发明名称
一种荧光粉及其制备方法和含该荧光粉的发光器件

摘要
本发明公开了一种荧光粉，其制备方法和含该荧光粉的发光器件。该荧光粉的化学组成为
$$A_xZ_{1-x}Al_2Li_3E_5(0_{12-m}),$$
其中A为Na、K、Rb或Cs中的一种或一种以上元素，Z为Ce、Sc、Y、La、Gd、Tb或Lu中的一种或一种以上元素，E为B、Al、In或Ga中的一种或一种以上元素，D为F或Cl中的一种或两种元素。0 < x < 3, 0 < y < 3, m > n > 0, m+n < 12, 2x+2y=m-n。本发明荧光粉具有全新的化学组成，且发光强度较高，不会发生电荷不平衡这一现象，从而避免了荧光粉发光强度的降低。
1. 一种荧光粉，其特征在于：其化学组成为 $A_xZ_{2-y}Al_{2}Li_{1}Fe_{x-y}(O,N_{x+y-z})_m$，其中 A 为 Na、K、Rb 或 Cs 中的一种或一种以上元素，Z 为 Ce、Sc、Y、La、Gd、Tb 或 Lu 中的一种或一种以上元素，E 为 B、Al、In 或 Ga 中的一种或一种以上元素，D 为 F 或 Cl 中的一种或两种元素，$0 < x < 3.0, 0 < y < 3.0, m > 0.0, m+n < 12, x+2y=m-n$。

2. 根据权利要求 1 所述的荧光粉，其特征在于：所述化学组成为 $A_xZ_{2-y}Al_{2}Li_{1}Fe_{x-y}(O,N_{x+y-z})_m$，其中 A 为 Na、K、Rb 或 Cs 中的一种或一种以上元素，必含有 Na；Z 为 Ce、Sc、Y、La、Gd、Tb 或 Lu 中的一种或一种以上元素，必含有 Ce；E 为 B、Al、In 或 Ga 中的一种或一种以上元素；D 为 F 或 Cl 中的一种或两种元素，必含有 F。

3. 根据权利要求 2 所述的荧光粉，其特征在于：所述化学组成为 $A_xZ_{2-y}Al_{2}Li_{1}Fe_{x-y}(O,N_{x+y-z})_m$，其中 A 为 Na、K、Rb 或 Cs 中的一种或一种以上元素，必含有 Na；Z 为 Ce、Sc、Y、La、Gd、Tb 或 Lu 中的一种或一种以上元素，必含有 Ce；E 为 B、Al、In 或 Ga 中的一种或一种以上元素；D 为 F 或 Cl 中的一种或两种元素，必含有 F；$x < 3.0, 0 < y < 3.0, m > 0.0, m+n < 12, x+2y=m-n$。

4. 根据权利要求 1 至 3 中任意一项所述的荧光粉，其特征在于：所述化学组成为所述的物质在紫外线、可见光及电子射线中的任何一种光的激发下的荧光范围是 $480 \sim 620$nm。

5. 根据权利要求 1 至 3 中任意一项所述的荧光粉，其特征在于：所述化学组成为所述的物质的平均粒径为 $1 \sim 100\mu m$。

6. 一种权利要求 1 至 5 中任意一项所述的荧光粉的制备方法，其特征在于包括如下步骤：以含 $A_xZ_{2-y}Al_{2}Li_{1}Fe_{x-y}(O,N_{x+y-z})_m$ 元素的氧化物或其他卤化物或氢氧化物为原料，按照化学计量比称取相应质量的原料，混合均匀后在还原气氛下于 $1000 \sim 1500\circ C$ 下烧结还原 $2 \sim 10$h，还原气氛的压力等于或大于两个大气压，用蒸馏水洗涤烧结后的粉体至中性，选择粒度分级或/和酸处理方法中的一种或多种方法处理洗涤后的粉体，其中粒度分级是必须的，将所合成荧光粉的平均粒径调整到 $1 \sim 100\mu m$ 得到荧光粉粗品；将得到的荧光粉粗品在还原气氛下于 $1000 \sim 1400\circ C$ 下烧结还原 $2 \sim 10$h，还原气氛的压力等于或大于两个大气压，用蒸馏水洗涤烧结后的荧光粉粗品至中性，即可得到所需的荧光粉。

