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This invention relates to frequency Selective 
networks and more particularly to the control of 
the phase characteristics of broad band selective 
Systems. 

5. It has for its principal object the provision of 
a linear phase characteristic not only in the 
transmission band of a band selective system, but 
also through the band limits and into the attenua 
tion ranges as far as may be desired. 

10. This object is attained by the use in the. 
branches of a filter network of multiple resonant 
impedances, the resonances and anti-resonances 
being distributed throughout the transmission 
band and the attenuation ranges in a particular 

15 manner as hereinafter described. The phase 
characteristic which is made linear in this way is 
the overall characteristic of the filter network in 
combination with its terminal impedances, Which 
in practice will generally be fixed resistances. 

20. This overall characteristic involves not only the 
transfer constant of the filter network but also 
the wave reflection effects at the terminals and 
the desired linearity is obtained as the result of 
the proper coordination of the sum total of these 

of the filter network. - 
The nature of the invention will be more fully 

understood from the following detailed descrip 
tion and from the accompanying drawing of 

30, which: . . . Fig. 1 shows schematically a general type of 
network of the invention; - 

Fig. 2 is a reactance characteristic used in the 
explanation of the invention; . . . . . . 

35. Figs. 3 and 4 illustrate the character of the im 
pedances in a particular embodiment of the net 
Work of Fig. 1; and 

Fig. 5 illustrates certain characteristics of the 
networks of the invention. . . . - 

40 Referring to Fig. 1, the network illustrated 
comprises a symmetrical lattice having series and 
diagonal impedances Za and Zb respectively, con 
nected between equal terminal resistances R. in 
series with one of which is a wave source E. The 

45, branch impedances may be of any degree of com 
plexity, but should be substantially free from 
dissipation. : ... 

The properties of the symmetrical lattice are 
described at length in United States Patent 

50, 1828,454, issued October 20, 1931 to H. W. Bode 

25 reflection effects with the transfer characteristic 

wherein it is shown that by particular allocation 
of the resonance and anti-resonance frequencies 
of the branch impedances, hereinafter designated 
critical frequencies, certain advantageous fre 
quency characteristics of the image impedance 5. 
and the transfer constant may be provided. The 
characteristics discussed in the Bode patent are 
those of the lattice per se, namely, its image in 
pedance and transfer constant, as distinguished 
from the overall properties of the lattice plus the 10, 
impedances between which it is connected. In 
the latter case the transmission characteristic of 
the system is not represented by the transfer 
constant alone but by this factor together with 
modifying factors representing the reflection ef-15 
fects at the junctions of the lattice and the ex 
ternal impedances. The total effect, which is a 
measure of the ratio of the currents at the re 
ceiving end of the system before and after the 
insertion of the lattice is termed the insertion 20 
transfer factor. 
The present invention is concerned. With the 

phase component of the insertion transfer factor, 
that is, with the Sum of all the phase shifts in 
the system including those produced by reflec- 25. 
tion effects. The terms insertion phase shift and 
insertion phase characteristic are used to desig 
nate the phase component of the insertion trans 
fer factor. In accordance with the invention this 
phase shift is made to have a linear variation. 30. 
with frequency not only Within the transmission 
band but also through the attenuating ranges by 
-a particular allocation of the critical frequencies 
of the branch impedances. This allocation is 
Such that, except at each side of the cut-off fre- 35. 
quencies, the critical frequencies are separated 
by a uniform interval both in the transmission 
band and in the attenuating ranges, the Separa 
tion at each side of the cut-off frequencies being 
reduced to three quarters of the interval else- 40. 
Where. 
The analysis which follows is directed to the 

demonstration of the linearity of the phase 
characteristic obtained by the simple frequency 
arrangement of the invention and to the deter. 45. 
mination of the lattice branch impedances so that 
the network will exhibit this linearity couple 
With band selective properties. . . . . ." 
The determination is further subject to the: 

condition that the impedance arms be physically 50 
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2 
realizable. This condition imposes a certain 
functional form for the dependence upon the fre 
quency, which may be quickly ascertained. The 
insertion transfer factor for the netWork is con 
veniently examined in terms of the image transfer 
constant, 0, and the image impedance, ZI, which 
are related to the lattice impedances, Zia and Zb, 
Say by the equations 

tan h 2 TV 2 (1) 

