PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

GOG6F 9/315, 9/308 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/08552

17 February 2000 (17.02.00)

(21) International Application Number: PCT/EP99/05519

(22) International Filing Date: 29 July 1999 (29.07.99)

(30) Priority Data:
98202647.8
98203382.1

6 August 1998 (06.08.98)
7 October 1998 (07.10.98)

EP
EP

(71) Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
[NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven
(NL).

(72) Inventor: SIISTERMANS, Fransiscus, W.; Prof. Holstlaan 6,
NL-5656 AA Eindhoven (NL).

(74) Agent: DUIJVESTIIN, Adrianus, J.; Internationaal Octrooibu-
reau B.V., Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DATA PROCESSOR AND METHOD OF PROCESSING DATA

(57) Abstract

A data processor

uses storage units that
are subdivisible into
predetermined fields for

executing instructions that
cause the data processor 46b

to handle numbers from

respective ones of the fields |
separately. The processor
has an instruction that
addresses a first and a
second one of the storage
units. In response the data
processor takes a first and

\
b47c |

/\

second group of successive
bits from a first and second
one of the fields of the first
one of the storage units,

4Ta
47

\r47d | i]

A4

48a

places the first and second
groups of successive bits at
respective shifted positions
both in the same field in a

result storage unit, a bit position distance between the shifted positions being controlled by a content of the second one of the storage units.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF

CH
CI

CM
CN
Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T3
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

‘Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/08552 PCT/EP99/05519

Data processor and method of processing data.

The 1nvention relates to a data processor, a method of processing data and a

method of compiling a program for a data processor.

Various signal processing applications use compressed data in which different
signal values are represented by different numbers of bits. This is the case for example when
Huffman coding is used.

When different numbers of bits are used, compression involves selecting the
required number of bits from each signal value and placing the selected bits in a compressed
word. Decompression involves taking the compressed word and obtaining decompressed
signal values from selected groups of bits from the compressed words. The selection of a
group for a number depends on the length of bits that has been used in the compressed word
for the preceding numbers and on the length of bits used for the number itself.

Compression and decompression can be performed by a program that runs on a
data processor. This will involve executing several instructions, for example for shifting
register contents, combining register contents and masking undesired register contents.

PCT patent application WO 96/17289 describes a data processor that is capable
of executing shift instructions that operate on registers that hold storage units made up of
packed data. A register that contains packed data is organized into a number of equal length
fields, for example four fields of sixteen bits. The data processor has an instruction set that
contains a packed shift instruction for shifting a plurality of numbers by specified amounts.
This shift instruction has two operands. A first operand contains several amount codes that
specify a required amount of shift, each for a respective number in a second operand. The
amount codes are stored as packed data in a first register and the numbers are stored as packed
data 1n a second register. The processor generates a packed result, containing the various
numbers from the second operand, each shifted by its own amount specified in the first
operand. Thus, a single instruction can be used to cause the processor to execute a plurality of

shift operations on different numbers.

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

2

The packed shift instruction may be used to reduce the number of instructions
for variable length compression or decompression, but more than one instruction must still be

used to compress or decompress a signal value.

Amongst others, it is an object of the invention to provide for a data processor
which is capable of performing compression and/or decompression on packed data with fewer

instructions.

According to one aspect of the invention, the data processor is arranged as set
forth in claim 1. Thus, the processor has a compression instruction which refers to two storage
units, such as two operand registers, a first register containing one or more codes that specify
relative amount(s) of shift that have to be applied to respective numbers in the second operand
register. The relative amount(s) correspond for example to the lengths of bits to which
respective numbers in a second operand register must be compressed.The numbers come from
different fields in the second operand and the result may be placed in one of those fields or
another field of a result operand. By using this instruction in programs for compressing data,
the number of instructions needed for compression can be reduced. This saves execution time
and reduces the memory space needed to store the program.

According to another aspect of the invention, the data processor is arranged as
set forth in claim 2. Thus, the processor has a decompression instruction which refers to two
storage units, such as two operand registers, 2 first register containing one or more length
codes, which specify the lengths of bits to which respective numbers in a second operand
register must be decompressed. By using this instruction in programs for decompressing data,
the number of instructions needed for compression can be reduced. This saves execution time
and reduces the memory space needed to store the program.

Some processors use different functional units for executing instructions from
different subsets of the instruction set, such as VLIW (Very Long Instruction Word)
processors, which contain for example one or more functional units for executing
arithmetic/logic instructions, one or more functional units for executing shift instructions.
These functional units may each be dedicated to one way of subdividing a register content into
different fields, or multi-purpose, capable of handling several different subdivisions mto
fields. In a VLIW processor these different functional units may start executing different

instructions, each from its own subset in parallel

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

3
According to another aspect of the invention, the instructions for placing the
first and second group of bits is implemented using a functional unit for executing shift
instructions. The shift circuits that are used for shifting the content of fields individually is

used to shift the groups of bits in or from the same field.