7. 根据权利要求 6 所述的制备方法，其特征在于：所述酸处理所用酸为硫酸、盐酸、硝酸、磷酸、氢氟酸或有机酸或其中一种以上酸构成。

8. 一种权利要求 1 至 5 中任意一项所述的荧光粉的发光器件，其特征在于：包括上述荧光粉及发光光源，所述发光光源为能发出 $300 \sim 490$nm 波长光的发光二极管、激光二极管或有机 EL 发光元件。

9. 根据权利要求 8 所述的发光器件，其特征在于：还包括其他荧光粉，并在发光光源的照射下发出白光。

10. 根据权利要求 9 所述的发光器件，其特征在于：所述的其他荧光粉为下列荧光粉中的一种或一种以上：(Ca, Sr, Ba)$_2$Si$_3$O$_7$:Eu, (Ca, Sr, Ba)AlSi$_4$N$_4$:Eu, β-SiAlON:Eu, (Ba, Sr, Y)$_2$Si$_2$O$_5$:Eu, Ca$_2$AlSi$_3$O$_5$:Eu, Ba$_3$SiO$_12$:Eu, (Ca, Sr, Ba)$_2$SiO$_4$:Eu, (Ca, Sr, Ba)$_2$Al$_2$O$_3$:Eu, (Ca, Sr, Ba)$_2$Al$_2$O$_3$:Eu, Ba$_2$Zn$_2$SiO$_7$:Eu, (Ca, Sr, Ba)$_2$Al$_2$SiO$_5$:Eu, CaZr$_2$SiO$_5$:Eu, (Ca, Sr, Ba)$_2$Al$_2$O$_3$:Eu, Sr$_2$Al$_2$O$_5$:Eu, Lu$_2$Al$_2$O$_5$:Ce, Ca$_2$Sc$_2$Si$_3$O$_12$:Ce, SrAl$_2$B$_2$O$_7$:Eu, Sr$_2$B$_2$O$_7$:Eu, Ca$_2$Al$_3$O$_6$:Eu, Na$_2$SiF$_6$:Mn。
一种荧光粉及其制备方法和含该荧光粉的发光器件

技术领域
[0001] 本发明涉及一种荧光粉，本发明还涉及该荧光粉的制备方法和含该荧光粉的发光器件，为无机发光材料技术领域。

背景技术
[0002] LED(Light emitting diode)是一种能将电能转化为光能的半导体器件。由于白光 LED 具有高效、节能、环保、结构坚固、使用寿力长及响应时间短等优点，目前广泛应用予以示示、背光源及照明领域。

[0003] 目前常见的白光 LED 中，多选用 GaInN 芯片作为激发光源。芯片发出的蓝光激发涂覆在芯片上方的荧光粉，荧光粉发出的光（多数的产品设计中选择能发出黄光的 YAG:Ce 荧光粉）和芯片中未被吸收的蓝光复合得到白光。因此荧光粉对于白光 LED 的发光是不可或缺的。