Zr= WZZ (2) 
Equation (1) shows that for free transmission, 

or for 0 a pure imaginary, Za/Zb must be negative. 
This result is achieved over an arbitrary fre 
quency interval if Za and Zb are reactances un 
like in sign, that is, reactances of which the alter 
nating resonances and anti-resonanceS COrre 
spond, a resonance in Za to an anti-resonance in 
Zb and so son. Also, by Equation (1), the network 
attenuates in a frequency interval in which Za/Zb 
is positive, for then 6 is real. This ensues if 
Za and Zb are alike in Sign, Or if resonances in 
Za correspond to resonances in Zb, and SO for anti 
resonances. Since a condition for the physical 
realizability of a reactance is that its resonances 
and anti-resonances alternate, between an in 
terval of transmission and an interval of Sup 
pression there must occur a critical frequency, 
the cut-off, in one impedance arm only. 
The impedances Za and Zb by their frequency 

variations and magnitudes completely determine 
the transmission properties of the network and 
for that reason may be termed characterizing 
impedances. 

Therefore, filter properties are obtainable from 
a physically realizable lattice network if only the 
arms are reactances having the appropriate type 
of correspondence between their respective nat 
ural frequencies. This is illustrated in the case 
of the low-pass filter, in which the branch in 
pedances Za and Zb are of the types shown in 
Figs. 3 and 4 respectively, by the reactance ex 
preSSions, 

2 2 (1-t)(1-F) Z, -i Kaf, a sy (1-f)(1-2) 
f2 f2 f2 

1- - 1 - (1-F)(1-F)(1-A) 2, 4. if f f (1-f)(1-F) 
where Ka and Kb are constants and where fi and 

Z-Z2-kW 
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a filter the Zeros and poles are inversely coinci 
dent, that is, the Zeros of the one impedance are 
coincident With the poles of the other impedances, 
While in the attenuation ranges the Zeros and the 
poles of the two impedances are directly coinci 
dent, Zeros with zeros and poles with poles. 
Plots of the impedances, showing the manner of 
coincidence of the resonant frequencies, are given 
by Fig. 2 in which full line curve O represents 
the frequency variation of the reactance of Za and 
dotted line curve represents the variation of 
Zb. With these values for Za and Zb, the Equa 
tions (1) and (2) become 

f2. 
6 (1-5) - tan h;=ivK, Kit, a 4- (1a) (1-)Wi-A 

and 

--- - 1-A) K f2 f2 z-V. 1- Y -6. (2a) f? f2 (1-4) 
It is seen that 6 is imaginary and ZI real for fgfe, 
whereas for f>fe, 0 is real and ZI imaginary, cor 
responding to the case of the low-pass filter. It 
Will expedite the discussion to confine the atten 
tion to this case, Subsequently extending the re 
Sults to high-pass and band-pass filters. 
The relations (1a) and (2d) then indicate the 

form which the dependence of the image param 
eters upon the frequency must take in order. 
that the netWork may be a physically realizable 
low-pass filter. Evidently no restriction is placed 
upon the number of transfer-constant controlling 
frequencies (fl. and f2 in the example) nor upon 
the number of impedance controlling frequencies 
(f3 and f4 in the example). The cut-off 
factor, 

F5 V1 
may appear either in the numerator or denomi 
nator in the image impedance and transfer 
Constant expressions, provided only that zeros 
and infinities alternate. Since it is equally easy 
to proportion the elements for the desired effects 
whatever the number of critical frequencies, we 
shall first establish the general conditions, and 
later complete the specification of the example. 
Thus if transfer-constant controlling frequencies 
be distinguished by the subscript a, the im 
pedance controlling frequencies by b, the gen 
eral form may be Written - 