These and other advantageous aspects of the data processor and methods
according to the invention will be described in a non-limitative way using the following

drawing, in which

Figure 1 shows a data processor

Figure 2 shows a format of an instruction

Figure 3 shows a packed data format

Figure 4a-e show compressed data and uncompressed data

Figure 5 shows a functional unit for executing instructions including an

instruction for compressing and decompressing data.

Figure 1 shows the architecture of a data processor. By way of example a
VLIW processor has been shown, although the invention is not limited to VLIW processors.
The processor contains a register file 10, a number of functional units 12a-f and an instruction
issue unit 14. The instruction issue unit 14 has instruction issue connections to the functional
units 12a-f. The functional units 12a-f are connected to the register file 10 via read and write
ports.

In operation, the instruction issue unit 14 fetches successive instructions words
from an instruction memory (not shown explicitly). Each instruction word may contain several
instructions for the functional units 12a-f.

Figure 2 shows an example of an instruction. The instruction contains a number
of fields, viz. a field OPC for an opcode, a field R1 for a first source register address, a field
R2 for a second source register address, a field Rdest for a result register address and
optionally a field Rg for a guard register address.

The instruction issue unit 14 issues individual instructions from the instruction
word in parallel to respective ones of the functional units 12a-f. In response to the instructions
the contents of the source registers address in the fields R1, R2 for source register addresses
are fetched from the register file 10. The functional unit 12a-f processes the instruction

according to the opcode from the field for the opcode and a result of processing is written back

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

4

into the register file 12 in the register address by the address in the field for the result register
address Rdest. Optionally, writing back 1s conditional on the content of the register addressed
by the field Rg for the guard register address.

Normal instructions use the content of each of the source registers and the
destination register as a single number. For example, if the registers are 64 bit long, a normal
“ADD” instruction causes a functional unit 12a-f to add two 64 bit numbers loaded from the
source registers in the register file 10 and places a 64 bit result in the destination register in the
register file 10. Similarly a normal shift instruction causes a functional unit 12a-f to shift bits
through a 64 bit register. Execution of such normal instructions requires a step for loading data
from the register file 10, a step for executing the relevant operation and a step for writing the
result.

In addition, one ore more functional units 12a-f are capable of executing
instructions the use the content of the registers as packed data.

Figure 3 shows a packed data format. The data format shows a possible register
content. The register content 30 is subdivided into four equal length fields 32a-d of bits. By
way of example, the register content may consist of 64 bits and each field may consist of 16
bits.

When a functional unit 12a-f executes certain instructions, it treats the data in
the source and/or destination registers of those instructions as packed data. For example, in
case of an add instruction, pairs of corresponding fields 32a-d may be added, each pair
consisting of one field from the first source register and one field from the second source
register. In this example, the result of the addition of each pair is written to a respective one of
the fields 32a-d in the destination register. The additions of different pairs are independent, so
there is no carry interaction from one field to another.

The number of steps needed for executing an instruction that treats the content
of registers as packed data is generally the same as that needed for executing a normal
instruction, so that in the same time a multiple of operations can be performed. Generally
speaking, one step is used for loading the content of the source registers (that is, all of the
packed data is loaded in one step in the same time-span as used for loading the content of a
register that is treated as a single number. Generally speaking, one step is used for executing
the relevant operations, i.e. the operations on different packed numbers from one register are
executed in parallel. Generally speaking one step is used for writing into the destination
registers, that is, all of the packed data is written in one step in the same time-span as used for

writing the content of a register that is treated as a single number.

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

5

According to the invention the data processor has at least one functional unit
12a-f that has an instruction designed to speed up compressing and decompressing packed
data.

Figure 4a shows an uncompressed data format 40 and a compressed data format
42. Both formats spatially show bit positions. The uncompressed data format 40 corresponds
to a packed format with equal length fields 44a-d, but with parts 46a-d of the fields 44a-d
separately indicated. In the compressed data format 42 the same fields 48a-d are shown, with
shifted parts 47a-d. Successive bits in the shifted parts 47a-d are derived from successive bits
in corresponding parts 46a-d.

The bits from successive shifted parts 47a-d have been concatenated, so that
bits from more than one field of the uncompressed data format 40 occur in the same field of
the compressed data format 42. By “concatenation”o f two shifted parts 47a-d is meant that the
bits of one shifted part 47a-d follow the bits of another shifted part 47a-d each time at a
distance of a predetermined number of bits (preferably directly, at a distance of zero bits), so
that the position of a shifted part 47a-d in the register depends on the sum of the variable
lengths of the fields that precede it.