[0004] 石榴石是一类矿物的总称。YAG:Ce 基质结构的化学式为 Y₃Al₅O₁₂, 矿物学名称为钇铝石榴石, Ce 在此结构中取代 Y 作为发光中心。1967 年（非专利文献一）《配戴电器侧显示管用黄色荧光粉 Y₃Al₅O₁₂:Ce³⁺》(A new phosphor for flying spot cathode ray tubes for color television; yellow emitting Y₃Al₅O₁₂:Ce³⁺, Applied Physics Letters, Volume 11, Issue 2, 53-55, 1967) 一文首先报道了 YAG:Ce 的发光性质。1996 年，日本日亚化学公司获得了将 YAG:Ce 荧光粉结合蓝光 GaInN 芯片从而发出白光的美国专利 5998929（专利文献一）。美国通用电气公司在其申请的美国专利 6409938（专利文献二）中，公开了一种化学式为 (Y₁₋ₓCeₓ)₃Al₅O₁₂(0, F)₁₂ 的黄色荧光粉，该专利指出，当用 F- 部分取代 0²⁻ 后，使得荧光粉的量子效率和亮度有所提高。但需要指出的是，该专利给出的荧光粉 (Y₁₋ₓCeₓ)₃Al₅O₁₂(0, F)₁₂ 化学式中，正负电荷不平衡，负电荷少而正电荷多，因此该荧光粉的晶体结构内部可能存在某些阳离子空位（显电负性）以平衡多余的正电荷，而空位是荧光粉发光的淬灭中心，空位的存在使得荧光粉的发光强度有所降低；同时该专利中的荧光粉合成时需使用含 F 离子，而氯化物在高温下都比较容易挥发，但该专利文件中并未对烧结压力做任何的限定。德国的欧司朗公司在 2003 年获得了号码为 666986 的美国专利（专利文献三），该专利中给出的荧光粉化学式为 Tb₃Al₅O₁₂:Ce(TAG:Ce)。TAG 在矿物学上叫镁铝石榴榴石，其晶体结构与 YAG 的完全相同，为立方晶系，空间群是 Ia3d。但 TAG:Ce 与 YAG:Ce 的发光性质不同，这是因为这两种荧光粉基质的晶胞参数存在一定差别，使得发光中心 Ce 所处的晶体场不同，荧光粉的发光性质也就有所区别。北京有色金属研究总院在申请的中国专利 200610114519.8（专利文献四）中，给出了一种化学式为 LnₓMₙ(0, F)₁₂ : (R³⁺, M’²⁺ x) 荧光粉，其中 M’ 正二价元素，Ln 为正三价的稀土元素。该专利中，正二价的 M’ 元素取代正三价的稀土元素，负一价的 F 元素取代负二价的 0 元素，即通过双掺杂的办法来平衡因 F 取代 0 导致的电荷不平衡；该专利中的荧光粉合成时需使用含 F 离子，而氯化物在高温下都比较容易挥发，但该专利文件中亦未对烧结压力做任何的限定。美国通用电气在美国申请的专利 20060197443（专利文献五），给出一种使用负三价 N 取代负二价 0 的、化
学式为 $(RE_{1-x}Ce_x)_3Al_{x+y}Si_2Sc_xO_{12+y}N_y$ 的荧光粉，这里 RE 为 Lu、Gd、Y、或 Tb 中的一种或多种。该专利指出，通过 Si-N 键取代 Al-O 键，使得荧光粉发射光谱的主峰向红光方向移动。

【0005】非专利文献 2《(Na$_x$)[M$_{12}^3$(Li)$_y$]F$_{12}$ (M = Al, Cr, or Fe) 的液相合成及性质》(Synthesis of fluoride garnets (Na$_x$)[M$_{12}^3$(Li)$_y$]F$_{12}$ (M = Al, Cr, and Fe) from aqueous solution and their properties, Journal of Solid State Chemistry, Volume 20, Issue 3, 261–265, 1977) 中报道了一种完全不同于 YAG 或者 TAG 的石榴石结构，即一种氟石榴石结构，而这关于其发光性质，目前未见专利及非专利文献报道。

【0006】在合成氧化物荧光粉的过程中，氟化物可作为熔剂或原料。氟化物在常压、高温下易挥发，因此当氟化物作为荧光粉的合成原料时，由于氧化物的挥发，使得最终合成荧光粉的化学计量比不易控制。同时，通常情况下荧光粉都采用一次还原烧成工艺，即依据荧光粉的化学组成进行配料，混合均匀后在高温炉内烧结而成，之后将烧结好的荧光粉进行破碎、清洗及分级等后处理工艺即可使用。但上述后处理工艺会使得荧光粉的表面缺陷增多，导致荧光粉的发光强度下降。