E) 1 - - ( fa 
2 - 

(1– f - fi- v f2 unhi-vz-r (, ) ... ( ), v-z. - f/ f 

f2 f2 

( £) - (1-A) 
( f2 f2 N. (2b) 1-4) (1-4) 

fe are critical frequencies in the transmitting 
band, fe a cut-off intermediate between f2 and 
f3, and f4 and fs critical frequencies in the at 
tenuating band. For convenience the critical 
frequencies representing resonances are termed 
Zeros and those representing anti-resonances are 
termed poles. Within the transmission band of 

wherein K1 and K2 are constant real quantities. 
The solution of (lb) and (2b) always yields 
physically realizable expressions for Za and Z if 
the K's are positive and 

The adjustment of the lattice elements accord 
n 
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ing to the invention is equivalent to the deter 
mination of the K's, and fa's, and the fib's so that 
the network, when operating between constant 
resistance terminations, will introduce a rotation 
in phase linear With frequency over an arbitrary 
frequency interval. This interval is supposed to 
include the entire transmitting band and an ad 
jacent part of the attenuating band. The region. 
between the two bands in the neighborhood of 
the cut-off, where the characteristics change from 
the One type to the other, may be called the 
transition band. . . - 

The insertion constant of the network is de 
fined by: 

I, 
ey =7 

where Ir' and Ir are the received currents before 
and after the insertion of the netWork. When 
expressed in terms of the image parameters and 
the terminating resistance, R., y is found to be 
a Sum of the transfer Constant and the reflection 
and interaction constants. These latter are de 
fined respectively by 

2 

(1+2. 
er= -z- (3) 

4. 
and 

2 

(1-f ei=1- (ge- (4) (1 +2. R 
It may be noted in passing that the interaction 

constant defined by Equation 4. represents the 
repeated reflection of the initially reflected part 
of the current or Wave as it passes back and forth 
between the terminal impedances and infinite 
number of times. The convenience of this form 
of expression becomes manifest. When one ex 
amines the Variation in the phase shift Sep 
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arately in the three intervals, the transmitting 
band, the attenuating band, and the transition 
band. In so doing is established the distribution 
of the critical frequencies f. and f, correspond 
ing to linear phase shift. 

Transmitting band.--From Equation (2b) it is 
seen that 

2 

tends to 1 as if tends toward Zero, if K2 be taken 
equal to R. Furthermore, the form of the func 
tion is Such that ZI differs but little from R, in 
this interval, the immediate vicinity of the cut 
off having been set aside for the transition inter 
val. On this account in the pass band the con 
tributions of the reflection and interaction factors 
to the phase shift are negligible and the transfer 
constant represents substantially the total in 
sertion loss. This is readily seen from Equations 
(3) and (4), the right-hand Sides of Which con 
verge to the value unity as ZI approaches the 
value R, corresponding to negligibly Small values 
of the reflection and interaction constants 0r and 
6. Since this condition holds throughout the in 
terval in question, the phase characteristic there 
is determined substantially wholly by the transfer 
constant alone. If 0=og--i6, where i is the 
imaginary unit, then by (1b), 

(3 f/ f / I, f2 
ti- (1- Wilf (5) f/ ' ' '. V.' ... f. 

3 
when Bincreases by it as if varies from one critical 
frequency to the next. In order that the slope 
be constant throughout the interval, it is there 
fore necessary that the critical frequencies fai 
be uniformly spaced. If this spacing is Af, then 
the phase shift undulates about the chord 

6-7 f. 
2. 2. Af 

having its ideal value at least at each critical 
frequency. - . . 

Attenuating band-In this interval, the 
imaginary part of the transfer constant is either 
zero or ir, while interaction effects are negligible 
on account of the factor et in (4), with 0 real. 
The part of the phase-shift dependent, upon the 
frequency is therefore the imaginary part of the 
reflection constant, 0r. Since ZI is reactive in this 
range, the phase of the denominator of (3) is 

-l 
-- 2 

while that of the numerator is 

2r 
2 arctan R 

Thus 
(3,- t;+2 arctan . (6) 

The significance of the constant term will appear 
presently. With the help of (2b), the Second 
term is seen to be, in the attenuating band, a 
function of the same type as the transfer con 
stant in the transmitting band. Hence, for the 
phase slope to be constant in the attenuating 
range, the impedance controlling factors also 
must constitute a chain of uniformly spaced 
resonances and anti-resonances. Since Br in 
creases by it between successive critical frequen 
cies, the slope will be equal to the slope in the 
pass band if the uniform spacing is the same 
constant Afin both ranges. 