Figure 4a also shows a correspondence between the parts 46a-d of the fields
44a-d of the uncompressed data format 40 and the variable length fields 48a-d of the
compressed data formats. In principle, only the content of the parts 46a-d appears in the
compressed data 42; the remainder of the fields 44a-d of the uncompressed data format 40
does not appear in the compressed data format 42.

Figure 4b shows a similar combination of an uncompressed data format 400 and
a compressed data format 402. The uncompressed data format 400 has equal length fields
404a,b with parts 406a,b. The compressed data format 402 has the same subdivision into fields
408a,b with shifted parts 407a,b.

Figure 4c¢ shows a further similar combination of an uncompressed data format
410 and a compressed data format 412. The uncompressed data format 410 has equal length
fields 414a-d with parts 416a-d. The compressed data format is subdivided into the same fields
418a-d and contains shifted parts 417a-d. The fields 414a-d of the uncompressed data format
410 are treated as pairs 414a,b 414c,d. Each pair is treated in the same way as a complete data
format of figure 4b.

Figures 4d,e show further possible combinations of uncompressed data formats
and compressed data formats, which differ from figure 4a-c in that the parts are concatenated

in a different sequence and that the parts are aligned with a different field border.

10

15

20

25

30

w
0 00/08552 PCT/EP99/05519

6

Conversion from the uncompressed data format 40, 400, 410 and the
compressed data format 42, 402, 412 and back, is used for example in variable length
compression and decompression. In this case it is known that only a number of bits of field
44a-d is needed, for example because the other bits are zero, or because the other bits do not
distinguish between different signal values (as in the case of arithmetic coding for example).

According to the invention, the processor is provided with a processing element
that is capable of executing an instruction or instructions for use in compression (conversion

between the uncompressed packed format 40 or 400 to the compressed format 42 or 402)

and/or decompression:
Bitconcat R1,R2,R3
Bitsplit R1,R2,R3

The compression instruction ‘Bitconcat™uses two source registers R1, R2. A
first source register R1 is in packed format. Fields of the first register R1 contain one ore more
length codes, for example numbers representing the number of bits in the parts 46a-d, 406a,b
416a-d of the fields 44a-d, 404a,b 414a-d, starting from a field border. The second source
register R2 contains the data in packed, uncompressed format 40, 400, 410. In response to the
compression instruction the functional unit writes data in the compressed format 42, 402 to the
destination register R3. That is, for example for the case of figure 4b with 64 bit registers, the

functional unit sets:

- R3 bits 0 to R1[0]-1 equal to bits 0 to R1{0] of R2
- R3 bits R1[0] to R1[0]+R1[1]-1 equal to bits 32 to 32+R1[1] of R2

Here and elsewhere in this description, R1{0], R1[1] etc. denote the content of different fields
of a register R1 (e.g. R1{0] bits 0-31, R1[1] bits 32-63 in case of 64 bit registers with two
fields). Of course, the specific bit positions described herein are a matter of convention. If
numbers are represented in a different way (for example with a different sequence from least
significant to most significant, or with different field sizes) the bit positions will be
correspondingly different. Also, the values in R1 need not be numbers that directly equal
lengths, but they may for example equal fieldsize-length or any length code from which a
length can be derived.

For the case of figure 4a, the functional unit sets R3 as follows:

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

- R3 bits 0 to R1[0]-1 equal to bits 0 to R1[0] of R2

- R3 bits R1[0] to R1[0]+R1[1]-1 equal to bits 16 to 16+R1[1] of R2

- R3 bits R1[0]+R1[1] to R1[0]+R1[1]+R1[2]-1 equal to bits 32 to 32+R1[2] of
R2

- R3 bits R1[0]+R1[1]+R1[2] to R1[0]+R1[1]+R1[2]+R1[3]-] equal to bits 48 to
48+R1[3] of R2

R1[0], R1[1] etc. denote the content of different fields of R1 (e.g. R1[0] bits 0-15, R1[1] bits
16-31, R1[2] bits 32-47 etc. in case of 64 bit registers with four fields).
These operations may be realized by OR-ing a number of shifted versions of the

second source register R2. For example, in case of figure 4b Bitconcat produces:

R3= mask(0,R1[0],R2)
OR mask(32,32+R1[1],R2)<<(32-R1[0])

Herein, mask(x,y,R) denotes masking (replacing by zero) the bits of register R, except the bits
at from the positions x to y-1. "A<<B" denotes shifting the bits of A by B positions; OR A B
denotes bitwise OR: if C = OR A B, then the bit from C at position 0 is the logic OR of the
bits from A and B at position 0 and so on for the other positions.