发明内容

【0007】本发明所要解决的技术问题是针对技术现状另外提供一种发光强度较高的荧光粉。

【0008】本发明所要解决的又一个技术问题是另提供一种发光强度较高的荧光粉的制备方法。

【0009】本发明所要解决的又一个技术问题是另提供一种由发光强度较高的荧光粉制成的发光器件。

【0010】本发明解决上述技术问题所采用的技术方案为：一种荧光粉，其特征在于：其化学组成为 $A_xZ_3Al_{12}Li_{12}F_{24}(O_xN_{12})$，其中 A 为 Na、K、Rb 或 Cs 中的一种或一种以上元素，Z 为 Ce、Sc、Y、La、Gd、Tb 或 Lu 中的一种或一种以上元素，E 为 B、Al、In 或 Ga 中的一种或一种以上元素，D 为 F 或 Cl 中的一种或两种元素，$0 < x < 3, 0 < y < 3, m > n > 0, m+n < 12, 2x+2y = m-n$。

【0011】所述化学组成中，A 为 Na、K、Rb 或 Cs 中的一种或一种以上元素，必含有 Na；Z 为 Ce、Sc、Y、La、Gd、Tb 或 Lu 中的一种或一种以上元素，必含有 Ce；E 为 B、Al、In 或 Ga 中的一种或一种以上元素，D 为 F 或 Cl 中的一种或两种元素，必含有 F。

【0012】所述化学组成中，Ce 为发光中心。

【0013】所述化学组成表示的物质在紫外光、可见光及电子射线中的任何一种光的激发下的荧光范围是 480～620nm。

【0014】所述化学组成表示的物质的平均粒径为 1～100 μm。

【0015】一种荧光粉的制备方法，其特征在于包括如下步骤：以含 A、Z、E、Li、Al 元素的氧化物或者卤化物或者氯化物为原料，按照化学计量比称取相应质量的原料，混合均匀后在还原气氛下于 1000～1500℃下烧结还原 2～10h，还原气氛的压力等于或大于两个大气压，用蒸馏水洗涤烧结后的粉体至中性，选择粒度分级或和酸处理方法中的一中或多种方法处理洗涤后的粉体，其中粒度分级是必须的，将所合成荧光粉的平均粒径调整到 1～100 μm，得到荧光粉粗品；将得到的荧光粉粗品在还原气氛下于 1000～1400℃下烧结还原 2～10h，还原气氛的压力等于或大于两个大气压，用蒸馏水洗涤烧结后的荧光粉粗品至中
性，即可得到所需的荧光粉。
[0016] 所述酸处理所用酸由硫酸、盐酸、硝酸、磷酸、氢氟酸或有机酸的一种或一种以上酸构成。
[0017] 一种由荧光粉制成的发光器件，其特征在于：包括上述荧光粉及发光光源，所述发光光源为能发出300～490nm波长光的发光二极管、激光二极管或有机EL发光元件。
[0018] 一种由荧光粉制成的发光器件，其特征在于：还包括其他荧光粉，并在发光光源的照射下发出白光。
[0019] 所述的其他荧光粉为下列荧光粉中的一种或一种以上：Ca, Sr, Ba, Al, Si, N, Eu, (Ca, Sr, Ba)Al, Si, N, Eu, β-SiA1N, Eu, (Ba, Sr)Y, Si, Al, O, N, Eu, Ca, Al, Si, O, N, Eu, Ba, Si, O, N, Eu, (Ca, Sr, Ba)Si, O, N, Eu, Li, Ca, Si, O, F, Eu, Cs, Mg, Si, O, Eu, (Ca, Sr, Ba)Si, O, Eu, (Ca, Sr, Ba), Mg, Si, O, Eu, Ba, Si, O, Eu, Ba, Zn, Si, O, Eu, (Ca, Sr, Ba), Al, Si, O, Eu, Ca, Zr, Si, O, Eu, (Ca, Sr, Ba)Al, O, Eu, Sr, Al, O, Eu, Lu, Al, O, Ce, Ca, Sc, Si, O, Eu, Sr, Al, O, Eu, Sr, O, Eu, Ca, Al, O,F, Eu, Na, Si, F, Mn。
[0020] 与现有技术相比，本发明的优点在于：提供了一种全新化学组成、且发光强度较高的荧光粉，不会发生电荷不平衡这一现象，从而避免了荧光粉发光强度的降低，该荧光粉在气氛下压力为正压的条件下合成，避免了含氟原料的挥发，从而可精确控制合成荧光粉所用原料的化学计量比。

