Title: SOLUTION FOR WOOD PRESERVATION

Abstract: A solution for wood preservation is suitable for preservation of wood against wood pests (fungi, insects, termites) that increases resistance of wood against biotic and abiotic factors of decay. The solution for wood preservation comprises an aqueous solution of amine, copper salt, boron salt, quaternary ammonium compound, and carboxylic acid. Preferable embodiment is a solution for wood preservation, consisting of ethanolamine, copper (II) sulphate, disodium octaborate tetrahydrate, alkylbenzylidimethyl ammonium chloride, and octanoic acid dissolved in water. This composition results in improved copper fixation (decreased leaching of active ingredients from wood during weathering) and improved resistance against the most important wood destroying organisms like wood decay fungi, insects and termites.
SOLUTION FOR WOOD PRESERVATION

The subject of present invention is aqueous solution for wood preservation against wood pests, and to improve resistance of wood against biotic and abiotic factors of decay.

Wood is exposed to various biotic and abiotic factors of decay. These processes are necessary and required in the nature, but when wood is used for construction purposes, we would like to slow them down as much as possible. This is can be achieved by using chemical wood preservatives.

Most of the Slovenian and European wood species produces wood that is not resistant against fungi, insects and termites. If we want to use such wood in hazard class 3 (wood above soil, uncovered) or hazard class 4 (soil or water contact), we have to chemically protect it. Proper treatment prolongs lifespan of wood, what results in cheaper maintenance and safety of wooden construction.

Copper effectiveness against wood decay fungi makes it important constituent of wood preservatives for almost 200 years. In recent years, the use of copper compounds for biocidal purposes has increased. The reasons are: copper compounds are relatively safe, development of pathogens has been minimal; pathogens show increased tolerance against organic fungicides after extended period of use, and thirdly increase in government regulations and restrictions (or outright banning) of alternative products due to their toxicological or environmental impacts. However, traditional copper based wood preservatives had an important drawback; copper did not get fixed into wood and was prone to leaching out of wood.

This problem was resolved, by introducing of fixed water-borne preservatives. Heinrich Bruning discovered that normally soluble metal salts could be made insoluble, or fixed inside wood, by addition of large amounts of chromium. Since carcinogenic nature of chromium compounds is well known, most of the European countries intend to ban use of chromium in wood preservatives. Some of them will allow use of chromium preserved wood only for special purposes that are classified as hazard class IV. Use of chromium based wood preservatives will be banned for children playground equipment, garden furniture. Therefore, intense researches are going on in the world laboratories to develop environmentally acceptable solution for copper fixation in wood preservatives.
Ammonia was found very effective copper fixative long time ago, but due to its emissions this formulation newer came into extensive commercial use. Later ammonia was replaced with amines; particularly ethanolamine and triethanolamine were found very effective copper fixative. Commercial wood preservatives on the basis of copper and ethanolamine are available on the market already. However, copper leaching from such treated wood is still 5-10 times higher than leaching from wood treated with classical copper-chromium based preservatives.

Beside problems with copper fixation, use of copper treated wood is limited because of appearance of copper tolerant fungi as well. Therefore co-biocides are introduced to copper-ethanolamine based aqueous solution to increase protection against copper tolerant fungi. Addition of co-biocides is very tricky, as we have to pay attention not to increase copper leaching.

There are several copper based wood preservatives available on the market. In the major part of the countries (Russia, Ukraine, Africa, Asia, and South America) still uses wood preservatives based on copper, chromium and arsenic salts. American wood preservative association introduces abbreviation CCA for such preservatives. In most of these aqueous solutions copper is in the form of copper oxide. Copper in those preservatives served as fungicides, arsenic as insecticide and secondary fungicide and chromium as fixative. These types of preservatives are available under different commercial names such as: Celcure A, Tanalith C, Ascu - Greensalts, Wolman CCA, Osmose K33, Langwood.

In the continental part of Europe, arsenic salts are banned for almost 15 years. In order to ensure protection of wood against insects, boron salts were introduced instead. In some of the Scandinavian countries arsenic was replaced by fluorine compounds.