In case of figure 4a the OR can be used as follows:

R3= mask(0,R1[0],R2)
OR mask(16,16+R1[1],R2)<<(16-R1[0])
OR mask(32,32+R1[2],R2)<<(16-R1[0]-R1[1])
OR mask(48,48+R1[3],R2)<<(16-R1[0]-R1[1]-R1[2])

For figure 4c:
A= mask(0,R1[0],R2) OR mask(16,16+R1 [1],R2)<<(16-R1[0]))

B= mask(32,R1[2],R2) OR mask(48,48+R1[3],R2)<<(16-R1[2]))
R3=mask(0,32,A) OR mask(32,64,B)

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

8
When it is known that those bits from a field that are masked out are already zero in the source
register R2, then the mask operations may be replaced by selection operations which select the

bits from specific fields. For example, in case of figure 4b

R3= selectO(R2)
OR mask(select](R2)<<(32-R1{0])

Here the selection operators select0 and selectl select bits 0-31 and bits 32-64 in case of a 64
bit register with two 32 bit fields. These selection operations do not need a variable length
parameter like R1[0] and are therefore easier to implement.

If the Bitconcat instruction is implemented in this way, it may be necessary to
include a "MASK_OP" instruction in the instruction set of at least one of the functional units

12a-f.

MASK OP R1,R2,R3

The functional unit 12a-f that executes this instruction treats the content of the source registers
R1, R2 and the destination register R3 as packed data in equal length fields. The fields of the
first source register R1 contains lengths codes coding the number of bits that must be masked.
The fields of the second source register R2 contain the data to be masked. The functional unit

12a-f writes packed and masked data to the destination register:

R3[0]=mask(0,R1{0],R2[0])
R3[1]=mask(0,R1[1],R2[1]) etc.

If the bits of the source register R2 that are masked out are not guaranteed to be zero, a

program for compression reads in this case

MASK_OP R1,R0,R2
Bitconcat R1,R2,R3

Of course, when it is known that the bits to be masked are always zero, the MASK_OP may be
omitted. This is the case in many compression programs. The Bitconcat operation that includes

a mask is therefore advantageous in that the number of instructions required for compression

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

9
is smaller. The Bitconcat operation without a mask is advantageous in that it is easier to
implement and faster; however an additional MASK_OP instruction may be needed, but this is
not always the case.

The decompression instruction essentially performs the inverse the compression
instruction. Therefore, figures 4a-c also illustrate the operation of the decompression
instruction, where the remainder of the uncompressed data format 40, 400, 410 is preferably
filled with zeros.

According to the invention, at least one functional unit 12a-f of the processor
has an instruction set which contains an instruction for decompression. This instruction works
with packed data, just as the instruction for compression. Just as for compression, one step 18
used in execution for executing the relevant operations, i.e. the operations on different packed
numbers from one register are executed in parallel. Generally speaking one step is used for
writing into the destination registers, that is, all of the packed data is written in one step in the
same time-span as used for writing the content of a register that is treated as a single number.

In programs the decompression instruction is denoted by
Bitsplit R1,R2,R3

this instruction has a first and second source register R1, R2 and a destination register R3. The
content of the first source register R1 and the result register R3 are treated as fields of packed
data R1[0], R1[1] etc. and R3[0], R3[1] etc. |

The effect of various versions of the Bitsplit instruction will be described using
a "expand" function. Expand(a,b,R) takes "b" bits from a register R, starting from bit position
"a" and produces a result which starts with these b bits followed by padded zeros. For
example, a decompression operation as shown in figure 4b (using packed data with two fields)

has the effect of

R3[0]=expand(0,R1[0],R2)
R3[1}=expand(R1{0],R1[1],R2)

It is not always needed to pad the result with zeros at the bit positions that do not dertve from
the operands. For example, if those bits do not lead to any significant effect at other places in a

program. If padding with zeros is not needed, the Bitsplit instruction may be realized by

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

10
R3[0]=R2[0]
R3[1]=R2[0]<<R1[0]

When the functional unit provides only this implementation of the Bitsplit instruction without
padding, and a case occurs where padding is needed, the program may provide for padding

including a MASK_OP:

Bitsplit R1,R2,R3
MASK OP R1,R3,R4

In the example of figure 4a decompression using packed data with four fields has the effect

R3[0]=expand(0,R1[0],R2)
R3[1]=expand(R1[0],R1[1],R2)
]
]

R3[2]=expand(R1[0]+R1[1],R1[2],R2)
R3[3]=expand(R1[0]+R1[1]+R1[2],R1[3],R2)

Alternatively, in figure 4c the four fields may be treated as two pairs of the type described for

figure 4b:

R3[0]=expand(0,R1[0],R2)
R3[1]=expand(R1{0],R1[1],R2)
R3[2]=expand(32,32+R1[0],R2)
R3[3]=expand(32+R1[0],32+R1[1],R2)

(In this example the registers have been taken to be 64 bits wide). In all these cases, "expand"
may be replaced by different shift operations operating on the same source field in case
padding with zeros is not needed.

