed tamper-proof components and portable tamper-proof components gives
great flexibility in licensing. Most obviously, a personal user’s smart card would be used in
combination with an internal tamper-proof device within the computer. On this type of licensing
model, the software executor or secure eéxecutor would run the data only if a particular smart

card is present (or one of a selected group of smart cards is present).

The internal trusted module contains a trusted machine identity, and the portable trusted module
(in this case, a smart card) contains an identity specific to the user (which could be authenticated
using an incorporated biometric device). Many different ways of licensing could be used in such
a situation (one example is given in the following section), and these are analogous to the
options presented in the ‘Preferred Embodiment’ section. The differences are that, according to

the particular model implemented:

® The smart card identity is involved in the licensing check carried out by the secure
executor or software executor, rather than the internal machine identity. Hence, for
example, the user identity is checked against the profile or directory rather than the machine
identity. In the case of unlock keys being stored on the smart card, the presence of the smart
card ID within the trusted module will cause the secure executor when requiring the unlock
key to (a) copy the unlock key in an encrypted form to the trusted module, by the smart
card encrypting it using the trusted module’s public key, or (b) use the unlock key from the

smart card directly.

* There is authentication between the internal trusted module and the smart card.
Authentication between the smart card and trusted module is carried out at the stage at
which the smart card is inserted, and the current smart card ID is temporarily stored within
the trusted module, to be used for the licensing check in the same way as the trusted module
ID would have been used in the licensing models described in this document (see Examples
A, B and F described later). When the smart card is removed, or (with single sign on) the

user logs out, this temporary smart card ID value within the trusted module is reset to a null

value.

PCT/GB00/03101

WO 01/13199

10

15

20

25

-18 -

Both user-based licensing and machine-based licensing could be used for different data within
the same machine. This could be done by (a) checking directory entries against the smart card
ID rather than the machine ID if the smart card ID value within the trusted module is not null
(and against the machine ID if this fails), or (b) checking for an unlock key within the smart
card if a smart card is currently inserted in the reader - that is to say, either requesting this to

be copied to the trusted module, or using it directly.

Accordingly, the invention extends to the case in which there is optional use of a combination of
an internal machine trusted module and a portable trusted module (and the secure executor and
software executor) to perform licence checking based on the user identity associated with the

portable trusted module.

A licensing system of the present invention which will be described in more detail below, has

the following features:

* the computer platform is registered with a third party C. Optionally, C is given the
trusted module ID or smart card ID;

* authentication between the trusted module and C and exchange of public key certificates
takes place before, or at the same time as, exchange of DES session keys for confidentiality

of the messages;

* the secure loader performs an integrity check on the data, and only installs the data if

this succeeds;

e the data is executed using one of the protocols described above; and

* each developer can use either generic or specific content protection.
In one form:

* data encrypted using a key K is signed under C’s private code signing key and sent by C

to the trusted module;

* the unlock key corresponding to K is encrypted by C using the trusted module’s public

key, signed using C’s private code signing key, and sent to the computer platform; and

* the key transfer code decrypts the unlock key, checks integrity and the signature, and

this key is then stored in the trusted module, associated with the relevant data.

0 01/13199 PCT/GB00/03101
W

-19-

In another form:

* data encrypted using a key K is signed under C’s private code signing key and sent by C

to the trusted module;

® an unlock key is transferred from C to the end-user of the computer platform or to the

5 computer platform;

* the key transfer code calculates the decryption key corresponding to K from the unlock

key, the trusted module or smart card ID and a pre-stored algorithm;

* optionally, the previous stage is carried out by the secure executor or software executor

associated with the data; and

10 * this decryption key is then stored in the trusted module or a smart card, associated with

the relevant data.
In a further form:

* data encrypted using a key K and any associated software executor is signed under C’s

private code signing key and sent by C to the trusted module; and

15 * the unlock key corresponding to K is inserted into the database entry corresponding to

the trusted module ID or smart card ID.
In yet another form:

* data and any associated software executor is signed under C’s private code signing key

and sent by C to the trusted module; and

20 ¢ an entry corresponding to permission to execute the data is inserted into the database

entry corresponding to the trusted module ID or smart card ID, or vice versa.

A specific embodiment of the present invention will now be described, purely by way of

example, with reference to the accompanying drawings, in which:

Figure 1 is a diagram that illustrates a system capable of implementing embodiments of

25 the present invention;

WO 01/13199

10

15

20

25

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figures 9 to 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

PCT/GB00/03101
-20-

is a diagram which illustrates a motherboard including a trusted device
arranged to communicate with a smart card via a smart card reader and with a

group of modules;

is a diagram that illustrates the trusted device in more detail;

is a flow diagram which illustrates the steps involved in acquiring an integrity

metric of the computing apparatus;

is a flow diagram which illustrates the steps involved in establishing
communications between a trusted computing platform and a remote platform

including the trusted platform verifying its integrity;

is a diagram that illustrates the operational parts of a user smart card for use in

accordance with embodiments of the present invention;

is a flow diagram which illustrates the process of mutually authenticating a

smart card and a host platform;
is a schematic block diagram of a trusted module in the system of Figure 21;

show parts of the system of Figure 21 to illustrate various communication

methods employed therein;
illustrates the format of a protocol data unit used in the system of Figure 21;

shows a modification to the system of Figure 21, which will be used to

describe a specific embodiment of the present invention;

is a diagram of the logical components of a trusted module in the system of

Figure 14;

illustrates the structure of protected software of data in the system of Figure
14;

is a flow chart illustrating installing or upgrading software or other data on the

system of Figure 14;

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-21-

Figure 18 is a flow chart illustrating the use of protected software or data in the system

of Figure 14 employing one model of licence checking;

Figure 19 is a flow chart illustrating the use of protected software or data in the system

of Figure 14 employing another model of licence checking;

Figure 20 is a flow chart illustrating the use of protected software or data in the system

of Figure 14 employing a further model of licence checking; and

Figure 21 is a schematic block diagram of a host computer system which is the subject of
another patent application (International Patent Application No.
PCT/GB00/00504, filed on 15 February 2000).

Before describing the embodiment of the present invention, the computing platform
incorporating a trusted device which is the subject of International Patent Application No.
PCT/GB00/00528, filed on 15 February 2000, will firstly be described with reference to
Figures 1 to 7. A computing platform of this general type is particularly suitable for use in
embodiments of the present invention. Also described (as it is relevant to certain of the
embodiments described below) is the use of a trusted token device personal to a user of the

computer platform - in preferred examples, this token device is a smart card.

That application describes the incorporation into a computing platform of a physical trusted
device or module whose function is to bind the identity of the platform to reliably measured data
that provides an integrity metric of the platform, thereby forming a "trusted platform". The
identity and the integrity metric are compared with expected values provided by a trusted party
(TP) that is prepared to vouch for the trustworthiness of the platform. If there is a match, the
implication is that at least part of the platform is operating correctly, depending on the scope of

the integrity metric.

In this specification, the term "trusted” when used in relation to a physical or logical
component, is used to mean that the physical or logical component always behaves in an
expected manner. The behavior of that component is predictable and known. Trusted

components have a high degree of resistance to unauthorized modification.

In this specification, the term "computing platform" (or "computer platform") is used to refer to
at least one data processor and at least one data storage means, usually but not essentially with
associated communications facilities e. g a plurality of drivers, associated applications and data

files, and which may be capable of interacting with external entities €.g2. a user or another

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-22-

computer platform, for example by means of connection to the internet, connection to an
external network, or by having an input port capable of receiving data stored on a data storage

medjum, e.g. a CD ROM, floppy disk, ribbon tape or the like.

A user verifies the correct operation of the platform before exchanging other data with the
platform. A user does this by requesting the trusted device to provide its identity and an
integrity metric. (Optionally the trusted device will refuse to provide evidence of identity if it
itself was unable to verify correct operation of the platform.) The user receives the proof of
identity and the integrity metric, and compares them against values which it believes to be true.
Those proper values are provided by the TP or another entity that is trusted by the user. If data
reported by the trusted device is the same as that provided by the TP, the user trusts the
platform. This is because the user trusts the entity. The entity trusts the platform because it has

previously validated the identity and determined the proper integrity metric of the platform.

A user of a computing entity may, for example, establish a level of trust with the computer
entity by use of such a trusted token device. The trusted token device is a personal and portable
device having a data processing capability and in which the user has a high level of confidence.
It may also be used by the trusted platform to identify the user. The trusted token device may
perform the functions of:
* verifying a correct operation of a computing platform in a manner which is readily
apparent to the user, for example by audio or visual display;
e challenging a monitoring component to provide evidence of a correct operation of a
computer platform with which the monitoring component is associated; and
® establishing a level of interaction of the token device with a computing platform,
depending on whether a monitoring component has provided satisfactory evidence of a
correct operation of the computing entity, and withholding specific interactions with the

computer entity if such evidence of correct operation is not received by the token device.

Once a user has established trusted operation of the platform, he exchanges other data with the
platform. For a local user, the exchange might be by interacting with some software application
running on the platform. For a remote user, the exchange might involve a secure transaction. In
either case, the data exchanged is ‘signed’ by the trusted device. The user can then have greater

confidence that data is being exchanged with a platform whose behaviour can be trusted.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-23.

The trusted device uses cryptographic processes but does not necessarily provide an external
interface to those cryptographic processes. Also, a most desirable implementation would be to
make the trusted device tamperproof, to protect secrets by making them inaccessible to other
platform functions and provide an environment that is substantially immune to unauthorised
modification. Since tamper-proofing is impossible, the best approximation is a trusted device
that is tamper-resistant, or tamper-detecting. The trusted device, therefore, preferably consists

of one physical component that is tamper-resistant.

Techniques relevant to tamper-resistance are well known to those skilled in the art of security.
These techniques include methods for Tesisting tampering (such as appropriate encapsulation of
the trusted device), methods for detecting tampering (such as detection of out of specification
voltages, X-rays, or loss of physical integrity in the trusted device casing), and methods for
eliminating data when tampering is detected. Further discussion of appropriate techniques can
be found at http://www.cl.cam.ac.uk/ ~mgk25/tamper.html. It will be appreciated that,
although tamper-proofing is a most desirable feature of the system described, it does not enter
into the normal operation of the present invention and, as such, is beyond the scope of the

present invention and will not be described in any detail herein.

The trusted device is preferably a physical one because it must be difficult to forge. It is most
preferably tamper-resistant because it must be hard to counterfeit. It typically has an engine
capable of using cryptographic processes because it is required to prove identity, both locally
and at a distance, and it contains at least one method of measuring some integrity metric of the

platform with which it is associated.

A trusted platform 10 is illustrated in the diagram in Figure 1. The platform 10 includes the
standard features of a keyboard 14 (which provides a user's confirmation key), mouse 16 and
monitor 18, which provide the physical ‘user interface’ of the platform. This embodiment of a
trusted platform also contains a smart card reader 12. Along side the smart card reader 12,
there is illustrated a smart card 19 to allow trusted user interaction with the trusted platform as
shall be described further below. In the platform 10, there are a plurality of modules 15: these
are other functional elements of the trusted platform of essentially any kind appropriate to that
platform.. The functional significance of such elements is not relevant to the present invention
and will not be discussed further herein. Additional components of the trusted computer entity
will typically include one or more local area network (LAN) ports, one or more modem ports,

and one or more power supplies, cooling fans and the like.

WO 01/13199

10

15

20

25

30

35

PCT/GB00/03101
-24 -

As illustrated in Figure 2, the motherboard 20 of the trusted computing platform 10 includes
(among other standard components) a main processor 21, main memory 22, a trusted device 24,
a data bus 26 and respective control lines 27 and lines 28, BIOS memory 29 containing the
BIOS program for the platform 10 and an Input/Output (I0) device 23, which controls
interaction between the components of the motherboard and the smart card reader 12, the
keyboard 14, the mouse 16 and the monitor 18 (and any additional peripheral devices such as a
modem, printer, scanner or the like). The main memory 22 is typically random access memory
(RAM). In operation, the platform 10 loads the operating system, for example Windows NT™,
into RAM from hard disk (not shown). Additionally, in operation, the platform 10 loads the
processes or applications that may be executed by the platform 10 into RAM from hard disk

(not shown).

The computer entity can be considered to have a logical, as well as a physical, architecture. The
logical architecture has a same basic division between the computer platform, and the trusted
component, as is present with the physical architecture described in Figs. 1 to 4 herein. That is
to say, the trusted component is logically distinct from the computer platform to which it is
physically related. The computer entity comprises a user space being a logical space which is
physically resident on the computer platform (the first processor and first data storage means)
and a trusted component space being a logical space which is physically resident on the trusted
component. In the user space are one or a plurality of drivers, one or a plurality of applications
programs, a file storage area; smart card reader; smart card interface; and a software agent
which can perform operations in the user space and report back to trusted component. The
trusted component space is a logical area based upon and physically resident in the trusted
component, supported by the second data processor and second memory area of the trusted
component. Monitor 18 receives images directly from the trusted component space. External to
the computer entity are external communications networks e.g. the Internet, and various local
area networks, wide area networks which are connected to the user space via the drivers (which
may include one or more modem ports). An external user smart card inputs into smart card

reader in the user space.

Typically, in a personal computer the BIOS program is located in a special reserved memory
area, the upper 64K of the first megabyte do the system memory (addresses FOQ@h to FFFFh),
and the main processor is arranged to look at this memory location first, in accordance with an

industry wide standard.

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
.25.-

The significant difference between the platform and a conventional platform is that, after reset,
the main processor is initially controlled by the trusted device, which then hands control over to
the platform-specific BIOS program, which in turn initialises all input/output devices as normal.
After the BIOS program has executed, control is handed over as normal by the BIOS program
t0 an operating system program, such as Windows NT (TM), which is typically loaded into

main memory 22 from a hard disk drive (not shown).