In the USA besides copper-chromium based preservatives other solutions are used as well. One of them consists of copper, arsenic and ammonium acetate. After 1983 part of arsenic was replaced with zinc. Fixation of these preservatives is very simple; most of copper participates after volatilization of ammonia.

In the eighties, there were preservatives consisting of copper, arsenic and ammonia. Due to unpleasant ammonia emissions, workers on the impregnation systems do not want to use it.
However, completely new solution was developed in Wolman. They developed solution consisting of Cu-HDO (copper hydroxyquinolinolate), that is soluble in solutions with pH value above 7, but precipitates in insoluble form if pH decreases below 6. In acidic wood, copper precipitation appears, rapidly after impregnation. Due to high price, and possible carcinogenic effect of hydroxyquinolinolate, USA EPA does not allow registration of this active ingredient.

Nowadays, ethanolamine is a component of several copper based wood preservatives that are available on the market. This includes copper-quat, copper dimethyl-dithio-carbamate, and copper azole. In those preservatives, boron, quaternary ammonium compound or azoles are used as cobiocides, and ethanolamine as fixative. However, detailed molar ratios between copper and amine are not known.

Solution for wood preservation according to the present invention offers environmentally acceptable protection of wood against most important wood decay fungi, including white rot, brown rot species as well as copper tolerant isolates. Additionally, wood treated with these preservatives has increased resistance against insects (house longhorn Beatle) and termites. On the other this preservative solution does not contain chromium and arsenic.

Copper ensures effectives against most important wood decay fungi, ethanolamine and carboxylic acid ensures proper fixation and quaternary ammonium compound and boron offers protection against insects, termites and copper tolerant fungi.

The composition of solution for wood preservation according to the present invention is optimized using two criteria, after extensive laboratory testing. Those two goals are: to decrease copper leaching and to increase effectiveness against wood destroying organisms (wood decay fungi, insects, and termites).

Wood preservative solution described in this invention is aqueous solution consisting of:

a) selected amine,
b) selected copper salt,
c) selected boron salt,
d) selected co-biocide from the group of quaternary ammonium compound (quad), and
e) selected carboxylic acid.
a) For preparation of the wood preservative solution according to the present invention an amine is selected from the group consisting of ethanolamine, diethanolamine and triethanolamine.

The best results were achieved, when wood was impregnated with preservative solution consisting of solution where ethanolamine was used as amine source. Almost ten times lowest copper leaching rates were determined when ethanolamine was used compared to diethanolamine or triethanolamine.

b) For preparation of the wood preservative solution according to the present invention a copper salt is selected from the group consisting of copper oxide, copper hydroxide and copper sulphate pent-hydrate.

The best fixation of copper is achieved when copper (II) sulphate pent-hydrate (CuSO₄·5H₂O) is used as a copper salt.

Copper sulphate is used for wood preservation for long period, but up to our best knowledge, we did not find any report on use of copper sulphate in combination with ethanolamine. During dissolution of this salt, sulphate ion is releasing that decreases the pH value of this solution what results in improved fixation of this respective wood preservative solution.

c) For preparation of the wood preservative solution according to the present invention a boron salt is selected from the group consisting of boric acid, borax and disodium octaborate tetrahydrate (Na₂B₈O₁₃·4H₂O). These compounds are well known insecticides and fungicides.

The best results were achieved using disodium octaborate tetrahydrate. Combination of this compound with other ingredients resulted in the best performance, best copper fixation and the highest fungicidal effect.

d) For preparation of the wood preservative solution according to the present invention a quaternary ammonium compound (quat) is used as co-biocide. These compounds are used for wood preservation for almost 20 years. In recent years
there are even some combination of quat and copper available on the market. The most important advantage of this compound is significant fungicidal effect. Additionally, this compounds form new complexes between copper, ethanolamine and quat, what results in improved fixation. According to the market availability and biological effectiveness, the alkylbenzyldimethyl ammonium chloride is chosen for preparation of the wood preservative solution according to the present invention.

e) In order to improve fixation of copper in this preservative solution, carboxylic acids are introduced to this aqueous solution as well. For preparation of the wood preservative solution according to the present invention a carboxylic acid is selected from the group consisting of hexanoic acid, octanoic acid and decanoic acid.