Figure 5 shows an example of a functional unit for performing the compression
and/or decompression instruction. The functional unit contains a first intermediate register 50
and a second intermediate register 51. The functional unit contains a four parallel cascades
coupled to an output of the second intermediate register 51. Each cascade contains
successively a selection unit 51a-d, a shift unit 52a-d, and a mask units 53a-d. The outputs of

the mask units 53a-d are coupled to an OR unit 54. Furthermore, the functional unit contains

10

15

20

30

WO 00/08552 PCT/EP99/05519

11

an instruction decoder 58. The instruction decoder 58 has inputs coupled to an instruction
input and to an output of the first intermediate register 50. Outputs of the instruction decoder
58 are coupled to control inputs of the selection units 51a-d, the shift units 52a-d and the mask
units 53a-d.

The functional unit shown in figure 5a is capable of executing various shift
instructions and the instructions for compressing and decompressing variable length encoded
data according to the invention.

In operation, when the processor executes an instruction, the opcode is supplied
to the instruction decoder 58. The operand addresses are supplied to the register file and the
operand addressed by those addresses are loaded into the first and second intermediate register
50, 51 respectively.

The instruction decoder 58 uses the opcode to determine whether the second
operand in the second intermediate register 51 should be treated as a single number or as a
packed operand and, if the latter is the case, into which fields the second operand should be
divided.

The selection units 52a-d each selects a field of bits from the second operand
and pass the bits of the selected fields to the shift units 54a-d; other bits are made zero.
Depending on the desired number of fields, the decoder 58 supplies selection signals to the
selection units 53a-d to control the field and the size of the field that each selection unit 53a-d
selects. For example the first and second selection unit 53a,b may select a first and a second
half of the bits of the second operand respectively, or the first to fourth selection unit 53a-d
may select successive quarters of the second operand.

The shift units 54a-d shift the bits they receive from the selection units 53a-d.
In principle, each shift unit 53a-d provides for as many bits as the intermediate register S1.
The amount of shift effected by each shift unit 53a-d is determined by the first operand, which
is stored in the first intermediate register 50, and by the opcode. Each shift unit 54a-d may
shift its bits by a different amount.

The mask units 54a-d pass only the bits of specific fields from the shift units
53a-d to the OR unit; other bits are made zero. The specific field is selected by a signal
supplied from the instruction decoder 58, as required by the opcode.

The OR unit 55 performs a bitwise OR of the outputs of the shift units 54a-d.
That is, each bit of a word output by a shift unit 54a-b is logically OR-ed with bits from
corresponding positions in the words output by the other shift units 54a-d. The output of the

10

15

20

25

30

WO 00/08552 PCT/EP99/05519
12

OR unit 55 forms the result of processing by the functional unit and is coupled to a write port
of the register file, for writing a result into the result register addressed by the instruction.

_ The functional unit is capable of performing various kinds of shift instructions,
dependent on the opcode. For example, in response to an opcode that requires a normal shift
on the content of the second operand as a whole, the instruction decoder may control

- the first selection unit 52a to select all of the bits from the second
intermediate register 51, whereas the other shift units are controlled to select no bits at all;

- the shift amount may be passed from the first intermediate register 50 -
to the control input of the first shift unit 53a

- the first mask unit 54a receives a control signal to pass all bits from the
first shift unit 53a to the OR unit 55; the other mask units 54b-c pass no bits.

Similarly, in response to an opcode that requires separate shifts on individual numbers from
different fields in the second operand:

- each selection unit 52a-d may be controlled to select the bits from a
respective field of the second intermediate register 51 (e.g. a first and a second half of the
second operand or a first, second, third and fourth quarter);

- shift amounts may be passed from respective fields in the first
intermediate register 50 to the control inputs of respective shift units 53a-d;

- the mask units 54a,b receive control signals to pass respective fields of
bits from the first and second shift unit 53a,b to the OR unit 55.

More particularly, upon receiving a "bitconcat” instruction for a compression as shown in
figure 4a, the instruction decoder will:

- cause the first and second selection unit 53a,b to select a first and second field from the
second operand

- determine a shift amount by decrementing a length of the first field by a desired length of
bits in the first field as determined from a length code in the first operand

- supply the shift amount as shift control signal to the second shift unit 54b and a zero shift
amount to the first shift unit 54a

- cause the first and second mask unit 54a,b to pass only the bits of first field from both the
first and the second shift unit 53a,b.

Thus, bits from the second field are concatenated at a variable distance behind
bits from the first field. Other opcddes, for executing different bitconcat instructions, for
example to concatenate pairs of fields from four fields in the second operand, or for example

to concatenate fields of a different size may be realized with appropriate control signals.