附图说明
[0021] 图1为实施例1荧光粉的激发和发射光谱；
[0022] 图2为实施例1荧光粉的X射线衍射光谱；
[0023] 图3为实施例2荧光粉的激发和发射光谱；
[0024] 图4为实施例2荧光粉的X射线衍射光谱；
[0025] 图5为实施例3荧光粉的激发和发射光谱；
[0026] 图6为应用本发明荧光粉的发光器件一；
[0027] 图7为应用本发明荧光粉的发光器件二；
[0028] 图8为发光器件二的光谱图。

具体实施方式
[0029] 以下结合附图实施例对本发明作进一步详细描述。
[0030] 实施例1荧光粉的化学组成为Na, Y, Ce, Al, Li, Al, F, N, O。
[0031] 原料为NaF（分析纯）、YF（分析纯）、CeF（分析纯）、AlF（分析纯）、AlN（分析纯）、LiF（分析纯）和Al, O,（分析纯），摩尔比是2.80:0.110:0.090:1.733:0.200:2.800:0.133。将原料研磨混匀后置于氧化铝容器中（也可为氧化锆或氮化硼），在1450℃的温度下烧结4小时，烧结气氛为氮气氢气混合气（烧结气氛为氢气、氮气氢气混合气、氮气或氧气中的一种或多种），把烧结后的粉体从容器中取出，选择粉碎、分级并用摩尔浓度为3摩尔每升的盐酸处理，将所合成荧光粉的平均粒径调整到15μm，之后将荧光粉用蒸馏水反复洗涤至中性，然后将荧光粉放到氧化铝容器中，1400℃的温度下还原4小时，还原气氛为氢气（还原气氛为氢气、氮气氢气混合气、氮气或氧气中的一种或多种），烧结完
毕后即可得到所需的荧光粉，在该荧光粉中，Ce 为发光中心。本实施例制作得到的荧光粉中正负电荷平衡，因而不会降低荧光粉的发光强度。图 1 为本实施例得到的荧光粉的激发和发射光谱，图 2 为荧光粉的 X 射线衍射光谱。

[0032] 实施例 2 荧光粉的化学组成为 NaY_{1.91}Ce_{0.09}Al_{2}LiAl_{2}F_{4.4}N_{0.4}O_{1.2}

[0033] 原料为 NaF（分析纯）、Y_{2}O_{3}（分析纯）、CeF_{3}（分析纯）、AlF_{3}（分析纯）、AIN（分析纯）、LiF（分析纯）和 AlO_{3}（分析纯），摩尔比是 1.000:0.955:0.090:0.710:0.400:1.000:1.445。将原料研磨混匀后置于氧化铝容器中（也可为氧化铝或氧化硼），在 1250°C 的温度下烧结 4 小时，烧结后将用氮气氨气混合气（烧结气量为 0.15L/min, 氧气量为 0.15L/min, 氮气量为 0.15L/min）在 1200°C 的温度下还原 4 小时，还原后在氮气中（还原后气氛为氮气，氨气气含量为 0.15L/min, 氮气量为 0.15L/min）减压为 2 个大气压，烧结完毕后即可得到所需的荧光粉，在该荧光粉中，Ce 为发光中心。本实施例制作得到的荧光粉中正负电荷平衡，因而不会降低荧光粉的发光强度，并且在制备过程中烧结所用还原气氛的气压都不低于两个大气压，避免了氧化物在高温下的挥发，因此可精确控制荧光粉的化学计量比。图 3 为本实施例得到的荧光粉的激发和发射光谱，图 4 为荧光粉的 X 射线衍射光谱。

