wo 2012/168029 A1 I 1N 0 A A

(43) International Publication Date
13 December 2012 (13.12.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/168029 A1

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

1

International Patent Classification:
GO6F 9/26 (2006.01) GO6F 9/30 (2006.01)

International Application Number:
PCT/EP2012/058676

International Filing Date:
10 May 2012 (10.05.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/157,723 10 June 2011 (10.06.2011) US

Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports-
mouth Hampshire PO6 3AU (GB).

(74

(8D

(72) Inventors; and
(75) Inventors/Applicants (for US orly): SZWED, Peter,

Kenneth [US/US]; IBM Corporation, P318, 2455 South
Road, Poughkeepsie, New York 12601 (US). OAKES,
Kenneth, James [US/US]; IBM Corporation, P343, 2455
South Road, Poughkeepsie, New York 12601 (US). SUT-
TON, Peter, Grimm [US/US]; IBM Corporation, P328,
2455 South Road, Poughkeepsie, New York 12601 (US).
DRIEVER, Peter, Dana [US/US]; IBM Corporation,
P343, 2455 South Road, Poughkeepsie, New York 12601
(US). YUDENFRIEND, Harry [US/US]; IBM Corpora-
tion, P328, 2455 South Road, Poughkeepsie, New York
12601 (US). GLASSEN, Steven, Gardner [US/US]; IBM
Corporation, c¢/o Intellectual Property Law, P386, 2455
South Road, Poughkeepsie, New York 12601 (US).

Agent: WILLIAMS, Julian; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

[Continued on next page]

(54) Title: CHAINING MOVE SPECIFICATION BLOCKS

START
SUBCHANNEL

[ADM-TYPE SUBCHANNEL AND EADM ORB DESIGNATED }~ 390

[PASS PARAMETERS IN ORB TO SUBCHANNEL |~ 305

‘ CHANNEL SUBSYSTEM REQUESTED TO

PERFORM START WITH EADM FACILITY [324
r-r—-——— - i ___________ T
| EADM OPERATION INITIATED 326
|

328—_{+ FROM EADM ORB OBTAIN AOB
330—\:_- FROM AOB OBTAIN ARQB AND DESIGNATION OF ONE OR:
MORE MSBs |

332« FETCH DESIGNATED MSB(S) FROM MAIN STORAGE |
|

| EADM OPERATION COMPLETES }~ 336

STATUS GENERATED

338

1/0 INTERRUPT

339

FIG. 3B

(57) Abstract: An abstraction for storage class memory is
provided that hides the details of the implementation of stor-
age class memory from a program, and provides a standard
channel programming interface for performing certain ac-
tions, such as controlling movement of data between main
storage and storage class memory or managing storage class
memory.

WO 2012/168029 A1 |IIWAT 00T T 0 AR

84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,

GM, KF, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

CHAINING MOVE SPECIFICATION BLOCKS

BACKGROUND

[0001] One or more aspects of the present invention relate, in general, to auxiliary storage of

a computing environment, and in particular, to managing aspects of auxiliary storage.

[0002] A computing environment may include main storage (a.k.a., main memory), as well
as auxiliary storage. Main storage is storage accessible to a processor which is randomly
addressable by, for instance, an absolute address. Main storage is considered fast access
storage compared to auxiliary storage, such as direct access storage devices (DASD) or
storage class memory. Further, the addressing of main storage is considered simpler than the

addressing of DASD or storage class memory.

[0003] Storage class memory, which is an external storage space outside of classical main
storage, provides faster access than direct access storage devices. Unlike DASD, storage
class memory is not typically implemented as mechanical-arm spinning disks, but instead,
non-mechanical solid state parts. Typically, storage class memory is implemented as groups
of solid state devices connected to a computing system via several input/output (1/0)
adapters, which are used to map technology of an I/0O device to the memory bus of the

central processing unit(s).
BRIEF SUMMARY

[0004] The shortcomings of the prior art are overcome and advantages are provided through
the provision of a computer program product for executing a Start Subchannel instruction in
a computing environment comprising main storage and storage class memory. The
computer program product includes a computer readable storage medium readable by a
processing circuit and storing instructions for execution by the processing circuit for
performing a method. The method includes, for instance, responsive to determining that a
subchannel identified by the Start Subchannel instruction is an Asynchronous Data Mover
(ADM) subchannel, performing: obtaining an operation request block from main storage,

the operation request block comprising an address of an operation block; based on the

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

address of the operation block, obtaining the operation block from main storage, the
operation block consisting of a request block, a response block, and one or more first move
specification blocks (MSBs), wherein the request block comprises an MSB count field
having a value indicating the number of one or more first MSBs included in and referenced
by the operation block, wherein the response block is configured to hold exception
conditions, wherein each first move specification block is configured to include a first
operation code field, a first block count field, a first main storage address field, a first storage
class memory address field, a first block size field and a first flags field; obtaining a first
move specification block of the one or more first move specification blocks, wherein the first
flags field of the first move specification block comprises a branch-to-next MSB (BNM)
indicator; responsive to the BNM indicator having a first BNM value, performing an
operation based on a first operation code in the obtained first move specification block, the
operation being performed on a number of blocks of storage class memory of a size
determined by the first block size field, wherein the number of blocks is determined from the
first block count field; and responsive to the BNM indicator having a second BNM value:
branching to a second MSB located at an address specified by the first main storage address
field of the first MSB, wherein the second MSB includes a second block size field, a second
block count field and a second operation code; and performing an operation based on the
second operation code in the obtained second MSB, the operation being performed on a
number of blocks of storage class memory of a size determined by the second block size

ficld, wherein the number of blocks is determined from the second block count field.

[0005] Methods and systems relating to one or more aspects of the present invention are also
described and claimed herein. Further, services relating to one or more aspects of the

present invention are also described and may be claimed herein.

[0006] Additional features and advantages are realized through the techniques of the present
invention. Other embodiments and aspects of the invention are described in detail herein

and are considered a part of the claimed invention.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0007] One or more aspects of the present invention are particularly pointed out and

distinctly claimed as examples in the claims at the conclusion of the specification. The

WO 2012/168029 PCT/EP2012/058676

foregoing and other objects, features, and advantages of the invention are apparent from the
following detailed description taken in conjunction with the accompanying drawings in

which;

10

15

20

25

FIG. 1A depicts one embodiment of a computing environment to incorporate

and use one or more aspects of the present invention;

FIG. 1B depicts another embodiment of a computing environment to

incorporate and use one or more aspects of the present invention;

FIG. 2A depicts one embodiment of an Extended Asynchronous Data Mover

operation request block used in accordance with an aspect of the present invention;

FIG. 2B depicts one embodiment of an Extended Asynchronous Data Mover

operation block used in accordance with an aspect of the present invention;

FIG. 2C depicts one embodiment of an Extended Asynchronous Data Mover

request block used in accordance with an aspect of the present invention;

FIG. 2D depicts one embodiment of an Extended Asynchronous Data Mover

response block used in accordance with an aspect of the present invention;

FIG. 2E depicts one embodiment of an Extended Asynchronous Data Mover

move specification block used in accordance with an aspect of the present invention;

FIG. 2F depicts one embodiment of an Extended Asynchronous Data Mover
indirect data address word used in accordance with an aspect of the present

invention;

FIG. 3A depicts one embodiment of a Start Subchannel instruction used in

accordance with an aspect of the present invention;

FIG. 3B depicts one embodiment of the logic associated with the Start

Subchannel instruction, in accordance with an aspect of the present invention;

FIG. 3C depicts one embodiment of a Clear Subchannel instruction used in

accordance with an aspect of the present invention;

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

FIG. 3D depicts one embodiment of a Test Subchannel instruction used in

accordance with an aspect of the present invention;

FIG. 3E depicts one embodiment of a Modify Subchannel instruction used in

accordance with an aspect of the present invention;

FIG. 3F depicts one embodiment of a Store Subchannel instruction used in

accordance with an aspect of the present invention;

FIG. 4A depicts one embodiment of an Extended Asynchronous Data Mover
subchannel information block used in accordance with an aspect of the present

invention;

FIG. 4B depicts one embodiment of an Extended Asynchronous Data Mover
path management control word used in accordance with an aspect of the present

invention;

FIG. 4C depicts one embodiment of a subchannel status word used in

accordance with an aspect of the present invention;

FIG. 4D depicts one embodiment of an Extended Asynchronous Data Mover

extended status word used in accordance with an aspect of the present invention;

FIG. 5A depicts one embodiment of a Store Storage Class Memory

Information request block used in accordance with an aspect of the present invention;

FIG. 5B depicts one embodiment of a Store Storage Class Memory
Information response block used in accordance with an aspect of the present

invention;

FIG. 5C depicts one embodiment of a storage class memory address list entry

used in accordance with an aspect of the present invention;

FIG. 5D depicts one embodiment of the logic associated with the Store
Storage Class Memory Information command, in accordance with an aspect of the

present invention;

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

FIG. 6A depicts one example of a state diagram representing various states of

storage class memory, in accordance with an aspect of the present invention;

FIG. 6B depicts one embodiment of a state diagram showing operation states

and data states, in accordance with an aspect of the present invention;

FIG. 7A depicts one embodiment of a Configure Storage Class Memory

request block used in accordance with an aspect of the present invention;

FIG. 7B depicts one embodiment of a Configure Storage Class Memory

response block used in accordance with an aspect of the present invention;

FIGs. 7C-7D depict one embodiment of the logic associated with a Configure
Storage Class Memory command used in accordance with an aspect of the present

invention;

FIG. 8A depicts one example of a notification response block used in

accordance with an aspect of the present invention;

FIG. 8B depicts one embodiment of a Store Event Information request block

used in accordance with an aspect of the present invention;

FIG. 8C depicts one embodiment of a Store Event Information response block

used in accordance with an aspect of the present invention;

FIG. 9A depicts one embodiment of a Deconfigure Storage Class Memory

request block used in accordance with an aspect of the present invention;

FIG. 9B depicts one embodiment of a storage class memory increment

request list entry used in accordance with an aspect of the present invention;

FIG. 9C depicts one embodiment of a Deconfigure Storage Class Memory

response block used in accordance with an aspect of the present invention;

FIGs. 9D-9E depict one embodiment of the logic associated with a
Deconfigure Storage Class Memory command used in accordance with an aspect of

the present invention;

WO 2012/168029 PCT/EP2012/058676

FIG. 10 depicts one embodiment of a computer program product

incorporating one or more aspects of the present invention;

FIG. 11 depicts one embodiment of a host computer system to

incorporate and use one or more aspects of the present invention;

FIG. 12 depicts a further example of a computer system to incorporate

and use one or more aspects of the present invention;

FIG. 13 depicts another example of a computer system comprising a
computer network to incorporate and use one or more aspects of the present

invention;

FIG. 14 depicts one embodiment of various elements of a computer

system to incorporate and use one or more aspects of the present invention;

FIG. 15A depicts one embodiment of the execution unit of the
computer system of FIG. 14 to incorporate and use one or more aspects of the

present invention;

FIG. 15B depicts one embodiment of the branch unit of the computer
system of FIG. 14 to incorporate and use one or more aspects of the present

invention;

FIG. 15C depicts one embodiment of the load/store unit of the
computer system of FIG. 14 to incorporate and use one or more aspects of the

present invention; and

FIG. 16 depicts one embodiment of an emulated host computer system to

incorporate and use one or more aspects of the present invention.
DETAILED DESCRIPTION

[0008] In accordance with one or more embodiments, an abstraction for storage class
memory is provided that hides the details of the implementation of storage class memory

from a program (e.g., operating system), and provides a standard channel programming

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

interface for performing certain actions, such as controlling movement of data between main

storage and storage class memory.

[0009] In one example, a facility is provided, referred to as an Extended Asynchronous Data
Mover (EADM) Facility, which allows programs to request the transfer of blocks of data
between main storage and storage class memory, as well as request other operations.

Aspects of this facility are described in detail below.

[0010] Further, associated with the EADM Facility is an optional facility referred to as an
EADM Release Facility. When installed, the EADM Release Facility provides a means for
the program to specify that it no longer requires the retention of the data in one or more
blocks of storage class memory. It is model dependent whether the release operation is
supported for all blocks of storage class memory or for only a subset of the storage class

memory.

[0011] Once a block of storage class memory has been released, the program may transfer
new data into the block, otherwise subsequent requests to transfer data from the block to

main storage will be unsuccessful.

[0012] One embodiment of a computing environment to incorporate and/or use one or more
aspects of the present invention is described with reference to FIG. 1A. Computing
environment 100 is based, for instance, on the z/Architecture® offered by International
Business Machines Corporation (IBM™), Armonk, New York. An embodiment of the
z/Architecture”® is described in an IBM® publication entitled “z/Architecture Principles of
Operation,” IBM Publication No. SA22-7832-08, August 2010, which is hereby
incorporated herein by reference in its entirety. In one example, a computing environment
based on the z/Architecture® includes the zEnterprise 196 (z196) system offered by
International Business Machines Corporation. IBM® and z/Architecture® are registered
trademarks, and zEnterprise 196 and z196 are trademarks of International Business
Machines Corporation, Armonk, New York, USA. Other names used herein may be
registered trademarks, trademarks or product names of International Business Machines

Corporation or other companies.

[0013] As one example, computing environment 100 includes one or more central

processing units 102 coupled to main memory 104 via one or more buses 106. One or more

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

of the central processing units may exccute an operating system 108, such as the z/OS®
operating system offered by International Business Machines Corporation. In other
examples, one or more of the central processing units may execute other operating systems
or no operating system. z/OS" is a registered trademark of International Business Machines

Corporation, Armonk, New York, USA.

[0014] Central processing units 102 and main memory 104 may be further coupled to an I/O
hub 120 via one or more connections 122 (e.g., buses or other connections). The 1/0 hub
provides connectivity to one or more I/O adapters 130, which are further coupled to one or
more solid state devices 140. The adapters and solid state devices are an implementation of
storage class memory (e.g., flash memory). The I/O hub is part of an /O subsystem 145

facilitating one or more aspects of an embodiment.

[0015] In a further embodiment, as depicted in FIG. 1B, a computing environment 150 may
include a central processing complex (CPC) 152, which is based on the z/Architecture™
offered by International Business Machines Corporation. Central processor complex 152
includes, for instance, one or more partitions 154, a hypervisor 156, one or more central
processors 158, and one or more components of an input/output subsystem 160. In this
example, partitions 154 are logical partitions (e.g., LPARS), each of which includes a set of

the system’s hardware resources, virtualized as a separate system.

[0016] Each logical partition 154 is capable of functioning as a separate system. That is,
cach logical partition can be independently reset, initially loaded with an operating system or
other control code, if desired, and operate with different programs. An operating system or
application program running in a logical partition appears to have access to a full and
complete system, but in reality, only a portion of it is available. A combination of hardware
and licensed internal code (LIC), referred to as firmware, keeps a program in one logical
partition from interfering with a program in a different logical partition. This allows several
different logical partitions to operate on a single or multiple physical processors in a time-
slice manner. As used herein, firmware includes, e.g., the microcode, millicode and/or
macrocode of the processor (or entity performing the processing). It includes, for instance,
the hardware-level instructions and/or data structures used in implementation of higher level

machine code. In one embodiment, it includes, for instance, proprictary code that is

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

typically delivered as microcode that includes trusted software or microcode specific to the

underlying hardware and controls operating system access to the system hardware.

[0017] In this example, several of the logical partitions have a resident operating system
(OS) 170, which may differ for one or more logical partitions. In one embodiment, at least
one logical partition is executing the z/OS® operating system, offered by International

Business Machines Corporation, Armonk, New York.

[0018] Logical partitions 154 are managed by hypervisor 156, which is implemented by
firmware running on central processors 158. Logical partitions 154 and hypervisor 156 each
comprises one or more programs residing in respective portions of main memory 159
associated with the central processors. One example of hypervisor 156 is the Processor
Resource/Systems Manager (PR/SM'), offered by International Business Machines
Corporation, Armonk, New York.

[0019] Central processors 158 are physical processor resources that are allocated to the
logical partitions. For instance, a logical partition 154 includes one or more logical
processors, cach of which represents all or a share of a physical processor resource 158
allocated to the partition. The logical processors of a particular partition 154 may be either
dedicated to the partition, so that the underlying processor resource is reserved for that
partition; or shared with another partition, so that the underlying processor resource is

potentially available to another partition.

[0020] Input/output subsystem 160 (of which only a portion is depicted) provides
connectivity to storage class memory 180. In this example, an address space is provided for
the storage class memory which presents the memory as flat, hiding the details of the
physical implementation from the program. As one example, there is one address space
system-wide for the storage class memory, but from the view of a configuration (e.g., LPAR
or in another embodiment, a virtualized guest) there is one address space into which storage
class memory increments are populated for each configuration of the system. The storage

class memory address space is separate and apart from the main storage address space.

[0021] In one particular example of the z/Architecture®, the /0 subsystem includes a

channel subsystem, which, not only directs the flow of information between I/O peripheral

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
10

control units (and devices) and main memory, but also between the storage class memory

and main memory. However, the I/O subsystem may be other than a channel subsystem.

[0022] In the case of a channel subsystem, subchannels are used to perform EADM
operations. These subchannels are referred to as Asynchronous Data Mover (ADM)-type
subchannels and are associated with EADM operations, and not I/0 devices, like other I/O-
type subchannels. An ADM-type subchannel does not contain a device number, nor does it
contain channel path information. The number of ADM-type subchannels provided for a
configuration is model dependent. ADM-type subchannels are addressed by a subsystem

identification word (SID).

[0023] The ADM-type subchannels are used by the Extended Asynchronous Data Mover
Facility, which is an extension to the channel subsystem. As described herein, the EADM
Facility allows a program to request the transfer of blocks of data between main storage and
storage class memory, as well as perform other operations, such as clear a block of storage
class memory or release a block of storage class memory. In one embodiment, when the

EADM Facility is installed:

[0024] » One or more ADM-type subchannels are provided which are used for EADM

operations.

[0025] - EADM operations are designated by a specified EADM-operation block
(AOB). The AOB includes an EADM-request block (ARQB) and an EADM-
response block (ARSB), and designates a list of EADM move-specification
blocks (MSBs). For a move operation, the MSBs contain information about
the blocks of data to be moved, such as the size of the blocks, the source and

destination locations of the blocks, and the direction of the data movement.

[0026] The maximum number of MSBs that may be specified by an AOB is model
dependent. The maximum count of blocks that an MSB may specify to be

moved or operated on is also model dependent.

[0027] o A program initiates EADM operations by issuing a Start Subchannel
instruction that designates an ADM-type subchannel and an EADM operation
request block (ORB). In turn, the EADM ORB designates an AOB. The

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

11

instruction passes the contents of the EADM ORB to the designated

subchannel.

[0028] » When Start Subchannel is issued to initiate EADM operations, the channel

subsystem asynchronously performs the specified operation.

[0029] » As observed by the program, storage class memory appears to be block
concurrent at a model dependent minimum block size. This model dependent

value is called the SCM block concurrency size.

[0030] When EADM operations are complete, an I/O interruption is made pending
to the program for the ADM-type subchannel on which the operations were

initiated.

[0031] The EADM ORB includes the specification of a subchannel key and the address of
the AOB to be used. The AOB is designated, for instance, on a 4 K-byte boundary and may
be up to 4 K-byte in size. If more MSBs are needed than fit into a 4 K-byte AOB, the AOB
may specify an MSB list that is extended into additional storage areas by using MSBs that
designate the address of the next MSB in the list, instead of designating a storage area to be

used for data transfer.

[0032] The first EADM operation is started by the channel subsystem using information in
the designated EADM ORB and ARQB in the designated AOB to fetch an MSB. The MSB

includes the information that specifies and controls the EADM operation to be processed.

[0033] Each EADM operation is represented by one MSB. An MSB may specify, for
instance, a transfer of blocks of data from main storage to storage class memory; a transfer
of blocks of data from storage class memory to main storage; a clearing of blocks of storage

class memory; and the releasing of blocks of storage class memory.

[0034] If the blocks of storage to be transferred are not contiguous in main storage, a new
MSB may be used or the MSB may use indirect addressing by specifying a list of EADM
indirect data address words (AIDAWSs) to designate the noncontiguous blocks.

[0035] Since an MSB specifies the transfer of data in only one direction, a new MSB is to be

used when there is a change in the direction of the transfer.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
12

[0036] The conclusion of an EADM operation is normally indicated by the combined status
conditions of channel end and device end. This status combination represents the
combination of primary and secondary status indicating that the subchannel is available for

another start function after the status is cleared.

[0037] An EADM operation may be terminated prematurely by a Clear Subchannel
instruction. Execution of the Clear Subchannel instruction terminates execution of the AOB
at the subchannel, clears the subchannel of indications of the AOB in execution, and

asynchronously performs the clear function.

[0038] Further details regarding the EADM ORB and related control structures are described
below with reference to FIGs. 2A-2F. Initially, referring to FIG. 2A, one embodiment of an
EADM ORB is described.

[0039] As one example, an EADM ORB 200 includes:

[0040] Interruption Parameter 202: This field is preserved unmodified in the subchannel
until replaced by a subsequent Modify Subchannel or Start Subchannel
instruction. These bits are placed in the 1/O interruption code when an I/O
interruption occurs for the subchannel and when an interruption request is cleared

by the execution of, for instance, a Test Pending Interruption.

[0041] Subchannel Key 204: This field forms the subchannel key for the EADM operations
specified by the ARQB and applies to fetching of the ARQB, fetching MSBs,
storing of the ARSB, and for accessing main storage for data transfer. The value
of this field is a defined value; otherwise, either a program check condition is

recognized by the channel subsystem or an operand exception is recognized.

[0042] ORB Extension Control (X) 205: This field specifies whether the ORB is extended.
This field is a specified value when an ADM-type subchannel is designated;
otherwise, either an operand exception or a program check condition is

recognized.

[0043] EADM Operation Block (AOB) Address 206: This field specifies an address of the
EADM operation block (AOB). If certain bits of this field do not include a

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

13

defined value, then either an operand exception or a program check condition is

recognized.

[0044] If this field designates a location protected against fetching or designates a location
outside of the configuration, the start function is not initiated. In this case, the

subchannel becomes status pending with primary, secondary and alert status.

[0045] Channel Subsystem (CSS) Priority 208: This field includes a channel subsystem
priority number that is assigned to the designated subchannel and used to order
the selection of ADM-type subchannels when a start function is to be initiated for

one or more subchannels that are start pending.

[0046] Storage Class Memory (SCM) Priority 210: This field includes a storage class
memory priority (SCM) number that specifies the priority level that is applied to
all EADM operations associated with the start function.

[0047] It is model dependent whether the contents of SCM priority field are recognized by
the EADM Facility. On models that do not recognize this field, the field contents
are ignored and all EADM operations associated with the start function are

assigned an implicit priority number.

[0048] Format (FMT) 212: This field specifies the layout of the ORB. This field is to
include a specified value when an ADM-type subchannel is designated;
otherwise, an operand exception is recognized or a particular condition code is

set.

[0049] The EADM operation block (AOB) specified by EADM AOB address 206 of the
EADM ORB includes the information used to invoke EADM operations. An AOB is

allocated, in one example, on a 4K-byte boundary and is variable in length.

[0050] In one example, as shown in FIG. 2B, an EADM AOB 220 includes three sections:
an EADM request block (ARQB) 222; an EADM response block (ARSB) 224; and an MSB
arca 226 containing up to a defined number (e.g., 124) of MSBs. The ARQB may specify
the use of more than the defined MSBs, however, when using MSB branching (that is, by
using the branch to next MSB flag in the MSB).

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
14

[0051] One embodiment of an EADM request block (ARQB) 222 is described with
reference to FIG. 2C. In one example, ARQB 222 includes:

[0052] Format (FMT) 230: This field specifies the layout of ARQB. The value of this field
is a defined value; otherwise, a program check condition is recognized by the
channel subsystem and a command code error is indicated in the exception

qualifier code field of the ARSB.

[0053] Command Code 232: This field is to specify the EADM move blocks command;
otherwise, a program check condition is recognized by the channel subsystem

and a command code error is indicated in the exception qualifier code field of the

ARSB.

[0054] MSB Count 234: This field specifies a count of MSBs that compose the EADM
request. The maximum count of MSBs that may be specified is model
dependent. The value of this field is to be greater than zero and less than or equal
to the model dependent maximum MSB count value; otherwise, a program check
condition is recognized by the channel subsystem and an MSB count error is

indicated in the exception qualifier code field of the ARSB.

[0055] In addition to the EADM request block, the EADM ORB also specifies an EADM
response block (ARSB). The EADM response block is meaningful, in this embodiment,
only when an exception condition is recognized. Specifically, an ARSB is meaningful only
when alert status is present in the EADM subchannel status word (SCSW), the EADM
extended status word (ESW) is meaningful, and the EADM response block stored (R) bit is
one in the EADM extended report word (ERW), each of which is described below. When an
ARSB is not meaningful, the contents of the ARSB in the AOB are unpredictable.

[0056] If a program stores into the ARSB while the associated subchannel is subchannel

active, unpredictable results may occur.

[0057] When an ARSB is stored, the amount of data that has been transferred, if any, is

unpredictable.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

15

[0058] One embodiment of an EADM response block is described with reference to FIG.
2D. In one example, ARSB 224 includes:

[0059]

[0060]

[0061]

[0062]

[0063]

[0064]

[0065]

Format (FMT) 240: This field specifies the layout of the ARSB. When an
ARSB is stored, the value of this field is stored as a defined value.

Exception Flags (EF) 242: When an ARSB is stored, this field, when set,

specifies the exception reason for which the ARSB is stored. Example exception

reasons include:

Program check: A programming error is detected.

Protection check: A storage access is prevented by the protection
mechanism. Protection applies to the fetching of the ARQB, MSB, AIDAWS ,
and data to be transferred to storage class memory, and to the storing of

information in the ARSB and data transferred from storage class memory.

Channel data check: An uncorrected storage error has been detected in regard
to data that is contained in main storage and is currently used in the
performance of an EADM operation. The condition may be indicated when
detected, even if the data is not used when prefetched. Channel data check is
indicated when data or the associated key has an invalid checking block code

(CBC) in main storage when that data is referenced by the channel subsystem.

Channel control check: Channel control check is caused by any machine
malfunction affecting channel subsystem controls. The condition includes
invalid CBC on an ARQB, an ARSB, an MSB, an AIDAW, or the respective
associated key. The condition may be indicated when an invalid CBC is
detected on a prefetched ARQB, MSB, AIDAW or the respective associated
key, even if that ARQB, MSB, or AIDAW is not used.

Extended asynchronous data move facility check: An uncorrected error has
been detected in regard to data that is contained in storage class memory and

is currently used in the performance of an EADM operation.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[0066]

[0067]

[0068]

[0069]

[0070]

[0071]

[0072]

[0073]

[0074]

16

Exception Control Block Identifiers (ECBI) 244: When an ARSB is stored, this
field is a multiple bit mask whose bits, when set, specify any single or
combination of the following components that are associated with the recognized

exception designated by the EF field:

. The control block or blocks.
. The main storage data area.
. The storage class memory.

The bits that can be set represent, for instance, an EADM move specification
block, an EADM indirect data address, data in main storage, and/or data in

storage class memory.

The bits in the ECBI field describe the components associated with a single
exception condition. If no components can be identified for the exception

condition, this field contains, for instance, zeros.

Field Validity Flag (FVF) 246: When an ARSB is stored, this field includes a
multiple bit mask whose bits indicate the validity of certain fields in the ARSB.
When a validity bit is set, the corresponding field has been stored and is usable
for recovery purposes. The bits that can be set represent, for instance, failing
MSB address field, failing AIDAW field, failing main storage address field,

and/or failing storage class memory address field.

Exception Qualifier Code (EQC) 248: When an ARSB is stored, this field
includes a code value that further describes the exception specified by the

exception flags field. Code values may represent the following, as examples:

No additional description is provided. For this case, the exception control
block identifiers (ECBI) field and those fields validated by the field validity
flags field may identify the control blocks for which the exception is

recognized.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[0075]

[0076]

[0077]

[0078]

[0079]

[0080]

[0081]

[0082]

17

Format Error: The format specified by the format field is reserved. For this
case, the exception control block identifiers (ECBI) field and those fields
validated by the field validity flags field may identify the control blocks for

which the exception is recognized.

Command code error: The value specified in the command code field of the

ARQB is not recognized.

MSB count error: The value specified in the MSB count field of the ARQB is
zero or exceeds the model dependent maximum of MSBs that may be

specified.

Flags error: Flag bits specified by the flags field are reserved. For this case,
the exception control block identifiers (ECBI) field and those fields validated
by the field validity flags field may identify the control blocks for which the

exception is recognized.

Operation code error: A reserved operation code value is specified. If the
field validity flags field indicates that the failing MSB address field is valid,
the field contains the address of the MSB for which the exception is

recognized.

Block size error: A reserved block size value is specified. If the field validity
flags field indicates that the failing MSB address field is valid, the field

contains the address of the MSB for which the exception is recognized.

Block count error: The value specified in the block count field of an MSB is
zero or exceeds the model dependent maximum count of blocks that may be
specified by an MSB. If the field validity flags ficld indicates that the failing
MSB address field is valid, the field contains the address of the MSB for

which the exception is recognized.

Main storage address specification error: A main storage address is specified
on an incorrect boundary. Such an address could have been designated by an

MSB or by an AIDAW. Ifthe field validity flags field indicates that the

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

[0083]

[0084]

[0085]

18

failing MSB address field is valid, the field contains the address of the MSB
for which the exception is recognized. If the field validity flags field
indicates that the failing AIDAW address field is valid, the field contains the
address of the AIDAW for which the exception is recognized. If the field
validity flags field indicates that the failing main storage address field is
valid, the field contains the main storage address for which the exception is

recognized.