The best results were achieved, when octanoic acid was introduced into preservative solution. Octanoic acid has hydrophobic effect. Besides that it has limited fungicidal properties as well. Addition of carboxylic acid significantly decreases copper leaching. Leaching from preservative solution consisting of copper, ethanolamine and octanoic acid is comparable to leaching from copper-chromium treated wood (Table 1).

<table>
<thead>
<tr>
<th>Copper based preservative solution</th>
<th>Copper leached in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (II) sulphate</td>
<td>45-55 %</td>
</tr>
<tr>
<td>Copper (II) sulphate + ethanolamine</td>
<td>6-15 %</td>
</tr>
<tr>
<td>Copper (II) sulphate + ethanolamine + disodium octaborate tetrahydrate + quat</td>
<td>4-8 %</td>
</tr>
<tr>
<td>CCB</td>
<td>0,5-2%</td>
</tr>
<tr>
<td>Copper (II) sulphate + ethanolamine + disodium octaborate tetrahydrate + quat + octanoic acid</td>
<td>1,1-2%</td>
</tr>
</tbody>
</table>
Additionally, molar ratio between copper and ethanolamine in preservative solution is important as well. This ratio influences on the price of preservative solution and its resistance against copper leaching. In the most of preservatives the solution molar ratios Cu:amine are lower than 1:12. One of the exemptions is Kuproflorin produced by Regeneracija, Slovenia.

Acceptable copper-amine molar ratios are between 8:1 and 3:1. The best ratio is influenced by copper source used, co-biocides, and other additives. Generally speaking, more additives requires higher copper amine molar ratio. The lowest copper leaching is determined at specimens impregnated with aqueous solution consisting of copper, boron, ethanolamine, quat where molar ratio between copper and amine was between 1:5 to 1:6. In solutions where molar ratio was lower than 1:4, copper precipitated.

The most effective composition of preservative solution described in this patent is aqueous solution consisting of ethanolamine, copper (II) sulphate, disodium octaborate tetrahydrate, alkylbenzylidimethyl ammonium chloride, and octanoic acid in the following composition:

a) Ethanolamine (EA) molar ratio between copper and EA should be 1:6,
b) 1% Cu in the form of CuSO₄·5H₂O,
c) 0.5% of boron in the form of disodium octaborate tetrahydrate (Na₂B₈O₁₃·4H₂O),
d) 1% of quaternary ammonium compound in the form of alkylbenzylidimethyl ammonium chloride,
e) octanoic acid molar ratio between Cu:octanoic acid should be 1:1,

or expressed as grams of respective ingredients in 1000 g of preservative solution

57.69 g ethanolamine,
39.32 g CuSO₄·5H₂O,
8.1 g disodium octaborate tetrahydrate,
10.8 g alkylbenzylidimethyl ammonium chloride,
11.35 g octanoic acid.
Wood, impregnated with preservative solution, prepared according to the present invention, has exhibited sufficient resistance against weathering. Comparable copper leaching rates were determined as at wood impregnated with copper-chromium based solutions. Additionally, wood impregnated with solutions was resistant against most important wood decay fungi. Mass losses of impregnated specimens exposed to white rot fungi \textit{(Trametes versicolor)}, brown rot fungi \textit{(Serpula lacrymans, Antrodia vaillantii, Coniophora puteana)} were insignificant (experiments were performed according to standard procedures). Insignificant mass losses were determined after artificially weathering as well. Additionally, this solution protects wood against copper tolerant organisms as well.

Wood impregnated with the solution for wood preservative according to the present invention is resistant against termites \textit{(Kalotermes flavicollis)} as well.