Clearly, this change from the normal procedure requires a modification to the implementation of
the industry standard, whereby the main processor 21 is directed to address the trusted device
24 to receive its first instructions. This change may be made simply by hard-coding a different
address into the main processor 21. Alternatively, the trusted device 24 may be assigned the
standard BIOS program address, in which case there is no need to modify the main processor

configuration.

It is highly desirable for the BIOS boot block to be contained within the trusted device 24. This
prevents subversion of the obtaining of the integrity metric (which could otherwise occur if
rogue software processes are present) and prevents rogue software processes creating a situation
in which the BIOS (even if correct) fails to build the proper environment for the operating

system.

Although, in the system here described, the trusted device 24 is a single, discrete component, it
is envisaged that the functions of the trusted device 24 may alternatively be split into multiple
devices on the motherboard, or even integrated into one or more of the existing standard devices
of the platform. For example, it is feasible to integrate one or more of the functions of the
trusted device into the main processor itself, provided that the functions and their
communications cannot be subverted. This, however, would probably require separate leads on
the processor for sole use by the trusted functions. Additionally or alternatively, although in the
present system the trusted device is a hardware device that is adapted for integration into the
motherboard 20, it is anticipated that a trusted device may be implemented as a ‘removable’
device, such as a dongle, which could be attached to a platform when required. Whether the
trusted device is integrated or removable is a matter of design choice. However, where the
trusted device is separable, a mechanism for providing a logical binding between the trusted

device and the platform should be present.

WO 01/13199

10

15

20

25

30

35

PCT/GB00/03101

-26-

The trusted device 24 comprises a number of blocks, as illustrated in Figure 3. After system
reset, the trusted device 24 performs a secure boot process to ensure that the operating system
of the platform 10 (including the system clock and the display on the monitor) is running
properly and in a secure manner. During the secure boot process, the trusted device 24
acquires an integrity metric of the computing platform 10. The trusted device 24 can also
perform secure data transfer and, for example, authentication between it and a smart card via
encryption/decryption and signature/verification. The trusted device 24 can also securely

enforce various security control policies, such as locking of the user interface.

Specifically, the trusted device comprises: a controller 30 programmed to control the overall
operation of the trusted device 24, and interact with the other functions on the trusted device 24
and with the other devices on the motherboard 20; a measurement function 31 for acquiring the
integrity metric from the platform 10; a cryptographic function 32 for signing, encrypting or
decrypting specified data; an authentication function 33 for authenticating a smart card; and
interface circuitry 34 having appropriate ports (36, 37 & 38) for connecting the trusted device
24 respectively to the data bus 26, control lines 27 and address lines 28 of the motherboard 20.
Each of the blocks in the trusted device 24 has access (typically via the controller 30) to
appropriate volatile memory areas 4 and/or non-volatile memory areas 3 of the trusted device

24. Additionally, the trusted device 24 is designed, in a known manner, to be tamper resistant.

For reasons of performance, the trusted device 24 may be implemented as an application
specific integrated circuit (ASIC). However, for flexibility, the trusted device 24 is preferably
an appropriately programmed micro-controller. Both ASICs and micro-controllers are well

known in the art of microelectronics and will not be considered herein in any further detail.

One item of data stored in the non-volatile memory 3 of the trusted device 24 is a certificate
350. The certificate 350 contains at least a public key 351 of the trusted device 24 and an
authenticated value 352 of the platform integrity metric measured by a trusted party (TP). The
certificate 350 is signed by the TP using the TP’s private key prior to it being stored in the
trusted device 24. In later communications sessions, a user of the platform 10 can verify the
integrity of the platform 10 by comparing the acquired integrity metric with the authentic
integrity metric 352. If there is a match, the user can be confident that the platform 10 has not
been subverted. Knowledge of the TP’s generally-available public key enables simple
verification of the certificate 350. The non-volatile memory 35 also contains an identity (ID)

label 353. The ID label 353 is a conventional ID label, for example a serial number, that is

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-7

unique within some context. The ID label 353 is generally used for indexing and labelling of
data relevant to the trusted device 24, but is insufficient in itself to prove the identity of the

platform 10 under trusted conditions.

The trusted device 24 is equipped with at least one method of reliably measuring or acquiring
the integrity metric of the computing platform 10 with which it is associated. In the present
embodiment, the integrity metric is acquired by the measurement function 31 by generating a
digest of the BIOS instructions in the BIOS memory. Such an acquired integrity metric, if
verified as described above, gives a potential user of the platform 10 a high level of confidence
that the platform 10 has not been subverted at a hardware, or BIOS program, level. Other
known processes, for example virus checkers, will typically be in place to check that the

operating system and application program code has not been subverted.

The measurement function 31 has access to: non-volatile memory 3 for storing a hash program
354 and a private key 355 of the trusted device 24, and volatile memory 4 for storing acquired
integrity metric in the form of a digest 361. In appropriate embodiments, the volatile memory 4
may also be used to store the public keys and associated ID labels 360a-360n of one or more

authentic smart cards 19s that can be used to gain access to the platform 10.

In one preferred implementation, as well as the digest, the integrity metric includes a Boolean
value, which is stored in volatile memory 4 by the measurement function 31, for reasons that

will become apparent.

A preferred process for acquiring an integrity metric will now be described with reference to

Figure 4.

In step 400, at switch-on, the measurement function 31 monitors the activity of the main
processor 21 on the data, control and address lines (26, 27 & 28) to determine whether the
trusted device 24 is the first memory accessed. Under conventional operation, a main processor
would first be directed to the BIOS memory first in order to execute the BIOS program.
However, in accordance with the present embodiment, the main processor 21 is directed to the
trusted device 24, which acts as a memory. In step 405, if the trusted device 24 is the first
memory accessed, in step 410, the measurement function 31 writes to non-volatile memory 3 a

Boolean value, which indicates that the trusted device 24 was the first memory accessed.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

35

-28 -

Otherwise, in step 415, the measurement function writes a Boolean value which indicates that

the trusted device 24 was not the first memory accessed.

In the event the trusted device 24 is not the first accessed, there is of course a chance that the
trusted device 24 will not be accessed at all. This would be the case, for example, if the main
processor 21 were manipulated to run the BIOS program first. Under these circumstances, the
platform would operate, but would be unable to verify its integrity on demand, since the
integrity metric would not be available. Further, if the trusted device 24 were accessed after the
BIOS program had been accessed, the Boolean value would clearly indicate lack of integrity of

the platform.

In step 420, when (or if) accessed as a memory by the main processor 21, the main processor
21 reads the stored native hash instructions 354 from the measurement function 31 in step 425.
The hash instructions 354 are passed for processing by the main processor 21 over the data bus
26. In step 430, main processor 21 executes the hash instructions 354 and uses them, in step
435, to compute a digest of the BIOS memory 29, by reading the contents of the BIOS memory
29 and processing those contents according to the hash program. In step 440, the main
processor 21 writes the computed digest 361 to the appropriate non-volatile memory location 4
in the trusted device 24. The measurement function 31, in step 445, then calls the BIOS

program in the BIOS memory 29, and execution continues in a conventional manner.

Clearly, there are a number of different ways in which the integrity metric may be calculated,
depending upon the scope of the trust required. The measurement of the BIOS program’s
integrity provides a fundamental check on the integrity of a platform’s underlying processing
environment. The integrity metric should be of such a form that it will enable reasoning about
the validity of the boot process - the value of the integrity metric can be used to verify whether
the platform booted using the correct BIOS. Optionally, individual functional blocks within the
BIOS could have their own digest values, with an ensemble BIOS digest being a digest of these
individual digests. This enables a policy to state which parts of BIOS operation are critical for
an intended purpose, and which are irrelevant (in which case the individual digests must be

stored in such a manner that validity of operation under the policy can be established).

Other integrity checks could involve establishing that various other devices, components or
apparatus attached to the platform are present and in correct working order. In one example,

the BIOS programs associated with a SCSI controller could be verified to ensure

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

35

-29.

communications with peripheral equipment could be trusted. In another example, the integrity
of other devices, for example memory devices or co-processors, on the platform could be
verified by enacting fixed challenge/response interactions to ensure consistent results. Where
the trusted device 24 is a separable component, some such form of interaction is desirable to
provide an appropriate logical binding between the trusted device 24 and the platform. Also,
although in the present embodiment the trusted device 24 utilises the data bus as its main means
of communication with other parts of the platform, it would be feasible, although not so
convenient, to provide alternative communications paths, such as hard-wired paths or optical
paths. Further, although in the present embodiment the trusted device 24 instructs the main
processor 21 to calculate the integrity metric, it is anticipated that, in other embodiments, the

trusted device itself is arranged to measure one or more integrity metrics.

Preferably, the BIOS boot process includes mechanisms to verify the integrity of the boot
process itself. Such mechanisms are already known from, for example, Intel’s draft “Wired for
Management baseline specification v 2.0 - BOOT Integrity Service”, and involve calculating
digests of software or firmware before loading that software or firmware. Such a computed
digest is compared with a value stored in a certificate provided by a trusted entity, whose public
key is known to the BIOS. The software/firmware is then loaded only if the computed value
matches the expected value from the certificate, and the certificate has been proven valid by use
of the trusted entity's public key. Otherwise, an appropriate exception handling routine is

invoked.

Optionally, after receiving the computed BIOS digest, the trusted device 24 may inspect the
proper value of the BIOS digest in the certificate and not pass control to the BIOS if the
computed digest does not match the proper value. Additionally, or alternatively, the trusted
device 24 may inspect the Boolean value and not pass control back to the BIOS if the trusted
device 24 was not the first memory accessed. In either of these cases, an appropriate exception

handling routine may be invoked.

Figure 5 illustrates the flow of actions by a TP, the trusted device 24 incorporated into a
platform, and a user (of a remote platform) who wants to verify the integrity of the trusted
platform. It will be appreciated that substantially the same steps as are depicted in Figure 5 are
involved when the user is a local user. In either case, the user would typically rely on some
form of software application to enact the verification. It would be possible to run the software

application on the remote platform or the trusted platform. However, there is a chance that,

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

35

-30-

even on the remote platform, the software application could be subverted in some way.
Therefore, it is preferred that, for a high level of integrity, the software application would
reside on a smart card of the user, who would insert the smart card into an appropriate reader

for the purposes of verification. Particular embodiments relate to such an arrangement.

At the first instance, a TP, which vouches for trusted platforms, will inspect the type of the
platform to decide whether to vouch for it or not. This will be a matter of policy. If all is well,
in step 500, the TP measures the value of integrity metric of the platform. Then, the TP
generates a certificate, in step 505, for the platform. The certificate is generated by the TP by
appending the trusted device’s public key, and optionally its ID label, to the measured integrity

metric, and signing the string with the TP’s private key.

The trusted device 24 can subsequently prove its identity by using its private key to process
some input data received from the user and produce output data, such that the input/output pair
is statistically impossible to produce without knowledge of the private key. Hence, knowledge
of the private key forms the basis of identity in this case. Clearly, it would be feasible to use
symmetric encryption to form the basis of identity. However, the disadvantage of using
symmetric encryption is that the user would need to share his secret with the trusted device.
Further, as a result of the need to share the secret with the user, while symmetric encryption
would in principle be sufficient to prove identity to the user, it would insufficient to prove
identity to a third party, who could not be entirely sure the verification originated from the

trusted device or the user.

In step 510, the trusted device 24 is initialised by writing the certificate 350 into the appropriate
non-volatile memory locations 3 of the trusted device 24. This is done, preferably, by secure
communication with the trusted device 24 after it is installed in the motherboard 20. The
method of writing the certificate to the trusted device 24 is analogous to the method used to
initialise smart cards by writing private keys thereto. The secure communications is supported
by a ‘master key’, known only to the TP, that is written to the trusted device (or smart card)
during manufacture, and used to enable the writing of data to the trusted device 24; writing of

data to the trusted device 24 without knowledge of the master key is not possible.

At some later point during operation of the platform, for example when it is switched on or
reset, in step 515, the trusted device 24 acquires and stores the integrity metric 361 of the

platform.

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

35

-31-

When a user wishes to communicate with the platform, in step 520, he creates a nonce, such as
a random number, and, in step 525, challenges the trusted device 24 (the operating system of
the platform, or an appropriate software application, is arranged to recognise the challenge and
pass it to the trusted device 24, typically via a BIOS-type call, in an appropriate fashion). The
nonce is used to protect the user from deception caused by replay of old but genuine signatures
(called a ‘replay attack’) by untrustworthy platforms. The process of providing a nonce and

verifying the response is an example of the well-known ‘challenge/response’ process.

In step 530, the trusted device 24 receives the challenge and creates an appropriate response.
This may be a digest of the measured integrity metric and the nonce, and optionally its ID label.
Then, in step 535, the trusted device 24 signs the digest, using its private key, and returns the

signed digest, accompanied by the certificate 350, to the user.

In step 540, the user receives the challenge response and verifies the certificate using the well
known public key of the TP. The user then, in step 550, extracts the trusted device’s 24 public
key from the certificate and uses it to decrypt the signed digest from the challenge response.
Then, in step 560, the user verifies the nonce inside the challenge response. Next, in step 570,
the user compares the computed integrity metric, which it extracts from the challenge response,
with the proper platform integrity metric, which it extracts from the certificate. If any of the
foregoing verification steps fails, in steps 545, 555, 565 or 575, the whole process ends in step

580 with no further communications taking place.

Assuming all is well, in steps 585 and 590, the user and the trusted platform use other protocols
to set up secure communications for other data, where the data from the platform is preferably

signed by the trusted device 24.