Transition band.--It remains to determine the 
frequency spacings adjoining the cut-off so that 
the phase curves in the transmitting and atten 
uating bands are joined through the transition 
band by a chord of the same slope. In this in 
terval, which we Suppose to be bounded by the 
last uniformly spaced critical frequencies in the 
transfer constant and impedance controlling 
chains and to contain only the cut-off frequency, 
neither the reflection nor interaction effects are 
negligible. In fact, for this method of decompos 
ing the total insertion loss, these components be 
come oppositely infinite at the cut-off. However, 
the interaction factor introduces no net change 
of phase over the interval, since it vanishes at 
one edge in virtue of ZI equal to R very nearly, and 
at the other in virtue of e2 being very small. It 
may therefore be ignored in evaluating the total 
change in phase through this interval. 
In the Space adjoining the cut-off on the trans 

mitting side, the phase of the transfer constant 
increases by Tr. In the Space adjoining the cut 
off on the attenuating side, the phase of the re 
flection factor increases by it. At the cut-off, 
however, where the image impedance changes 
from real to imaginary, the reflection factor in 
troduces an abrupt change in phase of 

- . 
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4 
represented by the first term of (6). Therefore 
the net change in the transition interval is 

37 
2 

radians, and the interval must contain 3/2 uni 
form spaces if the average slope is to be correct. 
Considerations of symmetry require that the cut 
off be the center of the interval, which thus com 
prises two three-quarter Spaces. 
These observations establish necessary condi 

tions upon the frequency pattern corresponding 
to the requirement of linear phase shift in both 
transmitting and attenuating bands. The suffi 
ciency of these conditions, when appropriate 
values have been assigned to K1 and K2 in Equa 
tions (1b) and (2b), may be verified by direct 
computation. For this purpose the formulae for 
the reflection and interaction factors are not use 
ful because of the indeterminacy at the cut-off. 
This difficulty is avoided by expressing ZI and 0 
in terms of the lattice impedances, in which event 

22, , 2, 2, 
it is fit is e'-- Z Z. 

R R 

If iXa and jYb be written for Za and Zb, the in 
sertion loss and phase shift, Ay and By, are given 

- X. X (7) 
R R 

and 
XaX, g-1 
XaXi. 
R R 

These formulae contain the reflection and inter 
action effects and enable the total transmission 
to be conveniently calculated. It is instructive, 
however, to investigate the manner in which these 
effects combine with the transfer constant to pro 
duce the required performance. We have already 
noticed that in the three-quarter space adjoining 
the cut-off in the theoretical paSS band, the trans 
fer constant phase increases by ar. At the cut 
of the reflection factor acquires an imaginary 
component with ZI, introducing first a phase ro 
tation of 

(8) tan By = 

r 

2 

Which is increased by Tr radians in the three 
quarter interval on the attenuation side of the 
cut-off. The contribution of the interaction con 
stant must, of course, remove this phase discon 
tinuity at the cut-off. In the pass band, its imag 
inary part is 

ZY (1-5 
2 

(1+2. r 
Where ZI is real. The limiting Value of this angle 
as the cut-off is approached through frequencies 
in the pass band can be determined by express 
ing it in terms of the lattice impedances. At the 
cut-off, either Xa or Xb is either zero or infinite. 
Suppose that Xa is zero. Then this limit is arctan 

arc 1 26 

2,054,794 
On the attenuation side of the cut-off, the imag 
inary part of the interaction constant is 

- 2. ac 1-e 24 arctan f 
where ZI is imaginary. The limiting value of 
this expression, as the cut-off is approached 
through frequencies in the attenuation band, is 
found by the same method to be 