Storage class memory address specification error: A storage class memory
address is specified on an incorrect boundary. Such an address is designated
by an MSB. If the field validity flags indicates that the failing MSB address
field is valid, the field contains the address of the MSB for which the
exception is recognized. If the field validity flags field indicates that the
failing AIDAW address field is valid, the field contains the address of the
AIDAW for which the exception is recognized. Ifthe field validity flags field
indicates that the failing storage class memory address field is valid, the field
contains the storage class memory address for which the exception is

recognized.

Main storage address exception: The EADM facility attempted to use an
address that is not available in the configuration or wrapped the maximum
storage address. Such an address could have been designated by an MSB or
resulted from incrementing main storage addresses during data transfer. If
the field validity flags field indicates that the failing MSB address field is
valid, the field contains the address of the MSB for which the exception is
recognized. Ifthe field validity flags field indicates that the failing AIDAW
address field is valid, the field contains the address of the AIDAW for which
the exception is recognized. If the field validity flags field indicates that the
failing main storage address field is valid, the field contains the main storage

address for which the exception is recognized.

Storage class memory address exception: The EADM facility attempted to
use a storage class memory address that is unavailable in the configuration.

Such an address could have been designated by an MSB or resulted from

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

[0086]

[0087]

[0088]

[0089]

19

incrementing storage class memory addresses during data transfer. If the
field validity flags field indicates that the failing MSB address field is valid,
the field contains the address of the MSB for which the exception is
recognized. Ifthe field validity flags field indicates that the failing AIDAW
address field is valid, the field contains the address of the AIDAW for which
the exception is recognized. If the field validity flags field indicates that the
failing storage class memory address field is valid, the field contains the

storage class memory address for which the exception is recognized.

Main storage error: An uncorrected main storage error is detected. If the
field validity flags field indicates that the failing MSB address field is valid,
the field contains the address of the MSB for which the exception is
recognized. Ifthe field validity flags field indicates that the failing AIDAW
address field is valid, the field contains the address of the AIDAW for which
the exception is recognized. If the field validity flags field indicates that the
failing main storage address field is valid, the field contains the main storage

address for which the exception is recognized.

MSB list error: The AOB specifies an MSB list which crosses a 4K byte
boundary without specifying branch-to-next MSB (BNM) to cross the
boundary or the MSB is the last MSB in the specified MSB list and BNM is
specified by the MSB. If the field validity flags field indicates that the failing
MSB address field is valid, the field contains the address of the MSB for

which the exception is recognized.

MSB branch error: The AOB specifies an MSB list in which an MSB
(branch-source MSB) specifies a branch-to-next MSB (BNM) and the MSB
that is the branch target also specifies BNM. If the field validity flags field
indicates that the failing MSB address field is valid, the field contains the

address of the branch source MSB for which the exception is recognized.

AIDAW list error: An MSB specifies an EADM indirect data address word
(AIDAW) list which crosses a 4K byte boundary without specifying branch-
to-next AIDAW (BNA) to cross the boundary. If the field validity flags field

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

[0090]

[0091]

[0092]

20

indicates that the failing MSB address field is valid, the field contains the
address of the MSB for which the exception is recognized. If the field
validity flags field indicates that the failing AIDAW address field is valid, the
field contains the address of the AIDAW for which the exception is

recognized.

AIDAW branch error: An MSB specifies an EADM indirect data address
word (AIDAW) list in which an AIDAW (branch source AIDAW) specifies a
branch-to-source AIDAW (BNA) and the AIDAW that is the branch target
also specifies BNA. If the field validity flags field indicates that the failing
MSB address field is valid, the field contains the address of the MSB for
which the exception is recognized. Ifthe field validity flags field indicates
that the failing AIDAW address field is valid, the field contains the address of

the branch-source AIDAW for which the exception is recognized.

Storage class memory temporary error: A recoverable storage class memory
error is detected. If the field validity flag field indicates that the failing MSB
address field is valid, the field contains the address of the MSB for which the
exception is recognized. If the field validity flags field indicates that the
failing AIDAW address field is valid, the field contains the address of the
AIDAW for which the exception is recognized. Ifthe field validity flags field
indicates that the failing storage class memory address field is valid, the field
contains the storage class memory address for which the exception is

recognized.

Release operation not supported error: A release operation was specified for
storage class memory for which the release operation is not supported. If the
field validity flags field indicates that the failing MSB address field is valid,
the field contains the address of the MSB for which the exception is
recognized. Ifthe field validity flags field indicates that the failing AIDAW
address field is valid, the field contains the address of the AIDAW for which
the exception is recognized. If the field validity flags field indicates that the
failing storage class memory address field is valid, the field contains the

storage class memory address for which the exception is recognized.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

[0093]

[0094]

[0095]

[0096]

[0097]

21

Released data read error: A read operation was specified for storage class
memory for which the last successful operation was a release operation. If
the field validity flags field indicates that the failing MSB address field is
valid, the field contains the address of the MSB for which the exception is
recognized. Ifthe field validity flags field indicates that the failing AIDAW
address field is valid, the field contains the address of the AIDAW for which
the exception is recognized. If the field validity flags field indicates that the
failing storage class memory address field is valid, the field contains the

storage class memory address for which the exception is recognized.

Failing MSB Address 250: When a specified bit of the field validity flags field is
set, this field indicates an address of the MSB for which an exception is

recognized.

Failing AIDAW Address 252: When a specified bit of the field validity flags
field is set, this field indicates an address of the AIDAW for which an exception

is recognized.

Failing Main Storage Address 254: When a specified bit of the field validity
flags field is set, this field indicates an address of the block of main storage for

which an exception is recognized.

Failing Storage Class Memory Address 256: When a specified bit of the field
validity flags field is set, this field includes the (e.g., 64 bit) SCM address of the

block of storage class memory for which an exception is recognized.

[0098] In addition to the EADM request block and EADM response block, the EADM

operation block (AOB) also specifies one or more EADM move specification blocks

(MSBs). The AOB may contain up to, for instance, 124 MSBs. However, the program may

specify more than 124 MSBs by designating a larger number of MSBs in the count field of

the ARQB and by using the branch-to-next-MSB (BNM) flag to branch to a continuation of

the MSB list. There may be multiple continuations of the MSB list, but, in one embodiment,

none of these continuations may cross a 4K-byte boundary without using BNM to cross that

boundary. Continuations of the MSB list are not required to be contiguous. Each

continuation of the MSB list, if designated to begin on a 4K-byte boundary, may contain up

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
22

to 128 MSBs. The total number of MSBs in an MSB list is specified by the MSB count field
in the ARQB.

[0099] An EADM move specification block describes, for instance, the blocks of storage to
be moved between main storage and storage class memory or an operation to be performed
on a block of storage. One embodiment of MSB 226 is described with reference to FIG. 2E,

and includes, for instance:

[00100] Format (FMT) 260: This field specifies the layout of the MSB. The value of
this field is a defined value; otherwise, an MSB format error is indicated in the

exception qualifier code field of the ARSB.

[00101] Operation Code (OC) 262: This field specifies the operation to be performed. In
one example, when a specified bit of the flags field, described below, is a defined
value, this field specifies the operation to be performed. Example operations

include:

[00102] Clear storage class memory: When this code is designated, the storage class
memory specified by the storage class memory address, block size, and block
count field is cleared (e.g., set to zeros). The main storage address field has

no meaning for this operation.

[00103] Read: When this code is designated, data is specified to be transferred from
storage class memory to main storage. The block count, block size, main
storage address and storage class memory address fields have meaning for

this operation.

[00104] Write: When this code is designated, data is specified to be transferred from
main storage to storage class memory. The block count, block size, main
storage address, and storage class memory address fields have meaning for

this operation.

[00105] Release: When this code is designated and the EADM Release Facility is
installed, the storage class memory specified by the storage class memory

address, block size, and block count fields is released. The main storage

10

15

20

25

WO 2012/168029

[00106]

[00107]

[00108]

[00109]

[00110]

[00111]

[00112]

PCT/EP2012/058676

23

address field has no meaning for this operation. When the EADM Release

Facility is not installed, this code is reserved.

If a reserved value is specified, a program check condition is recognized by

the channel subsystem and an operation code error is indicated in the exception

qualifier code field of the ARSB.

When the specified flag bit of the flag field is not the defined value, this field

is reserved and not checked.

Flags 264: This ficld identifies one or more flags that may be set. Flag bits

that are reserved are set to a defined value; otherwise a flags error is indicated in

the exception qualifier code field of the ARSB. Example flags include:

Branch to next MSB (BNM): When set, this flag indicates that the MSB
does not specify an EADM operation and is not used to transfer data.
Instead, the main storage address field specifies the address of the next

MSB to be used to specify an EADM operation.

When the BNM flag is set (e.g., one) and the main storage address field
specifies an MSB in which the BNM flag is also set, a program check
condition is recognized by the channel subsystem, the address of the
branch source MSB is stored in the failing MSB address field of the
ARSB, and an MSB branch error is indicated in the exception qualifier

code field of the ARSB.

If an MSB ends at a 4K-byte boundary, the AOB specifies additional
MSBs, and the BNM flag is not set, a program check condition is
recognized by the channel subsystem, the address of the MSB is stored in
the failing MSB address field of the ARSB, and an MSB list error is
indicated in the exception qualifier code field of the ARSB.

If an MSB is the last MSB in the specified MSB list and the BNM flag is
set, a program check condition is recognized by the channel subsystem,

the address of the MSB is stored in the failing MSB address field of the

10

15

20

25

WO 2012/168029

[00113]

[00114] .

PCT/EP2012/058676
24

ARSB, and an MSB list error is indicated in the exception qualifier code

field of the ARSB.

When the BNM flag is set, the remaining flags, the operation code field,
the block size field, the block set count field, and the storage class

memory address have no meaning.

Indirect addressing: When set, this flag indicates that the main storage
address field designates an address of an EADM indirect data address
word (AIDAW) or of the first AIDAW of a list of AIDAWSs that
designates the main storage location or locations, respectively, to be used
for data transfer. When not set, this flag indicates that the main storage
address field designates an address of the main storage location to be used

for data transfer.

[00115] Block Size (BS) 266: This field specifies the size and boundary of the data

blocks to be transferred for both main storage and storage class memory, or the

size and boundary of a block of storage class memory to be operated on (e.g.,

cleared or released). Examples include:

[00116]

[00117]

[00118]

[00119]

4K: When the code value is one defined value, the data blocks to be

transferred are on a 4K-byte boundary and are 4K-byte in size.

1M: When the code value is another defined value, the data blocks to

be transferred are on a 1M-byte boundary and are 1M-byte in size.

If a reserved value is specified, a program check condition is
recognized by the channel subsystem and a block size error is

indicated in the exception qualifier code field of the ARSB.

When the BNM flag is set, this field is ignored.

[00120] Block Count 268: This ficld includes a count of blocks of data to be

transferred or operated on (e.g., cleared or released). Based on the block size

field, this is the count of either 4K-byte or 1M-byte blocks.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00121]

[00122]

[00123]

[00124]

[00125]

[00126]

[00127]

25

The value of this field is to be greater than zero and less than or equal to the
model dependent maximum block count that can be specified by an MSB;
otherwise, a program check condition is recognized by the channel subsystem
and a block count error is indicated in the exception qualifier code field of the

ARSB.
When the BNM flag is set, this field is reserved and not checked.

Main Storage Address 270: When the operation code field has meaning (e.g.,
the BNM flag is not set) and specifies either a read or a write operation, and the
indirect addressing indicator in the flags field is not set, this ficld includes a main

storage address to be used for data transfer and the following apply:

. When the block-size field specifies 4K-byte blocks, specified
bits of this field contain a defined value (e.g., zero); otherwise,
a program check condition is recognized by the channel
subsystem and a main storage specification error is indicated

in the exception qualifier code field of the ARSB.

. When the block size field specifies 1M-byte blocks, specified
bits of this field contain a defined value (e.g., zeros);
otherwise, a program check condition is recognized by the
channel subsystem and a main storage specification error is

indicated in the exception qualifier code field of the ARSB.

When the operation code field has meaning and specifies either a read or a
write operation and the indirect addressing indicator in the flags field is set, the
field includes a main storage address of an AIDAW or the first of a list of
AIDAWS to be used for data transfer. For this case, certain bits of this field
contain a defined value; otherwise, a program check condition is recognized by
the channel subsystem and a main storage specification error is indicated in the

exception qualifier code field of the ARSB.

When the BNM flag is set, the operation code does not have meaning and the
MSB does not specify an EADM operation. Instead, this field includes a main

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

26

storage address of the next MSB that specifies an EADM operation. For this
case, specified bits of this field contain a defined value; otherwise, a program
check condition is recognized by the channel subsystem and a main storage

specification error is indicated in the exception qualifier code field of the ARSB.

[00128] Storage Class Memory Address 272: When the operation code field has
meaning, this field includes the (e.g., 64 bit) storage class memory address to be
used for the data transfer or to be operated on (e.g., clear, release) and the

following apply:

[00129] . When the block size field specifies 4K-byte blocks, specified
bits of this field contain a defined value (e.g., zeros);
otherwise, a program check condition is recognized by the
channel subsystem and a storage class memory specification
error is indicated in the exception qualifier code field of the

ARSB.

[00130] . When the block size field specifies 1M-byte blocks, specified
bits of this field contain a defined value; otherwise, a program
check condition is recognized by the channel subsystem and a
storage class memory specification error is indicated in the

exception qualifier code field of the ARSB.
[00131] When the BNM flag is set, this field is reserved and not checked.

[00132] As indicated above, an EADM indirect data address word may be specified.
The EADM indirect data address word (AIDAW) allows the program to specify the transfer
of blocks of data between storage class memory and non-contiguous blocks of main storage.
An AIDAW or list of AIDAWSs is designated by an MSB when the indirect addressing flag
in the MSB is set.

[00133] The amount of data transferred by a single AIDAW is specified by the block
size field in the MSB. The number of AIDAWSs in an AIDAW list is the sum of the number
specified by the block count field in the MSB plus the number of AIDAWSs that specify

branch-to-next-AIDAW. Data transfers may be processed in orders that are different from

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

27

that specified in an AIDAW list. Furthermore, data transfers specified by multiple AIDAWSs

in an AIDAW list may be processed concurrently.

[00134] An AIDAW is allocated on, for instance, a quadword boundary. A list of
AIDAWSs may be any length, but in one example, are not to cross a 4K-byte boundary unless
a branch to next AIDAW (BNA) is specified to cross the boundary. There is no requirement
that the AIDAW that is the target of a branch be contiguous with the AIDAW specifying
BNA. However, the program should create an AIDAW list in as few 4K-byte blocks as

possible; otherwise, performance degradation may occur.

[00135] Referring to FIG. 2F, in one example, an EADM Indirect Data Address Word
280 includes:

[00136] Flags 282: An example flag includes:

[00137] Branch to next AIDAW (BNA): When set, this flag indicates that the main
storage address field does not specify a main storage address to be used to
transfer data. Instead, the main storage address field specifies the address of

the next AIDAW to be used to transfer data.

[00138] When the BNA flag is set and the main storage address field specifies an
AIDAW in which the BNA flag is also set, the address of the MSB is stored
in the failing MSB address field of the ARSB, the address of the branch-
source AIDAW is stored in the failing main storage address field of the
ARSB, and an AIDAW branch error is indicated in the exception qualifier
code field in the ARSB.

[00139] If an AIDAW ends at a 4K-byte boundary, the MSB specifies additional
AIDAWSs, and the BNA flag is not set, the address of the MSB is stored in the
failing MSB address field of the ARSB, the address of the AIDAW is stored
in the failing main storage address field of the ARSB, and an AIDAW list

error is indicated in the exception qualifier code field in the ARSB.

[00140] Main Storage Address 284: When the BNA field is not set, this field includes an

address in main storage to be used for data transfer and the following apply:

10

15

20

25

30

WO 2012/168029

[00141]

[00142]

[00143]

PCT/EP2012/058676

28

When the block size field in the MSB specifies 4K-byte
blocks, specified bits of this field contain a defined value (e.g.,
zero); otherwise, a program check condition is recognized by
the channel subsystem and a main storage specification error is

indicated in the exception qualifier code field of the ARSB.

When the block size field in the MSB specifies 1M-byte
blocks, specified bits of this field contain a defined value (e.g.,
zeros); otherwise, a program check condition is recognized by
the channel subsystem and a main storage specification error is

indicated in the exception qualifier code field of the ARSB.

When the BNA flag is set, this field includes a main storage
address of the next AIDAW to be used for data transfer.

[00144] As described above, EADM operations are specified by a Start Subchannel

instruction. That is, the program initiates EADM operations by issuing a Start Subchannel

instruction that designates an ADM-type subchannel and an EADM ORB. The execution of

the instruction passes the contents of the EADM ORB to the designated subchannel. The

EADM ORB includes the specification of the subchannel key (used for protection) and the
address of the AOB to be used.

[00145] In one example, as depicted in FIG. 3A, a Start Subchannel instruction 300

includes an operation code 302 specifying the Start Subchannel function, a first operand 304,

which is an implied operand located in, for instance, general register 1, which includes the

subsystem identifier designating the ADM-type subchannel that is to be started; and a second
operand 306, which is the logical address of the EADM ORB. The EADM ORB specifies

the parameters used in controlling the start function. The contents of the EADM ORB are

placed at the designated subchannel during the execution of Start Subchannel, prior to

setting the condition code. If the execution of Start Subchannel results in the setting of a

condition code other than a code indicating success, the contents of the EADM ORB are not

placed at the designated subchannel.

[00146] Subsequent to the execution of Start Subchannel for an ADM-type

subchannel, the channel subsystem asynchronously performs the start function to initiate

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
29

EADM operations with the EADM facility. The start function includes, for instance, the

following:

[00147]

—_—

. Fetching the ARQB from the AOB.

[00148] 2. Executing the EADM operations as specified by the ARQB and the MSBs it

designates.
[00149] 3. Conditionally storing completion information in the ARSB in the AOB.

[00150] 4. Causing the ADM-type subchannel to be made status pending, indicating

completion of the start function.

[00151] In one embodiment, referring to FIG. 3B, when the Start Subchannel
instruction is executed and the SID designates an ADM-type subchannel and the second
operand designates an EADM ORB, an EADM operation is specified, STEP 320.
Parameters in the EADM ORB are passed to the designated subchannel, STEP 322, and the
channel subsystem is requested to perform a start function with the EADM Facility, STEP
324. The channel subsystem asynchronously performs the start function by using
information at the subchannel, including the information passed during the execution of the

Start Subchannel instruction, to initiate EADM operations, STEP 326.

[00152] Execution of an EADM operation (e.g., the first operation) includes using
information from the EADM ORB to obtain the AOB, STEP 328, and information is used in
the AOB to obtain the EADM request block (ARQB) and a designation of one or more
EADM move specification blocks (MSBs), STEP 330. The one or more designated MSBs
are then fetched from main storage, STEP 332, and information specified in the MSBs are
used to control the requested EADM operation. The first operation is considered to be
started when the channel subsystem attempts to initiate data transfer or attempts a clear or

release operation.

[00153] The channel subsystem performs the operation(s) requested in the MSB(s),

STEP 334. This processing is asynchronous to execution of the start command.

[00154] When EADM operations initiated by Start Subchannel end, STEP 336, the

channel subsystem generates status conditions, STEP 338. The generation of these

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

30

conditions is brought to the attention of the program by means of an I/O interruption, STEP
339. The program may also query these conditions by the execution of a Test Pending

Interruption instruction.

[00155] The status conditions generated are presented to the program in the form of an
EADM subchannel status word (SCSW). The EADM SCSW is stored as part of the EADM

interruption response block (IRB) by the execution of the Test Subchannel instruction.

[00156] When the EADM operations specified in the EADM operation block (AOB)
are ended, the channel subsystem generates primary and secondary interruption status.
EADM operations can be terminated by Clear Subchannel or an abnormal condition

recognized while performing the start function.

[00157] The processing of an MSB by the channel subsystem, for a move operation,
controls the flow of a unit of information to or from main storage. To change the direction
of data movement during MSB processing, a new MSB is needed. The ARQB designates
the count of MSBs that comprise the request.

[00158] Each EADM operation is represented by one MSB. An MSB may specify
any of the following:

[00159] The transfer of blocks of data from main storage to storage class memory.

[00160] « The transfer of blocks of data from storage class memory to main storage.
[00161] The clearing of blocks of storage class memory.

[00162] <« The releasing of blocks of storage class memory, when the EADM Release
Facility is installed.

[00163] If the blocks of storage to be transferred for a move operation are not
contiguous in main storage, a new MSB may be used or the MSB may use indirect
addressing by specifying a list of EADM indirect data address words (AIDAWSs) to
designate the noncontiguous blocks. Since an MSB can specify the transfer of data in only
one direction, a new MSB is to be used when there is a change in the direction of data

transfer.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00164]

[00165]

[00166]

[00167]

[00168]

[00169]

[00170]

[00171]

[00172]

[00173]

31

The following are characteristics of EADM data transfers:

o Data transfers may be processed out of order with respect to the order of a

specified MSB list.

o Data transfers specified by multiple MSBs in an MSB list may be processed

concurrently.

o Data transfers may be processed out of order with respect to the order of a

specified AIDAW list.

o Data transfers specified in multiple AIDAWSs in an AIDAW list may be

processed concurrently.

e Accesses to main storage and to storage class memory are not necessarily
single-access references and are not necessarily performed in a left-to-right

direction, as observed by the program and other CPUs.

o Iftwo or more EADM operations are currently active and address the same
SCM locations, main storage location, or both, the operations may be
performed concurrently and content from different operations may be

interleaved; however:

For input operations, the data stored by the EADM Facility into each
block of main storage that is a size equal to the SCM block
concurrency size consists of data transferred from storage class

memory by only one of the concurrent EADM operations.

- For output operations, each block of storage class memory that is on a
boundary and is a size equal to the SCM block concurrency size
contains the data specified by only one of the concurrent EADM

operations.

The above is true regardless of whether the EADM operations are
specified by a single AOB and are being processed by the same
instance of the start function or the EADM operations are specified by

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

32

different AOBs and are being processed by different instances of the

start function.

[00174] e« When EADM operations are active for a subchannel, it is unpredictable
whether changes made by the program to the ARQB, MSBs, AIDAWS, and
transfer data associated with the active operation are observed by the EADM

Facility.

[00175] When all of the blocks designated by all of the MSBs specified by the AOB
have been transferred or cleared or released, the subchannel generates status, which is stored

at the subchannel, and requests an I/O interruption for the ADM-type subchannel.

[00176] The conclusion of an EADM operation is normally indicated by the combined
status conditions of channel end and device end. This status combination represents the
combination of primary and secondary status indicating that the subchannel is available for

another start function after the status is cleared.

[00177] As described above, an MSB may specify a data transfer operation, a clear

operation, or a release operation, each of which is described below.

[00178] When a move operation is requested, one or more blocks of data are moved
between main storage and storage class memory. For instance, for a read operation, SCM
data is obtained from the SSDs that provide the content designated by the specified SCM
address, and then that content is stored to main memory. The process is reversed for a write
operation. The adapter(s) controlling the SSDs perform the storing. In further detail, to
perform a move operation, the system firmware first translates a given SCM address into an
adapter address (e.g., logical volume address, in which a logical volume includes one or
more SSDs). For instance, a translation table is used that correlates the SCM address to an
adapter address. System firmware then submits one or more corresponding adapter move
commands (e.g., read or write) to one or more of the 1/0 adapters. An adapter move
command contains a main storage address, an adapter address, and a transfer size. The
adapter then uses another translation table to locate one or more physical SSD addresses that
correspond to the adapter address. The 1/0 adapter effects the move operation by either
fetching data from main storage and storing it on the SSDs, or fetching data from the SSDs

and storing it in main memory. Additional details are further provided in a co-filed patent

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
33

application entitled “Firmware Management of Storage Class Memory”,

POU920110090US1, which is hereby incorporated herein by reference in its entirety.

[00179] When a clear operation is performed, the designated increments of storage

class memory are cleared by setting the contents to zeros.

[00180] Further, when a release operation is performed, one or more standard TRIM
commands may be submitted to the SSDs containing the corresponding SCM addresses.
The TRIM command allows a program to give hints about block usage, allowing better
garbage collection by the SSDs. The TRIM command allows an operating system to inform

an SSD of which blocks of storage are no longer considered in use and can be wiped.

[00181] An EADM operation may be terminated prematurely by a Clear Subchannel
instruction. Execution of the Clear Subchannel instruction terminates execution of the AOB
at the subchannel, clears the subchannel of indications of the AOB in execution, and
asynchronously performs the clear function. When the clear function is performed, prior to
the subchannel becoming status pending, data transfer is terminated and the amount of data
transferred is unpredictable. Execution of the clear function does not result in the generation

of status, but does cause the channel subsystem to make an I/O interruption pending.

[00182] In one embodiment, referring to FIG. 3C, a Clear Subchannel instruction 350
includes an operation code 352 designating the Clear Subchannel function. The subchannel
to be cleared is designated by a subsystem identification word in, for instance, general

register 1.
[00183] The clear function for an ADM-type subchannel includes:
[00184] 1. Ensuring that the current data transfer is terminated.

[00185] 2. Modifying fields at the subchannel and conditionally the ARSB. For
instance, the subchannel status word is modified to indicate the clear function
in the Function Control field and in the Activity Control field. The ARSB

may be modified to reflect any detected errors.

[00186] 3. Causing the subchannel to be made status pending indicating completion of

the clear function.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
34

[00187] Other instructions may also be issued that can specify an ADM-type
subchannel, including Test Subchannel, Modify Subchannel and Store Subchannel, each of

which is described below.

[00188] Referring to FIG. 3D, in one example, a Test Subchannel instruction 360
includes, for instance, an operation code 362 specifying the test subchannel function; a first
operand 364, which is an implied operand located in, for instance, general register 1 that
contains the subsystem identification word designating the subchannel that is to be tested;
and a second operand 366 which is the logical address of the Information Response Block

(IRB) at which information is stored.

[00189] When Test Subchannel is executed specifying an ADM-type subchannel, the
subchannel is status pending, and information is stored in the designated EADM IRB
(Interruption Response Block), a specified condition code is set. When the subchannel is not
status pending and status information is stored in the designated EADM IRB, a defined
condition code is set. When the subchannel is not provided or not enabled, no action is

taken.

[00190] In one example, the EADM IRB includes a Subchannel Status Word (SSW)
and an Extended Status Word (ESW), as well as an Extended Control Word that may
provide additional model dependent information describing conditions that may exist in the
facility. Each of these words is described further below after discussion of the various

instructions that can specify an ADM-type subchannel.

[00191] Referring to FIG. 3E, in one embodiment, a Modify Subchannel instruction
370 includes an operation code 372 specifying the Modify Subchannel function; a first
operand 374, which is an implied operand located in, for instance, general register 1, which
includes the subsystem identification word designating the subchannel to be modified; and a
second operand 376, which is the logical address of a subchannel information block

(SCHIB) associated with the subchannel.

[00192] When Modify Subchannel is executed specifying an ADM-type subchannel,
and information from the specified Subchannel Information Block (SCHIB) is placed in the

subchannel, a specific condition code is set. When the subchannel is status pending, no

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

35

action is taken and a defined condition code is set. When the subchannel is busy for a start

or clear function, no action is taken.

[00193] Referring to FIG. 3F, one example of a Store Subchannel instruction is
described. In one example, a Store Subchannel instruction 380 includes an operation code
382 identifying the Store Subchannel function; a first operand 384, which is an implied
operand located in, for instance, general register 1 that includes a subsystem identification
word designating the subchannel for which the information is being stored; and a second

operand 386 which is the logical address of the SCHIB.

[00194] When Store Subchannel is issued specifying an ADM-type subchannel, and a
SCHIB is stored, a specified condition code is set. When the designated subchannel is not

provided in the channel subsystem, no action is taken.

[00195] One example of a subchannel information block for an ADM-type subchannel
EADM SCHIB) is described with reference to FIG. 4A. In one example, an (EADM SCHIB
400 includes a model dependent area 401, which includes model dependent information.
Further, SCHIB 400 includes a path management control word (PMCW) 402, and a
subchannel status word (SCSW) 404, each of which is described below.

[00196] In one example, EADM PMCW 402 includes, for instance, the following
fields as shown in FIG. 4B:

[00197] Interruption Parameter 410: This field includes the interruption parameter
that is stored in the I/O interruption code. The interruption parameter can be set
to any value by Start Subchannel and Modify Subchannel. The initial value of

the interruption parameter field in the subchannel is zero.

[00198] Interruption Subclass (ISC) 412: This field includes a plurality of bits that are
an unsigned binary integer, in a specified range, that corresponds to the bit
position of the I/O interruption subclass mask bit in a specified control register of
cach CPU in the configuration. The setting of the mask bit in the control register
of a CPU controls the recognition of interruption requests relating to the
subchannel by that CPU. The ISC can be set to a value by Modify Subchannel.

The initial value of the ISC field in the subchannel is, for instance, zero.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

36
[00199] Enabled (E) 414: This field, when set, indicates that the subchannel is
enabled for all EADM functions.
[00200] Subchannel Type (ST) 416: This field designates the subchannel type.

Depending on the model and the configuration, one or more of the following

subchannel types may be provided: 1/0 subchannel or ADM subchannel.

[00201] The value of this field is determined when the subchannel is configured and
cannot be changed by Modify Subchannel.

[00202] When the Modify Subchannel instruction is executed and designates an ADM-
type subchannel, ST is to indicate ADM subchannel; otherwise, an operand

exception is recognized.

[00203] Returning to FIG. 4A, the subchannel information block also includes
subchannel status word 404. The EADM subchannel status word (SCSW) provides
indications to the program that describe the status of an ADM-type subchannel and

associated EADM operations. In one example, as shown in FIG. 4C, subchannel status word

404 includes:

[00204] Subchannel Key (Key) 420: When the EADM start function indicator in the
function control field (described below) is set, this field includes the storage
access key used by the channel subsystem. These bits are identical with the key

specified in the EADM ORB when Start Subchannel was executed.