10

15

20

25

30

WO 00/08552 PCT/EP99/05519

13
Similarly, variable numbers of bits from more than two fields may be concatenated. In the
latter case, the first operand may contain .successive sums 0, 11, 11412, 11+12+13 of the lengths
11,12,13 of the groups of bits in respective fields of the second operand. In this case these
sums may be used to control the amounts of shift by the shift units 53a-d. Alternatively, the
lengths 11, 12, 13 themselves may be present in the first operand, in which case the instruction
decoder 58 may itself determine the sums.

Upon receiving an opcode that codes for a bitsplit instruction, for a
decompression as shown in figure 4a, the instruction decoder 58 will:

- cause the first and second selection unit 53a,b to select a first field from the second operand
- determine a shift amount by decrementing a length of the first field by a desired length of
bits as determined from a length code in the first operand

- supply the shift amount as shift control signal to the second shift unit 54b and a zero shift
amount to the first shift unit 54a

- cause the first and second mask unit 54a,b to pass only the bits of first and second field from
the first and the second shift unit 53a,b respectively.

To suppress undesired bits from the first field of the result produced by the split instruction,
this split instruction is preferably followed by a MASK _OP instruction. Similarly, to suppress
interference from undesired bits from the first field of the second operand of the bitconcat
instruction, this bitconcat instruction may be preceded by a MASK_OP instruction.

Alternatively, the select units 52a-d and/or the mask units 54a-d may be
provided so that an adjustable number of bits inside a field starting from the beginning of the
field is selected or passed. In this case, the instruction decoder 58 may supply the length codes
from fields of the first operand in the first intermediate register to the select units 52a-d and/or
mask units 53a-d to control the number of bits as needed to suppress undesired bits. With such
an implementation no additional mask instruction 1S necessary.

Alternatively, the function of the MASK_OP may be included in the functional
unit, so that no additional MASK_OP instruction is needed.

For example, four mask generation units (not shown) may be added to the
functional unit, together with bitwise AND circuits (not shown) between mask units 54a-d and
OR unit 55. In this case there is a mask generation unit for each mask unit 54a-d. Each mask
generation unit generates has a respective bit mask for each bit of the field selected by its
corresponding mask unit 54a-d. The mask generation units receive information about the
length codes from the first operand, and generate mask bits that are logically "1" for a number

of successive bits at bit positions determined by the received length code, where the

10

15

20

25

30

WO 00/08552 PCT/EP99/05519
14

MASK_OP as described passes bits, the remaining mask bits being logically "0". These mask
bits are bitwise AND-ed with the output of the mask units 54a-d and the result is fed to the
OR-unit 54.

| Thus, bits that should not contribute to the result can be masked out. Generation
of the mask bits requires a circuit with a complexity that is similar to that of the shift units
53a-d and that can operate in parallel with those shift units, so that the execution of the
instruction is delay only marginally by the bitwise AND units.

Tt will be clear that, without deviating from the invention, various
implementations of the functional unit can be realized, with or without mask units, with a
larger or smaller number of fields, larger or smaller registers etc.

For example, one might use a functional unit that contains an instruction
decoder and a respective N-input multiplexer for each of the N output bits of the result, each
multiplexer having inputs coupled to N respective ones of the bits of the second operand (plus
optionally to a logic 1 and a logic 0 input). The instruction decoder controls each of the
multiplexers individually, dependent on the opcode and the length codes in the fields of first
operand, so that in case of a bitconcat or bitsplit instruction the bits from appropriate inputs are
fed to bits of the output. The instruction decoder might be implemented as a ROM addressed
by the opcode and the least significant bits of the length codes, with NlogN-bit data words to
control each multiplexer. Instead of the ROM an equivalent lo gic circuit may be used. In
principle, such a functional unit could realize any reshuffling of bits, but of course if N is large
(say 64 bit) only a small number of reshufflings may be realized, reshufflings corresponding to
bitconcat and/or bitsplit being among the realized reshufflings.

With such a functional unit it is possible to execute programs that compress
data by placing bits from different fields together in the same field. That same field can
subsequently be used for example to transmit or store the data, using only that field instead of
the plurality of fields from which the data is derived. Subsequently, the data may be
decompressed by splitting the data into more than one field. When this kind of program
implements the compression and decompression with the bitconcat and bitsplit instruction, the
number of instructions needed for compression and decompression 1s reduced, so that the

program is faster and smaller.

10

15

20

25

WO 00/08552 PCT/EP99/05519
15
CLAIMS:

1. A data processor which uses storage units that are identically subdivisible into
predetermined fields for executing instructions that cause the data processor to handle
numbers from respective ones of the fields separately, an instruction set of the processor
comprising an instruction with locations for addressing a first and a second one of the storage
units, the data processor being arranged to respond to the instruction by

- taking a first and second group of successive bits from a first and second one of the fields of
the first one of the storage units respectively,

- placing the first and second groups of successive bits at respective shifted positions in a
result storage unit, a bit position distance between the shifted positions being controlled by a
content of the second one of the storage units, characterized in that the first and second group

are placed both in a third one of the fields in a result storage unit.