Further refinements of this verification process are possible. It is desirable that the challenger
becomes aware, through the challenge, both of the value of the platform integrity metric and
also of the method by which it was obtained. Both these pieces of information are desirable to
allow the challenger to make a proper decision about the integrity of the platform. The
challenger also has many different options available - it may accept that the integrity metric is
recognised as valid in the trusted device 24, or may alternatively only accept that the platform
has the relevant level of integrity if the value of the integrity metric is equal to a value held by

the challenger (or may hold there to be different levels of trust in these two cases).

WO 01/13199

10

15

20

25

30

35

PCT/GB00/03101

-32-

The techniques of signing, using certificates, and challenge/response, and using them to prove
identity, are well known to those skilled in the art of security and therefore need not be

described in any more detail herein.

The user's smart card 19 is a token device, separate from the computing entity, which interacts
with the computing entity via the smart card reader port 19. A user may have several different
smart cards issued by several different vendors or service providers, and may gain access to the
internet or a plurality of network computers from any one of a plurality of computing entities as
described herein, which are provided with a trusted component and smart card reader. A user's
trust in the individual computing entity to which s/he is using is derived from the interaction
between the user's trusted smart card token and the trusted component of the computing entity.
The user relies on their trusted smart card token to verify the trustworthiness of the trusted

component.

A processing part 60 of a user smart card 19 is illustrated in Figure 6. As shown, the user
smart card 19 processing part 60 has the standard features of a processor 61, memory 62 and
interface contacts 63. The processor 61 is programmed for simple challenge/response
operations involving authentication of the user smart card 19 and verification of the platform 10,
as will be described below. The memory 62 contains its private key 620, its public key 628,
(optionally) a user profile 621, the public key 622 of the TP and an identity 627. The user
profile 621 lists the allowable auxiliary smart cards 20 AC1-ACn usable by the user, and the
individual security policy 624 for the user. For each auxiliary smart card 20, the user profile
includes respective identification information 623, the trust structure 625 between the smart

cards (if one exists) and, optionally, the type or make 626 of the smart card.

In the user profile 621, each auxiliary smart card 20 entry AC1-ACn includes associated
identification information 623, which varies in dependence upon the type of card. For example,
identification information for a cash card typically includes a simple serial number, whereas, for
a crypto card, the identification information typically comprises the public key (or certificate) of

the crypto card (the private key being stored secretly on the crypto card itself).

The ‘security policy’ 624 dictates the permissions that the user has on the platform 10 while
using an auxiliary smart card 20. For example, the user interface may be locked or unlocked

while an auxiliary smart card 20 is in use, depending on the function of the auxiliary smart card

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
-33.

20. Additionally, or alternatively, certain files or executable programs on the platform 10 may
be made accessible or not, depending on how trusted a particular auxiliary smart card 20 is.
Further, the security policy 624 may specify a particular mode of operation for the auxiliary

smart card 20, such as ‘credit receipt’ or ‘temporary delegation’, as will be described below.

A ‘trust structure’ 625 defines whether an auxiliary smart card 20 can itself ‘introduce’ further
auxiliary smart cards 20 into the system without first re-using the user smart card 19. In the
embodiments described in detail herein, the only defined trust structure is between the user
smart card 19 and the auxiliary smart cards 20 that can be introduced to the platform 10 by the
user smart card 19. Introduction may be ‘single session’ or ‘multi-session’, as will be described
below. However, there is no reason why certain auxiliary smart cards 20 could not in practice
introduce further auxiliary smart cards 20. This would require an auxiliary smart card 20 to
have an equivalent of a user profile listing the or each auxiliary smart card that it is able to
introduce. Use of auxiliary smart cards 20 is not a necessary feature of the present invention,
and is not described further in the present application. Use of auxiliary smart cards is the
subject of the present applicant's copending International Patent Application No.
PCT/GB00/00751dated 5 March 2000 and entitled "Computing Apparatus and Methods of

Operating Computing Apparatus”, which is incorporated by reference herein.

A preferred process for authentication between a user smart card 19 and a platform 10 will now
be described with reference to the flow diagram in Figure 7. As will be described, the process
conveniently implements a challenge/response routine. There exist many available
challenge/response mechanisms. The implementation of an authentication protocol used in the
present embodiment is mutual (or 3-step) authentication, as described in ISO/IEC 9798-3. Of
course, there is no reason why other authentication procedures cannot be used, for example 2-
step or 4-step, as also described in ISO/IEC 9798-3.

Initially, the user inserts their user smart card 19 into the smart card reader 12 of the platform
10 in step 700. Beforehand, the platform 10 will typically be operating under the control of its
standard operating system and executing the authentication process, which waits for a user to
insert their user smart card 19. Apart from the smart card reader 12 being active in this way,
the platform 10 is typically rendered inaccessible to users by ‘locking’ the user interface (i.e.

the screen, keyboard and mouse).

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
-34.

When the user smart card 19 is inserted into the smart card reader 12, the trusted device 24 is
triggered to attempt mutual authentication in step by generating and transmitting a nonce A to
the user smart card 19 in step 705. A nonce, such as a random number, is used to protect the
originator from deception caused by replay of old but genuine responses (called a ‘replay

attack’) by untrustworthy third parties.

In response, in step 710, the user smart card 19 generates and returns a response comprising the
concatenation of: the plain text of the nonce A, a new nonce B generated by the user smart card
19, the ID 353 of the trusted device 24 and some redundancy; the signature of the plain text,
generated by signing the plain text with the private key of the user smart card 19; and a

certificate containing the ID and the public key of the user smart card 19.

The trusted device 24 authenticates the response by using the public key in the certificate to
verify the signature of the plain text in step 715. If the response is not authentic, the process
ends in step 720. If the response is authentic, in step 725 the trusted device 24 generates and
sends a further response including the concatenation of: the plain text of the nonce A, the nonce
B, the ID 627 of the user smart card 19 and the acquired integrity metric; the signature of the
plain text, generated by signing the plain text using the private key of the trusted device 24; and
the certificate comprising the public key of the trusted device 24 and the authentic integrity

metric, both signed by the private key of the TP.

The user smart card 19 authenticates this response by using the public key of the TP and
comparing the acquired integrity metric with the authentic integrity metric, where a match
indicates successful verification, in step 730. If the further response is not authentic, the

process ends in step 735.

If the procedure is successful, both the trusted device 24 has authenticated the user smart card
19 and the user smart card 19 has verified the integrity of the trusted platform 10 and, in step
740, the authentication process executes the secure process for the user. Then, the
authentication process sets an interval timer in step 745. Thereafter, using appropriate
operating system interrupt routines, the authentication process services the interval timer
periodically to detect when the timer meets or exceeds a pre-determined timeout period in step
750.

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-35.

Clearly, the authentication process and the interval timer run in parallel with the secure process.
When the timeout period is met or exceeded, the authentication process triggers the trusted
device 24 to re-authenticate the user smart card 19, by transmitting a challenge for the user
smart card 19 to identify itself in step 760. The user smart card 19 returns a certificate
including its ID 627 and its public key 628 in step 765. In step 770, if there is no response (for
example, as a result of the user smart card 19 having been removed) or the certificate is no
longer valid for some reason (for example, the user smart card has been replaced with a
different smart card), the session is terminated by the trusted device 24 in step 775. Otherwise,

in step 770, the process from step 745 repeats by resetting the interval timer.

The techniques of signing, using certificates, and challenge/response, and using them to prove
identity, are well known to those skilled in the art of security and will, thus, not be described in

any more detail herein.

Referring now to Figures 21 and 8 to 13, a modified form of the system described above with
reference to Figures 1 to 7 will now be described. This modified form is the subject of
International Patent Application No. PCT/GB00/00504, filed on 15 February 2000. In Figure
21, a host computer 100 has a main CPU 102, a hard disk drive 104, a PCI network interface
card 106 and DRAM memory 108 with conventional (“normal”) communications paths 110
(such as ISA, EISA, PCI, USB) therebetween. The network interface card 106 also has an

external communication path 112 with the world outside the host computer 100.

The network interface card 106 is logically divided into “red” and “black” data zones 114,116
with an interface 118 therebetween. In the red zone 114, data is usually plain text and is
sensitive and vulnerable to undetectable alteration and undesired eavesdropping. In the black
data zone 116, data is protected from undetected alteration and undesired eavesdropping
(preferably encrypted by standard crypto mechanisms). The interface 118 ensures that red
information does not leak into the black zone 116. The interface 118 preferably uses standard
crypto methods and electronic isolation techniques to separate the red and black zones 114,116.
The design and construction of such red and black zones 114,116 and the interface 118 is well
known to those skilled in the art of security and electronics, particularly in the military field.
The normal communication path 110 and external communication path 112 connect with the

black zone 116 of the network interface card 106.

The host computer 100 also includes a trusted module 120 which is connected, not only to the

normal communication paths 110, but also by mutually separate additional communication paths

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
-36-

122 (sub-referenced 122a,122b,122c) to the CPU 102, hard disk drive 104 and the red zone 114
of the network interface card 106. By way of example, the trusted module 120 does not have

such a separate additional communication path 122 with the memory 108.

The trusted module 120 can communicate with the CPU 102, hard disk drive 104 and red zone
114 of the network interface card 106 via the additional communication paths 122a,b,c,
respectively. It can also communicate with the CPU 102, hard disk drive 104, black zone 116 of
the network interface card 106 and the memory 108 via the normal communication paths 110.
The trusted module 120 can also act as a 100VG switching centre to route certain information
between the CPU 102, hard disk drive 104 and the red zone 114 of the network interface card
106, via the trusted module 120 and the additional communication paths 122, under control of a
policy stored in the trusted module. The trusted module 120 can also generate cryptographic
keys and distribute those keys to the CPU 102, the hard disk drive 104, and the red zone 114 of

the network interface card 106 via the additional communication paths 122a,b,c, respectively.

Figure 8 illustrates the physical architecture of the trusted module 120 A first switching engine
124 is connected separately to the additional communication paths 122a,b,c and also to an
internal communication path 126 of the trusted module 120. This switching engine 124 is under
control of a policy loaded into the trusted module 120. Other components of the trusted module
120 are:

. a computing engine 128 that manages the trusted module 120 and performs

general purpose computing for the trusted module 120;

. volatile memory 130 that stores temporary data;
. non-volatile memory 132 that stores long term data;
. cryptographic engines 134 that perform specialist crypto functions such as

encryption and key generation;

. a random number source 136 used primarily in crypto operations;

. a second switching engine 138 that connects the trusted module 120 to the
normal communication paths 110; and

. tamper detection mechanisms 140,

all connected to the internal communication path 126 of the trusted module 120.

The trusted module 120 is based on a trusted device or module 24 as described in more detail

above with reference to Figures 1 to 7.

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-37-

With regard to crypto key generation and distribution, the trusted module 120 generates
cryptographic keys, using the random number generator 136, a hash algorithm, and other
algorithms, all of which are well known, per se, to those skilled in the art of security. The
trusted module 120 distributes selected keys to the CPU 102, hard disk drive 104 and the red
zone 114 of the network interface card 106 using the additional communication paths 122a,b,c,
respectively, rather than the normal communications paths 110. Keys may be used for
communications between the internal modules 102,104,106,120 of the platform over the normal
communication paths 110. Other temporary keys may be used (by the network interface card
106 or CPU 102) for bulk encryption or decryption of external data using the SSL protocol after
the trusted module 120 has completed the SSL handshaking phase that uses long term identity
secrets that must not be revealed outside the trusted module 120. Other temporary keys may be
used (by the hard disk drive 104 or CPU 102) for bulk encryption or decryption of data stored
on the hard disk drive 104 after those temporary keys have been created or revealed inside the
trusted module 120 using long term secrets that must not be revealed outside the trusted module
120.

The trusted module 120 enforces policy control over communications between modules by the
selective distribution of encryption keys. The trusted module 120 enforces a policy ban on
communications between given pairs of modules by refusing to issue keys that enable secure

communications over the shared infrastructure 110 between those pairs of modules.

Figure 9 illustrates a process by which the trusted module 120 can perform a watchdog function
and “ping’ the modules 102,104,106 connected to the additional communication paths 122. The
trusted module generates a challenge 142 and sends it to the CPU 102, hard disk drive 104 and
red zone 114 of the network interface card 106 using the additional communication paths
122a,b,c, respectively. Each of the CPU 102, hard disk drive 104 and network interface card
106 responds with a response 144a,b,c, respectively, on the respective additional
communication path 122a,b,c to say whether the respective module is active, and preferably that
the module is acting properly. The trusted module 120 notes the responses 144a,b,c and uses
them as metrics in its responses to integrity challenges that are described above with reference

to Figures 1 to 7.

Figure 10 illustrates the process by which incoming external secure messages are processed
when the trusted module 120 is the only module in the platform with cryptographic capabilities.
An external message 146 is received by the black zone 116 of the network interface card 106

using the external communication path 112. The network interface card 106 sends a protocol

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-38-

data unit 148 (to be described in further detail later) containing some data and a request for an
authentication and integrity check to the trusted module 120 using the normal communication
paths 110. The trusted module 120 performs the authentication and integrity checks using the
long term keys inside the trusted module 120 that must not revealed outside the trusted module
120, and sends a protocol data unit 150 containing an ‘OK’ indication to the red zone 114 of the
network interface card 106 using the additional communication path 122c. The network
interface card 106 then sends a protocol data unit 152 containing some data and a request for
decryption to the trusted module 120 using the normal communication paths 110. The trusted
module 120 decrypts the data using either temporary or long term keys inside the trusted
module 120, and sends a protocol data unit 154 containing the decrypted data to the CPU 102

using the additional communication path 122a. The CPU then takes appropriate action.