[00205] Extended Status Word Format (L) 422: When the status pending indicator of the
status controls field (described below) is set, this field, when set, indicates that a
format-0 ESW has been stored. A format-0 ESW is stored when an interruption

condition containing any of the following indications is cleared by Test

Subchannel:
[00206] . Program check
[00207] . Protection check

[00208] . Channel data check

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00209]

[00210]

[00211]

[00212]

[00213]

[00214]

[00215]

[00216]

[00217]

[00218]

[00219]

37

. Channel control check
. Extended asynchronous data move facility (EADMF) check

Deferred Condition Code (CC) 424: When the EADM start function indicator is
set and the status pending indicator is also set, this field indicates the general
reason that the subchannel was status pending when Test Subchannel or Store
Subchannel was executed. The deferred condition code is meaningful when the
subchannel is status pending with any combination of status and only when the

start function indicator of the function control field in the SCSW is set.

The deferred condition code, if set, is used to indicate whether conditions have
been encountered that preclude the subchannel from becoming subchannel active

while the subchannel is start pending.
Example deferred condition codes include:
. A normal I/O interruption has been presented.

. Status is present in the EADM SCSW that was generated by the
channel subsystem for conditions that preclude the EADM start
function from being successfully initiated. That is, the subchannel did

not transition to the subchannel active state.

CCW Format (F) 426: When the EADM start function indicator is set, this field

is stored as a defined value.

Prefetch (P) 428: When the EADM start function indicator is set, this field is

stored as a defined value.

Extended Control (E) 430: This field when set indicates that model dependent
information is stored in the EADM extended control word (ECW).

Function Control (FC) 432: The function control field indicates the EADM

functions that are indicated at the subchannel. Example functions include:

10

15

20

25

WO 2012/168029

[00220] .

[00221] .

PCT/EP2012/058676

38

EADM start function: When set, indicates that an EADM start function
has been requested and is either pending or in progress at the ADM-type
subchannel. The EADM start function is indicated at the subchannel
when a successful condition code is set for Start Subchannel. The
EADM start function is cleared at the subchannel when Test Subchannel
is executed and the subchannel is status pending. The EADM start
function is also cleared at the subchannel during execution of Clear

Subchannel.

EADM clear function: When set, indicates that an EADM clear
function has been requested and is either pending or in progress at the
ADM-type subchannel. The EADM clear function is indicated at the
subchannel when a successful condition code is set for Clear
Subchannel. The EADM clear function indication is cleared at the
subchannel when Test Subchannel is executed and the subchannel is

status pending.

[00222] Activity Control (AC) 434: The activity control field indicates the current

progress of the EADM function previously accepted at the subchannel.

[00223] All conditions that are represented by bits in the activity control field are reset at

the ADM-type subchannel when Test Subchannel is executed and the subchannel

is status pending.

[00224] Example activities include:

[00225] .

Start pending: When set, indicates that the subchannel is start pending.
The channel subsystem may or may not be in the process of performing
the EADM start function. The subchannel becomes start pending when
a successful condition code is set for Start Subchannel. The subchannel
remains start pending when performing the EADM start function and
the channel subsystem determines conditions exist that prevent the

fetching of the ARQB.

10

15

20

25

WO 2012/168029

[00226]

[00227]

[00228]

[00229]

[00230]

[00231]

[00232]

[00233]

[00234]

[00235]

[00236]

[00237]

[00238]

PCT/EP2012/058676

39
The subchannel is no longer start pending when any of the following
occurs:

. The channel subsystem attempts to initiate the first data

transfer specified by the AOB.
. Clear Subchannel is executed.
. Test Subchannel clears a status condition at the subchannel.

Clear pending: When set, the subchannel is clear pending. The channel
subsystem may or may not be in the process of performing the EADM
clear function. The subchannel becomes clear pending when a specified

condition code is set for Clear Subchannel.

The subchannel is no longer clear pending when either of the following

occurs:
. The EADM clear function is performed.
. Test Subchannel clears the status pending condition alone.

Subchannel active: When set, indicates that the ADM-type subchannel
is subchannel active. The ADM-type subchannel is said to be
subchannel active when the channel subsystem attempts to initiate the
first data transfer specified by the AOB or perform a first operation
(whichever happens first).

The subchannel is no longer subchannel active when either of the

following occurs:
. The subchannel becomes status pending.

. Clear Subchannel is executed.

Status Control (SC) 436: The status control field provides the program with

summary level indication of the interruption condition described by information

WO 2012/168029 PCT/EP2012/058676

40

in the subchannel status and device status fields. More than one status control

indicator may be set as a result of conditions at the subchannel.

[00239] Example status controls include:

[00240]
5
[00241]
10 [00242]
[00243]
15 [00244]
20
[00245]
[00246]
25

Alert status: When set, indicates that an alert interruption condition
exists. An alert interruption condition is recognized when alert status is
present at the subchannel. Alert status is generated by the channel

subsystem under any of the following conditions:

. The ADM-type subchannel is start pending and the status

condition precludes initiation of the first data transfer.

. The subchannel is subchannel active and an abnormal
condition, that is being reported as subchannel status, has

terminated EADM operations.

When Test Subchannel or Clear Subchannel is executed, the alert status

is cleared at the subchannel.

Primary status: When set, indicates a primary interruption condition
exists. A primary interruption condition is recognized when primary
status is present at the subchannel. A primary interruption condition is a
solicited interruption condition that indicates, when accompanied by the
secondary interruption condition, completion of the EADM start

function at the subchannel.

When Test Subchannel or Clear Subchannel is executed, the primary

interruption condition is cleared at the subchannel.

Secondary status: When set, indicates a secondary interruption
condition exists. A secondary interruption condition is recognized when
secondary status is present at the subchannel. A secondary interruption
condition is a solicited interruption condition that indicates, when
accompanied by the primary interruption condition, completion of the

EADM start function at the subchannel.

10

15

20

25

WO 2012/168029

[00247]

[00248]

[00249]

PCT/EP2012/058676

41

When Test Subchannel or Clear Subchannel is executed, the secondary

interruption condition is cleared at the subchannel.

Status pending: When set, indicates that the subchannel is status
pending and that information describing the cause of the interruption
condition is available. When Test Subchannel is executed, storing an
EADM SCSW with the status pending bit set, all EADM SCSW
indications are cleared at the subchannel placing the subchannel in the
idle state. The status pending condition is also cleared at the subchannel

during the execution of Clear Subchannel.

When status pending is set, all accesses to main storage and to storage

class memory for the subchannel ARSB have terminated.

[00250] Subchannel Status 438: ADM-type subchannel status conditions are detected and

stored in the subchannel status field by the channel subsystem. The subchannel

status field is meaningful when the subchannel is status pending. Except for

conditions caused by equipment malfunctions, subchannel status can occur only

when the channel subsystem is involved with processing an EADM function.

[00251] Examples of status conditions include:

[00252]

[00253]

[00254]

. Program check: Program check occurs when programming

errors are detected by the channel subsystem.

. Protection check: Protection check occurs when the channel
subsystem attempts a storage access that is prohibited by the
protection mechanism. Protection applies to the fetching of
the ARQB, MSBs, AIDAWS, and data to be transferred to
storage class memory, and to the storing of information in the

ARSB and data transferred from storage class memory.

. Channel data check: Channel data check indicates that an

uncorrected storage error was detected in regard to the fetching

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

42

of data from main storage or the storing of data into main

storage.

[00255] . Channel control check: Channel control check indicates that
an uncorrected storage error was detected in regard to the
fetching or storing of the AOB, MSBs, or AIDAWSs, or that a
machine malfunction was encountered by the channel

subsystem and the malfunction affected EADM operations.

[00256] . Extended asynchronous Data Move (EADM) Facility check:
EADM Facility check indicates that an error was detected by
the EADM Facility in regard to the transfer of data to or from
storage class memory or in regards to performing an operation

on the storage class memory.

[00257] When a program check, protection check, channel data check, channel control
check, or EADM Facility check condition is recognized by the channel
subsystem, EADM operations are terminated and the channel is made status

pending with primary, secondary, and alert status.

[00258] EADM Operation Block Address 440: This field includes the EADM Operation
Block Address.

[00259] Device Status 442: This includes device end or channel end.

[00260] When ESW format 422 of the subchannel status word is set and the
subchannel is status pending, an EADM subchannel extended status word (EADM ESW) is
provided that specifies additional information about the ADM-type subchannel.

[00261] In one example, referring to FIG. 4D, an EADM subchannel extended status

word 450 includes:

[00262] EADM Subchannel Logout 452: The EADM subchannel logout includes, in

one example:

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

43

[00263] . Extended Status Flags (ESF): A field whose bits, when one,
specify that an error has been detected by the channel

subsystem.
[00264] Examples of extended status flags include:

[00265] Key check: When set, indicates that the channel subsystem
has detected an invalid checking block code (CBC) on the
associated storage key when referencing data in the EADM
operation block (AOB), in an EADM move specification block
(MSB), or in an EADM indirect data address word (AIDAW).

[00266] . AOB address validity: When set, indicates that the address
stored in the AOB address field of the SCSW is usable for

recovery purposes.
[00267] EADM Extended Report Word 454 that includes, for instance:

[00268] An EADM Operations Block Error (B) indicator that when set,
specifies that the exception status stored in the EADM SCSW is
associated with the specified EADM operation block (AOB); and an
EADM Response Block Stored (R) indicator that when set indicates
the EADM response block (ARSB) is stored.

[00269] When the extended control indicator of the SCSW and the extended status
word format indicator of the SCSW are set, the EADM extended control word provides
additional information of a model dependent nature that describes conditions that may exist

at the EADM facility.

[00270] Additionally, the following channel report words (CRWs) may be reported
for ADM-type subchannels: subchannel installed parameters initialized; subchannel

installed parameters restored; subchannels available; channel event information pending.

[00271] Unsolicited events and malfunctions that occur in the EADM Facility may be
reported by the channel event information pending CRW.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

44

[00272] Described in detail above is an Extended Asynchronous Data Mover Facility
used to move data blocks between main storage and storage class memory and to perform
other operations on the storage class memory. In one embodiment, information about the
EADM Facility and storage class memory is obtained using an EADM command. In
particular, since storage class memory is not directly accessible, a capability is provided to
determine whether storage class memory is allocated, and if so, to obtain information
regarding the configuration. In particular, in one example, a capability is provided to
communicate to a control program (e.g., operating system) whether or not any storage class
memory has been allocated, and if so, how much and at what locations. The capability for
determining available storage class memory is referred to herein as discovery and one
example of a discovery function is provided by a Store Storage Class Memory (SCM)

Information (SSI) command.

[00273] The Store Storage Class Memory Information (SSI) command is used to
obtain information about the storage class memory and the Extended Asynchronous Data
Mover Facility. The SSI command returns the following information obtained from, for

instance, the channel subsystem. This information is described in further detail below:
[00274] 1. Characteristics of the EADM Facility, including:

[00275] . Maximum count of Move Specification Blocks (MSBs) per AOB.
[00276] . Maximum block count per MSB.

[00277] 2. Characteristics of storage class memory, including:

[00278] . SCM increment size.

[00279] . List of SCM address increments within the SCM address space.
[00280] . Model dependent maximum SCM address.

[00281] Execution of the Store SCM Information command, which is synchronous,

does not change any information contained in the channel subsystem.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00282]

45

Further details regarding the SSI command are described with reference to

FIGs. SA-5D. Referring initially to FIG. 5A, in one embodiment, a command request block

500 for the Store SCM Information command includes, for instance:

[00283]

[00284]

[00285]

[00286]

[00287]

Length 502: A value specifying a length of the command request block.

Command Code 504: A value that specifies the command code for the Store

SCM Information command.

Format (FMT) 506: A value that specifies the format of the command request
block.

Continuation Token 508: A value that may request a continuation point at which
to resume from a prior response that was not complete. If the value of the
continuation token is zero, a fresh start is made. If the value of the continuation

token is nonzero and not recognized, a fresh start is made.

One embodiment of a response block 520 of the SSI command is described

with reference to FIG. 5B, and includes, for instance:

[00288]

[00289]

[00290]

[00291]

[00292]

Length 522: A value that indicates the length in bytes of the command response
block.

Response Code 524: A value that describes the results of an attempt to execute
the SSI command. The response code value dictates the length of the response
block. For example, if a selected response code is stored, the length specifies
96+Nx16 bytes, where N is the number of storage class memory address list

entries, described below. In one example, N is in the range 1<N<248.

Format (FMT) 526: A value that indicates the format of the command response

block. The value of the field is, for instance, zero.
RQ 528: A response qualifier value, as defined below:

No response qualification exists.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00293]

[00294]

[00295]

[00296]

[00297]

[00298]

[00299]

[00300]

46

The specified continuation token is not recognized and is treated as if

zero had been specified.

Maximum Block Count per MSB (MBC) 530: A value that indicates the
maximum value that may be used in the block count field of a move specification

block (MSB).

Maximum SCM Address (MSA) 532: A value that indicates the model
dependent maximum SCM address. It is the SCM address of the last byte in the
highest addressable SCM increment.

SCM Increment Size (IS) 534: A value that represents the size of each SCM

increment in the SCM address list and is, for instance, a power-of-two.

Maximum MSB Count (MMC) 536: A value that indicates the maximum count
of move specification blocks (MSB) that may be specified in an EADM-
operation block (AOB).

Maximum Configurable SCM Increments (MCI) 538: A value that is the
maximum number of SCM increments that may be configured to the requesting

configuration.

In one embodiment, MCI does not exceed 2**™. For example, for a 16G-byte
SCM increment size, MCI < 2% since all the 16G-byte SCM increments are
to be addressable within the addressing constraint of a 64-bit address.
Furthermore, (MCI+1) x IS)-1 does not exceed the model-dependent maximum
SCM address.

The number of configured SCM increments (NCI) reduces the total size (TS) that
may be specified when a successful Configure Storage Class Memory command,
described below, is executed, such that TS < (MCI-NCI). However, based upon
the entire capacity of the system and allocations already made to other
configurations, the number of SCM increments in the initialized state may or may
not be able to completely satisfy a request to otherwise validly configure up to

the MCI limit of the requesting configuration.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00301]

[00302]

[00303]

[00304]

[00305]

[00306]

[00307]

47

Total Initialized SCM Increments of CPC 540: A value that represents the
number of SCM increments in the initialized state for the system (e.g., for a
central processing complex (CPC)). If the system is logically partitioned, this is

the number of increments available in total for allocation to/by the partitions.

Total Uninitialized SCM Increments of CPC 542: A value that represents the
number of SCM increments in the uninitialized state for the system (e.g., for the

CPC).

SCM Measurement Block Size 544: A value that is the block size (BS) in bytes
of an SCM measurement block. In one example, it is a power of 2, and the

maximum SCM measurement block size is, for instance, 4096 bytes.

Maximum Number of SCM Resource Parts 546: A value that is the maximum
number on the CPC of SCM resource parts (RP) (e.g., I/O adapters). Each SCM
increment is associated with an SCM resource part. Each SCM resource (e.g.,
one or more I/O adapters and one or more SSDs) includes one or more parts. The

maximum number of SCM resource parts is, for instance, 509.

In one example, the term “resource part” is defined for use in obtaining
measurement information relating to the storage class memory. Each SCM
increment can be distributed across multiple adapters and each adapter has some
utilization/measurement data to impart. So, each measurement block returned is
identified by a tuple consisting of the increment identifier plus the resource

identifier.

SCM Data Unit Size 548: A model dependent value that indicates the number of
bytes that are included in an SCM data unit. In one example, the data unit is
defined for use in obtaining measurement information relating to the storage class

memory. The count that is reported is the count of data units, rather than bytes.

Continuation Token 550: A model dependent value by which a subsequent issue
of the SSI command may continue at the continuation point represented by the

token. The contents of a continuation token are model dependent.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00308]

[00309]

[00310]

[00311]

[00312]

[00313]

48

Storage Class Memory Address List 552: An origin of the SCM address list.
When the response code stored is a predefined value, a plurality of SCM address

list entries (SALE) are stored (e.g., (Length — 96)/16 SALESs are stored).

In one example, the number of SALES stored depends on the number of SCM
increments in the requester’s configuration, the status of each when the command
is executed, and the channel subsystem model. Zero or more SALEs are stored
and the actual number stored is determined, in one example, by subtracting 96

from the size of the response block (Length), and then dividing that result by 16.

Each SCM address list entry (SALE) represents one SCM increment which
occupies a range of SCM addresses. The starting SCM address of the SCM
increment represented by the SALE is contained in the SALE and is the SCM
address of the first byte of the corresponding SCM increment. The ending
address is calculated, in one example, by adding the SCM increment size, in
bytes, to the starting SCM address and then subtracting one. This is the SCM
address of the last byte of the SCM increment. The storage class memory
represented by a SALE is a contiguous set of SCM byte locations, which begins

on a natural 2" byte boundary, in one embodiment.

A SALE is stored when the corresponding SCM increment is in the configured
stated and space is available in the response block for the SALE. If space in the
SCM address list of the response block is exhausted, a value is stored in the

continuation token and execution completes with a specific response code.
Two or more SALEs are stored in ascending order of their SCM addresses.

One embodiment of a SALE is described with reference to FIG. 5C. In one

example, a SALE 552 includes, for instance:

[00314]

SCM Address (SA) 560: A value that is the starting SCM address of byte 0 of
the corresponding SCM increment in the SCM address space, aligned on the

natural boundary determined by the SCM increment size (2 bytes).

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00315]

[00316]

[00317]

[00318]

[00319]

[00320]

[00321]

[00322]

[00323]

49

Persistence Attribute (P) 562: A value that indicates the current persistence rule
applicable to the SCM increment. Any location within the SCM increment

inherits the persistence rule. The possible persistence rules includes:
Rule 1 — Retain data when power is off.
Rule 2 — Retain data until power on reset or IML.

Op State 564: A value that indicates the operation state of the storage class
memory increment represented by the SALE. The operation state is valid only

when the associated SCM increment is in the configured state.
Examples of operation state include:

Operational (Op): The storage class memory represented by the
SALE is available for all I/O operations. The operational state is
entered upon a successful configuring and may be re-entered upon

exit from the temporary or permanent error state.

Temporary error (TE): The storage class memory represented by the
SALE is not available for any I/O operations. The data state is invalid
but the data content at the transition from operational to temporary
error is preserved. The temporary error state is entered from the

operational state when access to the SCM increment does not exist.

Permanent error (PE): The storage class memory represented by the
SALE is not available for any I/O operations. The data state is invalid
and the data is lost. The permanent error state is entered from the
temporary error state or operational state when an uncorrectable error

condition is recognized.

When an operation completes with an indication of permanent error set in the
exception qualifier code of the EADM response block, at least that corresponding
SCM increment has entered the permanent error state. However, more than the

one SCM increment may have entered the permanent error state.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00324]

[00325]

[00326]

[00327]

[00328]

[00329]

[00330]

[00331]

50

When an SCM increment is not in the operational state, an 1/O operation that
references a location in the increment recognizes an extended asynchronous data
move facility check with either a temporary or a permanent error set in the

exception qualifier code of the EADM response block.

Data State 566: A value that indicates the data state of the contents of the storage
class memory increment represented by the SALE. The data state is valid when

the associated SCM increment is in the configured and operational states.
Example data states include:
Zeroed — The contents of the SCM increment is all zeros.

Valid — The contents of the SCM increment is the accumulation of all
successful write type operations. Locations in the increment not yet

written remain either zeroed or unpredictable.

Unpredictable — The contents of the SCM increment prior to any write
type 1/0 operation are not known. After one or more write type
operations have been performed, data content of other, unwritten
locations remains unpredictable even though the locations
successfully written result in the data state of the SCM increment

becoming valid.

A transition from either zeroed or unpredictable states to valid state occurs with
the first successful write. Due to any difference between size of data written and
size of the target SCM increment, the change to valid does not describe the actual
condition of any data location not yet written. Such a location, not having been

accessed for a write, 1s effectively still described as zeroed or unpredictable.

Rank 568: A value that indicates the conceptual quality of the storage class
memory increment represented by the SALE. Rank is valid only when the
associated SCM increment is in the configured and operational states. A value of
zero means that no rank exists. A nonzero value in a specified range means that a

rank exists. In this example, a rank value of one is the highest or best rank. A

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

51

rank value of fifteen is the lowest or worst rank. All else equal, an SCM with a

higher rank is to be preferred over an SCM with a lower rank.

[00332] R 570: This field indicates that the SCM increment recognizes a release

operation. The following behaviors are related:

[00333] 1. A released block is first to be written before being read, otherwise an
error on a read operation is recognized if a read precedes a write. For

such an error, the SCM increment remains in the operational state.
[00334] 2. Upon initial configuration, the data state is zeroed.

[00335] 3. The program may do a special operation, called a release, which

places a specified block into the released condition.

[00336] Resource ID 572: A nonzero value is a resource identifier (RID) of the resource
that provides the SCM increment represented by the SALE. When the RID is
zero, no resource ID is indicated. In one particular example, the RID represents
as many adapters and SSDs that provide storage for the SCM increment. As
certain RAID algorithms may be applied, or striping for improving performance
by allowing concurrent I/0O operations across multiple adapter/SSDs, the RID

may represent a compound entity.

[00337] Further details regarding the configuration states of the storage class memory,
and the operation and data states of the storage class memory address list are described

below.

[00338] Initially, referring to FIG. 6A, the configuration states and the events/actions
that result in transitions within these states are described. As shown, the SCM states are
configured, standby and reserved. An SCM can be placed in standby from reserved, and
then from standby to configured. From configured, the SCM can be deconfigured and enter

a state of reserved.

[00339] Referring to FIG. 6B, operation states and the events that result in transitions
within these states are shown. An SCM increment is to be in the standby state to be

configured and is in the operational state upon successful completion of a configure action.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

52

A first write to an SCM increment in the zeroed state moves it to the valid state. An
intervening power off and then power on of an SCM increment that is not indicated as

having a rulel persistence moves the SCM increment to the unpredictable state.

[00340] An error (E) may cause transition to the temporary error (TE) state or the
permanent error state (PE), depending on the model dependent specifics of the error.
Acquisition (A) of connectivity may cause transition from the temporary error state to the
operational (Op) state. A deconfigure of an SCM increment can occur regardless of its

operation state.

[00341] FIG. 6B also illustrates the data states when in the operational state,
according to how the operational state was entered. The data state is valid and applies to the
corresponding SCM increment when it is configured and in the operational state. The valid
data states are zeroed, unpredictable, and valid. The following are the possible data states at

the various entries to the operational state:

[00342] < From standby — zeroed (z)

[00343] e From temporary error — valid (v)

[00344] ¢ From permanent-error — unpredictable (u) or zeroed (z)

[00345] e From operational — valid (v) — first write

[00346] e From operational — unpredictable (u) — power cycled and persistence is not
rule 1.

[00347] When not in the operational state, the data state is invalid.

[00348] When first configured and prior to the first write, the data of an SCM

increment is in the zeroed state, meaning that its contents are all zeros.

[00349] While the data content of an SCM increment is not changed when moving to
or in the temporary error state, the increment is not accessible. Thus, saying that the data is
valid might be descriptive, but not overly meaningful due to lack of program accessibility.
Therefore, the data state is invalid in this scenario. Also, based on the error that causes the

transition from operational to temporary error, if data integrity is affected, the permanent

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

53

error state is entered, the data state remains invalid, and the data is lost. If a concurrent
repair can move an SCM increment in the permanent error state to the operational state
without being both deconfigured and then configured again, the original data is still lost, and

it is model dependent whether the data state is either unpredictable or zeroed.

[00350] The persistence of an SCM increment and its RAS (reliability, accessibility
and serviceability) characteristics can also determine a change from valid to unpredictable
data state. If persistence is exceeded, it is expected that the data state transitions from valid

to unpredictable.

[00351] A transition from either zeroed or unpredictable data states to the valid data
state occurs with the first successful write. Due to any difference between size of data
written and size of the target SCM increment, the change to valid does not describe the
actual condition of any data location not yet written. Such a location, previous to a first

write access, is effectively still described as zeroed or unpredictable.

[00352] After an SCM increment is configured, an unsolicited notification is made
pending when any one or more events occur that are observable in the response of the Store

SCM Information command. Examples are:

[00353] 1. Operation state changes from operational to temporary error or permanent

error, but not reported in a failed operation.
[00354] 2. Operation state changes from temporary error to operational.
[00355] 3. Operation state changes from temporary error to permanent error.
[00356] 4. Rank change.

[00357] Examples where unsolicited notifications are not made pending include the

following:
[00358] 1. Data state changes from zeroed or unpredictable to valid.
[00359] 2. A Configure Storage Class Memory command completes.

[00360] 3. A Deconfigure Storage Class Memory command completes.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

54

[00361] When a notification is pending, the program observes the notification and
may issue the Store SCM Information command to obtain the information. The Store SCM
Information command may also be issued at other times in which the program would like

information about the SCM and/or SALE.

[00362] In one example, a notification includes a machine check interruption being
issued to the program, with a corresponding CRW indicating an event report. The program
issues the CHSC Store Event Information command and obtains a response block with a

content code signaling a storage class memory change notification.

[00363] In one embodiment, the Store SCM Information (SSI) command is a channel
subsystem command issued by the program (e.g., operating system) to obtain information
about the storage class memory and/or an SCM address list entry. In one example, the
program issues a Channel Subsystem Call instruction and the SSI command is indicated in a
command block of the instruction, which is sent to the channel subsystem. The command is
performed at the channel subsystem and a response is returned in a response block, which is
the remaining portion of the 4K-byte control block (i.e., the requested information is stored
in the main storage area designated for the response block). Further details regarding

operation of the command are described with reference to FIG. 5D.

[00364] Initially, the program generates the request block indicated above to request
the Store SCM Information command, STEP 580. The request block is obtained by the
channel subsystem, STEP 582, and one or more validity checks are made as to the validity of
the request block (e.g., valid length field, valid command request block format, command
installed, etc.). If the request is not valid, INQUIRY 584, then a response code indicating

the problem is placed in the response block, STEP 586, and the response block is returned,
STEP 592.

[00365] However, if the request is valid, INQUIRY 584, then the channel subsystem
obtains the information from the machine (e.g., processors, etc.), STEP 588, and fills in the
response block, STEP 590. The response block is returned, STEP 592. For instance, the
information is contained in non-volatile storage of the machine and is loaded by firmware

into main storage only accessible by firmware during system initialization. The channel

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

55

subsystem (i.e., firmware in this case) obtains the information by reading it from main

storage only accessible by firmware, and populates the response block.

[00366] Responsive to receiving the information about the storage class memory or
otherwise, a decision may be made to change the configuration of the storage class memory.
This decision may be made manually or automatically by the program or other entity. The
configuration may be changed by adding increments or deleting increments, as described

below.

[00367] In one example, to configure the storage class memory, a Configure Storage
Class Memory command is used. This command requests an amount of storage class
memory to be configured from the available pool of the system. The amount is specified as

a size, encoded as a count of SCM increments.

[00368] Unless stated otherwise, the number of SCM increments used to satisfy the
request is in the initialized state. If the number of SCM increments requested would cause
the maximum configurable SCM increments limit to be exceeded, a specific response code is

provided.

[00369] The contents of each increment are zeros with valid CBC. The applicable
persistence rule associated with each configured SCM increment is set by, for instance,

manual controls.

[00370] One embodiment of a command request block for the Configure Storage
Class Memory command is depicted in FIG. 7A. In one example, a Configure Storage Class

Memory request block 700 includes:
[00371] Length 702: A value that specifies a length of the command request block length.

[00372] Command Code 704: A value that specifies the command code for the Configure

Storage Class Memory command.

[00373] Format (FMT) 706: A value that specifies the format of the command request
block.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00374]

[00375]

[00376]

56

Total Size (TS) 708: A value that specifies the size of storage class memory
requested, encoded as a count of SCM increments. The count of SCM
increments already configured plus TS is not to exceed the maximum
configurable SCM increments (MCI) limit. If the number of SCM increments in
the initialized state is less than the specified total size, a specific response code is

provided.

Asynchronous Completion Correlator (ACC) 710: A value that is returned in the
asynchronous completion notification field of a notification response described
below. The correlator serves to resume the original thread that initiated the

request.

One embodiment of a command response block for the Configure Storage

Class Memory command is depicted in FIG. 7B. In one embodiment, a command response

block 730 includes:

[00377]

[00378]

[00379]

[00380]

[00381]

Length 732: A value that indicates a length the command response block.

Response Code 734: A value that describes the results of the attempt to execute

the Configure Storage Class Memory command.

If a defined response code is stored in the response code field, an asynchronous
process is initiated to finish processing of the command. If a response code other
than the defined code is stored in the response code field, no SCM increment is
configured, no asynchronous process is initiated, and no subsequent notification
is made. Completion of the asynchronous process is indicated in the notification

reésSponsc.

Format (FMT) 736: A value that indicates the format of the command response

block.

The Configure Storage Class Memory command is issued by the program to

request an amount of storage class memory to be configured into the SCM address space.

One embodiment of the logic used to configure the SCM is described with reference to FIG.

7C.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

57

[00382] Initially, the program issues a Channel Subsystem Call instruction that
includes a Configure SCM command, STEP 740. The request block of the Configure SCM
command is obtained by the channel subsystem, STEP 742, and the channel subsystem
attempts to execute the command, STEP 744. If the attempt to execute the command
produces a response code that does not indicate success, INQUIRY 746, then the response
code is placed in the response block of the Configure SCM command, STEP 748, and the
response block is returned, STEP 750.

[00383] If a successful response code is indicated, INQUIRY 746, then the response
code is placed in the response block, STEP 752, and the response block is returned, STEP
754. In this example, a successful response code indicates that the length field of the request
block is valid; the command is available in the system; the command request block has a
valid format; the channel subsystem is able to perform the command (i.e., not busy); the total
size requested does not exceed the maximum configurable SCM increments limit of the
requested configuration; and the total size requested does not exceed the number of SCM

increments in the initialized state.

[00384] Additionally, an asynchronous process to complete the configuration is
initiated, STEP 756. Further details regarding this processing is described with reference to
FIG. 7D.