2. A data processor according to Claim 1, wherein the first and second group start
from borders of the first and second one of the fields respectively, the first group being placed
at a position starting from a corresponding border of the third field, a position of the second
group relative to the corresponding border being controlled by said content of the second one

of the storage units.

3. A data processor according to Claim 1, comprising a plurality of functional
units, each for executing its own subset of the instruction set, a first one of the functional units

for executing a subset containing shift instructions being arranged to execute said instruction.

4. A data processor according to Claim 3, the first one of the functional unit
comprising respective shift circuits, each for shifting contents of a respective one of the fields
in shift instructions that shift the fields individually, the instruction being implemented using

at least one of said shift circuits for shifting said first group.

5. A data processor according to Claim 1, the data processor being arranged to

respond to said instruction by taking a third and fourth group of successive bits from a fourth

10

15

20

25

30

WO 00/08552 - PCT/EP99/05519

16
and fifth one of the fields, different from the first and second one of the fields, of the first one
of the storage units respectively, and placing the third and fourth groups of successive bits at
respective shifted positions both in a fourth one of the fields in the result storage unit, a bit
position distance between the shifted positions being controlled by a content of the second one

of the storage units.

6. A data processor which uses storage units that are identically subdivisible into
predetermined fields for executing instructions that cause the data processor to handle
numbers from respective ones of the fields separately, an instruction set of the processor
comprising an instruction that has locations for addressing a first and a second one of the
storage units, thé data processor being arranged to respond to the instruction by

- taking a first and second group of successive bits from the first one of the storage units, a bit
position distance between positions from which the first and second group are taken from the
first one of the fields being controlled by a content of the second one of the storage units;

- placing the first and second groups of successive bits at predetermined positions in different
fields in a result storage unit, characterized in that the first and second group are both taken

from a first one of the fields of the first one of the storage units.

7. A data processor according to Claim 6, wherein the first group is taken from a
position starting at a border of the first field, the second group being taken from a position
relative to the border determined by said content of the second one of the storage units, the
first and second group being placed at corresponding borders of the first and second one of the

fields respectively.

8. A data processor according to Claim 6, comprising a plurality of functional
units, each for executing its own subset of the instruction set, a first one of the functional units

for executing a subset containing shift instructions being arranged to execute said instruction.

9. A data processor according to Claim 8, the first one of the functional unit
comprising respective shift circuits, each for shifting contents of a respective one of the fields
in shift instructions that shift the fields individually, the instruction being implemented using

at least one of said shift circuits for shifting said first group.

10

15

20

25

30

WO 00/08552 PCT/EP99/05519
17

10. A data processor according to Claim 6, the data processor being arranged to
respond to said instruction by taking a third and fourth group of successive bits both from a
second one of the fields in the first one of the storage units, a further bit position distance
between positions from which the third and fourth and second group are taken from the second
one of the fields being controlled by a content of the second one of the storage units; placing
the third and fourth groups of successive bits at predetermined positions in further different

fields in the result storage unit.

1. A method of processing data with a data processor that uses storage units that
are identically subdivisible into predetermined fields for executing instructions that cause the
data processor to handle numbers from respective ones of the fields separately, the method
comprising

- loading an instruction that addresses a first and a second one of the storage units,

- loading the fields of the first and second storage units

- taking a first and second group of successive bits from a first and second one of the fields
loaded from the first one of the storage units respectively,

- placing the first and second groups of successive bits at respective shifted positions in a
result storage unit, a bit position distance between the shifted positions being controlled by a
content of the second one of the storage units, characterized in that the first and second group

are placed both in a third one of the fields in a result storage unit.

12. A method according to Claim 11, wherein the result storage unit is used to store
and/or transmit information from the first and second one of the fields in compressed form,
using a variable number of bits, variable under control of said content of the second one of the

storage units.

13. A method of processing data with a data processor that uses storage units that
are identically subdivisible into predetermined fields for executing instructions that cause the
data processor to handle numbers from respective ones of the fields separately, the method
comprising

- loading an instruction that addresses a first and a second one of the storage units,

- loading the fields of the first and second one of the storage units,

- taking a first and second group of successive bits from the fields of the first one of the

storage units, a bit position distance between positions from which the first and second group

10

15

20

WO 00/08552 PCT/EP99/05519

18
are taken from the first one of the fields being controlled by a content of the second one of the
storage units;
-_placing the first and second groups of successive bits at predetermined positions in different
fields in a result storage unit, characterized in that the first and second group are both taken

from a first one of the fields of the first one of the storage units.

14. A method according to Claim 13, wherein the result storage unit is used to read
and/or receive compressed information in the one of the fields, wherein the compressed
information is coding using a variable number of bits, and expanding said compressed

information into the different fields.