Figure 11 illustrates the process by which the CPU 102 requests a policy decision from the
trusted module 120. This could be used, for example, when the CPU 102 must determine
whether policy allows certain data to be manipulated or an application to be executed. This will
be described in more later with reference to Figures 14 to 20. The CPU 102 sends a protocol
data unit 156 containing a request to the trusted module 120 using the normal communication
paths 110. The trusted module 120 processes the request 156 according to the policy stored
inside the trusted module 120. The trusted module 120 sends a protocol data unit 158 containing
a reply to the CPU 102 using the additional communication path 122a, in order that the CPU
102 can be sure that authorisation came from the trusted module 120. If the action is authorised,

the CPU 102 takes the necessary action. Otherwise, it abandons the process.

Figure 12 illustrates an example of the control of policy over protected communications between
the modules 102,104,106. All of the communications in this example use the additional
communication paths 122. The red zone 114 of the network interface card 106 sends a protocol
data unit 160 that is destined for the hard disk drive 104 to the trusted module 120 on the
additional data path 122c. In the case where the policy does not permit this, the trusted module
120 denies the request by sending a protocol data unit 162 containing a denial to the network
interface card 106 on the additional data path 122c. Later, the CPU 102 requests sensitive data
from the hard disk drive 104 by sending a protocol data unit 164 addressed to the hard disk
drive, but sent on the additional data path 122a to the trusted module 120. The trusted module
120 checks that the policy allows this. In the case where it does, the trusted module 120 relays
the protocol data unit 164 to the hard disk drive 104 on the additional data path 122b. The hard
disk drive 104 provides the data and sends it in a protocol data unit 166 on the additional data
path 122b back to the trusted module 120 addressed to the CPU 102. The trusted module 120

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-39.

checks that the policy allows this, and, in the case where it does, relays the protocol data unit
166 to the CPU 102 on the additional data path 122a.

Figure 13 illustrates the format of the data protocol units 178 by which data is passed over the

additional communication paths 122. The data protocol unit 178 has:-

. an identifier field 168 indicating the type of the protocol data unit;

. a length field 170 indicating the length of the protocol data unit;

. a source field 172 indicating the source of the protocol data unit;

. a destination field 174 indicating the destination of the protocol data unit;
. and so on, including in many cases a data field 176.

Not all fields are always necessary. For example, assuming the policy of the trusted module 120
forbids it to relay key protocol data units that that did not originate within the trusted module
120, the CPU 102, hard disk drive 104 and network interface card 106 can therefore assume
that keys are always from the trusted module 120. Hence, source and destination fields are
unnecessary in key protocol data units - such protocol data units are implicitly authenticated.
The design and construction and use, per se, of protocol data units is well known to those

skilled in the art of communications,

The specific embodiment of the present invention will now be described with reference to
Figures 14 to 20. Figure 14 illustrates the physical system and is a development of the system
described above with reference to Figures 21 and 7 to 13. In Figure 14, a display 121 is
connected to the trusted module 120 by means of one 122d of the additional communications
paths as described above. This enables the trusted module 120 to reliably write to the display,
without fear of subversion from normal software, including the operating system. Also, the host
computer 100 is connected to a keyboard 101 that has a built-in smart card reader 103, both of
which are connected to the normal communications paths 110. A smart card which is inserted
into the smart card reader 103 can be considered to be an additional trusted module and is

therefore able to communicate securely with the trusted module 120.

Figure 15 illustrates a logical diagram of the components of the trusted module 120, comprising
licensing code components 200 and other licensing data components 202 within the trusted
module 120. The licensing code components 200 run within a protected environment, as
previously described, and preferably within the trusted module 120 itself, and comprise: a
secure executor 204, a secure loader 206, secure key-transfer code 208 and a client library 210.
The licence-related data components 202 stored on the trusted module 120 include the private

key 212 of the trusted module 120, the public key certificate 214 of a trusted entity, the

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-40 -

Clearinghouse or developer’s public key certificate 216, a licensing log 218, and a hashed
version 220 of the licence-related code 200, signed with the private key of the trusted entity
who has the public key certificate 214.

Figure 16 illustrates the structure of protected software or data 222 within the client computer
100. Digital data 224 on the client computer 100 is associated with a respective software
executor 226, within which is stored the public key 228 of the trusted module 120. This
structure 230 is stored together with a hashed version 232 of it, signed with the clearinghouse or
developer’s private key. There will be a structure analogous to the resulting unit 222 for each

piece of protected software or data.

Figure 17 illustrates the flowchart for loading or upgrading software or other data onto the
client platform, for the general case where the secure loader 206 may not be running within the

trusted module 120.

The data to be installed is hashed and signed with the sender’s private key, and this is appended
to the data itself by the sender.

In step 234, the operating system sends a request, together with the data and the signed hashed
version, to the secure loader 206 that the data be installed. In step 236, the secure loader 206
receives the request, and in step 238 it checks the signature of this message, using the public

key certificate corresponding to the sender, thereby checking authentication of the sender.

If authentication fails, then in step 240 the secure loader 206 sends an error message to the
operating system. In step 242 the operating system receives this error message, and in step 244

displays an appropriate message.

If authentication succeeds in step 238, then in step 246 the secure loader 206 computes the hash
of the message, via the cryptographic capabilities available within the trusted module 120, and
in step 248 compares it to the message hash that is associated with the data and was received in

step 236. This checks for integrity of the message.

If the hashes are not the same, this indicates that the data has been altered, and that it should not
be installed. In this case, in step 250 the secure loader 206 sends an error message to the OS,

which then performs steps 242,244 described above.

If the hashes are found to be the same in step 248, then in step 252 the trusted module 120
makes a log of the installation, and in step 254 the secure loader 206 indicates to the OS that the

data can be installed as normal, which then happens in step 256.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-41 -

If other forms of check (particularly licence checks) are additionally or alternatively to be
employed, these may be included between steps 250 and 252 in the method described with

reference to Figure 17.

Figure 18 illustrates the flowchart for licensing using a model of licence checking where the OS
communicates with the secure executor 204, and the software executor 226 associated with a
piece of data has the option to choose the licensing model to be used for protection of that data.
This again is for the general case where licensing software is not necessarily mounted within the

trusted module 120. The procedure is as follows:

When the user wishes to run some digital data, in step 258 a request is sent by the operating
system, which is received by the secure executor 204 in step 260. In step 262, the secure
executor 206 generates a random number (nonce), and in step 264 issues a challenge/response
to the software executor 226 corresponding to that piece of data, by means of sending the
nonce, together with a reference to the application (e.g. its title), signed using the private key

212 of the trusted module 120.

Following receipt in step 266 by the software executor 226, in step 268 it verifies and
authenticates the secure executor’s challenge using the public key 228 of the trusted module
120. If there is an error, or if the software executor 226 does not wish the data to be executed
on this particular machine, an error message is sent in step 270, which is relayed by the secure
executor 204 in step 272 to the operating system. Following receipt of such an error message in
step 274, the operating system displays an appropriate error message in step 276 and the data is

not executed.

If there is no error in step 268, then in step 278 the software executor 226 returns a message to
the secure executor 204 incorporating the nonce, the reference to the data and optionally a

licensing model. The nonce is included to give protection against replay attacks.

Having received the message in step 280, then in step 282 the secure executor 204 makes the
appropriate licensing check. dependent upon ﬁle licensing model specified by the software
executor. This may involve unlocking the data using a key. Further details of these licensing
models are considered later. If there is no software executor associated with the data, the secure
executor makes a licensing check corresponding to a default licensing model previously set
within it by an administrator. If there is a valid licence, in step 284 the secure executor 204 asks
the trusted module 120 to takes a metering record of the transaction, steps 286,288, and in step
290 sends permission to the operating system to execute the data. Upon receipt in step 292, the

operating system executes the data in step 294. Following the licensing check in step 282, if

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

_42.

there is no valid licence, in step 296 the secure executor 204 asks the operating system to notify

the end-user appropriately, steps 274,276, and the data is not executed.

Figure 19 is a flowchart for licensing using a model of licence checking where the OS
communicates with the software executors 226 rather than the secure executor 204. This again
is for the general case where licensing software is not necessarily mounted within the trusted
module 120.

When the user wishes to execute some data, in step 298 the OS sends a message to the software
executor 226 associated with the data, received in step 300. In step 302, the software executor
226 generates a random number (nonce), and in step 304 issues a challenge/response to the
secure executor 204 within the trusted module 120, by means of sending the nonce, together
with a reference to the data. In addition, a smart card ID is sent, if that was used to log in to the

L)

client machine and hot-desking is the licensing model to be used.

Following receipt in step 306 of the message, in step 308 the secure executor 204 makes an
appropriate licensing check on the data. If there is no valid licence, then in step 310 the secure
executor 204 returns an error message, from which the software executor could determine the

exact type of problem with licensing and notifies the OS appropriately, steps 312,314,316.

If there is a valid licence, then in step 318 the secure executor 204 returns a message
incorporating the nonce and reference to the data, signed and encrypted using the private key

212 of the trusted module 120. The nonce is included to give protection against replay attacks.

Following receipt in step 320 of the message, in step 322 the software executor 226 verifies if
the secure executor’s reply is correct using the public key certificate 228 of the trusted module
120. If it is correct, then in step 324 the software executor 226 asks trusted module 120 makes a
log, steps 326,328 and in step 330 passes the call to the OS to execute the data, steps 332,334,
On the other hand, if it is not correct, in step 336 the software executor 226 sends an error

message to the OS, which then displays an error message as appropriate, steps 314,316.

In a preferred mechanism for enforcing checks on permission to execute digital data, the trusted
module 120 includes the hardware and/or stores the software used to implement the invention.
In particular, the trusted module 120 acts as a bridge between an application and the OS. The
OS preferably ignores all requests to load or run applications except those from the trusted
module 120, given via a communications path 122 between the trusted module 120 and the CPU
102 that is preferably inaccessible to ordinary applications and non-OS software. The processes
operating on the host computer are as follows. First, there is an initial request to the trusted

module 120 to execute an application or other data, preferably via the software executor 226

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-43 -

associated with this data, and usually in response to some action by the end-user. The software
executor 226 will contain the public key certificate 228 of the trusted module 120 on which the
data is installed or to be installed. The secure executor 204 within the trusted module 120 will
carry out appropriate licence checking, as detailed above. If the result of this checking is that it
is appropriate to execute the data, the secure executor 204 will convey this information to the
OS via a communications path 122 to the CPU 102, which is preferably inaccessible to ordinary
applications and non-OS software. The OS then starts a process on the host to execute the
application or data. An analogous process will be carried out when the secure loader
communicates with the OS to indicate that data installation is appropriate, or when the key

transfer code communicates with the OS to transfer unlock keys.

Figure 20 illustrates the flowchart for licensing using a model of licence checking as mentioned
above, where licensing software is stored within the trusted module 120, and the trusted module
120 acts as a bridge between an application and the OS. The process is similar to that given in
Figure 19, except that the secure executor 204 is within the trusted module 120 itself and the
secure executor 120 uses a communication path 122 (preferably dedicated) from the trusted
module 120 to the CPU 102 when communicating with the OS.

There are many different ways in which this invention can be used. Details of six of these will

now be presented.

Example A

A first example is to use tamper-resistant hardware as a generic dongle by binding applications
to the hardware. Major differences between this example and the other examples in this section
are firstly that licensing protection is carried out when the code is actually executing, and
secondly that this method is suited to protection of applications for which source code is

available to the party carrying out the protection mechanism.

Software is loaded into the platform (and optionally into the tamper-resistant hardware, where it
would be run). The software is integrity checked using the secure loader. API calls are used to
the trusted module to check for the presence of a secret in the trusted module or check for the
identity and presence of the trusted module. In addition, the trusted module can be made to
execute part of the code. Strong authentication of the trusted module is possible by using the

trusted module’s private cryptographic key, and standard authentication protocols.
In addition, there are the following options:

e API calls can be made to the trusted module instead of the OS (as discussed earlier).

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-44 -

* The trusted module can be made to execute part of the code. This can be done in several

ways, some of which have already been discussed.

¢ Part of the code could be marked for transferral into tamper-resistant hardware (such as the
internal trusted module or a smart card), where it may be stored in an encrypted form, and

calls made to this functionality elsewhere within the code.

* Analogously, portable trusted modules such as smart cards can be made to execute part of

the code.

The use of this method rather than the analogous use of API calls to a hardware dongle counters

many of the disadvantages normally associated with this approach.

First, traditional software protection using API calls to a hardware dongle is vulnerable to
modification of software locks via a debugger (for example, by stepping through
communications between processors and the motherboard) or disassembler, thus altering the
code to remove calls to the key. Modified copies of the code are produced, and run freely, both

on the host machine and on other machines. This may be countered in this method by:
e Part of the code being run within the trusted module itself.

» Integrity checks on the platform and associated software that ensure that associated licence-
A
checking code must be loaded together with the software, and prevent licence checks from

being bypassed.

Secondly, there is a danger currently that record and playback (or other techniques) could be
used to fill in some of the missing functionality of processing carried out on hardware. This is

countered in this method by integrity checks on the software and on licence-checking code.

Thirdly, there is much greater flexibility in the licensing model, both in that the licence need not
be tied to the machine, and in the greater choice of payment models. The trusted module
provides a generic dongle that is not just tailored to a specific application and in addition

provides greater capacity for licensing information storage, and better metering.

Finally, there are effort-related gains for the developer. The benefits of addition of API calls to
the software are that the software is customised for a particular machine, and hence not
immediately of benefit on another machine, even if the executable or source code were obtained
in clear. However, it can require substantial effort on the part of the developer. By the only
difference being a different trusted module ID, with protection via integrity-checking of code,
substantial protection can be gained with very little effort by the developer. Again, running part

of the code within the trusted module itself does not require individual customisation of code.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

- 45 -

In this example:-

The developer can do any combination of the following:

o Insert API calls into the software, and/or into a software executor associated with the

software. These will check:

o for the presence of a secret in the tamper-resistant device (e.g. if the developer has

made smart card dongles and shipped these to the end users), or

¢ for the identity and presence of a tamper-proof device within the end-user’s machine

(using this as a generic dongle).