[00385] In one embodiment, the asynchronous processing performs the configuration
to allocate the one or more increments, STEP 760. For instance, for each configured SCM
increment, internal controls are changed to allow the newly-configured increment to be
accessible to I/0 move requests to that partition. In particular, responsive to the channel
subsystem receiving the CHSC Configure command, the firmware of the channel subsystem
examines internal tables to confirm there are enough increments to satisfy the request and to
ensure the request does not exceed the maximum configurable SCM increments for the
configuration. Ifthe request is valid, firmware updates one or more tables to allocate the
increment(s) to the configuration and place the increment(s) in the operational state for the
configuration. The increments are then accessible to /0 move requests (described above)
from the configuration. Completion of the asynchronous process is indicated in a

notification response, STEP 762.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

58

[00386] Notification response data for the Configure Storage Class Memory command
is returned in a response block of a Store Event Information (SEI) command. One
embodiment of the format of the notification response block used for the Configure Storage

Class Memory command is described with reference to FIG. 8A.

[00387] In one embodiment, a notification response block 800 of the Configure

Storage Class Memory command includes:
[00388] Length 802: A value that indicates the length of the command response block.

[00389] Response Code 804: A value that describes the results of the attempt to execute

the Store Event Information CHSC command.

[00390] Format (FMT) 806: A value that indicates the format of the command response
block.

[00391] Notification Type 808: A value that indicates that this is an EADM related

notification.

[00392] P 810: When set, specifies that the channel subsystem has pending event
information in addition to the information provided in response to this CHSC

command.

[00393] V 812: When set, specifies that the channel subsystem has recognized an

overflow condition and event information has been lost.

[00394] Content Code 814: A value that indicates that this is a response to the conclusion
of execution of the asynchronous process initiated by the Configure Storage Class

Memory command request.

[00395] Secondary Response Code 816: A value that further describes the results of the

attempt to execute the Configure SCM command.

[00396] When the secondary response code is a specified value, the complete amount of
storage class memory, as originally requested, has been configured. Otherwise,
response codes may be provided that indicate, for instance, invalid length field,

Configure SCM command not installed, Configure SCM command block has an

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

59

invalid format, total requested size would exceed MCI limit, total size requested
exceeds the number of SCM increments in initialized state, channel subsystem

busy.

[00397] Asynchronous Completion Correlator (ACC) 818: A value that is originally

specified in the corresponding command request block.

[00398] One embodiment of the Store Event Information command used to return the
notification response block for the Configure Storage Class Memory command is described

with reference to FIGs. 8B-8C.

[00399] The Store Event Information command is used to store event information that
has been made pending by the channel subsystem. Normally, this command is executed as a

result of the program having received an event information pending channel report.

[00400] The execution of the Store Event Information command may change
information contained in the channel subsystem. The Store Event Information command is

executed synchronously.

[00401] One embodiment of a command request block for the Store Event

Information command is described with reference to FIG. 8B. In one example, a request

block 830 includes:
[00402] Length 832: This field specifies a length of the command request block.
[00403] Command Code 834: This field specifies the Store Event Information command.

[00404] Format (FMT) 836: A value that specifies the format of the command request
block.

[00405] Notification Type Selection Mask (NTSM) 838: A mask where each bit position
corresponds to a logical processor selector (LPS) value of the same numeric
value. In one example, bit 0 is ignored and assumed to be one. When a bit
position in a specified range starting at 1 is zero, a notification type

corresponding to that bit position is not stored in the response block, and is

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00406]

60

discarded if recognized as pending. When such a bit is one, a notification type

corresponding to the bit position may be stored in the response block.

In one embodiment, referring to FIG. 8C, a response block 850 for the Store

Event Information command is described below:

[00407]

[00408]

[00409]

[00410]

[00411]

[00412]

[00413]

[00414]

[00415]

Length 852: A value that specifies the initial length of the command response
block. The completion length depends on the response code that is stored as a

result of the attempt to execute the Store Event Information command.

If a response code other than a code indicating success is stored in the response

code field, no information is stored in the response data area.

If a response code indicating success is stored in the response code field, event

information is stored in the response data area.

Response Code 854: A value that describes the results of the attempt to execute

the store event information command.

For the Store Event Information command, the response data area contains a

fixed length portion and a variable length portion.

For a specified format response, when NT is nonzero, the format depends upon
the particular notification type, and the format of the content code dependent field
depends upon the particular notification type and the content code (CC) field,
taken together.

Format (FMT) 856: A value that specifies the format of the command response
block.

Notification Type (NT) 858: A value that indicates the notification type (NT). A

specific value is provided for the Configure SCM command.

P Flag 860: When set, specifies that the channel subsystem has pending event
information in addition to the information provided in response to this CHSC

command. The program can obtain the additional information by executing the

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
61

Store Event Information command again. When not set, this flag specifies that

the channel subsystem has no additional pending event information.

[00416] V Flag 862: When set, specifies that the channel subsystem has recognized an
overflow condition and event information has been lost. The overflow condition
was recognized while the event information not contained in the response data
arca was the most recently pending information. The overflow does not affect

the information contained in the response data area.

[00417] Content Code (CC) 864: A value that describes the type of information that is
contained in the response data area. In one example, the value indicates a storage
class memory change notification in which one or more SCM increments have

changed state or status.

[00418] Content Code Dependent Field 866: This field may include additional

information regarding the event.

[00419] Successful notification of a configuration change may prompt the program to

issue the Store SCM Information command to obtain details regarding the configuration.

[00420] In addition to increasing storage class memory, the storage class memory may
be decreased. A Deconfigure Storage Class Memory command requests an amount of
storage class memory to be removed from the SCM address space of the requesting

configuration. An SCM increment to be deconfigured is to be in the configured state.

[00421] The SCM increments to be deconfigured are specified in an SCM increment
request list, described herein. One or more contiguous SCM increments may be specified in
an SCM increment request list entry (SIRLE). A separate SIRLE may be specified for each

list of increments (a.k.a., an extent) that is not contiguous with any other list of increments.

[00422] Regardless of persistence rules, a successful deconfigure of an SCM
increment places the increment into the uninitialized state. When zeroing is complete, an

SCM increment transitions from the unitialized state to the initialized state.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

[00423]

62

One embodiment of a command request block for the Deconfigure Storage

Class Memory command is depicted in FIG. 9A. A command request block 900 for the

Deconfigure Storage Class Memory command includes, for instance:

[00424]

[00425]

[00426]

[00427]

[00428]

[00429]

[00430]

[00431]

[00432]

Length 902: A value that specifies a length of the command request block. In
one example, the length is 32+(Nx16) bytes, where N is the count of SCM
increment request list entries (SIRLEs). A wvalid length in this example is evenly

divisible by 16 and is in the range (32+1x16) <L1 < (32+253x16).

Command Code 904: A value that specifies the command code for the

Deconfigure Storage Class Memory command.

Format (FMT) 906: A value that specifies the format of the command request
block.

Asynchronous Completion Correlator (ACC) 908: A value that is returned in the

asynchronous completion notification, described above.

SCM Increment Request List 910: This field includes an SCM increment request
list (SIRL). An SCM increment request list includes one or more entries
(SIRLEs). The length of the SIRL is determined from the value of the length
field.

An SCM increment request list entry (SIRLE) specifies the size and the location
of a specified extent of storage class memory (e.g., a list of increments). An

extent or SCM extent is the specified size of storage class memory.
Referring to FIG. 9B, in one example, a SIRLE 920 includes:

Total size (TS) 922: A value that specifies the size of storage class memory to be

deconfigured, encoded as a count of SCM increments.

Starting SCM address (SA) 924: A value that is an SCM address and is the
location in the SCM address space from which to remove the first or only SCM

increment deconfigured by the SIRLE. Least significant bit positions that would

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
63

constitute an offset within the first SCM increment are ignored and assumed to be

zeros, in this example.

[00433] When total size is greater than one, each additional SCM increment beyond the
first increment is located at an SCM address that is evenly divisible by the SCM
increment size, that contains a configured SCM increment, and whose location is
contiguous with the last byte of the prior SCM increment. In other words, in the

next, consecutive location.

[00434] Ifthe space described by the starting address and the total size, taken together, is
not completely full of configured SCM increments a specified response code is
provided, no SCM increment is deconfigured, no asynchronous process is

initiated, and no subsequent notification occurs.

[00435] Upon successful completion, each deconfigured SCM increment has entered

the reserved state and is then zeroized before being placed into the standby state.

[00436] A command response block for the Deconfigure Storage Class Memory
command is depicted in FIG. 9C. In one embodiment, a command response block 950

includes:
[00437] Length 952: A value that indicates the length of the command response block.

[00438] Response Code 954: A value that describes the results of the attempt to execute

the Deconfigure Storage Class Memory command.

[00439] If a response code of a specified value is stored in the response code field, an
asynchronous process is initiated to finish processing of the command. Ifa
response code other than the specified value is stored in the response code field,
no SCM increment is deconfigured, no asynchronous process is initiated, and no
subsequent notification is made. Completion of the asynchronous process is

indicated in the notification response.

[00440] Before the synchronous part of the Deconfigure Storage Class Memory command

completes with a specified response code, all entries in the SCM increment

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
64

request list are examined to ensure that all specified SCM increments are in the

configured state.

[00441] Format (FMT) 956: A value that indicates the format of the command response
block.

[00442] One embodiment of the logic associated with the Deconfigure SCM command is
described with reference to FIGs. 9D-9E.

[00443] Initially, the program issues a Channel Subsystem Call instruction that
includes a Deconfigure SCM command, STEP 970. The request block of the Deconfigure
SCM command is obtained by the channel subsystem, STEP 972, and the channel subsystem
attempts to execute the command, STEP 974. If the attempt to execute the command
produces a response code that does not indicate success, INQUIRY 976, then the response
code is placed in the response block of the Deconfigure SCM command, STEP 978, and the
response block is returned, STEP 980.

[00444] If a successful response code is indicated, INQUIRY 976, then the response
code is placed in the response block, STEP 982, and the response block is returned, STEP
984. In this example, a successful response code indicates that the length field of the request
block is valid; the command is available in the system; the command request block has a
valid format; the channel subsystem is able to perform the command (i.e., not busy); and the

SCM increments were originally in the configured state.

[00445] Additionally, an asynchronous process to complete the deconfiguration is
initiated, STEP 986. Further details regarding this processing is described with reference to
FIG. 9E.

[00446] In one embodiment, the asynchronous processing performs the
deconfiguration, STEP 990. For instance, the one or more increments are deallocated. An
SCM increment is moved from the configured state to the reserved state. Upon entry of the
reserved state, a zeroing process ensues, and when complete, the SCM increment transitions
to the standby state. Completion of the asynchronous process is indicated in a notification

response, STEP 992.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

65

[00447] The notification response data for the Deconfigure Storage Class Memory
command is returned in the response block of the Store Event Information (SEI) CHSC
command. One example of this response block is described with reference to FIG. 8A.
However, the content code in this example indicates that this is a response to the conclusion
of execution of the asynchronous process initiated by the Deconfigure Storage Class
Memory command request. Similarly, the secondary response code further describes the

results of the attempt to execute the Deconfigure Storage Class Memory command.

[00448] In a further embodiment, allocation and deallocation of storage increments
may be requested via a panel presented to a user. For instance, a service element is used to
provide a graphical interface through which a user may specify parameters to the system.
For storage class memory, a panel called the storage class memory allocation panel allows

the user to perform the following operations:

[00449] 1. Specify the maximum configurable increments (MCI) for a given

configuration;
[00450] 2. Allocate increments to a configuration;
[00451] 3. Deallocate increments from a configuration.

[00452] The panel also allows viewing of configuration increment allocations and
MCI, and the number of increments in the available, unavailable, and unitialized pools.
When, due to an action at the SE, an increments allocation changes or when the size of the

one of the pools changes, a notification is sent to the configurations.

[00453] Described in detail above is a facility to manage storage class memory. It
provides an abstraction to allow the program to access the memory without specific
knowledge of the memory. In accordance with one or more aspects of the present invention,
a capability is provided to move data between main storage and SCM; to clear or release
SCM; to configure or deconfigure SCM; and to discovery the configuration of SCM. Other

capabilities are also provided.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

66

[00454] In one embodiment, storage class memory is presented as a flat memory
space to user-level programs, independent of its physical implementation across multiple

devices and I/O adapters.

[00455] Details regarding channel subsystems and/or an ADM facility are described
in U.S. Patent No. 5,377,337, entitled “Method and Means for Enabling Virtual Addressing
Control By Software Users Over A Hardware Page Transfer Control Entity,” Antognini et
al., issued December 27, 1994; U.S. Serial No. 5,442,802, entitled “Asynchronous Co-
Processor Data Mover Method and Means,” Brent et al., issued August 15, 1995; and U.S.
Patent No. 5,526,484, entitled “Method and System for Pipelining the Processing of Channel
Command Words,” issued June 11, 1996, ecach of which is hereby incorporated herein by

reference in its entirety.

[00456] Additionally, further information relating to a channel subsystem and
instructions associated therewith (for a particular implementation of the z/Architecture®) is

provided below:
[00457] Input/Output (1/0)

[00458] The terms “input” and “output” are used to describe the transfer of data
between I/0 devices and main storage. An operation involving this kind of transfer is
referred to as an 1/O operation. The facilities used to control I/O operations are collectively

called the channel subsystem. (I/O devices and their control units attach to the channel

subsystem.)
[00459] The Channel Subsystem
[00460] The channel subsystem directs the flow of information between 1/0 devices

and main storage. It relieves CPUs of the task of communicating directly with I/O devices
and permits data processing to proceed concurrently with 1/0 processing. The channel
subsystem uses one or more channel paths as the communication link in managing the flow
of information to or from I/O devices. As part of I/O processing, the channel subsystem also
performs a path-management operation by testing for channel-path availability, chooses an

available channel path, and initiates the performance of the I/O operation by the device.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

67

[00461] Within the channel subsystem are subchannels. One subchannel is provided
for and dedicated to each 1/0 device accessible to the program through the channel

subsystem.

[00462] The multiple-subchannel-set facility is an optional facility. When it is
installed, subchannels are partitioned into multiple subchannel sets, and each subchannel set
may provide one dedicated subchannel to an I/O device. Depending on the model and the
interface used, some I/0O devices may only be allowed to be accessed via certain subchannel

sets.

[00463] Each subchannel provides information concerning the associated 1/0 device
and its attachment to the channel subsystem. The subchannel also provides information
concerning I/O operations and other functions involving the associated 1/O device. The
subchannel is the means by which the channel subsystem provides information about
associated 1/0 devices to CPUs, which obtain this information by executing I/O instructions.
The actual number of subchannels provided depends on the model and the configuration; the

maximum addressability is 0-65,535 in each subchannel set.

[00464] I/O devices are attached through control units to the channel subsystem by
means of channel paths. Control units may be attached to the channel subsystem by more
than one channel path, and an I/O device may be attached to more than one control unit. In
all, an individual I/O device may be accessible to the channel subsystem by as many as eight
different channel paths via a subchannel, depending on the model and the configuration. The
total number of channel paths provided by a channel subsystem depends on the model and

the configuration; the maximum addressability is 0-255.

[00465] The performance of a channel subsystem depends on its use and on the
system model in which it is implemented. Channel paths are provided with different data-
transfer capabilities, and an I/O device designed to transfer data only at a specific rate (a
magnetic-tape unit or a disk storage, for example) can operate only on a channel path that

can accommodate at least this data rate.

[00466] The channel subsystem contains common facilities for the control of I/O
operations. When these facilities are provided in the form of separate, autonomous

equipment designed specifically to control I/O devices, I/0 operations are completely

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
68

overlapped with the activity in CPUs. The only main-storage cycles required by the channel
subsystem during I/O operations are those needed to transfer data and control information to
or from the final locations in main storage, along with those cycles that may be required for
the channel subsystem to access the subchannels when they are implemented as part of
nonaddressable main storage. These cycles do not delay CPU programs, except when both

the CPU and the channel subsystem concurrently attempt to reference the same main-storage

area.
[00467] Subchannel Sets
[00468] When the multiple-subchannel-set facility is installed, subchannels are

partitioned into multiple subchannel sets. There may be up to four subchannel sets, each
identified by a subchannel-set identifier (SSID). When the multiple-subchannel-set facility is
not installed, there is only one subchannel set with an SSID of zero. When the multiple-

subchannel-set facility is not enabled, only subchannel set zero is visible to the program.
[00469] Subchannels

[00470] A subchannel provides the logical appearance of a device to the program and
contains the information required for sustaining a single I/O operation. The subchannel
consists of internal storage that contains information in the form of a channel-program
designation, channel-path identifier, device number, count, status indications, and 1/O-
interruption-subclass code, as well as information on path availability and functions pending
or being performed. I/O operations are initiated with a device by the execution of I/O

instructions that designate the subchannel associated with the device.

[00471] Each device is accessible by means of one subchannel in each channel
subsystem to which it is assigned during configuration at installation time. The device may
be a physically identifiable unit or may be housed internal to a control unit. For example, in
certain disk-storage devices, each actuator used in retrieving data is considered to be a
device. In all cases, a device, from the point of view of the channel subsystem, is an entity
that is uniquely associated with one subchannel and that responds to selection by the channel
subsystem by using the communication protocols defined for the type of channel path by

which it is accessible.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
69

[00472] On some models, subchannels are provided in blocks. On these models, more
subchannels may be provided than there are attached devices. Subchannels that are provided
but do not have devices assigned to them are not used by the channel subsystem to perform
any function and are indicated by storing the associated device-number-valid bit as zero in

the subchannel-information block of the subchannel.

[00473] The number of subchannels provided by the channel subsystem is
independent of the number of channel paths to the associated devices. For example, a device
accessible through alternate channel paths still is represented by a single subchannel. Each
subchannel is addressed by using a 16-bit binary subchannel number and a two-bit SSID

when the subchannel-set facility is installed.

[00474] After 1/0 processing at the subchannel has been requested by the execution of
START SUBCHANNEL, the CPU is released for other work, and the channel subsystem
assembles or disassembles data and synchronizes the transfer of data bytes between the I/O
device and main storage. To accomplish this, the channel subsystem maintains and updates
an address and a count that describe the destination or source of data in main storage.
Similarly, when an I/O device provides signals that should be brought to the attention of the
program, the channel subsystem transforms the signals into status information and stores the

information in the subchannel, where it can be retrieved by the program.

[00475] Attachment of Input/OQutput Devices
[00476] Channel Paths
[00477] The channel subsystem communicates with I/O devices by means of channel

paths between the channel subsystem and control units. A control unit may be accessible by
the channel subsystem by more than one channel path. Similarly, an I/O device may be
accessible by the channel subsystem through more than one control unit, each having one or

more channel paths to the channel subsystem.

[00478] Devices that are attached to the channel subsystem by multiple channel paths
configured to a subchannel, may be accessed by the channel subsystem using any of the
available channel paths. Similarly, a device having the dynamic-reconnection feature and

operating in the multipath mode can be initialized to operate such that the device may choose

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

70

any of the available channel paths configured to the subchannel, when logically reconnecting

to the channel subsystem to continue a chain of 1/O operations.

[00479] The channel subsystem may contain more than one type of channel path.
Examples of channel-path types used by the channel subsystem are the ESCON 1/O
interface, FICON 1/0 interface, FICON-converted I/0 interface, and IBM System/360 and
System/370 I/O interface. The term “serial-1/O interface” is used to refer the ESCON I/O
interface, the FICON 1I/0 interface, and the FICON-converted 1/0 interface. The term
“parallel-1/0 interface” is used to refer to the IBM System/360 and System/370 1/0

interface.

[00480] The ESCON I/O interface is described in the System Library publication /BM
Enterprise Systems Architecture/ 390 ESCON I/0 Interface, SA22-7202, which is hereby

incorporated herein by reference in its entirety.

[00481] The FICON I/0 interface is described in the ANSI standards document Fibre
Channel - Single-Byte Command Code Sets-2 (FC-SB-2).

[00482] The IBM System/360 and System/370 1/0 interface is described in the
System Library publication IBM System/ 360 and System/370 1/O Interface Channel to
Control Unit OEMI, GA22-6974, which is hereby incorporated herein by reference in its

entirety.

[00483] Depending on the type of channel path, the facilities provided by the channel
path, and the I/0 device, an I/O operation may occur in one of three modes, frame-multiplex

mode, burst mode, or byte-multiplex mode.

[00484] In the frame-multiplex mode, the I/O device may stay logically connected to
the channel path for the duration of the execution of a channel program. The facilities of a
channel path capable of operating in the frame-multiplex mode may be shared by a number
of concurrently operating I/O devices. In this mode the information required to complete an
I/O operation is divided into frames that may be interleaved with frames from I/O operations
for other 1/0 devices. During this period, multiple 1/0O devices are considered to be logically

connected to the channel path.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

71

[00485] In the burst mode, the 1/0 device monopolizes a channel path and stays
logically connected to the channel path for the transfer of a burst of information. No other
device can communicate over the channel path during the time a burst is transferred. The
burst can consist of a few bytes, a whole block of data, a sequence of blocks with associated
control and status information (the block lengths may be zero), or status information that
monopolizes the channel path. The facilities of the channel path capable of operating in the

burst mode may be shared by a number of concurrently operating I/0 devices.

[00486] Some channel paths can tolerate an absence of data transfer for about a half
minute during a burst-mode operation, such as occurs when a long gap on magnetic tape is
read. An equipment malfunction may be indicated when an absence of data transfer exceeds

the prescribed limit.

[00487] In the byte-multiplex mode, the I/O device stays logically connected to the
channel path only for a short interval of time. The facilities of a channel path capable of
operating in the byte-multiplex mode may be shared by a number of concurrently operating
I/O devices. In this mode, all I/O operations are split into short intervals of time during
which only a segment of information is transferred over the channel path. During such an
interval, only one device and its associated subchannel are logically connected to the channel
path. The intervals associated with the concurrent operation of multiple I/0 devices are
sequenced in response to demands from the devices. The channel-subsystem facility
associated with a subchannel exercises its controls for any one operation only for the time
required to transfer a segment of information. The segment can consist of a single byte of
data, a few bytes of data, a status report from the device, or a control sequence used for the

initiation of a new operation.

[00488] Ordinarily, devices with high data-transfer-rate requirements operate with the
channel path in the frame-multiplex mode, slower devices operate in the burst mode, and the
slowest devices operate in the byte-multiplex mode. Some control units have a manual

switch for setting the desired mode of operation.

[00489] An 1/0O operation that occurs on a parallel-1/O-interface type of channel path
may occur in either the burst mode or the byte-multiplex mode depending on the facilities

provided by the channel path and the 1/0 device. For improved performance, some channel

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

72

paths and control units are provided with facilities for high-speed transfer and data
streaming. See the System Library publication IBM System/360 and System/ 370 1/0
Interface Channel to Control Unit OEMI, GA22-6974, for a description of those two

facilities, which is hereby incorporated herein by reference in its entirety.

[00490] An 1/0O operation that occurs on a serial-1/O-interface-type of channel path
may occur in either the frame-multiplex mode or the burst mode. For improved performance,
some control units attaching to the serial- I/0 interface provide the capability to provide
sense data to the program concurrent with the presentation of unit-check status, if permitted

to do so by the program.

[00491] Depending on the control unit or channel subsystem, access to a device

through a subchannel may be restricted to a single channel-path type.

[00492] The modes and features described above affect only the protocol used to
transfer information over the channel path and the speed of transmission. No effects are

observable by CPU or channel programs with respect to the way these programs are

executed.
[00493] Control Units
[00494] A control unit provides the logical capabilities necessary to operate and

control an I/0 device and adapts the characteristics of each device so that it can respond to

the standard form of control provided by the channel subsystem.

[00495] Communication between the control unit and the channel subsystem takes
place over a channel path. The control unit accepts control signals from the channel
subsystem, controls the timing of data transfer over the channel path, and provides

indications concerning the status of the device.

[00496] The I/O device attached to the control unit may be designed to perform only
certain limited operations, or it may perform many different operations. A typical operation
18 moving a recording medium and recording data. To accomplish its operations, the device

needs detailed signal sequences peculiar to its type of device. The control unit decodes the

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

73

commands received from the channel subsystem, interprets them for the particular type of

device, and provides the signal sequence required for the performance of the operation.

[00497] A control unit may be housed separately, or it may be physically and logically
integrated with the 1/0 device, the channel subsystem, or a CPU. In the case of most
clectromechanical devices, a well-defined interface exists between the device and the control
unit because of the difference in the type of equipment the control unit and the device
require. These electromechanical devices often are of a type where only one device of a
group attached to a control unit is required to transfer data at a time (magnetic-tape units or
disk-access mechanisms, for example), and the control unit is shared among a number of I/O
devices. On the other hand, in some ¢lectronic I/O devices, such as the channel-to-channel

adapter, the control unit does not have an identity of its own.

[00498] From the programmer's point of view, most functions performed by the
control unit can be merged with those performed by the 1/O device. Therefore, normally no
specific mention of the control-unit function is made in this description; the performance of
I/O operations is described as if the 1/0 devices communicated directly with the channel
subsystem. Reference is made to the control unit only when emphasizing a function
performed by it or when describing how the sharing of the control unit among a number of

devices affects the performance of I/O operations.
[00499] I/0 Devices

[00500] An input/output (I/O) device provides external storage, a means of
communication between data-processing systems, or a means of communication between a
system and its environment. I/O devices include such equipment as magnetic-tape units,
direct-access-storage devices (for example, disks), display units, typewriter-keyboard
devices, printers, teleprocessing devices, and sensor-based equipment. An I/0 device may be

physically distinct equipment, or it may share equipment with other 1/0 devices.

[00501] Most types of I/O devices, such as printers, or tape devices, use external
media, and these devices are physically distinguishable and identifiable. Other types are
solely electronic and do not directly handle physical recording media. The channel-to-
channel adapter, for example, provides for data transfer between two channel paths, and the

data never reaches a physical recording medium outside main storage. Similarly,

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

74

communication controllers may handle the transmission of information between the data-
processing system and a remote station, and its input and output are signals on a

transmission line.

[00502] In the simplest case, an 1/0 device is attached to one control unit and is
accessible from one channel path. Switching equipment is available to make some devices
accessible from two or more channel paths by switching devices among control units and by
switching control units among channel paths. Such switching equipment provides multiple
paths by which an I/O device may be accessed. Multiple channel paths to an I/O device are
provided to improve performance or I/O availability, or both, within the system. The
management of multiple channel paths to devices is under the control of the channel

subsystem and the device, but the channel paths may indirectly be controlled by the

program.
[00503] I/0 Addressing
[00504] Four different types of I/O addressing are provided by the channel subsystem

for the necessary addressing of the various components: channel-path identifiers, subchannel
numbers, device numbers, and, though not visible to programs, addresses dependent on the
channel-path type. When the multiple-subchannel-set facility is installed, the subchannel-set
identifier (SSID) is also used in I/O addressing.

[00505] Subchannel-Set Identifier

[00506] The subchannel-set identifier (SSID) is a two-bit value assigned to each

provided subchannel set.
[00507] Channel-Path Identifier

[00508] The channel-path identifier (CHPID) is a system-unique eight-bit value
assigned to each installed channel path of the system. A CHPID is used to address a channel
path. A CHPID is specified by the second-operand address of RESET CHANNEL PATH
and used to designate the channel path that is to be reset. The channel paths by which a
device is accessible are identified in the subchannel-information block (SCHIB), each by its

associated CHPID, when STORE SUBCHANNEL is executed. The CHPID can also be used

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

75

in operator messages when it is necessary to identify a particular channel path. A system
model may provide as many as 256 channel paths. The maximum number of channel paths

and the assignment of CHPIDs to channel paths depends on the system model.
[00509] Subchannel Number

[00510] A subchannel number is a system-unique 16-bit value used to address a
subchannel. This value is unique within a subchannel set of a channel subsystem. The
subchannel is addressed by eight 1/0 instructions: CANCEL SUBCHANNEL, CLEAR
SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME
SUBCHANNEL, START SUBCHANNEL, STORE SUBCHANNEL, and TEST
SUBCHANNEL. All I/O functions relative to a specific 1/0 device are specified by the
program by designating a subchannel assigned to the I/0O device. Subchannels in each
subchannel set are always assigned subchannel numbers within a single range of contiguous
numbers. The lowest-numbered subchannel is subchannel 0. The highest-numbered
subchannel of the channel subsystem has a subchannel number equal to one less than the
number of subchannels provided. A maximum of 65,536 subchannels can be provided in
cach subchannel set. Normally, subchannel numbers are only used in communication

between the CPU program and the channel subsystem.
[00511] Device Number

[00512] Each subchannel that has an 1/0 device assigned to it also contains a
parameter called the device number. The device number is a 16-bit value that is assigned as
one of the parameters of the subchannel at the time the device is assigned to the subchannel.

The device number uniquely identifies a device to the program.

[00513] The device number provides a means to identify a device, independent of any
limitations imposed by the system model, the configuration, or channel-path protocols. The
device number is used in communications concerning the device that take place between the
system and the system operator. For example, the device number is entered by the system

operator to designate the input device to be used for initial program loading.

[00514] Programming Note: The device number is assigned at device-installation

time and may have any value. However, the user must observe any restrictions on device-

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

76

number assignment that may be required by the control program, support programs, or the

particular control unit or I/O device.
[00515] Device Identifier

[00516] A device identifier is an address, not apparent to the program, that is used by
the channel subsystem to communicate with I/O devices. The type of device identifier used
depends on the specific channel-path type and the protocols provided. Each subchannel

contains one or more device identifiers.

[00517] For a channel path of the parallel-I/O-interface type, the device identifier is
called a device address and consists of an eight-bit value. For the ESCON 1/0O interface, the
device identifier consists of a four-bit control-unit address and an eight-bit device address.
For the FICON I/O interface, the device identifier consists of an eight-bit control-unit-image
ID and an eight-bit device address. For the FICON-converted 1/0 interface, the device

identifier consists of a four-bit control-unit address and an eight-bit device address.