X, arctan ( ) f=ff. 
Thus the discontinuity in 81 at the cut-off is 

; 
as required to remove the discontinuity at this 
point introduced by the reflection effect. 
The variation with frequency of the several 

phase shift components is illustrated by the 
curves of Fig. 5 for the case of the low-pass fil 
ter having impedances Za and Zb in accordance 
with Figs. 3 and 4 respectively, and having the 
critical frequencies spaced in the manner de 
scribed. Curve f2 represents the transfer phase 
shift p, that is, the phase component of the trans 
fer constant of the lattice per se, in the transmis 
sion range from Zero frequency to the cut-off. 
This component increases by it in each of the in 
tervais between the critical frequencies, including 
fc, and undulates about the Straight line 5 de 
parting therefrom by T/4 at the cut-off. In the 
figure, the undulations of this curve, as well as 
those of the other Curves are SOmewhat exagger 
ated in order that their character may be ex 
hibited. 
Curve 3 represents the reflection phase shift 

f3r in the attenuating range, this component being 
Zero in the transmission band. By Virtue of the 
critical frequency spacing the general slope . Of 
this curve is that of the line 5 but it is char 
acterized first by a departure of - ir/4 at the cut 
off and a Sudden change of it at the Critical fre 
quency fa. 
amounts to a reversal of phase its effect in gen 
eral is not material. 
Curve 4 represents the interaction phase shift. 

This curve is characterized by undulations of half 
the period of those of the other curves and by a 
Sudden change of ar/2 at the cut-off. 
The total phase shift in the System is obtained 

by adding the three curves together in which 
case it will be noted that the discontinuity of 
curve 4 at the cut-off just neutralizes that at 
the junction of curves 2 and 32. The resultant 
phase shift Will therefore show a smooth varia 
tion which is very close to linear through the 
Whole range from Zero to fs and which continues 
at the same slope, Subject to reversals at the 
critical frequencies, in the higher range. 
The pattern for the transfer constant and im 

pedance controlling frequencies which has been 
found is sufficient to insure only that the phase 
shift has its linear value at each critical fre 
quency, or that the average slope in each space 
be the same. In order that the slope may closely 
approximate to the average at every intermediate 
point, it is further necessary to determine the 
multipliers K1 and K2 of the transfer constant 
and image impedance expressions. We have al 
ready seen that K2 should be taken equal to the 
terminating impedance, R, so as to obtain im 
pedance match and Vanishing interaction effects 
in the paSS band. K1 may be evaluated from 

Since this latter change simply 
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Equation (5), of which the principal part in the 
limit of Small fis - 

E-Kf 
The chord with which the phase characteristic 
should coincide is 

B.T. f. 
22 Af 

Whence. 
t 

K1 2A 
in order that the phase curve have the proper 
slope at the origin. This relates the multiplier 
K1 to the uniform Spacing, Af. 
These conditions, applied to the case illustrated 

in Figs. 2, 3, and 4, serve completely to determine 
the elements of the lattice impedances. For the 
transfer constant controlling frequencies, f1 and 
fa, must be uniformly spaced, falling at Alf and 
2Af. The cut-off, fc, is separated from fa by 
three-quarters a uniform interval, and from the 
first of the uniformly spaced impedance control 
ling frequencies by a like interval. Thus, Equa 
tions (1a) and (2.a) become 

(-(a) 0.7 f 
tan h -i. (-).V. af (1c) 

d - 

a. -(1-c. far) z-ev-gir).o) (2c) 
in which Afmay be selected to bring the cut-off 
to any desired point on the frequency Scale. 
The solutions of these relations for the lattice 
impedances are then 

f f2 
=7.1. (-(a)(-6.) 

*-ii (, ) (, i.) 
and / fa f2 f - (-i)(25p)(cir) 

iii, (-(Ar)(-3.) 
The element values for the impedances are read 
ily found by expanding these expressions in par 
tial fractions, after the manner described by R. M. 
Foster, “A reactance theorem', Bell System Tech 
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nical Journal, v. 3, No. 2, April, 1924. 
With this choice of parameters the greatest. 