A software executor will generally only make a check at runtime; further API calls
within the code can be made at various stages during execution of the code if desired.
This is done in a general way for the software (i.e. each customer will receive the same
version), and customised details such as the exact trusted module ID can be added later,

at the registration stage described below.

e Insert a secret into the software executor associated with the data, together with
information notifying the secure executor within the computer platform that the
licensing method of using a check for the presence of a secret in the trusted module or
some other trusted device is to be used. For example, licensing_method(secret,sc,k,w)
or licensing_method(secret,tc,k,w) indicates that the software referenced by w should
only be allowed to run on a machine if the secret k is found stored within the current
smart card or internal trusted component of the machine. The secure executor will have
a protocol pre-stored that allows it to carry out this check, and will not allow the

software w to run unless the check succeeds.

The user registers with the developer. As part of the initialisation process, authentication
between communicating parties within the licensing system will take place before (or at the
same time, by the protocols being incorporated) as exchange of session keys for
confidentiality of messages passed between them (see example B for further details of this
process). The tamper-proof component is sent public-key certificates corresponding to the
developer. In return for payment (1) he is given the generally customised software, together
with a portable hardware-resistant device (such as a smart card) containing (by storage or
hard-coding) the developer’s secret that is checked for in the code, or a key is transferred to
his tamper-proof device (for example, by an analogous method to that described in more

detail in example B below, except that this key is not an unlock key for decryption of the

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

- 46 -

software) (2) his machine ID is inserted into the software (in order that API calls check for

that particular machine ID) and the software is shipped to him.

In order to control interactions between the application and trusted module, the developer
needs to ship two additional components to customers, namely the software executor and
client library. The client library is a collection of high-level interface subroutines that the

application calls to communicate with the software executor.

The software and the code described in the previous two stages above are signed by using a
hashed version of the message signed by the sender’s private key appended to the message,
so that the receiver can check the integrity of the message. More explicitly, the developer

hashes the code M, and signs it with his private key (Sprk) to produce the
signature Zsprk (h(M)) . Then he sends this signature together with the message M.

The secure loader will then check the signature, using the developer’s public key, and
therefore retrieve the message hash. This guarantees that the sender is the one whose public
key has been used to check the signature. Having the message, and the message hash, the
secure loader can then compute the hash of the message and compare it to the message hash
it has decrypted. This checks for integrity of the message. Furthermore the integrity
checking mechanism should prevent replay-attacks by some standard mechanism - such as

challenge/response, or introducing a history of the communications in the hash.

If the integrity check works, the secure loader installs the software. This ensures that
modified software (e.g. without API calls) cannot be run, viruses are not introduced, etc.
The software can also be modified to check for the presence in the platform of the trusted

module when installing.

When the user tries to run the software, the software executor takes overall control and
makes initial checks at the start of the execution. If these checks are satisfied, the software
executor allows the software to run. If additional API calls have been incorporated into the

software, these are made to the trusted module at various points during runtime.

At the same time as such checks are made, a record is made in the trusted module if the
software were executed successfully. In some models of payment the usage reports could be
sent to the clearinghouse or registration body. Payment for a certain number of executions

of software could easily be modelled, e.g. using smart cards.

Example B

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-47 -

The second example uses the trusted module as a generic dongle by encrypting sections of, or

all of, the data. Again, there is integrity checking of the data to be executed by the secure

loader, and integrity checking of the secure loader, secure executor, software executor and

secure transfer code. The trusted module’s trusted identity (private crypto key) is used to

perform strong authentication. Optionally, applications may be run within a trusted module or

smart card.

The general advantage of such a licensing system is that the flexibility of licence management

systems can be combined with the greater degree of hardware security, without the drawbacks

of dongles.

In particular, problems with current licensing systems are countered as follows:

Bypassing of licensing checks is countered by an integrity check on the platform, which will

fail if the trusted device is removed or tampered with or the licensing software is altered.

A drawback of current generic methods of data protection is that, even if the data is
protected up to the point of execution, once the executable is unlocked or made available for
use, it can potentially be copied and used freely. Although it will still be possible to copy
the data, the data cannot be executed on any other secure client platform that incorporates

this invention without a requisite licence.
The dongle is generic rather than tailored to specific applications.

There is flexibility in payment and licensing models (including allowing a combination of

different types of licensing).

There is an improvement upon generic dongles such as Wave Systems WaveMeter in that it
allows avoidance of universal system keys within the hardware device and allows the secret
keys of the developer and of the hardware to remain secret. This is especially important if
the third parties are non-trusted, since neither the clearinghouse, nor anyone else, will be
able to make use of the protected data, since they will not know the unlock key. This is an

improvement on current systems, where this key will be known by the clearinghouse.

The automated transfer of licences between trusted modules avoids the key management

problem.

Each developer has a choice of either generic or specific content protection - K (or K’) can
potentially be different for each customer, if desired. This gives the developer greater
flexibility and allows him/her to balance effort against extra security. More generally, each

type of licensing model (for example, corresponding to examples A, B or C) can be used

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-48 -

based on the data shipped to each customer being the same, or individually customised (and
hence not usable on other machines). A combination of these methods could be used on the
same platform. Therefore, the choice is given to the developer about what type of data
protection he would like to use. The developer just makes the unlock key, or type of generic
protection, different for each customer, or the same. The client platform does not have to be

informed about this choice.

In this example:

* A generic secure executor, secure loader and secure key transfer code is included in every

trusted computer platform. The code will not be loaded if the integrity check fails, and in
this case the complete client platform integrity check should fail, as described previously in

this document.

An end-user A registers his client machine (trusted device ID) with a developer, server or
clearinghouse C (according to the payment model) and arranges to make appropriate
payment in order to receive some data. As an alternative, the hardware device could be
charged up in advance, and the data purchase recorded on this device and reported back to

C at a later date.

As part of the initialisation process, authentication between communicating parties within
the licensing system will take place before (or at the same time, by the protocols being

incorporated) as exchange of session keys for confidentiality of the messages.

Authentication: There is authentication from C to the client’s tamper-proof device. This is
done using a standard protocol incorporating a challenge from A’s trusted module to C
containing a nonce (to give protection against replay attacks), and C responding with a
message containing this nonce, digitally signed using its private code-signing key.
Optionally, there is authentication from A’s tamper-proof device to C. A public key
certificate giving the public key W corresponding to C’s private code signing key is
transferred to the trusted component of the end-user (in some cases (e.g. upgrades) it will
already be present in the trusted module). This is for the machine to be able to check the
vendor’s identity, and the integrity of the upgrade data it will receive later. If a user-based
licensing model is to be used, the transfer will be to the portable trusted device (e.g. smart
card). C is also given the public key corresponding to a private key P in A’s tamper-proof
device. This is needed for some types of authentication of A to C, and when using
symmetric encryption keys set up using an asymmetric key pair (see below). In an

analogous manner, public key certificates between the developer and the clearinghouse, if

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-49.

these are separate parties, will need to be exchanged initially and appropriate authentication

carried out. The same protocols can be used as described above.

Data encrypted using a symmetric key K is signed under C’s private code signing key (e.g.
using Microsoft’s Authenticode) and sent by C to A’s machine to the end-user. K can
potentially be different for each customer, if desired. This data is transferred to the end-user
by any convenient means (for example, internet or satellite broadcast), since it is the unlock
key that needs to be protected. An option is to use instead a private key K’, since time taken

to encrypt is probably not an issue at this stage.

Confidentiality: If there is a separate developer and clearinghouse, a protocol is used
between the developer and the clearinghouse to set up a symmetric key pair, that can be
used to encrypt communication between them, for example about payment and usage of
data. By these means neither party knows the other party’s secret key. The contents of each
message which is to be protected are encrypted using a randomly generated DES key, and
with it the symmetric key is transferred RSA-encrypted using the public key of the intended
recipient. In this case too, a public key certificate corresponding to the other party will need
to be installed in each party initially. If checks for authenticity and integrity are added, the
following protocol results for each message: The sender generates a DES key (using a
random number generator, and making sure these keys are only used once). The sender then
uses it to encrypt the data D, and then encrypts that DES key using the recipient’s RSA
public key. Then the sender signs a hash of all this information to offer authentication and
integrity, and sends the encrypted data and encrypted DES key together with this signature.
Note that the sensitive data D is stored encrypted with the DES key. Only the recipient
should then have the RSA private key to decrypt the DES encryption key, and use it to
decrypt the data D.

All communications between A and C are encrypted using DES session keys, as discussed

in the previous stage.

In addition, the symmetric unlock key corresponding to K (or, alternatively, the public key
corresponding to K’) is encrypted using A’s public key and signed using C’s private code
signing key and is sent to the end-user’s tamper-proof component in order to allow the data

to run.

Once received by the end-user platform, an integrity check is performed by the secure
loader on the data by checking the signature using W and verifying whether it is from the

expected source.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-50 -

e If the integrity check succeeds, the data is installed on the platform and the trusted
component records this event. Otherwise, an error message will be generated and the data

will not be loaded.

* The tamper-proof device associated with the end-user’s PC is the only one able to make use
of this information, and obtain the unlock key. The key transfer code checks the message
for integrity and authentication, decrypts the unlock key and stores this on the trusted

module, associated with the data.

* When the user wishes to run the data, the secure executor decrypts the data using the unlock
key and allows the data to run. The actual functionality of the unlock key could vary: for
example, part of the program could be decrypted upon start up or installation, or the key

itself could be formed using the identity of the tamper-proof component as input.

e The tamper-proof component keeps a log to monitor usage of the data locally, and in a

trusted fashion.

Example C

The third example is of licensing via consulting database or profile information associated with

the identity of the trusted module.

This involves updating a licence database entry in return for registration and payment. There are

two main options using this approach.

Example C1

The first is that the secure executor checks in a database against the trusted module ID
entry for an unlock key for the data. The data is protected via encryption or partial

encryption using a key, and hence can be freely distributed without fear of piracy.

Example C2

The second is that the secure executor or software executor checks in a database against
the trusted module ID entry for permissions for running a piece of data. An entry
corresponding to the trusted module’s ID is updated to show permission to run a
particular application, and the secure executor or software executor will only allow data
to run once permissions on this database have been checked. In this case the data will be
generic and unprotected, and can be copied freely, but of course not run on this type of
platform if the requisite permissions are not in place. The trusted module will update its
log if the secure executor has allowed the data to run. In the case of using a software

executor to perform the checks, the software executor associated with the application to

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-51-

be run calls the trusted module, the trusted module performs the licence check, and then
if this check is successful the software executor passes the call to the OS to run the

application.
The advantages of this approach are:

1) The flexibility of licence management systems can be combined with the greater degree of

hardware security, without the drawbacks of dongles.

2) A major motivation for using such a method would be for reasons of key management. In
particular, issuing replacement passwords is troublesome. This method gets round this

problem, in that it is only a database that has to be updated.

3) If directory systems are already in place, this licensing method would be a natural choice as

it would not require much extra investment to provide a secure licensing check.

4) Example C1 above corresponds to another method of giving an unlock key to the client
machine, as compared with example B. This could be preferred for two reasons. First,
directory systems might be in place and a favoured solution for a particular corporation.
Secondly, this method can allow non-permanent storage of unlock keys, allowing floating

licences, which example B does not.

A licensing procedure which could be used at present would be to check fingerprinting
information against a licensing database to see whether there was a valid licence corresponding
to that fingerprint. The application would be allowed to run or not depending upon this

information. However, this method is not really used because:
® The licence-checking code could at present easily be bypassed.
e There is an overhead involved in generating the databases and keeping them up to date.

e It is possible to spoof ID to gain access to information which is licensed to another machine

Or user.

However, via using a tamper-proof device in conjunction with integrity checking of the

associated licence-checking code, an analogous method can be used.
The method overcomes the problems associated with the existing procedure.

* Directory structures can be extended to allow licensing (cf. licence management) - these
structures are already there, and allow integration with additional functionality. The licence
database could be in the form of local records stored in the trusted component, a record

stored in a server (and consulted or stored locally when needed), or a centrally-maintained

WO 01/13199 PCT/GB00/03101

10

15

20

-52-

directory service, where appropriate information about access is stored. Indeed, a
combination of these could be used. Directory standards, commonly known as X.500,
provide the foundations for a multi-purpose distributed directory service that interconnects
computer systems belonging to service providers, governments, and private organisations. It
would be straightforward to modify such directories so that for computer network users, a
look-up of a person’s user ID or machine ID could return information including details of

the applications licensed to that individual or machine, respectively.

There is an integrity check on licence-checking code, and also on the data. Associated
software on the computer platform would check if the user or machine had permission to
run the application, and allow or disallow this as appropriate. Alternatively, if the data was
protected, say by encryption, different data access keys could be stored in the directory, and

access to them obtained in this manner, via the associated software.

Better authentication allows a directory/profile approach. Trusted ID within the trusted
module (possibly combined with biometrics, if it is user ID) allows stronger authentication
and helps prevent spoofing. (A more trustworthy machine or user identity makes this
method less open to abuse, for example by another user’s identity being given.) Keys can
also be stored more securely. Optionally, software could be added to ensure that the system
meters data usage, and store this within the tamper-proof device. If a smart card were used,
the check in the profile would be against the user ID, single sign on would mean that the
card would not have to be left within the reader, and location independence would also be

gained.