[00518] The device address identifies the particular 1/0 device (and, on the parallel-
I/O interface, the control unit) associated with a subchannel. The device address may
identify, for example, a particular magnetic- tape drive, disk-access mechanism, or

transmission line. Any number in the range 0-255 can be assigned as a device address.
[00519] Fibre-Channel Extensions

[00520] The fibre-channel-extensions (FCX) facility is an optional facility that
provides for the formation of a channel program that is composed of a transport-control
word (TCW) that designates a transport-command- control block (TCCB) and a transport-
status block (TSB). The TCCB includes a transport-command area (TCA) which contains a
list of up to 30 I/O commands that are in the form of device-command words (DCWs). A
TCW and its TCCB may specify either a read or a write operation. In addition to the IRB,
the TSB contains the completion status and other information related to the TCW channel

program.

[00521] The FCX facility provides the ability to directly or indirectly designate any or
all of the TCCB, the input data storage area, and the output data storage arca. When a

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

77

storage area is designated directly, the TCW specifies the location of a single, contiguous
block of storage. When a storage area is designated indirectly, the TCW designates the
location of a list of one or more transport-indirect-data-address words (TIDAWs). TIDAW
lists and the storage arca designated by each TIDAW in a list are restricted from crossing

4K-byte boundaries

[00522] The FCX facility also provides an interrogate operation that may be initiated
by the CANCEL SUBCHANNEL instruction to determine the state of an I/O operation.

[00523] I/0-Command Words

[00524] An 1/O-command word specifies a command and contains information
associated with the command. When the FCX facility is installed, there are two elemental
forms of I/O command words which are the channel-command word (CCW) and the device-

command word (DCW).

[00525] A CCW is 8-bytes in length and specifies the command to be executed. For
commands that initiate certain operations the CCW also designates the storage area
associated with the operation, the count of data bytes, the action to be taken when the

command completes, and other options. All I/O devices recognize CCWs.

[00526] A DCW is 8-bytes in length and specifies the command to be executed. the
count of data bytes, and other options. 1/O devices that support FCX recognize DCWs.

[00527] Transport Command Word (TCW)

[00528] A TCW designates a transport-command-control block (TCCB) which
contains a list of commands to be transported to and executed by an 1/O device. The TCW
also designates the storage areas for the commands in the TCCB as well as a transport-status

block (TSB) to contain the status of the I/0 operation.
[00529] Channel Program Organization

[00530] When the FCX facility is not installed, there is a single form of channel
program which is the CCW channel program. When the FCX facility is installed, there is an

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

78

additional form of channel program which is the TCW channel program. Both forms of

channel programs are described below.
[00531] CCW Channel Program

[00532] A channel program that is composed of one or more CCWs is called a CCW
channel program (CCP). Such a channel program contains one or more CCWs that are

logically linked and arranged for sequential execution by the channel subsystem.
[00533] TCW Channel Program

[00534] A channel program that is composed of a single TCW is called a TCW
channel program. A TCW designates a transport-command-control block (TCCB) that
contains from 1 to 30 DCWs. The DCWs within the TCCB are logically linked and
arranged for sequential execution. For DCWs that specify control information, the TCCB
also contains the control information for those commands. The TCW also designates the
storage area or arcas for the DCWs that specify the transfer of data from or to the device and
the location of a transport-status block (TSB) for completion status. The TCCB and the

storage areas for the transfer of data may be specified as either contiguous or noncontiguous

storage.

[00535] The TCW also designates a TSB for completion status.

[00536] Execution of I/0 Operations

[00537] I/O operations are initiated and controlled by information with four types of

formats: the instruction START SUBCHANNEL, transport-command words, I/0-command
words, and orders. The START SUBCHANNEL instruction is executed by a CPU and is
part of the CPU program that supervises the flow of requests for 1/0 operations from other

programs that manage or process the 1/0 data.

[00538] When START SUBCHANNEL is executed, parameters are passed to the
target subchannel requesting that the channel subsystem perform a start function with the 1/0
device associated with the subchannel. The channel subsystem performs the start function by

using information at the subchannel, including the information passed during the execution

of the START SUBCHANNEL instruction, to find an accessible channel path to the device.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

79

Once the device has been selected, the execution of an I/O operation is accomplished by the
decoding and execution of a CCW by the channel subsystem and the 1/0 device, for CCW
channel programs, or for TCW channel programs, by transporting the TCCB to the I/O
device by the channel subsystem and the decoding and execution of a DCW by the device.
I/O-command words, and transport-command words are fetched from main storage, although
the modifier bits in the command code of a CCW DCW may specify device-dependent

conditions for the execution of an operation at the device.

[00539] Operations peculiar to a device, such as rewinding tape or positioning the
access mechanism on a disk drive, are specified by orders that are decoded and executed by
I/0 devices. Orders may be transferred to the device as modifier bits in the command code of
a control command, may be transferred to the device as data during a control or write

operation, or may be made available to the device by other means.
[00540] Start-Function Initiation

[00541] CPU programs initiate I/O operations with the instruction START
SUBCHANNEL. This instruction passes the contents of an operation-request block (ORB)

to the subchannel.

[00542] If the ORB specifies a CCW channel program, the contents of the ORB
include the subchannel key, the address of the first CCW to be executed, and a specification
of the format of the CCWs. The CCW specifies the command to be executed and the storage
area, if any, to be used. If the ORB specifies a TCW channel program, the contents of the
ORB include the subchannel key and the address of the TCW to be executed. The TCW
designates the TCCB which contains the commands to be transported to the device for
execution, the storage area or areas, if any, to be used for data transfer, and the TSB to

contain the status of the I/0O operation.

[00543] When the ORB contents have been passed to the subchannel, the execution of
START SUBCHANNEL is complete. The results of the execution of the instruction are

indicated by the condition code set in the program-status word.

[00544] When facilities become available and the ORB specifies a CCW channel
program, the channel subsystem fetches the first CCW and decodes it according to the

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
80

format bit specified in the ORB. If the format bit is zero, format-0 CCWs are specified. If the
format bit is one, format-1 CCWs are specified. Format-0 and format- 1 CCWs contain the
same information, but the fields are arranged differently in the format-1 CCW so that 31-bit
addresses can be specified directly in the CCW. When facilities become available and the
ORB specifies a TCW channel program, the channel subsystem fetches the designated TCW
and transports the designated TCCB to the device. Storage areas designated by the TCW for

the transfer of data to or from the device are 64-bit addresses.
[00545] Subchannel Operation Modes

[00546] There are two modes of subchannel operation. A subchannel enters transport
mode when the FCX facility is installed and the start function is set at the subchannel as the
result of the execution of a START SUBCHANNEL instruction that specifies a TCW

channel program. The subchannel remains in transport mode until the start function is reset

at the subchannel. At all other times, the subchannel is in command mode.
[00547] Path Management

[00548] If ORB specifies a CCW channel program and the first CCW passes certain
validity tests and does not have the suspend flag specified as one or if the ORB specifies a
TCW channel program and the designated TCW passes certain validity tests, the channel
subsystem attempts device selection by choosing a channel path from the group of channel
paths that are available for selection. A control unit that recognizes the device identifier

connects itself logically to the channel path and responds to its selection.

[00549] If the ORB specifies a CCW channel program, the channel subsystem sends
the command-code part of the CCW over the channel path, and the device responds with a
status byte indicating whether the command can be executed. The control unit may logically
disconnect from the channel path at this time, or it may remain connected to initiate data

transfer.

[00550] If the ORB specifies a TCW channel program, the channel subsystem uses
information in the designated TCW to transfer the TCCB to the control unit. The contents of
the TCCB are ignored by the channel subsystem and only have meaning to the control unit

and I/O device.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

81

[00551] If the attempted selection does not occur as a result of either a busy indication
or a path-not-operational condition, the channel subsystem attempts to select the device by
an alternate channel path if one is available. When selection has been attempted on all paths
available for selection and the busy condition persists, the operation remains pending until a
path becomes free. If a path-not-operational condition is detected on one or more of the
channel paths on which device selection was attempted, the program is alerted by a
subsequent 1/0 interruption. The I/O interruption occurs either upon execution of the channel
program (assuming the device was selected on an alternate channel path) or as a result of the
execution being abandoned because path-not-operational conditions were detected on all of

the channel paths on which device selection was attempted.
[00552] Channel-Program Execution

[00553] If the command is initiated at the device and command execution does not
require any data to be transferred to or from the device, the device may signal the end of the
operation immediately on receipt of the command code. In operations that involve the
transfer of data, the subchannel is set up so that the channel subsystem will respond to

service requests from the device and assume further control of the operation.

[00554] An 1/0O operation may involve the transfer of data to or from one storage area,
designated by a single CCW or TCW or to or from a number of noncontiguous storage areas.
In the latter case, generally a list of CCWs is used for the execution of the 1/0 operation,
with each CCW designating a contiguous storage arca and the CCWs are coupled by data
chaining. Data chaining is specified by a flag in the CCW and causes the channel subsystem
to fetch another CCW upon the exhaustion or filling of the storage area designated by the
current CCW. The storage area designated by a CCW fetched on data chaining pertains to
the 1/0 operation already in progress at the I/O device, and the I/0 device is not notified
when a new CCW is fetched.

[00555] Provision is made in the CCW format for the programmer to specify that,
when the CCW is decoded, the channel subsystem request an 1/0O interruption as soon as
possible, thereby notifying a CPU program that chaining has progressed at least as far as that
CCW in the channel program.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

82

[00556] To complement dynamic address translation in CPUs, CCW indirect data
addressing and modified CCW indirect data addressing are provided.

[00557] When the ORB specifies a CCW channel program and CCW-indirect-data
addressing is used, a flag in the CCW specifies that an indirect-data-address list is to be used
to designate the storage areas for that CCW. Each time the boundary of a block of storage is
reached, the list is referenced to determine the next block of storage to be used. The ORB

specifies whether the size of each block of storage is 2K bytes or 4K bytes.

[00558] When the ORB specifies a CCW channel program and modified-CCW-
indirect-data addressing is used, a flag in the ORB and a flag in the CCW specify that a
modified-indirect-data-address list is to be used to designate the storage areas for that CCW.
Each time the count of bytes specified for a block of storage is reached, the list is referenced
to determine the next block of storage to be used. Unlike when indirect data addressing is
used, the block may be specified on any boundary and length up to 4K, provided a data

transfer across a 4K-byte boundary is not specified.

[00559] When the ORB specifies a TCW channel program and transport-indirect-data
addressing is used, flags in the TCW specify whether a transport-indirect-data-address list is
to be used to designate the storage areas containing the TCCB and whether a transport-
indirect-data-address list is used to designate the data storage areas associated with the
DCWs in the TCCB. Each time the count of bytes specified for a block of storage is reached,
the corresponding transport- indirect-data-address list is referenced to determine the next

storage block to be used.

[00560] CCW indirect data addressing and modified CCW indirect data addressing
permit essentially the same CCW sequences to be used for a program running with dynamic
address translation active in the CPU as would be used if the CPU were operating with
equivalent contiguous real storage. CCW indirect data addressing permits the program to
designate data blocks having absolute storage addresses up to 2°*-1 independent of whether
format-0 or format-1 CCWs have been specified in the ORB. Modified CCW indirect data
addressing permits the program to designate data blocks having absolute storage addresses
up to 2°*-1, independent of whether format- 0 or format-1 CCWs have been specified in the

ORB.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

83
[00561] In general, the execution of an I/O operation or chain of operations involves
as many as three levels of participation:
[00562] 1. Except for effects due to the integration of CPU and channel-

subsystem equipment, a CPU is busy for the duration of the execution of START
SUBCHANNEL, which lasts until the addressed subchannel has been passed the ORB

contents.

[00563] 2. The subchannel is busy for a new START SUBCHANNEL from the
receipt of the ORB contents until the primary interruption condition is cleared at the
subchannel.

[00564] 3. The I/O device is busy from the initiation of the first operation at the

device until either the subchannel becomes suspended or the secondary interruption
condition is placed at the subchannel. In the case of a suspended subchannel, the device

again becomes busy when the execution of the suspended channel program is resumed.
[00565] Conclusion of 1/0 Operations

[00566] The conclusion of an 1/O operation normally is indicated by two status
conditions: channel end and device end. The channel-end condition indicates that the 1/0
device has received or provided all data associated with the operation and no longer needs
channel-subsystem facilities. This condition is called the primary interruption condition, and
the channel end in this case is the primary status. Generally, the primary interruption
condition is any interruption condition that relates to an I/O operation and that signals the

conclusion at the subchannel of the I/O operation or chain of 1/O operations.

[00567] The device-end signal indicates that the 1/0 device has concluded execution
and is ready to perform another operation. This condition is called the secondary interruption
condition, and the device end in this case is the secondary status. Generally, the secondary
interruption condition is any interruption condition that relates to an /O operation and that
signals the conclusion at the device of the 1/O operation or chain of operations. The
secondary interruption condition can occur concurrently with, or later than, the primary

interruption condition.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

&4

[00568] Concurrent with the primary or secondary interruption conditions, both the

channel subsystem and the 1/0O device can provide indications of unusual situations.

[00569] The conditions signaling the conclusion of an I/O operation can be brought to
the attention of the program by 1/O interruptions or, when the CPUs are disabled for I/O
interruptions, by programmed interrogation of the channel subsystem. In the former case,
these conditions cause storing of the I/O-interruption code, which contains information
concerning the interrupting source. In the latter case, the interruption code is stored as a

result of the execution of TEST PENDING INTERRUPTION.

[00570] When the primary interruption condition is recognized, the channel
subsystem attempts to notify the program, by means of an interruption request, that a
subchannel contains information describing the conclusion of an I/O operation at the
subchannel. For command-mode interruptions, the information identifies the last CCW used
and may provide its residual byte count, thus describing the extent of main storage used. For
transport-mode interruptions, the information identifies the current TCW and the TSB
associated with the channel program that contains additional status about the 1/O operation,
such as residual byte count. In addition to information about the channel program, both the
channel subsystem and the 1/O device may provide additional indications of unusual
conditions as part of either the primary or the secondary interruption condition. The
information contained at the subchannel may be stored by the execution of TEST
SUBCHANNEL or the execution of STORE SUBCHANNEL. This information, when
stored, is called a subchannel-status word (SCSW).

[00571] Chaining When Using a CCW Channel Program

[00572] When the ORB specifies a CCW channel program, facilities are provided for
the program to initiate the execution of a chain of I/O operations with a single START
SUBCHANNEL instruction. When the current CCW specifies command chaining and no
unusual conditions have been detected during the operation, the receipt of the device-end
signal causes the channel subsystem to fetch a new CCW. If the CCW passes certain validity
tests and the suspend flag is not specified as a one in the new CCW, execution of a new
command is initiated at the device. If the CCW fails to pass the validity tests, the new

command is not initiated, command chaining is suppressed, and the status associated with

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

&5

the new CCW causes an interruption condition to be generated. If the suspend flag is
specified as a one and this value is valid because of a one value in the suspend control, bit 4
of word 1 of the associated ORB, execution of the new command is not initiated, and

command chaining is concluded.

[00573] Execution of the new command is initiated by the channel subsystem in the
same way as in the previous operation. The ending signals occurring at the conclusion of an
operation caused by a CCW specifying command chaining are not made available to the
program. When another I/O operation is initiated by command chaining, the channel
subsystem continues execution of the channel program. If, however, an unusual condition
has been detected, command chaining is suppressed, the channel program is terminated, an
interruption condition is generated, and the ending signals causing the termination are made

available to the program.

[00574] The suspend-and-resume function provides the program with control over the
execution of a channel program. The initiation of the suspend function is controlled by the
setting of the suspend-control bit in the ORB. The suspend function is signaled to the
channel subsystem during channel-program execution when the suspend-control bit in the
ORB is one and the suspend flag in the first CCW or in a CCW fetched during command

chaining is one.

[00575] Suspension occurs when the channel subsystem fetches a CCW with the
suspend flag validly (because of a one value of the suspend-control bit in the ORB) specified
as one. The command in this CCW is not sent to the I/O device, and the device is signaled
that the chain of commands is concluded. A subsequent RESUME SUBCHANNEL
instruction informs the channel subsystem that the CCW that caused suspension may have
been modified and that the channel subsystem must refetch the CCW and examine the
current setting of the suspend flag. If the suspend flag is found to be zero in the CCW, the

channel subsystem resumes execution of the chain of commands with the 1/0 device.
[00576] Chaining When Using a TCW Channel Program

[00577] When the ORB specifies a TCW channel program, facilities are also provided
for the program to initiate the execution of a chain of device operations with a single START

SUBCHANNEL instruction. Command chaining may be specified for those DCWs

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
86

designated by a single TCW. When the current DCW specifies command chaining and no
unusual conditions have been detected during the operation, recognition of the successful

execution of the DCW causes the next DCW in the current TCCB to be processed.

[00578] If the next DCW passes certain validity tests, execution of a new command is
initiated at the device and the DCW becomes the current DCW. If the DCW fails to pass the
validity tests, the new command is not initiated, command chaining is suppressed, the
channel program is terminated, and the status associated with the new DCW causes an

interruption condition to be generated.

[00579] Execution of the new command is initiated in the same way as in the previous
operation. The ending signals occurring at the conclusion of an operation caused by a DCW
that is not the last specified DCW are not made available to the program. When another 1/0
operation is initiated by command chaining, execution of the channel program continues. If,
however, an unusual condition has been detected, command chaining is suppressed, the
channel program is terminated, an interruption condition is generated, and status is made

available to the program that identifies the unusual condition.
[00580] Premature Conclusion of I/0O Operations

[00581] Channel-program execution may be terminated prematurely by CANCEL
SUBCHANNEL, HALT SUBCHANNEL or CLEAR SUBCHANNEL. The execution of
CANCEL SUBCHANNEL causes the channel subsystem to terminate the start function at
the subchannel if the channel program has not been initiated at the device. When the start
function is terminated by the execution of CANCEL SUBCHANNEL, the channel
subsystem sets condition code 0 in response to the CANCEL SUBCHANNEL instruction.
The execution of HALT SUBCHANNEL causes the channel subsystem to issue the halt
signal to the I/O device and terminate channel-program execution at the subchannel. When
channel-program execution is terminated by the execution of HALT SUBCHANNEL, the
program is notified of the termination by means of an I/O-interruption request. When the
subchannel is in command mode, the interruption request is generated when the device
presents status for the terminated operation. When the subchannel is in transport mode, the
interruption request is generated immediately. If, however, the halt signal was issued to the

device during command chaining after the receipt of device end but before the next

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

87

command was transferred to the device, the interruption request is generated after the device
has been signaled. In the latter case, the device-status field of the SCSW will contain zeros.
The execution of CLEAR SUBCHANNEL clears the subchannel of indications of the
channel program in execution, causes the channel subsystem to issue the clear signal to the
I/O device, and causes the channel subsystem to generate an I/O-interruption request to

notify the program of the completion of the clear function.
[00582] I/O Interruptions

[00583] Conditions causing I/O-interruption requests are asynchronous to activity in
CPUs, and more than one condition can occur at the same time. The conditions are preserved
at the subchannels until cleared by TEST SUBCHANNEL or CLEAR SUBCHANNEL, or

reset by an 1/0O-system reset.

[00584] When an I/O-interruption condition has been recognized by the channel
subsystem and indicated at the subchannel, an 1/O-interruption request is made pending for
the I/O-interruption subclass specified at the subchannel. The 1/O-interruption subclass for
which the interruption is made pending is under programmed control through the use of
MODIFY SUBCHANNEL. A pending I/O interruption may be accepted by any CPU that is
enabled for interruptions from its I/O-interruption subclass. Each CPU has eight mask bits,
in control register 6, that control the enablement of that CPU for each of the eight 1/O-
interruption subclasses, with the I/0 mask, bit 6 in the PSW, being the master 1/0O-

interruption mask for the CPU.

[00585] When an 1/O interruption occurs at a CPU, the I/O-interruption code is stored
in the I/O-communication area of that CPU, and the 1/O-interruption request is cleared. The
I/O-interruption code identifies the subchannel for which the interruption was pending. The
conditions causing the generation of the interruption request may then be retrieved from the

subchannel explicitly by TEST SUBCHANNEL or by STORE SUBCHANNEL.

[00586] A pending I/O-interruption request may also be cleared by TEST PENDING
INTERRUPTION when the corresponding I/O-interruption subclass is enabled but the PSW
has 1/O interruptions disabled or by TEST SUBCHANNEL when the CPU is disabled for
I/O interruptions from the corresponding I/O-interruption subclass. A pending 1/0-

interruption request may also be cleared by CLEAR SUBCHANNEL. Both CLEAR

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
&8

SUBCHANNEL and TEST SUBCHANNEL clear the preserved interruption condition at the

subchannel as well.

[00587] Normally, unless the interruption request is cleared by CLEAR
SUBCHANNEL, the program issues TEST SUBCHANNEL to obtain information

concerning the execution of the operation.
[00588] CLEAR SUBCHANNEL

[00589] The designated subchannel is cleared, the current start or halt function, if any,
is terminated at the designated subchannel, and the channel subsystem is signaled to
asynchronously perform the clear function at the designated subchannel and at the associated

device.

[00590] General register 1 contains a subsystem-identification word (SID) that

designates the subchannel to be cleared.
[00591] If a start or halt function is in progress, it is terminated at the subchannel.

[00592] The subchannel is made no longer status pending. All activity, as indicated in
the activity-control field of the SCSW, is cleared at the subchannel, except that the
subchannel is made clear pending. Any functions in progress, as indicated in the function-
control field of the SCSW, are cleared at the subchannel, except for the clear function that is

to be performed because of the execution of this instruction.

[00593] When the subchannel is operating in transport mode and condition code 2 is
set, the CPU may signal the channel subsystem to asynchronously perform the interrogate

function, and end the instruction.

[00594] The channel subsystem is signaled to asynchronously perform the clear
function. The clear function is summarized below in the section “Associated Functions” and

is described in detail in thereafter.

[00595] Condition code 0 is set to indicate that the actions described above have been

taken.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

&9

[00596] Associated Functions

[00597] Subsequent to the execution of CLEAR SUBCHANNEL, the channel
subsystem asynchronously performs the clear function. If conditions allow, the channel
subsystem chooses a channel path and attempts to issue the clear signal to the device to
terminate the I/O operation, if any. The subchannel then becomes status pending. Conditions
encountered by the channel subsystem that preclude issuing the clear signal to the device do

not prevent the subchannel from becoming status pending.

[00598] When the subchannel becomes status pending as a result of performing the
clear function, data transfer, if any, with the associated device has been terminated. The
SCSW stored when the resulting status is cleared by TEST SUBCHANNEL has the clear-
function bit stored as one. If the channel subsystem can determine that the clear signal was
issued to the device, the clear-pending bit is stored as zero in the SCSW. Otherwise, the
clear-pending bit is stored as one, and other indications are provided that describe in greater

detail the condition that was encountered.

[00599] Measurement data is not accumulated, and device-connect time is not stored
in the extended-status word for the subchannel, for a start function that is terminated by

CLEAR SUBCHANNEL.
[00600] Special Conditions

[00601] Condition code 3 is set, and no other action is taken, when the subchannel is
not operational for CLEAR SUBCHANNEL. A subchannel is not operational for CLEAR
SUBCHANNEL when the subchannel is not provided in the channel subsystem, has no valid

device number assigned to it, or is not enabled.

[00602] CLEAR SUBCHANNEL can encounter the program exceptions described or

listed below.

[00603] When the multiple-subchannel-set facility is not installed, bits 32-47 of

general register 1 must contain 0001 hex; otherwise, an operand exception is recognized.

10

15

20

WO 2012/168029 PCT/EP2012/058676

90

[00604] When the multiple-subchannel-set facility is installed, bits 32-44 of general
register 1 must contain zeros, bits 45-46 must contain a valid value, and bit 47 must contain

the value one; otherwise, an operand exception is recognized.

[00605] Resulting Condition Code:

[00606] 0 Function initiated

[00607] 11—

[00608] 2—

[00609] 3 Not operational

[00610] Program Exceptions:

[00611] * Operand

[00612] * Privileged operation

[00613] Clear Function

[00614] Subsequent to the execution of CLEAR SUBCHANNEL, the channel

subsystem performs the clear function. Performance of the clear function consists in (1)
performing a path-management operation, (2) modifying fields at the subchannel, (3) issuing
the clear signal to the associated device, and (4) causing the subchannel to be made status

pending, indicating the completion of the clear function.
[00615] Clear-Function Path Management

[00616] A path-management operation is performed as part of the clear function in
order to examine channel-path conditions for the associated subchannel and to attempt to
choose an available channel path on which the clear signal can be issued to the associated

device.

[00617] Channel-path conditions are examined in the following order:

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
91

[00618] 1. If the channel subsystem is actively communicating or attempting to
establish active communication with the device to be signaled, the channel path that is in use

is chosen.

[00619] 2. If the channel subsystem is in the process of accepting a no-longer-busy
indication (which will not cause an interruption condition to be recognized) from the device
to be signaled, and the associated subchannel has no allegiance to any channel path, the

channel path that is in use is chosen.

[00620] 3. If the associated subchannel has a dedicated allegiance for a channel path,

that channel path is chosen.

[00621] 4. If the associated subchannel has a working allegiance for one or more

channel paths, one of those channel paths is chosen.

[00622] 5. If the associated subchannel has no allegiance for any channel path, if a
last-used channel path is indicated, and if that channel path is available for selection, that
channel path is chosen. If that channel path is not available for selection, either no channel
path is chosen or a channel path is chosen from the set of channel paths, if any, that are

available for selection (as though no last-used channel path were indicated).

[00623] 6. If the associated subchannel has no allegiance for any channel path, if no
last-used channel path is indicated, and if there exist one or more channel paths that are

available for selection, one of those channel paths is chosen.

[00624] If none of the channel-path conditions listed above apply, no channel path is
chosen.
[00625] For item 4, for item 5 under the specified conditions, and for item 6, the

channel subsystem chooses a channel path from a set of channel paths. In these cases, the
channel subsystem may attempt to choose a channel path, provided that the following

conditions do not apply:

[00626] 1. A channel-path-terminal condition exists for the channel path.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

92
[00627] 2. For a parallel or ESCON channel path: Another subchannel has an active
allegiance for the channel path.
[00628] For a FICON channel path: The channel path is currently being used to

actively communicate with the maximum number of subchannels that can have concurrent

active communications.

[00629] 3. The device to be signaled is attached to a type-1 control unit, and the
subchannel for another device attached to the same control unit has an allegiance to the same
channel path, unless the allegiance is a working allegiance and primary status has been

accepted by that subchannel.

[00630] 4. The device to be signaled is attached to a type-3 control unit, and the
subchannel for another device attached to the same control unit has a dedicated allegiance to

the same channel path.
[00631] Clear-Function Subchannel Modification

[00632] Path-management-control indications at the subchannel are modified during
performance of the clear function. Effectively, this modification occurs after the attempt to
choose a channel path, but prior to the attempt to select the device to issue the clear signal.

The path-management-control indications that are modified are as follows:

[00633] 1. The state of all eight possible channel paths at the subchannel is set to

operational for the subchannel.

[00634] 2. The last-path-used indication is reset to indicate no last-used channel path.
[00635] 3. Path-not-operational conditions, if any, are reset.

[00636] Clear-Function Signaling and Completion

[00637] Subsequent to the attempt to choose a channel path and the modification of

the path-management-control fields, the channel subsystem, if conditions allow, attempts to
select the device to issue the clear signal. Conditions associated with the subchannel and the
chosen channel path, if any, affect (1) whether an attempt is made to issue the clear signal,

and (2) whether the attempt to issue the clear signal is successful. Independent of these

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
93

conditions, the subchannel is subsequently set status pending, and the performance of the
clear function is complete. These conditions and their effect on the clear function are

described as follows:

[00638] No Attempt Is Made to Issue the Clear Signal: The channel subsystem does

not attempt to issue the clear signal to the device if any of the following conditions exist:

[00639] 1. No channel path was chosen.

[00640] 2. The chosen channel path is no longer available for selection.

[00641] 3. A channel-path-terminal condition exists for the chosen channel path.
[00642] 4. For parallel and ESCON channel paths: The chosen channel path is

currently being used to actively communicate with a different device. For FICON channel
paths: The chosen channel path is currently being used to actively communicate with the

maximum number of devices that can have concurrent active communications.

[00643] 5. The device to be signaled is attached to a type-1 control unit, and the
subchannel for another device attached to the same control unit has an allegiance to the same
channel path, unless the allegiance is a working allegiance and primary status has been

accepted by that subchannel.

[00644] 6. The device to be signaled is attached to a type-3 control unit, and the
subchannel for another device attached to the same control unit has a dedicated allegiance to

the same channel path.

[00645] If any of the conditions above exist, the subchannel remains clear pending

and is set status pending, and the performance of the clear function is complete.

[00646] The Attempt to Issue the Clear Signal Is Not Successful: When the channel
subsystem attempts to issue the clear signal to the device, the attempt may not be successful

because of the following conditions:

[00647] 1. The control unit or device signals a busy condition when the channel

subsystem attempts to select the device to issue the clear signal.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

94

[00648] 2. A path-not-operational condition is recognized when the channel

subsystem attempts to select the device to issue the clear signal.

[00649] 3. An error condition is encountered when the channel subsystem attempts to

issue the clear signal.

[00650] If any of the conditions above exists and the channel subsystem either
determines that the attempt to issue the clear signal was not successful or cannot determine
whether the attempt was successful, the subchannel remains clear pending and is set status

pending, and the performance of the clear function is complete.

[00651] The Attempt to Issue the Clear Signal Is Successful: When the channel
subsystem determines that the attempt to issue the clear signal was successful, the
subchannel is no longer clear pending and is set status pending, and the performance of the
clear function is complete. When the subchannel becomes status pending, the 1/0O operation,

if any, with the associated device has been terminated.