[0034] 实施例 3 荧光粉的化学组成为 NaY_{1.91}Ce_{0.09}Al_{2}LiAl_{2}F_{4.8}N_{1.5}O_{5}

[0035] 原料为 NaF（分析纯）、Y_{2}O_{3}（分析纯）、CeF_{3}（分析纯）、AlF_{3}（分析纯）、AIN（分析纯）、LiF（分析纯）和 AlO_{3}（分析纯），摩尔比是 1.000:0.955:0.090:1.077:1.500:1.000:0.716。将原料研磨混匀后置于氧化铝容器中（也可为氧化铝或氧化硼），在 1200°C 的温度下烧结 4 小时，烧结后将用氮气氨气混合气，压力为 2 个大气压。把烧结后的粉体从容器中取出，选择粉碎、分级并用摩尔浓度为 3 摩尔每升的盐酸处理，将所合成荧光粉的平均粒径调整到 15 μm。之后将荧光粉用蒸馏水反复洗涤至中性，然后再将荧光粉放在氧化铝容器中，1200°C 的温度下还原 4 小时，还原后为氮气（还原气体为氮气，氮气气含量为 0.15L/min, 氮气量为 0.15L/min）减压为 2 个大气压，烧结完毕后即可得到所需的荧光粉，在该荧光粉中，Ce 为发光中心。本实施例制作得到的荧光粉中正负电荷平衡，因而不会降低荧光粉的发光强度，并且在制备过程中烧结所用还原气氛的压力都不低于两个大气压，避免了氧化物在高温下的挥发，因此可精确控制荧光粉的化学计量比。图 5 为本实施例得到的荧光粉的激发和发射光谱。

[0036] 发光器件一

[0037] 由本发明荧光粉制备的发光器件一 1 如图 6 所示，包括两条引线，在第一引线 2 上的凹槽部位设置了蓝色芯片 4，蓝色芯片 4 的下部电极和凹槽的底面用导电胶连接，上部电极和第二引线 3 用细金线 5 连接，发光物质 7 为本发明荧光粉与硅胶的混合物或硅胶的混合物，环氧树脂 6 涂覆在第一引线 2 上方的凹槽部位。本实施例中的发光器件所用发光光源为能发出 300 ～ 490nm 波长的发光二极管、激光二极管或有机 EL（Electro Luminescence）发光元件。

[0038] 发光器件二

[0039] 为包括本发明荧光粉的发光器件二 11, EMC（Epoxy Molding Compound）支架 20 上固定有两条引线，这两条引线的一端位于基板的中部部位，另一端引出到外部做安装
到电路板时的焊接电极。在第三引线 12 的一端放置了蓝色芯片 14, 蓝色芯片 14 用绝缘胶或导电胶连接, 其中一个电极和第四引线 13 用细金线 15 连接, 另一个电极和第三引线 12 用细金线 18 连接。将实施例 2 中的荧光粉以 15% 质量浓度混合到环氧树脂或者硅胶中, 用点胶机将混合好的荧光粉与环氧树脂或者硅胶涂覆于蓝色芯片 14 的上方, 之后用固定物质 19, 例如环氧树脂或者硅胶, 固定蓝色芯片 14 和荧光粉, 部件 20 的作用是将蓝色芯片 14 和荧光粉发出的光反射出去。本发光器件 11 所用发光光源为发出 390 ～ 490nm 波长光的 LED, 连同根据 390 ～ 490nm 的激发光源发出的 530 ～ 590nm 之间波长光的黄色荧光粉及其他发光材料, 从而发出白光。图 8 为发光器件的光谱图, 照明器件的色温为 6333K, 显色指数为 72.4。