With reference to the two main options of licensing using the method C given above, let us

consider the first case initially, C1:

* The secure executor is generic and is integrated with the platform in order to stop theft of
25 the unlock key. This is possible because the same procedure is used with different data, and
only the data name and associated key will differ in each case. The secure executor and
secure loader are stored together with a hashed version signed with the manufacturer’s
private key. The manufacturer’s public key certificate will be included in every platform.
Upon boot/installation of the platform, the package is verified by hashing, and comparison
30 with the decrypted signature to check integrity, using the public key certificate. The code
will not be loaded if the integrity check fails, and in this case the complete platform

integrity fails.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-53-

* Upon registration of the trusted module ID and payment, the clearinghouse or developer

causes the unlock key of the data K to be inserted into the database entry corresponding to
the trusted module ID (this may actually be carried out by a third party, with authorisation

from the clearinghouse or developer).

The public key certificate for C is installed by C into the client trusted module. A suitable
protocol which would incorporate authentication from C to the trusted module would be
that, in response to a request for authentication from the trusted module incorporating a
nonce generated by the trusted module, C returns a message which includes its public key
certificate and the nonce, signed with its private key. The trusted module can then check

that the message came from C.

The software or other data to be protected is encrypted using a symmetric key
corresponding to K and signed under C’s private code signing key (e.g. using Microsoft’s
Authenticode) and sent by C to A’s machine to the end-user. K can potentially be different
for each customer, if desired. This data can be transferred to the end-user by any convenient
means (for example, internet or satellite broadcast), since it is the unlock key that needs to

be protected.

Once received by the end-user platform, an integrity check is performed by the secure
loader on the data by checking the signature using the public key corresponding to C’s

private code signing key.

If the integrity check succeeds, the software or other data is installed on the platform and
the trusted component records this event. Otherwise, an error message will be generated

and the data will not be loaded.
When the user wishes to run the data, the secure executor:

e checks the trusted module ID, for example by authentication involving a nonce to

counter replay attacks and signed communication
¢ checks the database entry of the trusted module ID and retrieves the unlock key K
e allows the data to run, or not, as appropriate.

The tamper-proof device then updates its logs to record if the data has been run. If a user
has logged in with a smart card, the userID of this device can be noted, along with the data

and time.

A variation is to store the unlock key within the trusted module, once it has been retrieved,

along with the data name, so that the database lookup procedure need not be carried out again

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-54 -

for this particular data. Future requests for running the data would result in a challenge from the
software executor to authenticate the trusted module ID, check the unlock key, use this to

decrypt the data and allow the data to run (in the same manner as in example B above).

Now moving on to consider the second case, C2, when the secure licence permissions for
running a piece of data are checked for. There are two possible sub-models, depending upon
whether the secure executor (a generic piece of code that is incorporated into the -platform)
communicates with the operating system and initiates the data execution process, or whether a
(customised) software executor, shipped together with each piece of data from the clearinghouse
or developer, communicates with the operating system and initiates the process. Within each,
there is a choice about whether to load licensing information into the trusted module itself, or

refer to an external database.

The data itself is not protected in this model. If greater confidentiality of the data is required,

variants of examples A or B should be used instead.

Considering the first generic sub-model, this is very similar to that described in the key

checking case of example C1.

* A public key certificate corresponding to the party running the database is installed at the

clearinghouse or developer, and vice versa.

* Upon registration and/or payment for the data by the end-user, the clearinghouse or

developer C (depending on the payment model) is told the trusted module ID.

. ‘A public key certificate corresponding to the client’s trusted module is installed at the
clearinghouse or developer (if not already present), and vice versa. A suitable protocol
which would incorporate authentication from C to the trusted module would be that, in
response to a request for authentication from the trusted module incorporating a nonce
generated by the trusted module, C returns a message which includes its public key
certificate and the nonce, signed with its private key. The trusted module can then check
that the message came from C. An analogous protocol would be used for public key

certificate transfer and authentication from the trusted module to C.

* C sends the application or other data which is to be protected to the client, in the following
manner: The data is signed by using a hashed version of the message signed by the sender’s
private key appended to the message, so that the receiver can check the integrity of the

message. Explicitly, the developer hashes M, which is the data together with any associated

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-55-

software executor, and signs it with his private key (Sprk) to produce a signature

z Sork (h(M)). Then he sends this signature together with M.

The secure loader will then check the signature, using the developer’s public key, and
therefore retrieve the message hash. This guarantees that the developer is the one whose
public key has been used to check the signature. Having the message, and the message hash,
the secure loader, via the trusted module, can then compute the hash of the message and
compare it to the message hash it has decrypted. This checks for integrity of the code.
Furthermore the integrity checking mechanism should prevent replay-attacks by some
standard mechanism - such as using a nonce. If the integrity check works, the secure loader
installs the data. This ensures that modified data (e.g. without API calls) cannot be run,

viruses are not introduced, etc.

C authorises the database entry corresponding to the trusted module ID to be updated,
according to the data purchased. The party running the database communicates with the
clearinghouse or developer using public key cryptography setting up shared symmetric
keys, and by each signing their messages. The contents of each message that is to be
protected are encrypted using a randomly generated DES key, and transferred together with
the symmetric key which is RSA-encrypted using the public key of the intended recipient. If
checks for authenticity and integrity are added, the following protocol results for each

message:

The sender generates a DES key (using a random number generator, and making sure these
keys are only used once). The sender then uses it to encrypt the data D, and then encrypt
that DES key using the recipient’s RSA public key. Then the sender signs a hash of all this
information to offer authentication and integrity, and sends everything together with this
signature. Only the recipient should then have the RSA private key to decrypt the DES
encryption key, and use it to decrypt the data D.

Upon a request to run a piece of data from the user, the secure executor consults the
database containing licensing information to see whether permission to run the data is
associated with the trusted module ID of the current platform. If it is not, an error message
will be generated to the user and the data will not be allowed to run. If it is, the secure

executor will ask the OS to run the data.

Considering now the second sub-model, one instantiation of the model of having a specific

software executor per application would be as follows.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

- 56 -

Upon registration and/or payment for the data, the clearinghouse or developer C (according
to the exact payment model) authorises the database entry corresponding to the trusted
module ID to be updated, according to the data purchased. (Prior to this, public key
certificates between these bodies will have been exchanged: a suitable protocol which would
incorporate authentication from C to the trusted module would be that, in response to a
request for authentication from the trusted module incorporating a nonce generated by the
trusted module, C returns a message which includes its public key certificate and the nonce,
signed with its private key. An analogous protocol would be used for public key certificate
transfer and authentication from the trusted module to C.) The party running the database
communicates with the clearinghouse or developer using public key cryptography setting up

shared symmetric keys, and by each signing their messages.

The clearinghouse or developer sends the data, associated with a (customised) software
executor, to the client. The software executor is customised such that the public key of the
trusted module is inserted into the software executor (alternatively, a shared key is set up
between the secure executor and the trusted module). Both the data and the software
executor are hashed and signed with the clearinghouse/developer’s private key, and the

public key corresponding to this is stored on the trusted module.

The secure loader integrity checks the data and the software executor: upon installation, the
package is verified by hashing and comparison with the decrypted signature (using the

public key in the trusted module).

The data and software executor are not loaded if the digital signature does not match what is

expected.

When the user wishes to execute the data, the OS sends a message to the software executor
corresponding to that data. The software executor then issues a challenge/response to the
secure executor, by means of sending a random number (nonce), together with the
application’s title. In addition, a smart card ID is sent, if that was used to log in to the client

machine and hot-desking is the licensing model to be used.
The secure executor:

® checks to see whether the data is licensed to run on the trusted module machine ID in

the profile stored within the trusted module, or

® checks to see whether the data is licensed to run according to the user ID of a smart

card which has been inserted in the profile stored within the trusted module, or

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-57-

® consults, or downloads part of an external database to form a profile within the trusted

module, to see whether the application is licensed in the manner described above.

¢ If there is no valid licence, the secure executor returns an error message, from which the
software executor can determine the exact type of problem with licensing and notify the OS
appropriately. If there is a valid licence, the secure executor returns a message
incorporating the nonce and data reference, signed and encrypted using the trusted module’s

private key.

* The software executor verifies if the secure executor’s reply is correct using the trusted
module’s public key, and either passes the call to the OS to execute the data or sends an

error message to the OS as appropriate.

Example D

The fourth example is of using the trusted module as a dongle by fingerprinting the trusted

module.

This differs from current fingerprinting techniques in that it uses a trusted identity within the
hardware (viz. the non-secret trusted module identity), integrity checking of the application to
be run, integrity checking of associated application-enabling software and uses secure audit
within the hardware. Optionally, an unlock key can be generated within the software executor
on the client machine, rather than remotely. The trusted module will have to contact the vendor
in order to obtain a key, the protected data, and the associated software executor, which will
enable the decryption key to be generated locally using the trusted module ID. The data could
be generically encrypted and shipped, because a single key could be used to decrypt it, or

different keys could be used for each end-user (which is more secure).

This method is a variant of B, and provides an alternative to the approach used in B. It differs in
that:

® The unlock key can be generated within the software executor or secure executor on the

client machine rather than remotely

e The key transferred from the clearinghouse to the client machine is not the unlock key, but
a key from which this can be derived using an algorithm found in the software executor,
and fingerprinting details of the trusted module. It would be better to use the software
executor than the secure executor, since the techniques used to derive the unlock key can

vary between developers.

WO 01/13199 PCT/GB00/03101

10

15

20

25

30

-58-

The flexibility of licence management systems can be combined with the greater degree of
hardware security, without the drawbacks of dongles. This method counters problems associated

with current methods of licence protection including the following:

* Attacks using machines pretending to be other machines. The machine ID, which is the
device ID for internal components, is trustworthy. This is useful for licensing for more
secure logging, allowing greater licensing information and models, and authentication. PC
fingerprints are less easy to fake than at present because device ID is more reliable than
what is used at present for PC fingerprinting, i.e. hard disk ID, BIOS serial number,
network ID card, etc. Such reliable identification helps against attacks using machines

pretending to be other machines.

e Data can be bypassed or altered, and so software-only protection is subject to a universal
break. The actions taken to perform the security, fingerprinting and authentication need to
be hidden from a hacker. However, because all information is stored on the PC and
functions are done using the PC’s processor, these actions can be traced by a debugger. The
only way to safeguard these actions from a debugger is to use operating system or machine
specific exceptions, like Ring Zero in Windows. While this improves security by blocking
most debuggers, it does not stop chip simulators which are widely available for PC
processors like Intel’s Pentium. In addition, this makes the software only solution machine
specific and requires a version for each of the various platforms. Many software only
protection suppliers are small and cannot provide timely protection modules for all the
various combinations of applications and operating environments. This leads to
incompatibilities that irritate the user and cost the developer support time. Since the same
authentication action must be performed on only a few identifiable PC components before
any program is loaded, the hacker has relatively little code to trace: therefore, once the
loading sequence is understood, the protection for all applications using the software only
scheme can be easily broken. Integrity checks on the platform and software allow integrity
checks on associated licensing-checking and uploading software and avoid data being
bypassed or altered. The licensing aspects described are not reliant on the PC processor -
the algorithm function is performed within the trusted hardware, where no debugger or chip

simulator can expose the process.

* A single LMF can manage all features of all of the applications sold by one developer. But
there needs to be a separate arrangement with each developer, and possibly clashes between

the different licence managers. It would be better to have just one licence manager per user

PCT/GB00/03101

WO 01/13199

10

15

20

25

30

-59 .-

site, and each developer connect into this. This model is even more general, and could

cover all developers.

Software solutions give slow encryption, are less secure and can only provide a limited
amount of security to stored data. Slow encryption is of limited use and makes using
encryption in bulk for all communications impractical. End users can either wait longer for
their communication and applications, or choose to encrypt only small pieces of the
communication. Hardware encryption is faster. By using fast encryption for all
communication, it can be transparent - a better solution than partial encryption. Hardware
is widely recognised as being more secure because it can be encased in a tamper resistant
package, and its interface can be more securely controlled. Hardware solutions allow much

greater protection of sensitive data such as keys and user information.

There are two main types of use of example D.

First, in situations where a machine-based licensing model is most appropriate:
* Data S is encrypted using a key K.

® A user registers with the clearinghouse/developer C, there is mutual authentication and

C is given the trusted module ID.

® C sends the encrypted data plus associated software executor to the user by any

convenient means, signed and hashed.

e The secure loader on the client computer checks integrity and installs the data S if the

integrity check succeeds.

* Symmetric cryptography is used to transfer the unlock key from C to the trusted
module. This key will not be useful to another machine, and therefore does not need to
be protected from third parties as much as in Example B, when the key transferred

could be a system-level unlock key.

* The software executor calculates the decryption key corresponding to K from the unlock
key and the trusted module ID, using an algorithm pre-stored within it by C or a third
party trusted by C.

* The decryption key is used to decrypt the data and allow it to run.
Secondly, in situations where a user-based licensing model is required:

* Data S is encrypted using a key K.

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
- 60 -

® A user registers with the clearinghouse/developer C, there is mutual authentication and

C is given the smart card ID.

* C sends the encrypted data plus associated software executor to the user by any

convenient means, signed and hashed.

® The secure loader on the client computer(s) selected by the user checks integrity and

installs the data S if the integrity check succeeds.

* The unlock key is transferred by any convenient means from C to the user. This key is

not particularly confidential, and can be transferred by telephone or electronically.
* The user logs in to a trusted platform computer and inserts the smart card in the reader.
® When the user tries to run the data, he is prompted to type in the unlock key.

* The software executor calculates the decryption key corresponding to K from the unlock
key and the smart card ID, using an algorithm pre-stored within it by C or a third party
trusted by C.

* The decryption key is used to decrypt the data and allow it to run.

Example E

There is an option to use any of the examples A-D above, but running applications suitably
segmented within a trusted module: as well as running applications on the platform in a similar
manner to current practice, there are additional options to run the applications within the
internal machine trusted module, within a portable trusted module such as a smart card, or using
a combination of any of these. State-of-the-art techniques known to an expert in the field which

have been patented for running multiple applications on a smart card would be used.