Preparation of preservative solution

Proper amount of ethanolamine is weighed into reaction chamber; afterwards \(\frac{1}{4}\) of water is added, followed by quat. When quat is dissolved, another \(\frac{1}{4}\) of water is added. Afterwards, copper sulphate and disodium octaborate tetrahydrate is added, followed by \(\frac{1}{4}\) of water. Finally, octanoic acid and last quarter of water is weighted. Preparation of this solution takes place during continuous mixture at room temperature.
Claims

1. A solution for wood preservation which comprises an aqueous solution of amine, copper salt, boron salt, quaternary ammonium compound, and carboxylic acid.

2. The solution for wood preservation according to claim 1, wherein the amine is selected from the group consisting of ethanolamine, diethanolamine and triethanolamine.

3. The solution for wood preservation according to any of the proceeding claims, wherein the amine is ethanolamine.

4. The solution for wood preservation according to any of the preceding claims, wherein the copper salt is selected from the group consisting of copper oxide, copper hydroxide and copper sulphate pent-hydrate.

5. The solution for wood preservation according to any of the preceding claims, wherein the copper salt is copper (II) sulphate pent-hydrate.

6. The solution for wood preservation according to any of the preceding claims, wherein the boron salt is selected from the group consisting of boric acid, borax and disodium octaborate tetrahydrate.

7. The solution for wood preservation according to any of the preceding claims, wherein the boron salt is disodium octaborate tetrahydrate.

8. The solution for wood preservation according to any of the preceding claims, wherein the quaternary ammonium compound is the alkylbenzyldimethyl ammonium chloride.

9. The solution for wood preservation according to any of the preceding claims, wherein the carboxylic acid is selected from the group consisting of hexanoic acid, octanoic acid, and decanoic acid.
10. The solution for wood preservation according to any of the preceding claims, wherein the carboxylic acid is octanoic acid.

11. A solution for wood preservation, consisting of ethanolamine, copper (II) sulphate pent-hydrate, disodium octaborate tetrahydrate, alkylbenzylidimethyl ammonium chloride, and octanoic acid dissolved in water.

12. The solution for wood preservation according to claim 11, wherein the molar ratio between copper and ethanolamine is between 1:8 and 1:4, and preferably between 1:5 and 1:6.

13. The solution for wood preservation according to claim 11, wherein the 1000 g of aqueous preservative solution consists of 57.69 g ethanolamine, 39.32 g copper (II) sulphate pent-hydrate, 8.1 g disodium octaborate tetrahydrate, 10.8 g alkylbenzylidimethyl ammonium chloride and 11.35 g octanoic acid.

14. Use of the solution for wood preservation according to any of the preceding claims for protection wood against wood destroying organisms, preferably against wood decay fungi, insects, and termites.

15. Procedure for preparation a solution for wood preservation according to any of claims 1 – 13, which comprises steps:
 a) entering the ethanolamine into reaction chamber,
 b) adding the ¼ of water,
 c) adding the quat to dissolve,
 d) adding the second ¼ of water,
 e) adding copper sulphate and disodium octaborate tetrahydrate,
 f) adding the followed by the third ¼ of water,
 g) adding the octanoic acid and last quarter of water, executed during continuous mixing at room temperature.
AMENDED CLAIMS

Received by the International Bureau on 03 March 2006 (03.03.2006),
originally filed claims 1-15 replaced by amended claims 1-14

Claims

1. A solution for wood preservation which comprises an aqueous solution of
amine, copper salt, quaternary ammonium compound, carboxylic acid, and
boron salt, said boron salt is selected from the group consisting of borax or
disodium octaborate tetrahydrate.

2. The solution for wood preservation according to claim 1, wherein the amine is
selected from the group consisting of ethanolamine, diethanolamine and
triethanolamine.

3. The solution for wood preservation according to any of the proceeding claims,
wherein the amine is ethanolamine.

4. The solution for wood preservation according to any of the preceding claims,
wherein the copper salt is selected from the group consisting of copper oxide,
copper hydroxide and copper sulphate pent-hydrate.

5. The solution for wood preservation according to any of the preceding claims,
wherein the copper salt is copper (II) sulphate pent-hydrate.

