SNAP CLASP FOR JEWELRY BANDS

Bernard Druskin, Jackson Heights, N.Y., assignor to Unity Manufacturing Corp., New York, N.Y., a corporation of New York


3 Claims. (Cl. 63—4)

This invention relates generally to snap clasps for bracelets and the like, and more particularly to a snap clasp which is adapted to be connected to bracelets of various widths and to be structurally joined thereto in a manner reinforcing the snap clasp.

Bracelets, necklaces and other forms of jewelry are essentially constituted by a band of flexible material which forms a closed loop when the ends of the band are joined together about the wrist or neck of the wearer. To this end, the conventional practice is to attach the ends of the flexible jewelry band to the elements of a snap clasp having a male element which is receivable within a female element.

When the snap clasp is fabricated of an expensive metal, such as gold, it is important that the elements thereof make use of the least amount of gold consistent with an effective mechanical coupling, otherwise the cost of the fastener may become prohibitive. At the same time, the snap clasp should not, because of its structure, interfere with the ornamental aspects of the bracelet or necklace to which it is attached. Another requirement is that the snap clasp structure be in a form which can accommodate bands of different widths, so that the same basic structure can be used with bracelets or necklaces in a range of widths.

Accordingly, it is the main object of the present invention to provide a snap clasp which satisfies all of the above requirements and which when combined with a bracelet or other jewelry band, has a high order of structural strength and yet makes use of relatively little material.

Also an object of the invention is to provide a snap clasp whose male and female elements are each formed from a die cut blank which may be quickly bent into the desired structure.

Briefly stated, these objects are accomplished in a snap clasp whose female element is formed from a single sheet of metal which is die-cut and bent to form a bottom wall, a rear wall extending perpendicularly with respect to the bottom wall, and a front wall in the form of a pair of spaced wings also extending perpendicularly from said bottom wall, said wings having notches cut therein to define a slot for receiving the spring section of a male element to which one end of the jewelry band is attached. The other end of the band is attached to the female element at points both on said rear wall and said wings, whereby said band end effectively acts as a reinforcing strut with respect to the female element.

For a better understanding of the invention, as well as other objects and further features thereof, reference is made to the following detailed description to be read in conjunction with the accompanying drawings, wherein:

FIG. 1 is a top perspective view of the male and female elements of a snap clasp in accordance with the invention;

FIG. 2 shows in top plan view a blank for making the male element;

FIG. 3 shows in top plan view a blank for making the female element;

FIG. 4 is a plan view of a bracelet whose ends are connected to the male and female elements of the snap clasp;

FIG. 5 is a sectional view taken in the plane indicated by line 5—5 in FIG. 4; and

FIG. 6 is the same as FIG. 5, except that the male and female elements are disconnected.

Referring now to the drawing, the invention is illustrated in conjunction with a jewelry band in the form of a bracelet having ends 10 and 11, the bracelet being formed by parallel lines of twisted metallic rope A and B which border a link chain C. Bracelet end 10 is secured to the male element of a snap clasp, this element being generally designated by numeral 12, the other end 11 being secured to the female element generally designated by numeral 13. The bracelet shown herein is purely illustrative, and any desired band form of flexible chain or articulated elements may be used with the snap clasp.

The female element 13, as best seen in FIGS. 1 and 3, is made from a single blank of sheet metal, such as gold or silver which is die-cut and bent to define a structure having a generally rectangular bottom wall 14, a rear wall 15 extending perpendicularly from the rear end of the bottom wall, and a pair of front wall wings 16 and 17 which are spaced apart and are provided with stepped notches 16A and 17A to define a slot 18 for receiving the spring section of the male element.

The male element 12 is also formed of a single blank of sheet metal which is die-cut and bent to form a bottom wall 19, a front wall wing 20 whose dimensions match the pair of wings in the female element, and a tail 21 which folds over the bottom wall 19 to provide the compressible spring section. Welded to the folded-over tail 21 is a post 22 terminating in a head 23 to facilitate depression of the spring section.

To join the elements of the clasp together, the spring section of the male element 12 is inserted in slot 18 of the female element, the dimensions of the slot being such as to force tail 21 down toward the bottom wall 19 as the spring section is being inserted, the tail then being released and abutting wings 16 and 17 to lock in the male section. As the spring section is being inserted the post 22 enters the space between wings 16 and 17. In order to uncouple the elements, the tail must be depressed by pushing down on head 23 so that the spring section can be withdrawn through slot 18.

It will be seen in FIG. 4 that the extremities of ropes A and B and the end link of chain C at the end 10 of the bracelet, are welded or otherwise secured to the wing 20 of the male element 12, and that the ropes and the end link at the other end 11 are similarly attached to wings 16 and 17 of the female element 13.

In addition, it is to be observed that with respect to the female element, which is subjected in continued use to the greatest amount of wear and stress, the end link C is welded at its rear to the rear wall 15. Hence the link C acts effectively as a reinforcing strut between the front wings 16 and 17 and the rear wall 15, and rigidifies the female element of the clasp.

In this way, it becomes possible to dispense with side walls of the type used in prior-art clasps, thereby not only effecting a significant economy in the amount of metal used, but at the same time opening up the sides of the female element of the clasp to expose the associated end of the bracelet. As to the male element, the end of the bracelet is connected to the wing 20, there being no side walls. Thus the clasp in no way impairs the appearance of the bracelet or jewelry band and yet affords an effective linkage therefor.

For bracelets or bands of different widths, the wings of the male and female elements may be trimmed to the width of the bracelet without in any way impairing the functional features of the snap clasp.

While there has been shown a preferred embodiment of a snap clasp for jewelry bands in accordance with the invention, it will be appreciated that many changes and
modifications may be made therein without, however, departing from the essential spirit of the invention as defined in the annexed claims.

What is claimed is:

1. A snap clasp in combination with a jewelry band, comprising a male element attached to one end of the band and a female element attached to the other end thereof, said male element including a wing to which said one end is attached and a depressible spring section having a post extending upwardly therefrom, said female element including a bottom wall, a rear wall perpendicular thereto and a front wall in the form of a pair of spaced wings having a slot therein to receive said spring section along the bottom wall, said female element being free of side walls, the space between said wings accommodating said post, the other end of said band being attached to said female element at both said pair of wings and said rear wall only, to form a strut reinforcing said female element, the absence of side walls in said female element exposing the associated end of said band, the resultant loss in strength of said female element being compensated by the reinforcing strut, the wing on the male element and the wings on the female element being trimmable to accommodate the snap clasp to different band widths.

2. A snap clasp in combination with a jewelry band, as set forth in claim 1, wherein said band is in the form of a link chain, the link at said other end constituting said strut.

3. A snap clasp in combination with a jewelry band, as set forth in claim 1, wherein the dimensions of said wing on said male element match the combined dimensions of the pair of wings on the female element and are equal to the width of said band.

References Cited by the Examiner

UNITED STATES PATENTS

1,599,016 9/1926 Johnson 24—230

2,952,058 9/1960 Geldwether 24—230

FOREIGN PATENTS

264,966 10/1913 Germany

1,659 6/1881 Great Britain

162,557 5/1921 Great Britain

134,432 10/1929 Switzerland

BERNARD A. GELAK, Primary Examiner.