Example F

The final example is of how a combination of multiple trusted devices can be used to licence
data in a flexible manner. The combination of an internal machine trusted module and a portable
trusted module such as a smart card is considered, for the particular case in which the hot-
desking licensing model is used, and the OS communicates with the software executors. An

analogous procedure would be used for the model described in Figure 19.

* Upon registration and/or payment for the data, the clearinghouse or developer (according to
the exact payment model) authorises the database entry corresponding to the trusted module
ID to be updated, according to the data purchased. (Prior to this, there will be mutual

authentication, as described in previous examples, and public key certificates between these

WO 01/13199

10

15

20

25

30

PCT/GB00/03101
-61 -

bodies will have been exchanged). The party running the database communicates with the
clearinghouse or developer using public key cryptography setting up shared symmetric
keys, and by each signing their messages. The contents of the message which is to be
protected are encrypted using a randomly generated DES key, and transferred together with
the symmetric key which is RSA-encrypted using the public key of the intended recipient,

according to a standard protocol.

The clearinghouse or developer sends the data, associated with a (customised) software
executor, to the client. The software executor is customised such that the public key of the
trusted module is inserted into the software executor (alternatively, a shared key is set up
between the secure executor and the trusted module). Both the data and the software
executor are hashed and signed with the clearinghouse/developer’s private key, and the

public key corresponding to this is stored on the trusted module.

The secure loader integrity checks the data and the software executor: upon installation, the
package is verified by hashing and comparison with the decrypted signature (using the

public key in the trusted module).
The software executor is not loaded if the digital signature does not match what is expected.

Upon sign-on using the smart card, public key certificates of the smart card and trusted
module are exchanged for future communication (if this has not already been done), and

there is mutual authentication between the trusted module and the smart card.
The trusted module stores the (current) smart card ID.

When the user wishes to execute some data, the software executor corresponding to that
data issues a challenge/response to the secure executor, by means of sending a random

number (nonce), together with a reference to the data.

The secure executor makes an appropriate licensing check on the data, using the smart card
ID, or else by obtaining some information stored on the smart card. For example, using the

licensing model described above, the secure executor:

e checks whether the data is licensed to run according to the user ID of the smart card

which has been inserted, in the profile stored within the trusted module, or

® checks whether the data is licensed to run on the trusted module ID in the profile stored

within the trusted module, or

* consults or downloads part of an external database to form a profile within the trusted

module to see whether the data is licensed in the manner described above.

WO 01/13199

10

PCT/GB00/03101
-62 -

e If there is no valid licence, the secure executor returns an error message, from which the
software executor can determine the exact type of problem with licensing and notify the OS
appropriately. If there is a valid licence, the secure executor returns a message
incorporating the nonce and data reference, signed and encrypted using the trusted module’s

private key.

* The software executor verifies if the secure executor’s reply is correct using the trusted
module’s public key, and either passes the call to the OS to execute the data or sends an

error message to the OS as appropriate.
* The log is held within the machine trusted module rather than the smart card, and is updated
appropriately.

It should be noted that the embodiment of the invention has been described above purely by way
of example and that many modifications and developments may be made thereto within the

scope of the present invention.

WO 01/13199

10

15

20

25

PCT/GB00/03101
- 63 -

CLAIMS

1. A computer platform having:
a trusted module which is resistant to internal tampering and which stores a third party’s public
key certificate;
means storing licence-related code comprising at least one of:
a secure executor for checking whether the platform or a user thereof is licensed to use
particular data and for providing an interface for using the data and/or for monitoring its
usage; and
a secure loader for checking whether the platform or a user thereof is licensed to install
particular data and/or for checking for data integrity before installation; and
means storing a hashed version of the licence-related code signed with the third party’s private
key;
wherein the computer platform is programmed so that, upon booting of the platform:
the licence-related code is integrity checked with reference to the signed version and the
public key certificate; and

if the integrity check fails, the licence-related code is prevented from being loaded.

2. A computer platform as claimed in claim 1, wherein the integrity checking is performed
by:

reading and hashing the licence-related code to produce a first hash;

reading and decrypting the signed version using the public key certificate to produce a second
hash; and

comparing the first and second hashes.

3. A computer platform as claimed in claim 1 or 2, wherein the licence-related code also
includes secure key-transfer code for enabling a licence key to be transferred between the

trusted module and a further trusted module of another computer platform.

4. A computer platform as claimed in any preceding claim, wherein the licence-related
code also includes a library of interface subroutines which can be called in order to

communicate with the trusted module.

WO 01/13199

10

15

20

25

PCT/GB00/03101

-64 -

5. A computer platform as claimed in any preceding claim, wherein the licence-related
code includes, for at least one group of data, a (or a respective) software executor which
specifies the respective group of data and which is operable to act as an interface to that group
of data.

6. A computer platform as claimed in any preceding claim, wherein the means storing the
licence-related code and/or the means storing the hashed version of the licence-related code are

provided, at least in part, by the trusted module.

7. A computer platform as claimed in any preceding claim, wherein the trusted module and
an operating system of the platform have a dedicated communications path therebetween which

is inaccessible to other parts of the computer platform.

8. A computer platform as claimed in any preceding claim, wherein:

the operating system is operable to request the secure loader to licence-check whether the
platform or a user thereof is licensed to install that particular data and/or to check the integrity
of that data;

in response to such a request, the secure loader is operable to perform such a check and respond
to the operating system with the result of the check; and

in dependence upon the response, the operating system is operable to install or not to install the

particular data.

0. A computer platform as claimed in claim 8, wherein the operating system is

programmed to install the particular data only in response to the secure loader.

10. A computer platform as claimed in claim 8 or 9, wherein:

the trusted module stores a public key certificate for a party associated with the particular data
to be installed; |

the operating system is operable to include, in the request to check, the particular data together
with a hashed version thereof signed with a private key of the associated party;

in performing the check, the secure loader is operable:

WO 01/13199

10

15

20

PCT/GB00/03101

- 65 -

to hash the particular data included in the request to produce a third hash;

to decrypt the signed hashed version in the request using the public key certificate for
the associated party to produce a fourth hash; and

to generate the response in dependence upon whether or not the third and fourth hashes

match.

11. A computer platform as claimed in claim 10 when dependent directly or indirectly on

claim 5, wherein the request to check includes the software executor for the particular data.

12. A computer platform as claimed in claim 6 when dependent on claim 5, or any of
claims 7 to 11 when dependent thereon, wherein:

the software executor (or at least one of the software executors) is operable to request the
trusted module to install particular data;

in response to such a request, the secure loader within the trusted module is operable to licence-
check whether the platform or a user thereof is licensed to install that particular data and/or to
check the integrity of that data and to respond to the operating system with the result of the
check; and

in dependence upon the response, the operating system is operable to install or not to install the

particular data.

13. A computer platform as claimed in claim 12, wherein the operating system is

programmed to install the particular data only in response to the trusted module.

14. A computer platform as claimed in claim 12 or 13 when dependent on claim 7, wherein
the response from the trusted module to the operating system is supplied via the dedicated

communications path.

15. A computer platform as claimed in any of claims 8 to 14, wherein, if the check

succeeds, the trusted module is operable to generate a log for auditing the particular data.

PCT/GB00/03101

WO 01/13199

10

15

20

25

- 66 -

16. A computer platform as claimed in any of claims 8 to 15, wherein, if the check

succeeds, the secure loader is operable to perform a virus check on the particular data.

17. A computer platform as claimed in any of claims 8 to 16, wherein, upon installation,

the particular data is installed into the trusted module.

18. A computer platform as claimed in any of claims 8 to 16:

further including a further, removable, trusted module;

wherein the platform is operable to perform an authentication check between the first-mentioned
trusted module and the removable trusted module; and

wherein, upon installation, the particular data is installed into the further trusted module.

19. A computer platform as claimed in claim 5, or any of claims 6 to 18 when directly or
indirectly dependent thereon, wherein:
the software executor (or at least one of the software executors) contains a public key of the
trusted module and a licensing model for the respective data;
the operating system is operable to request that software executor that its respective data be
used;
in response to such a request, that software executor is operable to request the secure executor
to licence-check, using its licensing model, whether the platform or a user thereof is licensed to
use that data;
in response to such latter request, the secure executor is operable to perform the requested
licence-check, to sign the result of the licence check using a private key of the trusted module,
and to respond to that software executor with the signed result;
in response to such a response, that software executor is operable:
to check the integrity of the signed result using the public key of the trusted module;
and
upon a successful integrity check of a successful licence-check result, to request the

operating system to use that data.

20. A computer platform as claimed in claim 5 » or any of claims 6 to 19 when directly or

indirectly dependent thereon, wherein:

WO 01/13199

10

15

20

25

30

PCT/GB00/03101

-67-

the software executor (or at least one of the software executors) contains a public key of the
trusted module and a licensing model for the respective data;
the operating system is operable to request the secure executor that particular data be used;
in response to such a request, the secure executor is operable to send to the respective software
executor a request, signed using a private key of the trusted module, for a licensing model for
the particular data;
in response to such latter request, that software executor is operable:
to check the integrity of the request using the public key of the trusted module; and
upon a successful integrity check, to send the licensing model to the secure executor;
and
upon receipt of the licensing model, the secure executor is operable:
to perform a licence-check using that licensing model; and

upon a successful licence-check, to request the operating system to use that data.

21. A computer platform as claimed in any preceding claim, wherein:
the secure executor contains at least one licensing model;
the operating system is operable to request the secure executor that particular data be used; and
in response to such a request, the secure executor is operable:
to perform a licence-check using the, or one of the, licensing models; and

upon a successful licence-check, to request the operating system to use that data.

22, A computer platform as claimed in any of claims 19 to 21, wherein the operating system
is programmed to use the particular data only in response to the secure executor or the software

executor.

23. A computer platform as claimed in claim 6 when dependent on claim 5, or any of
claims 7 to 22 when dependent thereon, wherein:
the secure executor contains at least one licensing model;
the software executor (or at least one of the software executors) is operable to request the
trusted module that its respective data be used;
in response to such a request, the secure executor within the trusted module is operable:

to perform a licence-check using the, or one of the, licensing models; and

upon a successful licence-check, to request the operating system to use that data.

WO 01/13199

10

15

20

PCT/GB00/03101
- 68 -

24. A computer platform as claimed in claim 23, wherein the operating system is

programmed to use the particular data only in response to the trusted module.

25. A computer platform as claimed in any of claims 20 to 24 when dependent directly or
indirectly on claim 7, wherein the request from the secure executor to the operating system to

use the data is supplied via the dedicated communications path,

26. A computer platform as claimed in any of claims 19 to 25, wherein the trusted module

is operable to log the request to the operating system to use the data.

27. A computer platform as claimed in any of claims 19 to 26;

further including a further, removable, trusted module containing a user identity;

wherein the platform is operable to perform an authentication check between the first-mentioned
trusted module and the removable trusted module; and

wherein, upon licence-checking, the secure executor or software executor is operable to

perform the licence-check with reference to the user identity.

28. A method of transferring a licence (or a key therefor) for data from a first computer
platform, as claimed in claim 3 or any of claims 4 to 27 when dependent thereon, to a second
computer platform, as claimed in claim 3 or any of claims 4 to 27 when dependent thereon, the
method comprising the steps of:

setting up secure communication between the trusted modules;

sending the licence or the key therefor from the first trusted module to the second trusted
module using the secure communication; and

deleting the licence or the key therefor from the first trusted module.

WO 01/13199 PCT/GB00/03101

1115

14 16 18
FIGURE 1
12 14 16 18
A 4 4 A
2_0- 1
‘—
1—-—_
AR | —
> E—
2 |
—| | —
< 29
B
< »
<

\
8 FIGURE 2

SUBSTITUTE SHEET (RULE 26)

WO 01/13199 PCT/GB00/03101

2/15
24-\
30)
4 3
360a 350
; 341
: 351 352 \(::_ 36
360n
33 32 31 34
353 /~4 37
361 354 | 342
355 / T %
7 |
FIGURE 3 343

SUBSTITUTE SHEET (RULE 26)

WO 01/13199

3/15

400

SWITCH-ON

405

DEVICE

PCT/GB00/03101

A NP

ACCESSED
FIRST?

4104

WRITE POSITIVE
BOOLEAN VALUE

v

READ HASH
INSTRUCTIONS

]

{ DIRECT CPU TO
EXECUTE HASH
INSTRUCTIONS

425

430

y

LNV l

WRITE NEGATIVE
BOOLEAN VALUE

DEVICE
ACCESSED?