6. The solution for wood preservation according to any of the preceding claims,
wherein the boron salt is disodium octaborate tetrahydrate.

78. The solution for wood preservation according to any of the preceding claims,
wherein the quaternary ammonium compound is the alkylbenzyldimethyl
ammonium chloride.

8. The solution for wood preservation according to any of the preceding claims,
wherein the carboxylic acid is selected from the group consisting of hexanoic acid, octanoic acid, and decanoic acid.

9. The solution for wood preservation according to any of the preceding claims, wherein the carboxylic acid is octanoic acid.

10. A solution for wood preservation, consisting of ethanolamine, copper (II) sulphate pent-hydrate, disodium octaborate tetrahydrate, alkylbenzyldimethyl ammonium chloride, and octanoic acid dissolved in water.

11. The solution for wood preservation according to claim 10, wherein the molar ratio between copper and ethanolamine is between 1:8 and 1:4, and preferably between 1:5 and 1:6.

12. The solution for wood preservation according to claim 10, wherein the 1000 g of aqueous preservative solution consists of 57.69 g ethanolamine, 39.32 g copper (II) sulphate pent-hydrate, 8.1 g disodium octaborate tetrahydrate, 10.8 g alkylbenzyldimethyl ammonium chloride and 11.35 g octanoic acid.

13. Use of the solution for wood preservation according to any of the preceding claims for protection wood against wood destroying organisms, preferably against wood decay fungi, insects, and termites.

14. Procedure for preparation a solution for wood preservation according to any of claims 1-12, which comprises steps:
 a) entering the ethanolamine into reaction chamber,
 b) adding the 1/4 of water,
 c) adding the quat to dissolve,
 d) adding the second 1/4 of water,
 e) adding copper sulphate and disodium octaborate tetrahydrate,
 f) adding the followed by the third 1/4 of water,
g) adding the octanoic acid and last quarter of water, executed during continuous mixing at room temperature.
A. CLASSIFICATION OF SUBJECT MATTER

- B27K3/22
- B27K3/20
- B27K3/36
- B27K3/52

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- B27K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
 - EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 857 322 A (GOETTSCHE ET AL) 15 August 1989 (1989-08-15) column 1, line 21 - column 2, line 25; claims 1-3, 11; examples 1-5</td>
<td>1-15</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 542 071 A (DR. WOLMAN GMBH) 19 May 1993 (1993-05-19) column 7, lines 14-16; claims 1, 3, 7; example 2 column 1, line 49 column 3, line 55 - column 4, line 22</td>
<td>1-15</td>
</tr>
<tr>
<td>X</td>
<td>US 6 110 263 A (GOETTSCHE ET AL) 29 August 2000 (2000-08-29) column 3, lines 46-55; claims 1-5, 7, 8, 11</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
 - **A** - document defining the general state of the art which is not considered to be of particular relevance
 - **E** - earlier document but published on or after the international filing date
 - **L** - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **O** - document referring to an oral disclosure, use, exhibition or other means
 - **P** - document published prior to the international filing date but later than the priority date claimed

I - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S - document member of the same patent family

Date of the actual completion of the international search

- 29 December 2005

Date of mailing of the international search report

- 18/01/2006

Name and mailing address of the ISA

- European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 spo nl, Fax (+31-70) 340-3016

Authorized officer

- Bjola, B

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 352 583 B1 (GOETTSCHE REIMER ET AL) 5 March 2002 (2002-03-05) column 4, lines 7-13; claims 1-6,8-11</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8118987 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1305834 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3002257 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 222526 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4137621 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 542071 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2076649 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3017715 T3</td>
</tr>
<tr>
<td>US 6110263</td>
<td>29-08-2000</td>
<td>AT 218954 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 732649 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2093797 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9707834 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2248031 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19608435 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9732700 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2178574 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 331554 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 885098 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9801752 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9701843 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6724198 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9808181 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2282555 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9839146 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0966341 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2185155 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 337483 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 966341 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9902137 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9801819 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9646798 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2311583 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9926767 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20002665 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 505242 A</td>
</tr>
</tbody>
</table>