deviation of the phase slope from the average is 
found by computation to be of the order of 1 
per cent. This approximation is satisfactory for 
most practical purposes. Since all the param 
eters of the network have been determined with 
an eye to the phase characteristic, this is accom 
panied by a unique loss characteristic. The loss 
characteristic is marked by reflection peaks at 
each impedance controlling frequency, where the 
lattice impedances are Zero Or infinite together. 
At these frequencies the image impedance 
changes sign, and therefore also the constant 
term of Equation (6). Thus, although the phase 
slope is uniform throughout the attenuating 
range, the phase characteristic itself has discon 
tinuities of T radians at each impedance con 
trolling frequency. This is the interpretation of 
the constant term of Equation (6). Whether 
this is an increase or a decrease of it radians is 

5 
not distinguishable for a non-dissipative network. 
When parasitic dissipation of energy in the net 
work elements is taken into account, the reflec 
tion peaks of loss have finite maxima and the 
phase in the neighborhood increases or decreases 
by it according as the line- or cross-arm of the 
lattice has the smaller resistance component at 
the peak frequency. The infinite peak at this 
frequency, and the associated abrupt change in 
phase, can evidently be restored by adding a 
lumped resistance to the Smaller impedance SO 
as to bring the arms into balance. This observa 
tion is of importance in considering the effect of 
dissipation on the phase shift. . 
When the network is constructed of physical 

elements its performance characteristics will be 
Somewhat changed from those computed upon 
the assumption of pure reactance lattice arms. 
However, the relations subsisting between the 
real and imaginary parts of any analytic func 
tion Such as the insertion constant enable these 
changes to be readily computed so long as the 
dissipation can be regarded as uniformly dis 
tributed among the elements. In fact, if d is 
the average ratio of resistance to reactance in 
the elements, and AA and AB are the Variations 
in the insertion loss and phase shift due to the 
introduction of dissipation, we have approxi 
mately 

B 
AA=od. (9) 

and 
oA 

AB= -ods (10) 

where the derivatives are computed for the net 
work of pure reactances. The frequency vari 
able to is 2arf. Now the dissipation is ordinarily 
concentrated chiefly in the coils, so that wa is 
constant if the coil resistances are constant. 
Then the effect of dissipation upon the loss char 
acteristic in a linear phase shift network is sim 
ply the addition of a uniform loss. 

Moreover, throughout the transmitting band, 
in which 

oA 
=0 

there is by Equation (10) no first order change 
in the phase characteristic. But in the transi 
tion interval, when the loss is increasing, the 
phase curve is displaced through dissipation 
from the ideal straight line. This effect may be 
compensated in two ways. It depends upon the 
dissipation being uniformly distributed among 
the resonant combinations of which the network 
is composed, and is modified if that distribution 
is modified. In particular if lumped resistance 
be added to the meshes resonating at the first 
impedance controlling frequency in Such a way 
as to balance the lattice at this frequency, the 
phase curve will be restored to linearity, as pre 
dicted above. 
The effect of dissipation on the phase char 

acteristic in the transition interval may be oth 
erwise corrected for by Small variations in the 
ideal frequency pattern. By diminishing slight 
ly the two three-quarter space intervals in the 
transition band, the non-dissipative phase slope 
may be caused progressively to increase through 
the band So that change due to parasitic dissipa 
tion displaces the characteristic toward, rather 
than away from, the ideal straight line. Since 
to shorten the cut-off spacing increases the se 
lectivity of the network, the attenuation chair 
acteristic is improved by increase of dissipation 
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in the impedances together with compensating 
modification of the frequency spacing in this way. 
The appropriate variations of the critical fre 
quencies from their theoretical locations are best 
determined by trial. 

It is poSSible in other Ways to obtain a meas 
lure of control over the loSS characteristic by 
means of slight variations in the ideal Values of 
the parameters. For example, the OSS may be 
increased at the cost of Some degradation of the 
phase property by varying the constants Kl 
and K2. 
Since the spacing of impedance controlling 