420

COMPUTE DIGEST

l

WRITE DIGEST
DEVICE MEMORY

N
l 440

DIRECT CONTROL
TO BIOS

35

~445

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

415

WO 01/13199 PCT/GB00/03101

4/15
TRUSTED DEVICE TRUSTED PARTY USER
| 5004 MEASURE |
| INTEGRITY |
| METRIC |
| i
| 5057 v I
, GENERATE
' CERTIFICATE |
515 I |
N\ | 510~ ; i
T UIRE [WRITE | 520
INTEGA}(K:I(%Y METRIC [CERTIFICATE ' L
| TO DEVICE | |GENERATE NONCE
530 ~ v . | | 1 5%
RECEIVE | |
CHALLENGE & CHALLENGE cm%%ugs
GENERATE DIGEST| \| I -
535 7 l l . [540
|
SIGN & RETURN RECEIVE RESPONSE&
DIGEST l RESPONSE Il> VERIFY CERTIFICATE |
. | | B
. | I [550
: | | EXTRACT PUBLIC
. | | KEY & DECRYPT
. [| DIGEST
: I l 555
‘ | —Neo OK?
: | 580\‘ | (560
: | |
: | END | | VERIFYNONCE
: I |
3 l —Neo—<0K? 565
: | | 570
X , | [
I | ICOMPARE METRICS
| |
: : Ne—<OK$ 275
590 5
2] | £
ESTABLISH i , (ESTABLISH
SECURE SECURE COMMUNICATIONS SECURE
COMMUNICATIONS .) COMMUNICATIONS

|
| FIGURE S

SUBSTITUTE SHEET (RULE 26)

WO 01/13199

PCT/GB00/03101

5/15
60\
6 61
62
621 628
620 622
621
Acl| 63 | 65 | 62
: 624
ACn| 623 625 626
FIGURE 6

SUBSTITUTE SHEET (RULE 26)

WO 01/13199

6/15

PCT/GB00/03101

AUTHENTICATION/
TRUSTED DEVICE SECURE PROCESS LOGON SMART CARD

700! INSERTLOGON
SMART CARD

v

705 TRANSMIT

710

RETURN

NONCE

RESPONSE
|

715 720
AUTHENTIC
RESPONSE? END
730
TRANSMIT FURTHER AUTHENTIC ;
RESPONSE RESPONSE? N
725
v Y
740 END
EXECUTE SECURE
PROCESS . | 735
) 4 A
,| SETINTERVAL 745
TIMER
750
760
N
{ Y 765
CHALLENGE LOGON > RETURN
SMART CARD CERTIFICATE
|
Y N END | 775
770
FIGURE 7

SUBSTITUTE SHEET (RULE 26)

WO 01/13199 PCT/GB00/03101

7/15
100
S % _1223_______/___
B ADDITIONAL COMMUNICATIONS HOST COMPUTER!
: N V¥] o4 - :
I
A T2 || vrusted |
4+ b —NE—— | MODULE HDD CPU DRAM
A sLackzone o0 '
1o |
NORMAL COMMUNICATIONS _ _ _ _ _ _ _ _ _ _ _ B
FIG. 21
122 1222190y
ADDITIONAL COMMUNICATIONS
r———"1T T T Faeren ManL !
124 : TRUSTED MODULE, 20
™ SWITCHING ENGINE No. 1 J(——) : /
!
128 It |
\| COMPUTING ENGINE |<—-> l e
| vd
130 ~J |
| VOLATILE MEMORY Jé-) g:
2]
32~ <!
\:\ NON-VOLATILE MEMORY g:
=
| sl
134 o
\}\ CRYPTO FUNCTIONS =
I Z!
120 i)
\:\ RANDOM GENERATOR 2
| I
140 : |
| TAMPER DETECTION !
| |
136 ~~ |
™ SWITCHING ENGINE No. 2 I
| |

L — Y ——— — — — = .
F NORMAL COMMUNICATIONS
. 1o

SUBSTITUTE SHEET (RULE 26)

WO 01/13199 PCT/GB00/03101

8/15

142
142 142 \ 222
\ 144b >~ 144a /
144c =

122 >
06 Bl

RED ZONE
TRUSTED
A —NIC— — MODULE HOD cPu F [G \ 9

N\ 120 N\ 104 N\ 102

114

150 _é yd leza
122 <—[- ;L 102

106 \

[RED ZONE
4 TRUSTED CPU
M4 ~ = —NICi—— | MODULE ,

BLACK ZONE
16" 14 N 120 10
=2 =
146 \\ 148

TRUSTED
~ | FIG. 11

N 120 110

e

SUBSTITUTE SHEET (RULE 26)

WO 01/13199

166
162 164\ \
160 166 >~ 164
122¢ l—,[>

PCT/GB00/03101

122a

<<
Jll‘ré\— Y 122b

~ | FIC. 12

100 y —=
RED ZONE
TRUSTED
" _~—INC—— | MODULE HDD
N\ 120 \ 104 N 102
178
. | /
N IDENTIFIER
m~_ FF———~ """
N LENGTH
m~_ "~~~
N SOURCE
7~ F——— """
N DESTINATION
TN DATA

SUBSTITUTE SHEET (RULE 26)

WO 01/13199

PCT/GB00/03101

10/15

/ 121

100
e

/ 122a
COMMUNICATIONS

’ 122ADDITIONAL HOST COMPUTER l
c 122b
RED ZONE TRUSTED
18 i BLACK ZONE -
116
l : 120 - 10 I
NORMAL COMMUNICATIONS T
112 " ¥ EXTERNAL COMMUNICATIONS o 105
TN

(2
:::g.lllllllll’ll
FSENESESSFARRASS

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 01/13199 PCT/GB00/03101
11/15
TRUSTED MODULE
LICENCE-RELATED DATA -
/
PRIVATE KEY OF P 120
TRUSTED MODULE
| 214
PUBLI$ KEYTCEHET‘\I‘FICATE e 202
OF TRUSTED ENTITY
//
26
PUBLIC KEY CERTIFICATE P
OF CLEARING HOUSE/ |1
DEVELOPER . 218
//
LICENSING LOG o
220
HASHED VERSION OF //_
LICENCE-RELATED CODE |1 :
SIGNED BY TRUSTED ENTITY
LICENCE-RELATED CODE [o
L1
SECURE EXECUTOR o 206
SECURE LOADER - 208 F l G 1 6
//_ ’
SECURE KEY-TRANSFER [210
//
CLIENT LIBRARY L] PROTECTED APPLICATION
= SOFTWARE/DATA
SOFTWARE EXECUTOR
/ PUBLIC KEY CERTIFICATE
F l 6 1 5 - % OF TRUSTED MODULE
' _//
226 %
228 1]
// APPLICATION SOFTWARE/DATA
204
230 _/ HASHED VERSION OF SOFTWARE
EXECUTOR AND APPLICATION SOFTWARE /
|| DATA SIGNED WITH PRIVATE KEY OF
: / CLEARING HOUSE / DEVELOPER
232

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/03101

WO 01/13199

L ‘Ol

12/15

‘NOILYTIVLSNI VAVQ LINN3d ‘HOLY 82 31 '¥SZ—1—-V.LVaA TTVLISNI ‘952
"3INGOW Q31SNYL NI 901 ONIM3LIN 0aV ‘HOLYW 8vC 31 ‘252

"3OVSSIN YOUYI AN3S ‘HOLVWSIW 8¥Z 41 '0SC
, / ‘JOVSSIN HOHHI ILVINJONddY AVdSIa ‘v12

"HSYH G3AI13934 HLIM HSVYH 031NdINOD ¥VJIWOD '8Fe /b
, "‘JOVSSIN YOYH3I JAIFOTY 2eve

"'Y1vQ 40 HSVH w._.:n_,EOO 'AINvA 8€2 I 9% \4
"IOVSSIWN HOYHI GNIS ‘AITVANI BEZ 4 .ovN\

"V1vQa 30 NOISY3A Q3HSVH 30 JUNLYNOIS MO3HO "8€¢ .
"'ViVQ 40 NOISH3A G3HSVH
"183ND3Y 3AI303Y '9eZ ¢ T——A3INOIS ANV 'v1v¥a AN3S ANV .¥1vd 1TV.LSNI. LSIND3Y vEC

WIISAS ONILYYIdO

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/03101

WO 01/13199

‘9071 aayv ‘88e
'1S3N03Y 3AI303Y "987 <

8L "Oid

‘SOVSSIN HOUYMI
aN3S ‘ANVANI 282 d4I ‘962

‘FOVSN Y.1va
LINY3d 'QITvA 282 A 062

‘907 ONINY3LIN

13/15

T Tt v T

02t 3TNAOW Q31SNY1L

“1I300W ONISNIOIN % viva

OL 3ONIH3JTY '? 3IONON—

AaN3S 'LD34H0D 892 di ‘9.2

"JOVSSIW HOXHT ON3IS

‘1034400 1ON wwN 41 ‘02

‘JINACK n_m._.wbmh 40
A3X OINGNd ONISN IOVSSIN
JLVYOLINIHLNY ? AJIMNIA 892

‘FOVSSIN IAIZOIY "99Z ¢

92 J3X3 Y (81

1S3nD3y ‘aInvA 282 di v8z

- MO3HO
ONISN3DIT LNO AYYVYD "Z82

"'FOVSS3N 3AIZO3Y 082

> OVSSIN HOHUI AVI3Y .N\.N\

"‘aN3S GNY ‘3naow
Q31SNHL 4O A3N 3ILVAING
A8 J3N9OIS ‘Viva O4 3ON3
-433d34 ANV 3ONON WOYd
3OVSSIN 3IVHAN3D voz

"JONON 31V¥3N3O 'Z9Z

'1S3NV3Y 3AIZO3Y 092 &

‘Y1va 38N ‘v62

—» NOISSINY3d 3AI303Y ‘262

‘FOVSSIN HOMM3
3LVIHdOYddY AVdSIA 9.2

'JOVSSIN
\mcmmm 3AIZ03Y vi2

—.Y1va 3SN. 1S3ND3IY ‘852

W3L1SAS ONILVHEIdO

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/03101

WO 01/13199

'©070qav '92¢c

6/ "OId

'1S3N0D3IY IAIFD3Y '92E*

14/15

021 3TNAOW d3isnydl

‘STNAON a31snNdl 40
A3M ILVARYd ONISN Q3INOIS
VIvQ Ol 3ON3y343y %
JONON ONIGNTONI 3OVSSIN —
GN3S '3ON3OIT AIVA 41 '8ie

'3OVSS3IN HOHYI ANIS —

‘BON3OT AIYA ON 4I ‘OLE
‘SIHON
ONISN3ION AJO3HO ‘80€

'FOVSS3IN JAI3D3Y "90¢

H>

-

——

‘FOVSSIN HOYH3
ON3S 'LOIHHOONI 22Z€ di "9ee

‘FJOVSN viva
1IWY3d 'LO3YYO0D 22¢ dI "0ee

"O07 ONIY3L3IN 1S3ND
-39 ‘103YM¥0D 22e dI ‘vee

‘Ald3

40 ALRMO3LNI AJIY3A ‘22E

'3OVSS3IN IAIZD3IN '0ZE

'JOVSSIN HOWI AVIIY .N—m\

Viva Ol 3ON3¥3

-434 ANV 3ONON SNIaN1o
"NI 39VSS3IW AaN3IS 'p0E
"JONON 2LVYH3IN3O 'Z0€

"1S3NV3YH IAIZO3M '00€

922 ¥01NJ3IX3 IHVYMILIO0S

‘'Y1vQ 3Isn ‘vee
- ‘NOISSIWY3d 3AIZ03Y 2EE

'FJOVSSIN HOHMT
3LVINdO¥ddY AV1dSIQ ‘9ie

"JOVSS3IN
HOYY3 IAIFO3Y pie

\

- «VLVYQ 3SN., 1S3IND3Y ‘862

W3ISAS ONILVE3d0

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/03101

WO 01/13199

'VY1va 3sn ‘vee

'NOISSINY3d 3AI303Y “Zee

‘3OVSSIN ¥ONYI

3LVIMdOYddY AV1dSIQ ‘9L

15/15

‘FJOVSS3IN
YO IAIFOIY ‘vie

W31SAS ONIIV33d0

0z ‘oI4

(HLvd SNOIL
“VOINNWNOD Q31vd1a3q)

(HLVd SNOIL
“VOINNWINOD a31v2Ia3qg)

‘FOVSN Yiva LN
-¥3d 'JON30IT anvA 41 ogg

90T ONNILINW

aav ‘30N30IN aIvA di ‘vee

‘3OVSS3IN HONY3 aN3S
‘3ONION QYA ON 41 ‘0iE

‘SLHOIH
ONISN3O1T MO3HD ‘80€

"1S3ND3Y IAIZ0IYH "00€ &

(SMO3HO ONISN3OIN
ONIA4IO3dS ATTVNOILJO)
—«V1VQ 3ISN. LSINDIY ‘862

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT It snal Application No
PCT/GB 00/03101

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F1/00

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

5 December 1995 (1995-12-05)
the whole document

29 November 1995 (1995-11-29)
column 5, 1ine 6 - line 53

A US 5 680 547 A (CHANG STEVE MING-JANG)

21 October 1997 (1997-10-21)
A WO 98 36517 A (JPC INC)

20 August 1998 (1998-08-20)
A EP 0 849 657 A (NCR INT INC)

Y US 5 473 692 A (DAVIS DEREK L) 1-3,6,28

A 4,5,7-27
Y EP 0 684 538 A (IBM) 1-3,6,28

24 June 1998 (1998-06-24)

D Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

° Special categories of cited documents :

A" document defining the general state of the art which is not
considered to be of particular relevance

‘E" earier document but published on or after the intemational
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
\ater than the priority date claimed

T later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

Date of mailing of the intemational search report

26 September 2000 04/10/2000
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl,
Fax: (+31-70) 3403016 Powell, D

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

/nformation on patent family members

Inte

1al Application No

PCT/GB 00/03101

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5473692 A 05-12-1995 AU 3583295 A 27-03-1996
EP 0780039 A 25-06-1997
JP 10507324 T 14-07-1998
Wo 9608092 A 14-03-1996
us 5568552 A 22-10-1996

EP 0684538 A 29-11-1995 Us 5564038 A 08-10-1996
JP 7319689 A 08-12-1995
us 5771347 A 23-06-1998

US 5680547 A 21-10-1997 us 5444850 A 22-08-1995
AU 1042895 A 15-05-1996
JP 10511783 T 10-11-1998
Wo 9613002 A 02-05-1996

W0 9836517 A 20-08-1998 us 5953502 A 14-09-1999
EP 1013023 A 28-06-2000
usS 6038667 A 14-03-2000

EP 0849657 A 24-06-1998 JP 10282884 A 23-10-1998
ZA 9710559 A 24-05-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