[00652] Programming Note: Subsequent to the performance of the clear function,
any nonzero status, except control unit end alone, that is presented to the channel subsystem
by the device is passed to the program as unsolicited alert status. Unsolicited status

consisting of control unit end alone or zero status is not presented to the program.
[00653] MODIFY SUBCHANNEL

[00654] The information contained in the subchannel-information block (SCHIB) is
placed in the program-modifiable fields at the subchannel. As a result, the program
influences, for that subchannel, certain aspects of I/O processing relative to the clear, halt,

resume, and start functions and certain I/O support functions.

[00655] General register 1 contains a subsystem-identification word (SID) that
designates the subchannel that is to be modified as specified by certain fields of the SCHIB.
The second-operand address is the logical address of the SCHIB and must be designated on a

word boundary; otherwise, a specification exception is recognized.

[00656] The channel-subsystem operations that may be influenced due to placement

of SCHIB information in the subchannel are:

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

95
[00657] * I/0 processing (E field)
[00658] * Interruption processing (interruption parameter and ISC field)
[00659] * Path management (D, LPM, and POM fields)
[00660] * Monitoring and address-limit checking (measurement- block index, LM,
and MM fields)
[00661] » Measurement-block-format control (F field)
[00662] * Extended-measurement-word-mode enable (X field)
[00663] * Concurrent-sense facility (S field)
[00664] » Measurement-block address (MBA)
[00665] Bits 0, 1, 6, and 7 of word 1, and bits 0-28 of word 6 of the SCHIB operand

must be zeros, and bits 9 and 10 of word 1 must not both be ones. When the extended-1/0-
measurement-block facility is installed and a format-1 measurement block is specified, bits
26-31 of word 11 must be specified as zeros. When the extended-1/0-measurement-block
facility is not installed, bit 29 of word 6 must be specified as zero; otherwise, an operand
exception is recognized. When the extended-1/0O-measurement-word facility is not installed,
or is installed but not enabled, bit 30 of word 6 must be specified as zero; otherwise, an
operand exception is recognized. The remaining fields of the SCHIB are ignored and do not

affect the processing of MODIFY SUBCHANNEL.

[00666] Condition code 0 is set to indicate that the information from the SCHIB has
been placed in the program-modifiable fields at the subchannel, except that, when the
device-number-valid bit (V) at the designated subchannel is zero, then condition code 0 is

set, and the information from the SCHIB is not placed in the program-modifiable ficlds.
[00667] Special Conditions

[00668] Condition code 1 is set, and no other action is taken, when the subchannel is

status pending.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

96
[00669] Condition code 2 is sct, and no other action is taken, when a clear, halt, or
start function is in progress at the subchannel.
[00670] Condition code 3 is set, and no other action is taken, when the subchannel is

not operational for MODIFY SUBCHANNEL. A subchannel is not operational for
MODIFY SUBCHANNEL when the subchannel is not provided in the channel subsystem.

[00671] MODIFY SUBCHANNEL can encounter the program exceptions described

or listed below.

[00672] In word 1 of the SCHIB, bits 0, 1, 6, and 7 must be zeros and, when the
address-limit-checking facility is installed, bits 9 and 10 must not both be ones. In word 6 of

the SCHIB, bits 0-28 must be zeros. Otherwise an operand exception is recognized.

[00673] When the extended-1/0-measurement-block facility is installed and a format-
1 measurement block is specified, bits 26-31 of word 11 must be specified as zeros;
otherwise, an operand exception is recognized. When the extended-1/0O-measurement-block
facility is not installed, bit 29 of word 6 must be specified as zero; otherwise, an operand
exception is recognized. When the extended-1/O-measurement-word facility is not installed,
or is installed but not enabled, bit 30 of word 6 must be specified as zero; otherwise, an

operand exception is recognized.

[00674] When the multiple-subchannel-set facility is not installed, bits 32-47 of

general register 1 must contain 0001 hex; otherwise, an operand exception is recognized.

[00675] When the multiple-subchannel-set facility is installed, bits 32-44 of general
register 1 must contain zeros, bits 45-46 must contain a valid value, and bit 47 must contain

the value one; otherwise, an operand exception is recognized.

[00676] The second operand must be designated on a word boundary; otherwise, a
specification exception is recognized. The execution of MODIFY SUBCHANNEL is

suppressed on all addressing and protection exceptions.
[00677] Resulting Condition Code:

[00678] 0 Function completed

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

97
[00679] 1 Status pending
[00680] 2 Busy
[00681] 3 Not operational
[00682] Program Exceptions:
[00683] * Access (fetch, operand 2)
[00684] * Operand
[00685] * Privileged operation
[00686] * Specification
[00687] Programming Notes:
[00688] 1. If a device signals 1/0-error alert while the associated subchannel is

disabled, the channel subsystem issues the clear signal to the device and discards the 1/0-

error-alert indication without generating an I/O-interruption condition.

[00689] 2. If a device presents unsolicited status while the associated subchannel is
disabled, that status is discarded by the channel subsystem without generating an 1/0O-
interruption condition. However, if the status presented contains unit check, the channel
subsystem issues the clear signal for the associated subchannel and does not generate an 1/0O-
interruption condition. This should be taken into account when the program uses MODIFY
SUBCHANNEL to enable a subchannel. For example, the medium on the associated device
that was present when the subchannel became disabled may have been replaced, and,

therefore, the program should verify the integrity of that medium.

[00690] 3. It is recommended that the program inspect the contents of the subchannel
by subsequently issuing STORE SUBCHANNEL when MODIFY SUBCHANNEL sets
condition code 0. Use of STORE SUBCHANNEL is a method for determining if the
designated subchannel was changed or not. Failure to inspect the subchannel following the
setting of condition code 0 by MODIFY SUBCHANNEL may result in conditions that the

program does not expect to occur.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

98

[00691] START SUBCHANNEL

[00692] The channel subsystem is signaled to asynchronously perform the start
function for the associated device, and the execution parameters that are contained in the

designated ORB are placed at the designated subchannel.

[00693] General register 1 contains a subsystem-identification word that designates
the subchannel to be started. The second-operand address is the logical address of the ORB

and must be designated on a word boundary; otherwise, a specification exception is

recognized.
[00694] The execution parameters contained in the ORB are placed at the subchannel.
[00695] When START SUBCHANNEL is executed, the subchannel is status pending

with only secondary status, and the extended-status-word-format bit (L) is zero, the status-

pending condition is discarded at the subchannel.

[00696] The subchannel is made start pending, and the start function is indicated at
the subchannel. If the second operand designates a command-mode ORB, the subchannel
remains in command mode. If the second operand designates a transport-mode ORB, the
subchannel enters transport mode. When the subchannel enters transport mode, the LPUM 1is

set to zero if no previous dedicated allegiance exists; otherwise the LPUM is not changed.

[00697] Logically prior to the setting of condition code 0, path-not-operational

conditions at the subchannel, if any, are cleared.

[00698] The channel subsystem is signaled to asynchronously perform the start
function. The start function is summarized below in the section “Associated Functions” and

is described in detail thereafter.

[00699] Condition code 0 is set to indicate that the actions described above have been
taken.

[00700] Associated Functions

[00701] Subsequent to the execution of START SUBCHANNEL, the channel

subsystem asynchronously performs the start function.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
99

[00702] The contents of the ORB, other than the fields that must contain all zeros, are
checked for validity. On some models, the fields of the ORB that must contain zeros are
checked asynchronously, instead of during the execution of the instruction. When invalid
fields are detected asynchronously, the subchannel becomes status pending with primary,
secondary, and alert status and with deferred condition code 1 and program check indicated.
In this situation, the I/O operation or chain of I/O operations is not initiated at the device,
and the condition is indicated by the start-pending bit being stored as one when the SCSW is
cleared by the execution of TEST SUBCHANNEL.

[00703] On some models, path availability is tested asynchronously, instead of during
the execution of the instruction. When no channel path is available for selection, the
subchannel becomes status pending with primary and secondary status and with deferred
condition code 3 indicated. The I/O operation or chain of I/O operations is not initiated at the
device, and this condition is indicated by the start-pending bit being stored as one when the

SCSW is cleared by the execution of TEST SUBCHANNEL.

[00704] If conditions allow, a channel path is chosen, and execution of the channel

program that is designated in the ORB is initiated.
[00705] Special Conditions

[00706] Condition code 1 is set, and no other action is taken, when the subchannel is
status pending when START SUBCHANNEL is executed. On some models, condition code
1 is not set when the subchannel is status pending with only secondary status; instead, the

status-pending condition is discarded.

[00707] Condition code 2 is set, and no other action is taken, when a start, halt, or

clear function is currently in progress at the subchannel.

[00708] Condition code 3 is set, and no other action is taken, when the subchannel is
not operational for START SUBCHANNEL. A subchannel is not operational for START
SUBCHANNEL if the subchannel is not provided in the channel subsystem, has no valid

device number associated with it, or is not enabled.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

100

[00709] A subchannel is also not operational for START SUBCHANNEL, on some
models, when no channel path is available for selection. On these models, the lack of an
available channel path is detected as part of the START SUBCHANNEL execution. On
other models, channel-path availability is only tested as part of the asynchronous start

function.

[00710] START SUBCHANNEL can encounter the program exceptions described or

listed below.

[00711] In word 1 of the command-mode ORB, bits 26-30 must be zeros, and, in word
2 of the command-mode ORB, bit 0 must be zero. Otherwise, on some models, an operand
exception is recognized. On other models, an 1/O-interruption condition is generated,

indicating program check, as part of the asynchronous start function.

[00712] START SUBCHANNEL can also encounter the program exceptions listed
below.
[00713] When the multiple-subchannel-set facility is not installed, bits 32-47 of

general register 1 must contain 0001 hex; otherwise, an operand exception is recognized.

[00714] When the multiple-subchannel-set facility is installed, bits 32-44 of general
register 1 must contain zeros, bits 45-46 must contain a valid value, and bit 47 must contain

the value one; otherwise, an operand exception is recognized.

[00715] The second operand must be designated on a word boundary; otherwise, a
specification exception is recognized. The execution of START SUBCHANNEL is

suppressed on all addressing and protection exceptions.

[00716] Resulting Condition Code:
[00717] 0 Function initiated
[00718] 1 Status pending

[00719] 2 Busy

[00720] 3 Not operational

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

101
[00721] Program Exceptions:
[00722] * Access (fetch, operand 2)
[00723] * Operand
[00724] * Privileged operation
[00725] * Specification
[00726] Start Function and Resume Function
[00727] The start and resume functions initiate I/O operations as described below. The

start function applies to subchannels operating in either command mode or transport mode.

The resume function applies only to subchannels operating in command mode.

[00728] Subsequent to the execution of START SUBCHANNEL and RESUME
SUBCHANNEL, the channel subsystem performs the start and resume functions,
respectively, to initiate an I/O operation with the associated device. Performance of a start or
resume function consists of: (1) performing a path-management operation, (2) performing an
1/0 operation or chain of I/0 operations with the associated device, and (3) causing the
subchannel to be made status pending, indicating the completion of the start function. The
start function initiates the execution of a channel program that is designated in the ORB,
which in turn is designated as the operand of START SUBCHANNEL, in contrast to the
resume function that initiates the execution of a suspended channel program, if any,
beginning at the CCW that caused suspension; otherwise, the resume function is performed

as if it were a start function.
[00729] Start-Function and Resume-Function Path Management

[00730] A path-management operation is performed by the channel subsystem during
the performance of either a start or a resume function to choose an available channel path
that can be used for device selection to initiate an I/O operation with that device. The actions

taken are as follows:

[00731] 1. If the subchannel is currently start pending and device active, the start

function remains pending at the subchannel until the secondary status for the previous start

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

102

function has been accepted from the associated device and the subchannel is made start
pending alone. When the status is accepted and does not describe an alert interruption
condition, the subchannel is not made status pending, and the performance of the pending
start function is subsequently initiated. If the status describes an alert interruption condition,
the subchannel becomes status pending with secondary and alert status, the pending start
function is not initiated, deferred condition code 1 is set, and the start-pending bit remains
one. If the subchannel is currently start pending alone, the performance of the start function

is initiated as described below.

[00732] 2. If a dedicated allegiance exists at the subchannel for a channel path, the
channel subsystem chooses that path for device selection. If a busy condition is encountered
while attempting to select the device and a dedicated allegiance exists at the subchannel, the
start function remains pending until the internal indication of busy is reset for that channel
path. When the internal indication of busy is reset, the performance of the pending start

function is initiated on that channel path.

[00733] 3. If no channel path is available for selection and no dedicated allegiance

exists in the subchannel for a channel path, a channel path is not chosen.

[00734] 4. If all channel paths that are available for selection have been tried and one
or more of them are being used to actively communicate with other devices, or, alternatively,
if the channel subsystem has encountered either a control-unit-busy or a device-busy
condition on one or more of those channel paths, or a combination of those conditions on
one or more of those channel paths, the start function remains pending at the subchannel

until a channel path, control unit, or device, as appropriate, becomes available.

[00735] 5. If (1) the start function is to be initiated on a channel path with a device
attached to a type-1 control unit and (2) no other device is attached to the same control unit
whose subchannel has either a dedicated allegiance to the same channel path or a working
allegiance to the same channel path where primary status has not been received for that
subchannel, then that channel path is chosen if it is available for selection; otherwise, that
channel path is not chosen. If, however, another channel path to the device is available for

selection and no allegiances exist as described above, that channel path is chosen. If no other

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
103

channel path is available for selection, the start or resume function, as appropriate, remains

pending until a channel path becomes available.

[00736] 6. If the device is attached to a type-3 control unit, and if at least one other
device is attached to the same control unit whose subchannel has a dedicated allegiance to
the same channel path, another channel path that is available for selection may be chosen, or
the start function remains pending until the dedicated allegiance for the other device is

cleared.

[00737] 7. If a channel path has been chosen and a busy indication is received during
device selection to initiate the execution of the first command of a pending CCW channel
program or to transport the TCCB of a pending TCW channel program, the channel path
over which the busy indication is received is not used again for that device or control unit
(depending on the device-busy or control-unit-busy indication received) until the internal

indication of busy is reset.

[00738] 8. If, during an attempt to select the device in order to initiate the execution of
the first command specified for the start or implied for the resume function for a CCW
channel program, or to initiate the transportation of the TCCB for the start function for a
TCW channel program, (as described in action 7 above), the channel subsystem receives a

busy indication, it performs one of the following actions:

[00739] a. If the device is specified to be operating in the multipath mode and the
busy indication received is device busy, then the start or resume function remains pending

until the internal indication of busy is reset.

[00740] b. If the device is specified to be operating in the multipath mode and the
busy indication received is control unit busy, or if the device is specified to be operating in
the single-path mode, the channel subsystem attempts selection of the device by choosing an
alternate channel path that is available for selection and continues the path-management
operation until either the start or the resume function is initiated or selection of the device
has been attempted on all channel paths that are available for selection. If the start or resume
function has not been initiated by the channel subsystem after all channel paths available for
selection have been chosen, the start or resume function remains pending until the internal

indication of busy is reset.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

104
[00741] c. If the subchannel has a dedicated allegiance, then action 2 on page 15-20
applies.
[00742] 9. When, during the selection attempt to transfer the first command for a

CCW channel program, or to transport the TCCB for a TCW channel program, the device
appears not operational and the corresponding channel path is operational for the
subchannel, a path-not-operational condition is recognized, and the state of the channel path
changes at the subchannel from operational for the subchannel to not operational for the
subchannel. The path-not-operational conditions at the subchannel, if any, are preserved
until the subchannel next becomes clear pending, start pending, or resume pending (if the
subchannel was suspended), at which time the path-not-operational conditions are cleared.
If, however, the corresponding channel path is not operational for the subchannel, a path-
not-operational condition is not recognized. When the device appears not operational during
the selection attempt to transfer the first command or TCCB on a channel path that is

available for selection, one of the following actions occurs:

[00743] a. If a dedicated allegiance exists for that channel path, then it is the only
channel path that is available for selection; therefore, further attempts to initiate the start or

resume function are abandoned, and an interruption condition is recognized.

[00744] b. If no dedicated allegiance exists and there are alternate channel paths
available for selection that have not been tried, one of those channel paths is chosen to
attempt device selection and transfer the first command for a CCW channel program, or the

TCCB for a TCW channel program.

[00745] c. If no dedicated allegiance exists, no alternate channel paths are available
for selection that have not been tried, and the device has appeared operational on at least one
of the channel paths that were tried, the start or resume function remains pending at the
subchannel until a channel path, a control unit, or the device, as appropriate, becomes

available.

[00746] d. If no dedicated allegiance exists, no alternate channel paths are available
for selection that have not been tried, and the device has appeared not operational on all
channel paths that were tried, further attempts to initiate the start or resume function are

abandoned, and an interruption condition is recognized.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

105

[00747] 10. When the subchannel is active and an I/O operation is to be initiated with

a device, all device selections occur according to the LPUM indication if the multipath mode
is not specified at the subchannel. For example, if command chaining is specified for a CCW
channel program, the channel subsystem transfers the first and all subsequent commands

describing a chain of I/O operations over the same channel path.
[00748] Execution of I/0 Operations

[00749] After a channel path is chosen, the channel subsystem, if conditions allow,
initiates the execution of an I/O operation with the associated device. Execution of additional

I/O operations may follow the initiation and execution of the first 1/O operation.

[00750] For subchannels operating in command mode, the channel subsystem can
execute seven types of commands: write, read, read backward, control, sense, sense ID, and
transfer in channel. Each command, except transfer in channel, initiates a corresponding 1/0
operation. Except for periods when channel-program execution is suspended at the
subchannel, the subchannel is active from the acceptance of the first command until the
primary interruption condition is recognized at the subchannel. If the primary interruption
condition is recognized before the acceptance of the first command, the subchannel does not
become active. Normally, the primary interruption condition is caused by the channel-end
signal or, in the case of command chaining, the channel-end signal for the last CCW of the
chain. The device is active until the secondary interruption condition is recognized at the
subchannel. Normally, the secondary interruption condition is caused by the device-end
signal or, in the case of command chaining, the device-end signal for the last CCW of the

chain.

[00751] For subchannels operating in transport mode, the channel subsystem can
transport six types of commands for execution: write, read, control, sense, sense 1D, and
interrogate. Each command initiates a corresponding device operation. When one or more
commands are transported to the I/O device in a TCCB, the subchannel remains start

pending until primary status is presented.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

106

[00752] Programming Notes:

[00753] In the single-path mode, all transfers of commands, data, and status for the
I/O operation or chain of I/O operations occur on the channel path over which the first

command was transferred to the device.

[00754] When the device has the dynamic-reconnection feature installed, an I/O
operation or chain of I/O operations may be performed in the multipath mode. To operate in
the multipath mode, MODIFY SUBCHANNEL must have been previously executed for the
subchannel with bit 13 of word 1 of the SCHIB specified as one. In addition, the device must
be set up for the multipath mode by the execution of certain model-dependent commands
appropriate to that type of device. The general procedures for handling multipath-mode

operations are as follows:
[00755] 1. Setup

[00756] a. A set-multipath-mode type of command must be successfully executed by
the device on each channel path that is to be a member of the multipath group being set up;
otherwise, the multipath mode of operation may give unpredictable results at the subchannel.
If, for any reason, one or more physically available channel paths to the device are not
included in the multipath group, these channel paths must not be available for selection
while the subchannel is operating in the multipath mode. A channel path can be made not
available for selection by having the corresponding LPM bit set to zero either in the SCHIB
prior to the execution of MODIFY SUBCHANNEL or in the ORB prior to the execution of
START SUBCHANNEL.

[00757] b. When a set-multipath-mode type of command is transferred to a device,
only a single channel path must be logically available in order to avoid alternate channel-
path selection for the execution of that start function; otherwise, device-busy conditions may
be detected by the channel subsystem on more than one channel path, which may cause
unpredictable results for subsequent multipath- mode operations. This type of setup

procedure should be used whenever the membership of a multipath group is changed.

[00758] 2. Leaving the Multipath Mode

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

107

[00759] To leave the multipath mode and continue processing in the single-path

mode, either of the following two procedures may be used:

[00760] a. A disband-multipath-mode type of command may be executed for any
channel path of the multipath group. This command must be followed by either (1) the
execution of MODIFY SUBCHANNEL with bit 13 of word 1 of the SCHIB specified as
zero, or (2) the specification of only a single channel path as logically available in the LPM.
A start function must not be performed at a subchannel operating in the multipath mode with
multiple channel paths available for selection while the device is operating in single-path
mode; otherwise, unpredictable results may occur at the subchannel for that function or

subsequent start functions.

[00761] b. A resign-multipath-mode type of command is executed on each channel
path of the multipath group (the reverse of the setup). This command must be followed by
either (1) the execution of MODIFY SUBCHANNEL with bit 13 of word 1 of the SCHIB
specified as zero, or (2) the specification of only a single channel path as logically available
in the LPM. No start function may be performed at a subchannel operating in the multipath
mode with multiple channel paths available for selection while the device is operating in
single-path mode; otherwise, unpredictable results may occur at the subchannel for that or

subsequent start functions.
[00762] Blocking of Data

[00763] Data recorded by an 1/0 device is divided into blocks. The length of a block
depends on the device; for example, a block can be a card, a line of printing, or the

information recorded between two consecutive gaps on magnetic tape.

[00764] The maximum amount of information that can be transferred in one I/0
operation is one block. An I/O operation is terminated when the associated main-storage area
is exhausted or the end of the block is reached, whichever occurs first. For some operations,
such as writing on a magnetic-tape unit or at an inquiry station, blocks are not defined, and

the amount of information transferred is controlled only by the program.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

108

[00765] Operation-Request Block

[00766] The operation-request block (ORB) is the operand of START
SUBCHANNEL. The ORB specifies the parameters to be used in controlling that particular
start function. These parameters include the interruption parameter, the subchannel key, the
address of first CCW or the TCW, operation-control bits, priority-control numbers, and a

specification of the logical availability of channel paths to the designated device.

[00767] The contents of the ORB are placed at the designated subchannel during the
execution of START SUBCHANNEL, prior to the setting of condition code 0. If the
execution will result in a nonzero condition code, the contents of the ORB are not placed at

the designated subchannel.

[00768] The two rightmost bits of the ORB address must be zeros, placing the ORB
on a word boundary; otherwise, a specification exception is recognized. When the fibre-
channel-extensions (FCX) facility is installed, the channel-program-type control (B) (word
1, bit 13) of the ORB specifies the type of channel program that is designated by the ORB.
When B is zero, the ORB designates a CCW channel program. When the B is one, the ORB
designates a TCW channel program. Only 1/O-devices that support FCX recognize TCW

channel programs.

[00769] If the contents of an ORB that designates a CCW channel program are placed
at the designated subchannel during the execution of START SUBCHANNEL, the
subchannel remains in command mode. Thus, such an ORB is also known as a command-
mode ORB. If the contents of an ORB that designates a TCW channel program are placed at
the designated subchannel during execution of START SUBCHANNEL, the subchannel

enters transport mode. Thus, such an ORB is also known as a transport- mode ORB.
[00770] TEST PENDING INTERRUPTION

[00771] The I/O-interruption code for a pending 1/O interruption at a subchannel is
stored at the location designated by the second-operand address, and the pending 1/0O-

interruption request is cleared.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

109

[00772] The second-operand address, when nonzero, is the logical address of the
location where the two-word I/O-interruption code, consisting of words 0 and 1, is to be
stored. The second-operand address must be designated on a word boundary; otherwise, a

specification exception is recognized.

[00773] If the second-operand address is zero, the three-word I/O-interruption code,
consisting of words 0-2, is stored at real locations 184-195. In this case, low-address

protection and key-controlled protection do not apply.

[00774] In the access-register mode when the second-operand address is zero, it is
unpredictable whether access-register translation occurs for access register B2. If the
translation occurs, the resulting address-space- control element is not used; that is, the

interruption code still is stored at real locations 184-195.

[00775] Pending I/O-interruption requests are accepted only for those I/O-interruption
subclasses allowed by the I/O-interruption-subclass mask in control register 6 of the CPU
executing the instruction. If no I/O-interruption requests exist that are allowed by control
register 6, the I/O-interruption code is not stored, the second-operand location is not

modified, and condition code 0 is set.

[00776] If a pending I/O-interruption request is accepted, the I/O-interruption code is
stored, the pending I/O-interruption request is cleared, and condition code 1 is set. The 1/O-
interruption code that is stored is the same as would be stored if an I/O interruption had
occurred. However, PSWs are not swapped as when an I/O-interruption occurs. execution of

the instruction is defined as follows:

[00777] Subsystem-Identification Word (SID):
[00778] Bits 32-63 of the SID are placed in word 0.
[00779] Interruption Parameter: Word 1 contains a four-byte parameter that was

specified by the program and passed to the subchannel in word 0 of the ORB or the PMCW.
When a device presents alert status and the interruption parameter was not previously passed
to the subchannel by an execution of START SUBCHANNEL or MODIFY
SUBCHANNEL, this field contains zeros.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

110

[00780] Interruption-Identification Word: Word 2, when stored, contains the
interruption-identification word, which further identifies the source of the 1/O-interruption.

Word 2 is stored only when the second-operand address is zero.
[00781] The interruption-identification word is defined as follows:

[00782] A bit (A): Bit 0 of the interruption-identification word specifies the type of
pending I/O-interruption request that was cleared. When bit 0 is zero, the I/O-interruption

request was associated with a subchannel.

[00783] 1/O-Interruption Subclass (ISC): Bit positions 2-4 of the interruption-
identification word contain an unsigned binary integer, in the range 0-7, that specifies the
I/O-interruption subclass associated with the subchannel for which the pending 1/0O-

interruption request was cleared. The remaining bit positions are reserved and stored as

ZEros.
[00784] Special Conditions
[00785] TEST PENDING INTERRUPTION can encounter the program exceptions

described or listed below.

[00786] The second operand must be designated on a word boundary; otherwise, a

specification exception is recognized.

[00787] The execution of TEST PENDING INTERRUPTION is suppressed on all

addressing and protection exceptions.

[00788] Resulting Condition Code:
[00789] 0 Interruption code not stored
[00790] I Interruption code stored
[00791] 2—

[00792] 3—

[00793] Program Exceptions:

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

111
[00794] * Access (store, operand 2, second-operand address nonzero only)
[00795] * Privileged operation
[00796] * Specification
[00797] Programming Notes:
[00798] 1. TEST PENDING INTERRUPTION should only be executed with a

second-operand address of zero when 1/O interruptions are masked off. Otherwise, an 1/0O-
interruption code stored by the instruction may be lost if an I/O interruption occurs. The 1/O-
interruption code that identifies the source of an I/0O interruption taken subsequent to TEST
PENDING INTERRUPTION is also stored at real locations 184-195, replacing an I/O-

interruption code that was stored by the instruction.

[00799] 2. In the access-register mode when the second-operand address is zero, an
access exception is recognized if access-register translation occurs and the access register is
in error. This exception can be prevented by making the B2 field zero or by placing

00000000 hex, 00000001 hex, or any other valid contents in the access register.

[00800] STORE SUBCHANNEL

[00801] Control and status information for the designated subchannel is stored in the
designated SCHIB.

[00802] General register 1 contains a subsystem-identification word that designates

the subchannel for which the information is to be stored. The second-operand address is the
logical address of the SCHIB and must be designated on a word boundary; otherwise, a

specification exception is recognized.

[00803] When the extended-1/0-measurement-block facility is not installed, the
information that is stored in the SCHIB consists of a path-management-control word, a
SCSW, and three words of model-dependent information. When the extended-1/0O-
measurement-block facility is installed, the information that is stored in the SCHIB consists
of a path-management-control word, a SCSW, the measurement-block-address field, and one

word of model-dependent information.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

112
[00804] The execution of STORE SUBCHANNEL does not change any information
at the subchannel.
[00805] Condition code 0 is set to indicate that control and status information for the

designated subchannel has been stored in the SCHIB. When the execution of STORE
SUBCHANNEL results in the setting of condition code 0, the information in the SCHIB

indicates a consistent state of the subchannel.
[00806] Special Conditions

[00807] Condition code 3 is sct, and no other action is taken, when the designated
subchannel is not operational for STORE SUBCHANNEL. A subchannel is not operational
for STORE SUBCHANNEL if the subchannel is not provided in the channel subsystem.

[00808] STORE SUBCHANNEL can encounter the program exceptions described or

listed below.

[00809] When the multiple-subchannel-set facility is not installed, bits 32-47 of

general register 1 must contain 0001 hex; otherwise, an operand exception is recognized.

[00810] When the multiple-subchannel-set facility is installed, bits 32-44 of general
register 1 must contain zeros, bits 45-46 must contain a valid value, and bit 47 must contain

the value one; otherwise, an operand exception is recognized.

[00811] The second operand must be designated on a word boundary; otherwise, a

specification exception is recognized.

[00812] Resulting Condition Code:
[00813] 0 SCHIB stored

[00814] 1—

[00815] 2—

[00816] 3 Not operational

[00817] Program Exceptions:

10

15

20

WO 2012/168029 PCT/EP2012/058676

113
[00818] * Access (store, operand 2)
[00819] * Operand
[00820] * Privileged operation
[00821] * Specification
[00822] Programming Notes:
[00823] 1. Device status that is stored in the SCSW may include device-busy, control-
unit-busy, or control-unit- end indications.
[00824] 2. The information that is stored in the SCHIB is obtained from the

subchannel. The STORE SUBCHANNEL instruction does not cause the channel subsystem

to interrogate the addressed device.

[00825] 3. STORE SUBCHANNEL may be executed at any time to sample
conditions existing at the subchannel, without causing any pending status conditions to be
cleared.

[00826] 4. Repeated execution of STORE SUBCHANNEL without an intervening

delay (for example, to determine when a subchannel changes state) should be avoided
because repeated accesses of the subchannel by the CPU may delay or prohibit access of the

subchannel by a channel subsystem to update the subchannel.

[00827] TEST SUBCHANNEL

[00828] Control and status information for the subchannel is stored in the designated
IRB.