frequencies must be uniform over that portion 
of the attenuating band in which the phase slope 
is to be uniforn, the extension of this condi 
tion. Over the infinite attenuating band of a low 
paSS filter Would result in an infinite network. 
In practice the phase slope is seldom of in 
terest very far into the attenuating band, so 
that the chain of unifornly Spaced impedance 
controlling frequencies may be soon terminat 
ed. If the phase requirement ends at a fre 
quency fa, uniform spacing must be main 
tained through fid. Then the infinite chain. Of 
unifornly Spaced critical frequencies greater 
than fi may be replaced by one or more critical 
frequencies so located that the corresponding 
factorS approximate in the range below fed to 
the factors associated with the omitted infinite 
Sequence. The numerical determination of the 
terminating critical frequencies is simple, since 
a close approximation is obtained by use of one, 
Or at most tWO, of then at SomeWhat extended 
SpacingS. 
The foregoing discussion has for simplicity 

been confined to the case of the low-pass filter. 
Similar observations may be made in respect to 
band-paSS and high-paSS filters. For the band 
paSS filter We must have a chain of unifornly 
Spaced critical frequencies in the paSS band With 
cut-offs at three-quarter spacing at both edges. 
Uniform spacing of impedance controlling fre 
quencies in both attenuating bands is resumed 
after three-quarter intervals beyond the cut 
offs. Since the lower cut-off factor replaces the 
factor, 

Trf 
2ce 

of the transfer constant expression in the fire 
quency range above the lower cut-off, the the 
Oretical constant multiplier is unity. The mu 
tiplier of the image impedance expression is 
determined to make the impedance R, at the 
mean of the cut-off frequencies. 
The high-pass filter may be regarded as the 

limiting case of the band-paSS filter as the up 
per cut-off recedes toward infinity. The pres 
ervation of linear phase shift over this infinite 
pass band would require an infinite network on 
account of the necessity of uniform Spacing of 
transfer constant controlling frequencies, but if 
there is a frequency, fid, beyond Which the phase 
shift is not of interest, the high-paSS filter may 
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be realized in a finite network by terminating 
the chain of critical frequencies beyond this point 
in the manner described above for impedance 
controlling frequencies. 
What is claimed is: 
1. In a broad band selective System compris 

ing a symmetrical reactance network having 
multiple resonant characterizing impedances Za 
and Zb, and equal resistive terminal impedances 
connected to the input and the output terminals 
of the network, the method of producing a linear 
phase shift throughout the band and beyond the 
limits thereof. Which comprises. Spacing the crit 
ical frequencies of the characterizing impedances 
at uniform intervals throughout the greater 
portion. Of the transmission band and in a por 
tion of an attenuation range beyond a band limit 
and Spacing the critical frequencies on each side 
of Said band limit at intervals therefrom sub 
stantially equal to three-quarters of the uniform 
inter Val elsewhere. 

2. A broad band Selective system comprising 
a Symmetrical four-terminal reactance netWork 
having characterizing impedances Za, and Zb, and 
equal resistive terminal impedances connected to 
the input and the output terminals of said net 
Work, Said characterizing impedances each hav 
ing a plurality of critical frequencies which are 
Spaced at uniforn intervals throughout the 
greater portion of the transmission band and in 
an attenuation range beyond a cut-off frequency, 
and which on each side of the cut-off frequency 
are Spaced at intervals substantially equal to 
three-quarters of the uniform spacing elsewhere 
Whereby the insertion phase characteristic is 
linear throughout the band and a portion of the 
attenuation range. 

3. A broad band selective system comprising 
a Symmetrical four-terminal reactance network 
having characterizing impedances Za and Zb, 
and equal resistive terminal impedances connect 
ed to the input and the output terminals of said 
netWork, Said characterizing impedances hav 
ing a plurality of critical frequencies certain of 
Which lie Within the transmission band and oth 
ers of which lie outside the band and One of which 
determines a band limit, said critical frequen 
Cies being Spaced at uniforn intervals through 
Out the transmission band and in a portion of 
the attenuation range beyond said band limit 
and having a spacing On each side of said band 
limit Substantially equal to three-quarters of the 
uniform Spacing elsewhere Whereby the inser 
tion phase characteristic of the netWork is a 
Substantially linear function of the frequency 
throughout the band and through the cut-off 
frequency. 

4. A Systern in accordance With claim 3 in 
which the poles and Zeros of the impedance Za 
are inversely coincident with the poles and zeros 
Of the impedance Zb within the band and are 
directly coincident with the poles and Zeros of 
in pedance Zb outside the band. 
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