15. A method of compiling a computer program for a data processor as described in
Claim 1, the computer program including coding data words by variable numbers of bits, the
method including generating a further instruction for placing a first and a second data word
‘nto the first and second field of a storage unit and generating said instruction to combine the

data words with a variable number of bits.

16. A method of compiling a computer program for a data processor as described in
Claim 6, the computer program including decoding data words coded by variable numbers of
bits in a code word, the method including generating said instruction to separate the code word

into the data words.

WO 00/08552 PCT/EP99/05519

1/3

bel Wb el sl sl 4ol

T k123 T L12b T k12c T L12d T k12e T k12f

FIG. 1

OPC Rf R2 Rdest | Rg :

FIG. 2

0 15 16 31 32 47 48 63

12 b 1 14

FIG. 3

WO 00/08552 PCT/EP99/05519
2/3
a b o g
7 S 7 NN
sga—~ | 46 s ol
l | |
| | |
N
AN -
-’/ }7c&r47d ! | |
l\ 47b II\ /I\ /I\ II
48a 48h 48 48 FIG. 4a
40l 404
7 . B
7 NN 0
4063 | 406b ,
|
l |
% N\ -
% 4&\\\\\ 402
4078 —aom |
| 1 |
P P FIG. 4b
it4a 414 4o 414g
7 INEERZ \ B
. N7 N 0
sea— | 4160 Natee /460
l |
| | l
N N .
NT 17
417&-]) / | |4\17ck417d| |
|\ 47b jl\ II\ /:\ /I FI G 4
Hga 118D 418 H8d . 4C

WO 00/08552 PCT/EP99/05519

3/3
| |

7))\

, . FIG. 4d
| |
5 : i
N\
| . FIG. 4e
'
0 I
') |
LM e e e e
—-—-—153&/r [| ln fﬁbI*v 53" ‘v s
——_'54a/f v | lvv i‘jbﬁv %Cl Lo
Y Y v Y
R 15

INTERNATIONAL SEARCH REPORT

Internatio. \pplication No

PCT/EP 99/05519

A. CLASSIFICATION OF SUBJECT MATT!

ER
IPC 7 GO6F9/315 G06F9/308

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication. where appropriate, of the relevant passages Relevant to claim No.
X WO 97 32278 A (INTEL CORP ;JULIER MICHAEL 1,3,11,
A (US)) 4 September 1997 (1997-09-04) 15,16
Y the whole document 2,4,6-8,
12-14
A 5,9,10
Y STRAUB A: "MODERNER, SCHNELLER UND 2,6-8,
DICHTER. NEUE DSP-FAMILIE VERDOPPELT 12-14
LEISUNG UND ERHOEHT INTEGRATION"
ELEKTRONIK,DE,FRANZIS VERLAG GMBH.
MUNCHEN,,
vol. 44, no. 20,
6 October 1995 (1995-10-06), page
44-45,48,50,52 XP000535704
ISSN: 0013-5658
page 45, right-hand column, paragraph 2;
figure 3
- / _
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

> Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international e
filing date

invention

“T" later document published after the international filing date
or priority date and not in contlict with the application but
cited to understand the principie or theory underlying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
“L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk :

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s

Fax: (+31-70) 340-3016 Daskalakis, T

which is cited to establish the publication date of another "y document of ; . ; : ;
o " s particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"Q" document referting to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "8&" document member of the same patent family
Date of the actual compietion of the international search Date of mailing of the international search report
13 January 2000 20/01/2000
Name and mailing address of the ISA Authorized officer

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Internatic Application No

PCT/EP 99/05519

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category | Citation of document, with indication,where appropriate. of the relevant passages

Relevant to claim No.

A WO 97 07450 A (HANSEN CRAIG ;MOUSSOURIS
JOHN (US); MICROUNITY SYSTEMS ENG (US))
27 February 1997 (1997-02-27)
page 19, line 24 -page 20, line 8: figure
8

Y WO 97 33222 A (PELEG ALEXANDER D ;EITAN
BENNY (IL); YAARI YAAKOV (IL); MINOCHA PU)
12 September 1997 (1997-09-12)

A page 14, line 17 - line 23

1-16

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Internatio \pplication No

PCT/EP 99/05519

Information on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9732278 A 04-09-1997 AU 1959397 A 16-09-1997
WO 9707450 A 27-02-1997 us 5742840 A 21-04-1998
. AU 6771696 A 12-03-1997
EP 0845120 A 03-06-1998
us 5778419 A 07-07-1998
us 5809321 A 15-09-1998
us 5794060 A 11-08-1998
us 5822603 A 13-10-1998
us 5794061 A 11-08-1998
us 5953241 A 14-09-1999
WO 9733222 A 12-09-1997 AU 1988597 A 22-09-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