[00829] General register 1 contains a subsystem-identification word that designates

the subchannel for which the information is to be stored. The second-operand address is the
logical address of the IRB and must be designated on a word boundary; otherwise, a

specification exception is recognized.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

114
[00830] The information that is stored in the IRB consists of a SCSW, an extended-
status word, and an extended-control word.
[00831] If the subchannel is status pending, the status-pending bit of the status-control

field is stored as one. Whether or not the subchannel is status pending has an effect on the

functions that are performed when TEST SUBCHANNEL is executed.

[00832] When the subchannel is status pending and TEST SUBCHANNEL is
executed, information, as described above, is stored in the IRB, followed by the clearing of
certain conditions and indications that exist at the subchannel. If the subchannel is in
transport mode, the clearing of these conditions, specifically the start function, places the
subchannel in command mode. If an I/O-interruption request is pending for the subchannel,

the request is cleared. Condition code 0 is set to indicate that these actions have been taken.

[00833] When the subchannel is not status pending and TEST SUBCHANNEL is
executed, information is stored in the IRB, and no conditions or indications are cleared.

Condition code 1 is set to indicate that these actions have been taken.
[00834] Special Conditions

[00835] Condition code 3 is set, and no other action is taken, when the subchannel is
not operational for TEST SUBCHANNEL. A subchannel is not operational for TEST
SUBCHANNEL if the subchannel is not provided, has no valid device number associated

with it, or is not enabled.

[00836] TEST SUBCHANNEL can encounter the program exceptions described or

listed below.

[00837] When the multiple-subchannel-set facility is not installed, bits 32-47 of

general register 1 must contain 0001 hex; otherwise, an operand exception is recognized.

[00838] When the multiple-subchannel-set facility is installed, bits 32-44 of general
register 1 must contain zeros, bits 45-46 must contain a valid value, and bit 47 must contain

the value one; otherwise, an operand exception is recognized.

10

15

20

WO 2012/168029 PCT/EP2012/058676

115
[00839] The second operand must be designated on a word boundary; otherwise, a
specification exception is recognized.
[00840] When the execution of TEST SUBCHANNEL is terminated on addressing

and protection exceptions, the state of the subchannel is not changed.

[00841] Resulting Condition Code:

[00842] 0 IRB stored; subchannel status pending
[00843] 1 IRB stored; subchannel not status pending
[00844] 2—

[00845] 3 Not operational

[00846] Program Exceptions:

[00847] * Access (store, operand 2)

[00848] * Operand

[00849] * Privileged operation

[00850] * Specification

[00851] Programming Notes:

[00852] 1. Device status that is stored in the SCSW may include device-busy, control-

unit-busy, or control-unit- end indications.

[00853] 2. The information that is stored in the IRB is obtained from the subchannel.
The TEST SUBCHANNEL instruction does not cause the channel subsystem to interrogate

the addressed device.

[00854] 3. When an I/O interruption occurs, it is the result of a status-pending
condition at the subchannel, and typically TEST SUBCHANNEL is executed to clear the
status. TEST SUBCHANNEL may also be executed at any other time to sample conditions

existing at the subchannel.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

116

[00855] 4. Repeated execution of TEST SUBCHANNEL to determine when a start
function has been completed should be avoided because there are conditions under which the
completion of the start function may or may not be indicated. For example, if the channel
subsystem is holding an interface- control-check (IFCC) condition in abeyance (for any
subchannel) because another subchannel is already status pending, and if the start function
being tested by TEST SUBCHANNEL has as the only path available for selection the
channel path with the IFCC condition, then the start function may not be initiated until the
status-pending condition in the other subchannel is cleared, allowing the IFCC condition to

be indicated at the subchannel to which it applies.

[00856] 5. Repeated execution of TEST SUBCHANNEL without an intervening
delay, for example, to determine when a subchannel changes state, should be avoided
because repeated accesses of the subchannel by the CPU may delay or prohibit accessing of
the subchannel by the channel subsystem. Execution of TEST SUBCHANNEL by multiple
CPUs for the same subchannel at approximately the same time may have the same effect and

also should be avoided.

[00857] 6. The priority of I/O-interruption handling by a CPU can be modified by the
execution of TEST SUBCHANNEL. When TEST SUBCHANNEL is executed and the
designated subchannel has an 1/O-interruption request pending, that I/O-interruption request
is cleared, and the SCSW is stored, without regard to any previously established priority.

The relative priority of the remaining 1/O-interruption requests is unchanged

[00858] As will be appreciated by one skilled in the art, aspects of the present
invention may be embodied as a system, method or computer program product.
Accordingly, aspects of the present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and hardware aspects that may all
generally be referred to herein as a "circuit,” "module” or "system". Furthermore, aspects of
the present invention may take the form of a computer program product embodied in one or
more computer readable medium(s) having computer readable program code embodied

thereon.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

117

[00859] Any combination of one or more computer readable medium(s) may be
utilized. The computer readable medium may be a computer readable storage medium. A
computer readable storage medium may be, for example, but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus, or device,
or any suitable combination of the foregoing. More specific examples (a non-exhaustive
list) of the computer readable storage medium include the following: an electrical
connection having one or more wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

[00860] Referring now to FIG. 10, in one example, a computer program product 1000
includes, for instance, one or more non-transitory computer readable storage media 1002 to
store computer readable program code means or logic 1004 thereon to provide and facilitate

one or more aspects of the present invention.

[00861] Program code embodied on a computer readable medium may be transmitted
using an appropriate medium, including but not limited to wireless, wireline, optical fiber

cable, RF, etc., or any suitable combination of the foregoing.

[00862] Computer program code for carrying out operations for aspects of the present
invention may be written in any combination of one or more programming languages,
including an object oriented programming language, such as Java, Smalltalk, C++ or the
like, and conventional procedural programming languages, such as the "C" programming
language, assembler or similar programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote computer may be connected to
the user's computer through any type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made to an external computer (for

example, through the Internet using an Internet Service Provider).

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

118

[00863] Aspects of the present invention are described herein with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the invention. It will be understood that
cach block of the flowchart illustrations and/or block diagrams, and combinations of blocks
in the flowchart illustrations and/or block diagrams, can be implemented by computer
program instructions. These computer program instructions may be provided to a processor
of a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block or

blocks.

[00864] These computer program instructions may also be stored in a computer
readable medium that can direct a computer, other programmable data processing apparatus,
or other devices to function in a particular manner, such that the instructions stored in the
computer readable medium produce an article of manufacture including instructions which

implement the function/act specified in the flowchart and/or block diagram block or blocks.

[00865] The computer program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
devices to produce a computer implemented process such that the instructions which execute
on the computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[00866] The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments of the present invention. In this regard,
cach block in the flowchart or block diagrams may represent a module, segment, or portion
of code, which comprises one or more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed substantially concurrently, or the

blocks may sometimes be executed in the reverse order, depending upon the functionality

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
119

involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

[00867] In addition to the above, one or more aspects of the present invention may be
provided, offered, deployed, managed, serviced, etc. by a service provider who offers
management of customer environments. For instance, the service provider can create,
maintain, support, etc. computer code and/or a computer infrastructure that performs one or
more aspects of the present invention for one or more customers. In return, the service
provider may receive payment from the customer under a subscription and/or fee agreement,
as examples. Additionally or alternatively, the service provider may receive payment from

the sale of advertising content to one or more third parties.

[00868] In one aspect of the present invention, an application may be deployed for
performing one or more aspects of the present invention. As one example, the deploying of
an application comprises providing computer infrastructure operable to perform one or more

aspects of the present invention.

[00869] As a further aspect of the present invention, a computing infrastructure may
be deployed comprising integrating computer readable code into a computing system, in
which the code in combination with the computing system is capable of performing one or

more aspects of the present invention.

[00870] As yet a further aspect of the present invention, a process for integrating
computing infrastructure comprising integrating computer readable code into a computer
system may be provided. The computer system comprises a computer readable medium, in
which the computer medium comprises one or more aspects of the present invention. The
code in combination with the computer system is capable of performing one or more aspects

of the present invention.

[00871] Although various embodiments are described above, these are only examples.
For example, computing environments of other architectures can incorporate and use one or
more aspects of the present invention. As examples, servers other than z196 servers can

include, use and/or benefit from one or more aspects of the present invention. Further, other

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

120

instructions and/or commands may be used; and the instructions/commands may include
additional, fewer and/or different information than described herein. Many variations are

possible.

[00872] Further, other types of computing environments can benefit from one or more
aspects of the present invention. As an example, a data processing system suitable for
storing and/or executing program code is usable that includes at least two processors coupled
directly or indirectly to memory elements through a system bus. The memory elements
include, for instance, local memory employed during actual execution of the program code,
bulk storage, and cache memory which provide temporary storage of at least some program
code in order to reduce the number of times code must be retrieved from bulk storage during

execution.

[00873] Input/Output or I/0O devices (including, but not limited to, keyboards,
displays, pointing devices, DASD, tape, CDs, DVDs, thumb drives and other memory
media, etc.) can be coupled to the system either directly or through intervening I/O
controllers. Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or remote printers or
storage devices through intervening private or public networks. Modems, cable modems,

and Ethernet cards are just a few of the available types of network adapters.

[00874] Referring to FIG. 11, representative components of a Host Computer system
5000 to implement one or more aspects of the present invention are portrayed. The
representative host computer 5000 comprises one or more CPUs 5001 in communication
with computer memory (i.e., central storage) 5002, as well as I/0 interfaces to storage media
devices 5011 and networks 5010 for communicating with other computers or SANs and the
like. The CPU 5001 is compliant with an architecture having an architected instruction set
and architected functionality. The CPU 5001 may have dynamic address translation (DAT)
5003 for transforming program addresses (virtual addresses) into real addresses of memory.
A DAT typically includes a translation lookaside buffer (TLB) 5007 for caching translations
so that later accesses to the block of computer memory 5002 do not require the delay of
address translation. Typically, a cache 5009 is employed between computer memory 5002
and the processor 5001. The cache 5009 may be hierarchical having a large cache available

to more than one CPU and smaller, faster (lower level) caches between the large cache and

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

121

cach CPU. In some implementations, the lower level caches are split to provide separate low
level caches for instruction fetching and data accesses. In one embodiment, an instruction is
fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The
instruction is decoded in an instruction decode unit 5006 and dispatched (with other
instructions in some embodiments) to instruction execution unit or units 5008. Typically
several execution units 5008 are employed, for example an arithmetic execution unit, a
floating point execution unit and a branch instruction execution unit. The instruction is
executed by the execution unit, accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a
load/store unit 5005 typically handles the access under control of the instruction being
executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

[00875] As noted, a computer system includes information in local (or main) storage,
as well as addressing, protection, and reference and change recording. Some aspects of
addressing include the format of addresses, the concept of address spaces, the various types
of addresses, and the manner in which one type of address is translated to another type of
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

[00876] Main storage may include one or more smaller, faster-access buffer storages,
sometimes called caches. A cache is typically physically associated with a CPU or an I/O
processor. The effects, except on performance, of the physical construction and use of

distinct storage media are generally not observable by the program.

[00877] Separate caches may be maintained for instructions and for data operands.
Information within a cache is maintained in contiguous bytes on an integral boundary called
a cache block or cache line (or line, for short). A model may provide an EXTRACT
CACHE ATTRIBUTE instruction which returns the size of a cache line in bytes. A model
may also provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG
instructions which effects the prefetching of storage into the data or instruction cache or the

releasing of data from the cache.

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

122

[00878] Storage is viewed as a long horizontal string of bits. For most operations,
accesses to storage proceed in a left-to-right sequence. The string of bits is subdivided into
units of eight bits. An eight-bit unit is called a byte, which is the basic building block of all
information formats. Each byte location in storage is identified by a unique nonnegative
integer, which is the address of that byte location or, simply, the byte address. Adjacent byte
locations have consecutive addresses, starting with 0 on the left and proceeding in a left-to-

right sequence. Addresses are unsigned binary integers and are 24, 31, or 64 bits.

[00879] Information is transmitted between storage and a CPU or a channel subsystem
one byte, or a group of bytes, at a time. Unless otherwise specified, in, for instance, the
z/Architecture®™, a group of bytes in storage is addressed by the leftmost byte of the group.
The number of bytes in the group is either implied or explicitly specified by the operation to
be performed. When used in a CPU operation, a group of bytes is called a field. Within
each group of bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right
sequence. In the z/Architecture®, the leftmost bits are sometimes referred to as the “high-
order” bits and the rightmost bits as the “low-order” bits. Bit numbers are not storage
addresses, however. Only bytes can be addressed. To operate on individual bits of a byte in
storage, the entire byte is accessed. The bits in a byte are numbered 0 through 7, from left to
right (in, e.g., the z/Architecture®™). The bits in an address may be numbered 8-31 or 40-63
for 24-bit addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For purposes of error detection, and in
preferably for correction, one or more check bits may be transmitted with each byte or with a
group of bytes. Such check bits are generated automatically by the machine and cannot be
directly controlled by the program. Storage capacities are expressed in number of bytes.
When the length of a storage-operand field is implied by the operation code of an
instruction, the field is said to have a fixed length, which can be one, two, four, eight, or
sixteen bytes. Larger fields may be implied for some instructions. When the length of a
storage-operand field is not implied but is stated explicitly, the field is said to have a variable
length. Variable-length operands can vary in length by increments of one byte (or with some
instructions, in multiples of two bytes or other multiples). When information is placed in

storage, the contents of only those byte locations are replaced that are included in the

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
123

designated field, even though the width of the physical path to storage may be greater than
the length of the field being stored.

[00880] Certain units of information are to be on an integral boundary in storage. A
boundary is called integral for a unit of information when its storage address is a multiple of
the length of the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on
an integral boundary. A halfword is a group of two consecutive bytes on a two-byte
boundary and is the basic building block of instructions. A word is a group of four
consecutive bytes on a four-byte boundary. A doubleword is a group of eight consecutive
bytes on an eight-byte boundary. A quadword is a group of 16 consecutive bytes on a 16-
byte boundary. When storage addresses designate halfwords, words, doublewords, and
quadwords, the binary representation of the address contains one, two, three, or four
rightmost zero bits, respectively. Instructions are to be on two-byte integral boundaries. The

storage operands of most instructions do not have boundary-alignment requirements.

[00881] On devices that implement separate caches for instructions and data operands,
a significant delay may be experienced if the program stores into a cache line from which
instructions are subsequently fetched, regardless of whether the store alters the instructions

that are subsequently fetched.

[00882] In one embodiment, the invention may be practiced by software (sometimes
referred to licensed internal code, firmware, micro-code, milli-code, pico-code and the like,
any of which would be consistent with the present invention). Referring to FIG. 11,
software program code which embodies the present invention is typically accessed by
processor 5001 of the host system 5000 from long-term storage media devices 5011, such as
a CD-ROM drive, tape drive or hard drive. The software program code may be embodied on
any of a variety of known media for use with a data processing system, such as a diskette,
hard drive, or CD-ROM. The code may be distributed on such media, or may be distributed
to users from computer memory 5002 or storage of one computer system over a network

5010 to other computer systems for use by users of such other systems.

[00883] The software program code includes an operating system which controls the
function and interaction of the various computer components and one or more application

programs. Program code is normally paged from storage media device 5011 to the

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

124

relatively higher-speed computer storage 5002 where it is available for processing by
processor 5001. The techniques and methods for embodying software program code in
memory, on physical media, and/or distributing software code via networks are well known
and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

[00884] FIG. 12 illustrates a representative workstation or server hardware system in
which the present invention may be practiced. The system 5020 of FIG. 12 comprises a
representative base computer system 5021, such as a personal computer, a workstation or a
server, including optional peripheral devices. The base computer system 5021 includes one
or more processors 5026 and a bus employed to connect and enable communication between
the processor(s) 5026 and the other components of the system 5021 in accordance with
known techniques. The bus connects the processor 5026 to memory 5025 and long-term
storage 5027 which can include a hard drive (including any of magnetic media, CD, DVD
and Flash Memory for example) or a tape drive for example. The system 5021 might also
include a user interface adapter, which connects the microprocessor 5026 via the bus to one
or more interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030
and/or other interface devices, which can be any user interface device, such as a touch
sensitive screen, digitized entry pad, etc. The bus also connects a display device 5022, such

as an LCD screen or monitor, to the microprocessor 5026 via a display adapter.

[00885] The system 5021 may communicate with other computers or networks of
computers by way of a network adapter capable of communicating 5028 with a network
5029. Example network adapters are communications channels, token ring, Ethernet or
modems. Alternatively, the system 5021 may communicate using a wireless interface, such
as a CDPD (cellular digital packet data) card. The system 5021 may be associated with such
other computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the

system 5021 can be a client in a client/server arrangement with another computer, etc. All of

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

125

these configurations, as well as the appropriate communications hardware and software, are

known 1n the art.

[00886] FIG. 13 illustrates a data processing network 5040 in which the present
invention may be practiced. The data processing network 5040 may include a plurality of
individual networks, such as a wireless network and a wired network, each of which may
include a plurality of individual workstations 5041, 5042, 5043, 5044. Additionally, as those
skilled in the art will appreciate, one or more LANS may be included, where a LAN may

comprise a plurality of intelligent workstations coupled to a host processor.

[00887] Still referring to FIG. 13, the networks may also include mainframe
computers or servers, such as a gateway computer (client server 5046) or application server
(remote server 5048 which may access a data repository and may also be accessed directly
from a workstation 5045). A gateway computer 5046 serves as a point of entry into each
individual network. A gateway is needed when connecting one networking protocol to
another. The gateway 5046 may be preferably coupled to another network (the Internet 5047
for example) by means of a communications link. The gateway 5046 may also be directly
coupled to one or more workstations 5041, 5042, 5043, 5044 using a communications link.
The gateway computer may be implemented utilizing an IBM eServer ~ System z* server

available from International Business Machines Corporation.

[00888] Referring concurrently to FIG. 12 and FIG. 13, software programming code
which may embody the present invention may be accessed by the processor 5026 of the
system 5020 from long-term storage media 5027, such as a CD-ROM drive or hard drive.
The software programming code may be embodied on any of a variety of known media for
use with a data processing system, such as a diskette, hard drive, or CD-ROM. The code
may be distributed on such media, or may be distributed to users 5050, 5051 from the
memory or storage of one computer system over a network to other computer systems for

use by users of such other systems.

[00889] Alternatively, the programming code may be embodied in the memory 5025,
and accessed by the processor 5026 using the processor bus. Such programming code
includes an operating system which controls the function and interaction of the various

computer components and one or more application programs 5032. Program code is

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

126

normally paged from storage media 5027 to high-speed memory 5025 where it is available
for processing by the processor 5026. The techniques and methods for embodying software
programming code in memory, on physical media, and/or distributing software code via
networks are well known and will not be further discussed herein. Program code, when
created and stored on a tangible medium (including but not limited to electronic memory
modules (RAM), flash memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is
often referred to as a “computer program product”. The computer program product medium
is typically readable by a processing circuit preferably in a computer system for execution by

the processing circuit.

[00890] The cache that is most readily available to the processor (normally faster and
smaller than other caches of the processor) is the lowest (L1 or level one) cache and main
store (main memory) is the highest level cache (L3 if there are 3 levels). The lowest level
cache is often divided into an instruction cache (I-Cache) holding machine instructions to be

executed and a data cache (D-Cache) holding data operands.

[00891] Referring to FIG. 14, an exemplary processor embodiment is depicted for
processor 5026. Typically one or more levels of cache 5053 are employed to buffer memory
blocks in order to improve processor performance. The cache 5053 is a high speed buffer
holding cache lines of memory data that are likely to be used. Typical cache lines are 64,
128 or 256 bytes of memory data. Separate caches are often employed for caching
instructions than for caching data. Cache coherence (synchronization of copies of lines in
memory and the caches) is often provided by various “snoop” algorithms well known in the
art. Main memory storage 5025 of a processor system is often referred to as a cache. Ina
processor system having 4 levels of cache 5053, main storage 5025 is sometimes referred to
as the level 5 (L5) cache since it is typically faster and only holds a portion of the non-
volatile storage (DASD, tape ctc) that is available to a computer system. Main storage 5025

“caches” pages of data paged in and out of the main storage 5025 by the operating system.

[00892] A program counter (instruction counter) 5061 keeps track of the address of

the current instruction to be executed. A program counter in a z/Architecture® processor is
64 bits and can be truncated to 31 or 24 bits to support prior addressing limits. A program

counter is typically embodied in a PSW (program status word) of a computer such that it

persists during context switching. Thus, a program in progress, having a program counter

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

127

value, may be interrupted by, for example, the operating system (context switch from the
program environment to the operating system environment). The PSW of the program
maintains the program counter value while the program is not active, and the program
counter (in the PSW) of the operating system is used while the operating system is
executing. Typically, the program counter is incremented by an amount equal to the number
of bytes of the current instruction. RISC (Reduced Instruction Set Computing) instructions
are typically fixed length while CISC (Complex Instruction Set Computing) instructions are
typically variable length. Instructions of the IBM z/Architecture® are CISC instructions
having a length of 2, 4 or 6 bytes. The Program counter 5061 is modified by ecither a context
switch operation or a branch taken operation of a branch instruction for example. In a
context switch operation, the current program counter value is saved in the program status
word along with other state information about the program being executed (such as condition
codes), and a new program counter value is loaded pointing to an instruction of a new
program module to be executed. A branch taken operation is performed in order to permit
the program to make decisions or loop within the program by loading the result of the branch

instruction into the program counter 5061.

[00893] Typically an instruction fetch unit 5055 is employed to fetch instructions on
behalf of the processor 5026. The fetch unit either fetches “next sequential instructions”,
target instructions of branch taken instructions, or first instructions of a program following a
context switch. Modern Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions based on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

[00894] The fetched instructions are then executed by the processor 5026. In an
embodiment, the fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit.
The dispatch unit decodes the instruction(s) and forwards information about the decoded
instruction(s) to appropriate units 5057, 5058, 5060. An execution unit 5057 will typically
receive information about decoded arithmetic instructions from the instruction fetch unit
5055 and will perform arithmetic operations on operands according to the opcode of the
instruction. Operands are provided to the execution unit 5057 preferably either from

memory 5025, architected registers 5059 or from an immediate field of the instruction being

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

128

executed. Results of the execution, when stored, are stored either in memory 5025, registers

5059 or in other machine hardware (such as control registers, PSW registers and the like).

[00895] A processor 5026 typically has one or more units 5057, 5058, 5060 for
executing the function of the instruction. Referring to FIG. 15A, an execution unit 5057
may communicate with architected general registers 5059, a decode/dispatch unit 5056, a
load store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
specialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and recovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can
forward the result to a variety of other processing functions. There are many arrangements
of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

[00896] An ADD instruction for example would be executed in an execution unit
5057 having arithmetic and logical functionality while a floating point instruction for
example would be executed in a floating point execution having specialized floating point
capability. Preferably, an execution unit operates on operands identified by an instruction by
performing an opcode defined function on the operands. For example, an ADD instruction
may be executed by an execution unit 5057 on operands found in two registers 5059

identified by register fields of the instruction.

[00897] The execution unit 5057 performs the arithmetic addition on two operands
and stores the result in a third operand where the third operand may be a third register or one
of the two source registers. The execution unit preferably utilizes an Arithmetic Logic Unit
(ALU) 5066 that is capable of performing a variety of logical functions such as Shift, Rotate,
And, Or and XOR as well as a variety of algebraic functions including any of add, subtract,
multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

129

depending on architecture. The IBM z/Architecture” is Big Endian. Signed fields may be
sign and magnitude, 1’s complement or 2’s complement depending on architecture. A 2’s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2’s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit
field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

[00898] Referring to FIG. 15B, branch instruction information for executing a branch
instruction is typically sent to a branch unit 5058 which often employs a branch prediction
algorithm such as a branch history table 5082 to predict the outcome of the branch before
other conditional operations are complete. The target of the current branch instruction will
be fetched and speculatively executed before the conditional operations are complete. When
the conditional operations are completed the speculatively executed branch instructions are
either completed or discarded based on the conditions of the conditional operation and the
speculated outcome. A typical branch instruction may test condition codes and branch to a
target address if the condition codes meet the branch requirement of the branch instruction, a
target address may be calculated based on several numbers including ones found in register
fields or an immediate field of the instruction for example. The branch unit 5058 may
employ an ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an
output register circuit 5080. The branch unit 5058 may communicate with general registers

5059, decode dispatch unit 5056 or other circuits 5073, for example.

[00899] The execution of a group of instructions can be interrupted for a variety of
reasons including a context switch initiated by an operating system, a program exception or
error causing a context switch, an I/O interruption signal causing a context switch or multi-
threading activity of a plurality of programs (in a multi-threaded environment), for example.
Preferably a context switch action saves state information about a currently executing
program and then loads state information about another program being invoked. State
information may be saved in hardware registers or in memory for example. State
information preferably comprises a program counter value pointing to a next instruction to
be executed, condition codes, memory translation information and architected register

content. A context switch activity can be exercised by hardware circuits, application

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
130

programs, operating system programs or firmware code (microcode, pico-code or licensed

internal code (LIC)) alone or in combination.

[00900] A processor accesses operands according to instruction defined methods. The
instruction may provide an immediate operand using the value of a portion of the instruction,
may provide one or more register fields explicitly pointing to either general purpose registers
or special purpose registers (floating point registers for example). The instruction may
utilize implied registers identified by an opcode field as operands. The instruction may
utilize memory locations for operands. A memory location of an operand may be provided
by a register, an immediate field, or a combination of registers and immediate field as
exemplified by the z/Architecture® long displacement facility wherein the instruction defines
a base register, an index register and an immediate field (displacement field) that are added
together to provide the address of the operand in memory for example. Location herein

typically implies a location in main memory (main storage) unless otherwise indicated.

[00901] Referring to FIG. 16C, a processor accesses storage using a load/store unit
5060. The load/store unit 5060 may perform a load operation by obtaining the address of the
target operand in memory 5053 and loading the operand in a register 5059 or another
memory 5053 location, or may perform a store operation by obtaining the address of the
target operand in memory 5053 and storing data obtained from a register 5059 or another
memory 5053 location in the target operand location in memory 5053. The load/store unit
5060 may be speculative and may access memory in a sequence that is out-of-order relative
to instruction sequence, however the load/store unit 5060 is to maintain the appearance to
programs that instructions were executed in order. A load/store unit 5060 may communicate
with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053 or
other elements 5083 and comprises various register circuits, ALUs 5085 and control logic
5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-
order. Some operations may be out of order but the load/store unit provides functionality to
make the out of order operations to appear to the program as having been performed in

order, as 18 well known in the art.

[00902] Preferably addresses that an application program “sees” are often referred to
as virtual addresses. Virtual addresses are sometimes referred to as “logical addresses” and

“effective addresses”. These virtual addresses are virtual in that they are redirected to

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

131

physical memory location by one of a variety of dynamic address translation (DAT)
technologies including, but not limited to, simply prefixing a virtual address with an offset
value, translating the virtual address via one or more translation tables, the translation tables
preferably comprising at least a segment table and a page table alone or in combination,
preferably, the segment table having an entry pointing to the page table. In the
z/Architecture”®, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. The
performance of the address translation is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual address to an associated physical
memory location. The entries are created when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the entry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

[00903] In the case where the processor is a processor of a multi-processor system,
cach processor has responsibility to keep shared resources, such as 1I/0, caches, TLBs and
memory, interlocked for coherency. Typically, “snoop” technologies will be utilized in
maintaining cache coherency. In a snoop environment, each cache line may be marked as
being in any one of a shared state, an exclusive state, a changed state, an invalid state and the

like in order to facilitate sharing.

[00904] I/0 units 5054 (FIG. 14) provide the processor with means for attaching to
peripheral devices including tape, disc, printers, displays, and networks for example. 1/0
units are often presented to the computer program by software drivers. In mainframes, such
as the System z* from IBM®, channel adapters and open system adapters are 1/0 units of the
mainframe that provide the communications between the operating system and peripheral

devices.

[00905] Further, other types of computing environments can benefit from one or more
aspects of the present invention. As an example, an environment may include an emulator
(e.g., software or other emulation mechanisms), in which a particular architecture (including,
for instance, instruction execution, architected functions, such as address translation, and
architected registers) or a subset thereof is emulated (e.g., on a native computer system

having a processor and memory). In such an environment, one or more emulation functions

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676
132

of the emulator can implement one or more aspects of the present invention, even though a
computer executing the emulator may have a different architecture than the capabilities
being emulated. As one example, in emulation mode, the specific instruction or operation
being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

[00906] In an emulation environment, a host computer includes, for instance, a
memory to store instructions and data; an instruction fetch unit to fetch instructions from
memory and to optionally, provide local buffering for the fetched instruction; an instruction
decode unit to receive the fetched instructions and to determine the type of instructions that
have been fetched; and an instruction execution unit to execute the instructions. Execution
may include loading data into a register from memory; storing data back to memory from a
register; or performing some type of arithmetic or logical operation, as determined by the
decode unit. In one example, each unit is implemented in software. For instance, the
operations being performed by the units are implemented as one or more subroutines within

emulator software.

[00907] More particularly, in a mainframe, architected machine instructions are used
by programmers, usually today “C” programmers, often by way of a compiler application.
These instructions stored in the storage medium may be executed natively in a
z/Architecture® IBM® Server, or alternatively in machines executing other architectures.
They can be emulated in the existing and in future IBM® mainframe servers and on other
machines of IBM® (e.g., Power Systems servers and System x° Servers). They can be
executed in machines running Linux on a wide variety of machines using hardware
manufactured by IBM®, Intel®, AMD ", and others. Besides execution on that hardware
under a z/Architecture®, Linux can be used as well as machines which use emulation by
Hercules, UMX, or FSI (Fundamental Software, Inc), where generally execution is in an
emulation mode. In emulation mode, emulation software is executed by a native processor to

emulate the architecture of an emulated processor.

[00908] The native processor typically executes emulation software comprising either
firmware or a native operating system to perform emulation of the emulated processor. The
emulation software is responsible for fetching and executing instructions of the emulated

processor architecture. The emulation software maintains an emulated program counter to

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

133

keep track of instruction boundaries. The emulation software may fetch one or more
emulated machine instructions at a time and convert the one or more emulated machine
instructions to a corresponding group of native machine instructions for execution by the
native processor. These converted instructions may be cached such that a faster conversion
can be accomplished. Notwithstanding, the emulation software is to maintain the
architecture rules of the emulated processor architecture so as to assure operating systems
and applications written for the emulated processor operate correctly. Furthermore, the
emulation software is to provide resources identified by the emulated processor architecture
including, but not limited to, control registers, general purpose registers, floating point
registers, dynamic address translation function including segment tables and page tables for
example, interrupt mechanisms, context switch mechanisms, Time of Day (TOD) clocks and
architected interfaces to I/O subsystems such that an operating system or an application
program designed to run on the emulated processor, can be run on the native processor

having the emulation software.

[00909] A specific instruction being emulated is decoded, and a subroutine is called to
perform the function of the individual instruction. An emulation software function
emulating a function of an emulated processor is implemented, for example, in a “C”
subroutine or driver, or some other method of providing a driver for the specific hardware as
will be within the skill of those in the art after understanding the description of the preferred
embodiment. Various software and hardware emulation patents including, but not limited to
U.S. Letters Patent No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by
Beausoleil et al.; and U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored
Target Routines for Emulating Incompatible Instructions on a Target Processor”, by Scalzi et
al; and U.S. Letters Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly
Access Emulation Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S.
Letters Patent No. 6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used
for Coprocessor Support Allowing Non-Native Code to Run in a System”, by Gorishek et al;
and U.S. Letters Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code
Translator for Architecture Emulation and Dynamic Optimizing Object Code Translation
Method”, by Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for
Emulating Guest Instructions on a Host Computer Through Dynamic Recompilation of Host

Instructions”, by Eric Traut, each of which is hereby incorporated herein by reference in its

10

15

20

25

30

WO 2012/168029 PCT/EP2012/058676

134

entirety; and many others, illustrate a variety of known ways to achieve emulation of an
instruction format architected for a different machine for a target machine available to those

skilled in the art.

[00910] In FIG. 16, an example of an emulated host computer system 5092 is
provided that emulates a host computer system 5000' of a host architecture. In the emulated
host computer system 5092, the host processor (CPU) 5091 is an emulated host processor (or
virtual host processor) and comprises an emulation processor 5093 having a different native
instruction set architecture than that of the processor 5091 of the host computer 5000'. The
emulated host computer system 5092 has memory 5094 accessible to the emulation
processor 5093. In the example embodiment, the memory 5094 is partitioned into a host
computer memory 5096 portion and an emulation routines 5097 portion. The host computer
memory 5096 is available to programs of the emulated host computer 5092 according to host
computer architecture. The emulation processor 5093 executes native instructions of an
architected instruction set of an architecture other than that of the emulated processor 5091,
the native instructions obtained from emulation routines memory 5097, and may access a
host instruction for execution from a program in host computer memory 5096 by employing
one or more instruction(s) obtained in a sequence & access/decode routine which may
decode the host instruction(s) accessed to determine a native instruction execution routine
for emulating the function of the host instruction accessed. Other facilities that are defined
for the host computer system 5000' architecture may be emulated by architected facilities
routines, including such facilities as general purpose registers, control registers, dynamic
address translation and I/0 subsystem support and processor cache, for example. The
emulation routines may also take advantage of functions available in the emulation processor
5093 (such as general registers and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

[00911] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the invention. As used herein, the

[P 1
a

singular forms an” and “the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further understood that the terms

“comprises’” and/or “comprising”, when used in this specification, specify the presence of

10

15

WO 2012/168029 PCT/EP2012/058676

135

stated features, integers, steps, operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, integers, steps, operations, elements,

components and/or groups thereof.

[00912] The corresponding structures, materials, acts, and equivalents of all means or
step plus function elements in the claims below, if any, are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of the present invention has been presented for
purposes of illustration and description, but is not intended to be exhaustive or limited to the
invention in the form disclosed. Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope and spirit of the invention. The
embodiment was chosen and described in order to best explain the principles of the
invention and the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiment with various modifications as are suited to

the particular use contemplated.

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

136

CLAIMS

1. A computer program product for executing a Start Subchannel instruction in a
computing environment comprising main storage and storage class memory, said computer

program product comprising:

a computer readable storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for performing a method

comprising:

responsive to determining that a subchannel identified by the Start
Subchannel instruction is an Asynchronous Data Mover (ADM) subchannel,

performing:

obtaining an operation request block from main storage, the operation

request block comprising an address of an operation block;

based on the address of the operation block, obtaining the operation
block from main storage, the operation block consisting of a request
block, a response block, and one or more first move specification
blocks (MSBs), wherein the request block comprises an MSB count
field having a value indicating the number of one or more first MSBs
included in and referenced by the operation block, wherein the
response block is configured to hold exception conditions, wherein
each first move specification block is configured to include a first
operation code field, a first block count field, a first main storage
address field, a first storage class memory address field, a first block

size field and a first flags field;

obtaining a first move specification block of the one or more first
move specification blocks, wherein the first flags field of the first
move specification block comprises a branch-to-next MSB (BNM)

indicator;

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

137

responsive to the BNM indicator having a first BNM value,
performing an operation based on a first operation code in the
obtained first move specification block, the operation being
performed on a number of blocks of storage class memory of a size
determined by the first block size field, wherein the number of blocks

is determined from the first block count ficld; and
responsive to the BNM indicator having a second BNM value:

branching to a second MSB located at an address specified by
the first main storage address field of the first MSB, wherein
the second MSB comprises a second block size field, a second

block count field and a second operation code; and

performing an operation based on the second operation code in
the obtained second MSB, the operation being performed on a
number of blocks of storage class memory of a size

determined by the second block size field, wherein the number

of blocks is determined from the second block count field.
2. The computer program product of claim 1, wherein the method further comprises:

responsive to determining that all of the first MSBs in the operation block have not
been used based on the value indicating the number of one or more first MSBs that
are included in the operation, repeating the method using a next first MSB beginning

with the obtaining the first MSB operation.

3. The computer program product of claim 1, wherein responsive to the first operation
code or the second operation code being set to a first value, the performing comprises
performing a read operation in which the blocks of data are moved from storage class

memory to main storage.

4, The computer program product of claim 1, wherein responsive to the first operation

code or the second operation code being set to a second value, the performing comprises

10

15

20

25

WO 2012/168029 PCT/EP2012/058676
138

performing a write operation in which the blocks of data are moved from main storage to

storage class memory.

5. The computer program product of claim 1, wherein responsive to the first operation
code or the second operation code being set to a third value, the performing comprises

performing a clear operation.

6. The computer program product of claim 1, wherein responsive to the first operation
code or the second operation code being set to a fourth value, the performing comprises

performing a release operation.

7. The computer program product of claim 1, wherein the size designated in the first

block size field or second block size field is either 4K or 1M.

8. The computer program product of claim 1, wherein the method further comprises
generating one or more status conditions, responsive to completion of the operation, the one

or more status conditions accessible to an issuer of the Start Subchannel instruction.

9. The computer program product of claim 1, wherein the response block is configured
to indicate one or more errors and is populated responsive to an error condition detected

during execution of the operation.

10. The computer program product of claim 1, wherein responsive to the BNM indicator
having the second BNM value, the first operation code field, the first block size field, the

first block count field and the first storage class memory address field have no meaning.

11. A computer system for executing a Start Subchannel instruction in a computing
environment comprising main storage and storage class memory, said computer system

comprising:
a memory; and

a processor in communications with the memory, wherein the computer system is

configured to perform a method, said method comprising:

10

15

20

25

WO 2012/168029

PCT/EP2012/058676

139

responsive to determining that a subchannel identified by the Start

Subchannel instruction is an Asynchronous Data Mover (ADM) subchannel,

performing:

obtaining an operation request block from main storage, the operation

request block comprising an address of an operation block;

based on the address of the operation block, obtaining the operation
block from main storage, the operation block consisting of a request
block, a response block, and one or more first move specification
blocks (MSBs), wherein the request block comprises an MSB count
field having a value indicating the number of one or more first MSBs
included in and referenced by the operation block, wherein the
response block is configured to hold exception conditions, wherein
each first move specification block is configured to include a first
operation code field, a first block count field, a first main storage
address field, a first storage class memory address field, a first block

size field and a first flags field;

obtaining a first move specification block of the one or more first
move specification blocks, wherein the first flags field of the first
move specification block comprises a branch-to-next MSB (BNM)

indicator;

responsive to the BNM indicator having a first BNM value,
performing an operation based on a first operation code in the
obtained first move specification block, the operation being performed
on a number of blocks of storage class memory of a size determined
by the first block size field, wherein the number of blocks is

determined from the first block count field; and
responsive to the BNM indicator having a second BNM value:

branching to a second MSB located at an address specified by
the first main storage address field of the first MSB, wherein

10

15

20

25

WO 2012/168029 PCT/EP2012/058676

140

the second MSB comprises a second block size field, a second

block count field and a second operation code; and

performing an operation based on the second operation code in
the obtained second MSB, the operation being performed on a

number of blocks of storage class memory of a size determined
by the second block size field, wherein the number of blocks is

determined from the second block count field.
12. The computer system of claim 11, wherein the method further comprises:

responsive to determining that all of the first MSBs in the operation block have not
been used based on the value indicating the number of one or more first MSBs that
are included in the operation, repeating the method using a next first MSB beginning

with the obtaining the first MSB operation.

13. The computer system of claim 11, wherein responsive to the first operation code or
the second operation code being set to a first value, the performing comprises performing a
read operation in which the blocks of data are moved from storage class memory to main

storage.

14. The computer system of claim 11, wherein responsive to the first operation code or
the second operation code being set to a second value, the performing comprises performing
a write operation in which the blocks of data are moved from main storage to storage class

memory.

15. The computer system of claim 11, wherein responsive to the first operation code or
the second operation code being set to a third value, the performing comprises performing a

clear operation.

16. The computer system of claim 11, wherein responsive to the first operation code or
the second operation code being set to a fourth value, the performing comprises performing a

release operation.

WO 2012/168029 PCT/EP2012/058676
141

17. The computer system of claim 11, wherein the method further comprises generating
one or more status conditions, responsive to completion of the operation, the one or more

status conditions accessible to an issuer of the Start Subchannel instruction.

18. A method of executing a Start Subchannel instruction in a computing environment

comprising main storage and storage class memory, said method comprising:

responsive to determining that a subchannel identified by the Start Subchannel

instruction is an Asynchronous Data Mover (ADM) subchannel, performing:

obtaining an operation request block from main storage, the operation request

block comprising an address of an operation block;

based on the address of the operation block, obtaining the operation block
from main storage, the operation block consisting of a request block, a
response block, and one or more first move specification blocks (MSBs),
wherein the request block comprises an MSB count field having a value
indicating the number of one or more first MSBs included in and referenced
by the operation block, wherein the response block is configured to hold
exception conditions, wherein each first move specification block is
configured to include a first operation code field, a first block count field, a
first main storage address field, a first storage class memory address field, a

first block size field and a first flags field;

obtaining a first move specification block of the one or more first move
specification blocks, wherein the first flags field of the first move

specification block comprises a branch-to-next MSB (BNM) indicator;

responsive to the BNM indicator having a first BNM value, performing an
operation based on a first operation code in the obtained first move
specification block, the operation being performed on a number of blocks of
storage class memory of a size determined by the first block size field,
wherein the number of blocks is determined from the first block count field;

and

10

15

WO 2012/168029 PCT/EP2012/058676
142

responsive to the BNM indicator having a second BNM value:

branching to a second MSB located at an address specified by the first
main storage address field of the first MSB, wherein the second MSB
comprises a second block size field, a second block count field and a

second operation code; and

performing an operation based on the second operation code in the
obtained second MSB, the operation being performed on a number of
blocks of storage class memory of a size determined by the second
block size field, wherein the number of blocks is determined from the

second block count field.
19. The method of claim 18, further comprising:

responsive to determining that all of the first MSBs in the operation block have not
been used based on the value indicating the number of one or more first MSBs that
are included in the operation, repeating the method using a next first MSB beginning

with the obtaining the first MSB operation.

20. The method of claim 18, further comprising generating one or more status
conditions, responsive to completion of the operation, the one or more status conditions

accessible to an issuer of the Start Subchannel instruction.

PCT/EP2012/058676

WO 2012/168029

1/25

d0IA3A 31V1S
arnos

J0IN3A 3J1V1S

)

ovlL

airnos

Vi Ol

H31dvav

d0IA3A 31V1S

)
vl

o/l

ocl

airnos

J0IA3A F1V1S

d41dvav

anos

)

ovl

)

ovl

o/l

4d)
|||||||| — w
| AYOW3AN |— 0L
oz1+—_1 8dnHOo/ _ NIVIA
WaLsasans | 901
ol |
- - 1
mﬂ
v gol~J_1{ SO
NdD
§
201

o€l

WO 2012/168029

2/25

PCT/EP2012/058676

129 150

" MEMORY —I
154 |
/_JL\ /_JL\ /152 :
|
|
PARTITION PARTITION PARTITION PARTITION :
1 2 3 4 |
|
170 170 170 |
|
OPERATING OPERATING OPERATING '
SYSTEM SYSTEM SYSTEM :
|
HYPERVISOR —’\156J|
CENTRAL PROCESSOR(S) [158
INPUT/OUTPUT SUBSYSTEM 160

STORAGE

CLASS |~—180
MEMORY

FIG. 1B

WO 2012/168029 PCT/EP2012/058676

3/25

EADM ORB 200

202~ INTERRUPTION PARAMETER
204—+SUBCHANNEL KEY

205— ORB EXTENSION CONTROL

206—+EADM OPERATION BLOCK (AOB) ADDRESS
208—1 CSS PRIORITY
210—TSCM PRIORITY

212—+FMT

FIG. 2A

EADM OPERATION BLOCK (AOB) 220

222~_[EADM REQUEST BLOCK
224 —}EADM RESPONSE BLOCK
7o MSBO - MSBX

FIG. 2B

EADM REQUEST BLOCK 222

230~ fForMAT
232—1+COMMAND CODE
934 MSB COUNT

FIG. 2C

EADM RESPONSE BLOCK 224

240~1FORMAT
242~ EXCEPTION FLAGS
244 —LEXCEPTION CONTROL BLOCK IDENTIFIERS
246——1FIELD VALIDITY FLAGS
248 —+EXCEPTION QUALIFIER CODE
250 FAILING MSB ADDRESS
550 —— FAILING AIDAW ADDRESS
5e4—— FAILING MAIN STORAGE ADDRESS
55— FAILING STORAGE CLASS MEMORY ADDRESS

FIG. 2D

WO 2012/168029 PCT/EP2012/058676

4/25

EADM MOVE SPECIFICATION BLOCK 226

260~ L FORMAT
262—- OPERATION CODE
264—FLAGS
266 ——BLOCK SIZE
268 —1BLOCK COUNT
270 ——+MAIN STORAGE ADDRESS
279 — STORAGE CLASS MEMORY ADDRESS

FIG. 2E

EADM INDIRECT DATA ADDRESS WORD 280

282~ FLAGS
284 —{ MAIN STORAGE ADDRESS

FIG. 2F

WO 2012/168029 PCT/EP2012/058676

5/25
START SUBCHANNEL %9
FIRST | SECOND
OPCODE | 5pERAND | OPERAND
Y))
302 304 306
FIG. 3A

START
SUBCHANNEL

#

ADM-TYPE SUBCHANNEL AND EADM ORB DESIGNATED f—~ 35

'

PASS PARAMETERS IN ORB TO SUBCHANNEL -~ 395

'

CHANNEL SUBSYSTEM REQUESTED TO|
PERFORM START WITH EADM FACILITY 324

EADM OPERATION INITIATED 1326
328—~_| ¢ FROM EADM ORB OBTAIN AOB |
330 —\:_. FROM AOB OBTAIN ARQB AND DESIGNATION OF ONE OR :
| MORE MSBs
332—te FETCH DESIGNATED MSB(S) FROM MAIN STORAGE

EADM OPERATION COMPLETES |~ 334

#

STATUS GENERATED |~ 338

'

/O INTERRUPT }~ 339

END

FIG. 3B

WO 2012/168029

6/25

PCT/EP2012/058676

CLEAR SUBCHANNEL 220
OPCODE
¢
322
FIG. 3C
TEST SUBCHANNEL =80
FIRST | SECOND
OPCODE | 5pERAND | OPERAND
)))
362 364 366
FIG. 3D
MODIFY SUBCHANNEL 272
FIRST | SECOND
OPCODE | 5pERAND | OPERAND
)))
372 374 376
FIG. 3E
STORE SUBCHANNEL 222
FIRST | SECOND
OPCODE | 5pERAND | OPERAND
)))
382 384 386

FIG. 3F

WO 2012/168029 PCT/EP2012/058676

7/25

EADM SUBCHANNEL INFORMATION BLOCK 400

40'~IMODEL DEPENDENT AREA
402—= PATH MANAGEMENT CONTROL WORD
404 ——+ SUBCHANNEL STATUS WORD

FIG. 4A

EADM PATH MANAGEMENT CONTROL WORD 402

410~L\NTERRUPTION PARAMETER
412—< INTERRUPTION SUBCLASS
414 — ENABLED
416—— SUBCHANNEL TYPE

FIG. 4B

SUBCHANNEL STATUS WORD 404

420~1 SUBCHANNEL KEY
422 —~1 EXTENDED STATUS WORD (ESW) FORMAT
424—LDEFERRED CONDITION CODE
426——+ CCW FORMAT
478 —PREFETCH
430 ——FEXTENDED CONTROL
432 ——FUNCTION CONTROL
434 — ACTIVITY CONTROL
436 —F STATUS CONTROL
438 — SUBCHANNEL STATUS
440——EADM OPERATION BLOCK ADDRESS
442 ——DEVICE STATUS

FIG. 4C

EADM ESW 450

452~_[EADM SUBCHANNEL LOGOUT
454——| EADM EXTENDED REPORT WORD

FIG. 4D

WO 2012/168029

PCT/EP2012/058676

8/25

STORE SCM INFORMATION

REQUEST BLOCK 500

502~_I ENGTH
504 —~L COMMAND CODE
506 —+FORMAT
508 —F CONTINUATION TOKEN

FIG. 5A

STORE SCM INFORMATION 520

RESPONSE BLOCK

522~[| ENGTH
524~ RESPONSE CODE
526~ FORMAT
528 —+RQ
530 — MAXIMUM BLOCK COUNT PER MSB
532—FMAXIMUM SCM ADDRESS
534——1SCM INCREMENT SIZE
536 —F+MAXIMUM MSB COUNT
538 — MAXIMUM CONFIGURABLE SCM INCREMENTS
540—+TOTAL INITIALIZED SCM INCREMENTS OF CPC
542 —+TOTAL UNINITIALIZED SCM INCREMENTS OF CPC
544 —F SCM MEASUREMENT BLOCK SIZE
546 —+ MAXIMUM NUMBER OF SCM RESOURCE PARTS
548 —+SCM DATA UNIT SIZE
550 ~+ CONTINUATION TOKEN
552 — STORAGE CLASS MEMORY ADDRESS LIST

FIG. 5B

STORAGE CLASS MEMORY
ADDRESS LIST ENTRY 552

560

_[scMm ADDRESS
562~ PERSISTENCE ATTRIBUTE
564—OP STATE
566 — DATA STATE
568 —RANK
570— R
572 _—FRESOURCE ID

FIG. 5C

WO 2012/168029

9/25

STORE
SCM INFORMATION

!

PCT/EP2012/058676

PROGRAM ISSUES STORE SCM
INFORMATION COMMAND

580

'

REQUEST BLOCK RECEIVED
AT CHANNEL SUBSYSTEM

582

586

584

NO

YES

'

RETRIEVE INFORMATION }—~ 588

:

PLACE RESPONSE
CODE IN
RESPONSE BLOCK

PLACE IN RESPONSE BLOCK

—590

r

RETURN RESPONSE BLOCK

END

FIG. 5D

592

WO 2012/168029

10/25

PCT/EP2012/058676

STATES:
C - CONFIGURED
S - STANDBY
e R - RESERVED
CONFIGURE
e DECONFIGURE
ZEROIZED

FIG. 6A

WO 2012/168029 PCT/EP2012/058676

11/25

OPERATION STATES:

OP - OPERATIONAL

TE - TEMPORARY ERROR
PE - PERMANENT ERROR

DATA STATES:
(z) - ZEROED

(u) - UNPREDICTABLE
(v) - VALID

CONFIGURE

E - ERROR
A - ACCESS
R - REPAIR

W - FIRST WRITE
P - POWER CYCLE (NOT RULE 1)

FIG. 6B

WO 2012/168029 PCT/EP2012/058676

12/25

CONFIGURE STORAGE CLASS MEMORY 700
REQUEST BLOCK

77%%\- LENGTH

—~~ COMMAND CODE
706— FORMAT
708 —TOTAL SIZE

710—"1. ASYNCHRONOUS COMPLETION CORRELATOR

FIG. 7A

730

CONFIGURE STORAGE CLASS MEMORY
RESPONSE BLOCK

732~_L| ENGTH

734—RESPONSE CODE
736——FFORMAT

FIG. 7B

WO 2012/168029

PCT/EP2012/058676

13/25

(_ CONFIGURE)

740

PROGRAM ISSUES
CONFIGURE SCM COMMAND

Y

742

REQUEST BLOCK RECEIVED
AT CHANNEL SUBSYSTEM

744

752"

Y

ATTEMPT TO EXECUTE
COMMAND

748
746

PLACE RESPONSE
CODE N
RESPONSE BLOCK

SUCCESSFUL
RESPONSE
CODE ?

i

PLACE RESPONSE CODE IN
RESPONSE BLOCK

RETURN
RESPONSE BLOCK

Y)

750

754 —

RETURN RESPONSE BLOCK

Y

IATE ASYNCHRONOUS PROCESS
TO COMPLETE PROCESSING

END
FIG. 7C

(' ASYNC PROCESS)

760—7

PERFORM CONFIGURATION

Y

7627

COMPLETION INDICATED IN NOTIFICATION RESPONSE

END
FIG. 7D

WO 2012/168029 PCT/EP2012/058676

14/25

NOTIFICATION RESPONSE 800

802~ ENGTH
804 ~_{ RESPONSE CODE
806 —— FORMAT
808 —FNT
810—P
812—+V
814 ——t CONTENT CODE
816 ——F SECONDARY RESPONSE CODE
518 ASYNCHRONOUS COMPLETION CORRELATOR

FIG. 8A

STORE EVENT INFORMATION 830
REQUEST BLOCK -

832~_[\ ENGTH
834~_{ COMMAND CODE
836 —— FORMAT
838 —+NOTIFICATION TYPE SELECTION MASK

FIG. 8B

STORE EVENT INFORMATION 850
RESPONSE BLOCK -

852~ [EnGTH

854 ~_{ RESPONSE CODE
856 —— FORMAT
858 —F NOTIFICATION TYPE
860— P FLAG
862—FV FLAG
864—— CONTENT CODE
866—— CONTENT CODE DEPENDENT FIELD

FIG. 8C

WO 2012/168029 PCT/EP2012/058676

15/25

DECONFIGURE STORAGE CLASS MEMORY 900
REQUEST BLOCK T

902~ ENGTH

904~ COMMAND CODE
906 —— FORMAT

908 —+ ASYNCHRONOUS COMPLETION CORRELATOR
910——+F SCM INCREMENT REQUEST LIST

FIG. 9A

920
SCM INCREMENT REQUEST LIST ENTRY T

9221 TOTAL SIZE
924 T SCM ADDRESS

FIG. 9B

DECONFIGURE STORAGE CLASS MEMORY g5
RESPONSE BLOCK ==

952
4 LENGTH

954 — RESPONSE CODE

956—"1L FORMAT

FIG. 9C

WO 2012/168029

970

PCT/EP2012/058676

16/25

(' DECONFIGURE)

Y

PROGRAM ISSUES

DECONFIGURE SCM COMMAND
679 —| REQUEST BLOCK RECEIVED
AT CHANNEL SUBSYSTEM
ATTEMPT TO EXECUTE
974 COMMAND
978
976
SUCCESSFUL PLACE RESPONSE
RESPONSE CODE IN
CODE 7 RESPONSE BLOCK
PLACE RESPONSE CODE RETURN
9827 ' |N RESPONSE BLOCK RESPONSE BLOCK
984 —JRETURN RESPONSE BLOCK 980

Y

985 - INITIATE ASYNCHRONOUS PROCESS

TO COMPLETE PROCESSING

END
FIG. 9D

(' ASYNC PROCESS)

Y

990

PERFORM DECONFIGURATION

Y

992~ COMPLETION INDICATED IN NOTIFICATION RESPONSE

END
FIG. 9E

WO 2012/168029 PCT/EP2012/058676

17125

COMPUTER
PROGRAM
PRODUCT

1000

1004
(.

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE
MEDIUM
1002

~—

FIG. 10

WO 2012/168029

18/25

PCT/EP2012/058676

~—5011

FIG. 11

HOST COMPUTER 5000
5001
| [
PROCESSOR (CPU)
DAT
5003 - ADDRESS
TLB I
5007 — !
i
LOAD/STORE |
UNIT - |
|
|
5005 5004 Y Y
[C
e et
C CENTRAL
E STORAGE
INSTRUCTION |
DECODE UNIT 5006 2
5009
5008
INSTRUCTIONF‘ Lsooz
EXECUTION UNIT [*®
/ N\
MEDIA %/
— NETWORK

5010

WO 2012/168029

PCT/EP2012/058676

19/25

OPERATING SYSTEM
5020 APPLICATION 1 ”_\\5032
APPLICATION 2
APPLICATION 3
5022 i -
- ya 5031
/ / /
y -
/ BASE COMPUTER * ,
Y /
/ L~ 5021
MEMORY [/~ 2922
DISPLAY | c027
STORAGE |
PROCESSOR R

)
>023 H 5026
MOUSE

502 4_J/ KEYBOARD

5028

PRINTER/SCANNER

FIG.

E 5030

NETWORK
5029

12

WO 2012/168029 PCT/EP2012/058676

20/25

5040
REMOTE SERVER

=
W = 5048

INTERNET
5047

JIH

——jf—5041

=F 4 CLIENT 3

CLIENT 2 5042

FIG. 13

WO 2012/168029

21/25

5025—"

PROCESSOR

PCT/EP2012/058676

MEMORY

\\\\\\\ (5053

5026
A

CACHES
5055
PROGRAM COUNTER X‘/////
5061—)
INSTRUCTION FETCH
5056 —) (5060
DECODE/DISPATCH 5058 LOAD/STORE UNIT
BRANCH {»—5062
UNIT
EXECUTION
UNIT DAT
\ | REGISTERS p—~5059

\

5057)

FIG. 14

5054—"Y /O UNITS

WO 2012/168029 PCT/EP2012/058676

22/25

5057
EXECUTION UNIT

5072

[—5067

I | 4
S \ (/ \ L5069
5068 \ AU /LL5066

T

-~ 5071
/ / I\ N\
OTHER
5065 /5056
DECODE/DISPATCH
5059—~ REGISTERS
5060

LOAD/STORE UNIT

FIG. 15A

WO 2012/168029 PCT/EP2012/058676

23/25

5058
BRANCH UNIT

5082
Ra

BHT

f_5075

I | 4
5 \ (/ \ L5077
>\

TE—

— 5081

OTHER

_)
5073 5056
r_

DECODE/DISPATCH

5059 REGISTERS

FIG. 15B

WO 2012/168029 PCT/EP2012/058676

24/25

5060
LOAD/STORE UNIT

5090
Ra

CTL

[—5087

I | 4
S \ (/ \ L5088
5086 \ AU /LL5085

TE—

— 5084

OTHER

_)
5083 5056
r_

DECODE/DISPATCH

5059 REGISTERS

CACHE/MEMORY | ~_
INTERFACE 5053

FIG. 15C

WO 2012/168029 PCT/EP2012/058676

25/25

5092

EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 5094
5000' 5096
COMPUTER
MEMORY
(HOST)
5391
r B
| EMULATED (VIRTUAL) |
| PROCESSOR (CPU) |
I 5097 I
| |
: 5093 :
| EMULATION |
| ROUTINES |
: PROCESSOR :
| NATIVE |
| | INSTRUCTION SET [!
| ACHITECTURE 'B' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
e/ |
/1 AN
MEDIA %/
L~ 5011 NETWORK
5010

FIG. 16

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2012/058676

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/26 GO6F9/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 377 337 A (ANTOGNINI JAMES [US] ET 1-20
AL) 27 December 1994 (1994-12-27)

cited in the application

column 9, line 30 - Tine 60; figures 1-13
column 13, line 18 - column 19, Tine 13
column 22, line 39 - column 23, line 16

A EP 0 549 924 A1l (IBM [US]) 1-20
7 July 1993 (1993-07-07)

column 7, line 43 - column 12, line 40

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y* document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

30 August 2012 10/09/2012

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . g
Fax: (+31-70) 340-3016 Toader, Elena Lidia

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2012/058676
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 5377337 A 27-12-1994 JpP 7006115 A 10-01-1995
us 5377337 A 27-12-1994
EP 0549924 Al 07-07-1993 EP 0549924 Al 07-07-1993
JP 2019576 C 19-02-1996
JP 6168179 A 14-06-1994
JP 7031624 B 10-04-1995
us 5442802 A 15-08-1995

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - description
	Page 132 - description
	Page 133 - description
	Page 134 - description
	Page 135 - description
	Page 136 - description
	Page 137 - description
	Page 138 - claims
	Page 139 - claims
	Page 140 - claims
	Page 141 - claims
	Page 142 - claims
	Page 143 - claims
	Page 144 - claims
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - wo-search-report
	Page 171 - wo-search-report

