OVERSIZE POOL BALL RACK WITH RESILIENTLY BIASED BALL COMPRRESSING ELEMENT

Filed Nov. 18, 1963

INVENTOR.
CURTIS L. COOK

ATTORNEY

INVENTOR.
CURTIS L. COOK

ATTORNEY
In the drawings, wherein like reference characters indicate like parts:

FIGURE 1 is a plan view of the slack take up device which may be readily applied to a triangular rack;

FIGURE 2 is a side elevational view of the slack take up device;

FIGURE 3 is a section taken on the line 3—3 of FIGURE 1;

FIGURE 4 is a plan view of a modified form of slack take up device built into a triangular rack;

FIGURE 5 is a side elevation, and

FIGURE 6 is a sectional view taken on the line 6—6 of FIGURE 4.

Referring to FIGURES 1 to 3, there is shown a triangular rack 16 as is customarily used in the racking of fifteen balls in pyramid formation. Such racks are provided over size about 9/16 of an inch, so that in placing the fifteen balls in position, with the apex ball on the head spot, the rack is readily removed. In contrast, once the fifteen balls 15 into tight contact with one another, there is provided along one side 18 of the rack a channel member 20 having a flange 22 inside of the frame, and a flange 24 outside of the frame joined by a web member 26 extending over the upper edge of the frame. The flanges need not be more than about a half of the height of the frame, which frame in practice is about one and one-fourth inches high, since the inside flange will tangentially contact the base line of five balls at a height of about one and one-eighth inches above the table, or the radius of the balls. The flanges 22 and 24 will be spaced about three-eighths to a half an inch plus the thickness of the frame side. Affixed to the inside of the outer flange adjacent the center thereof, as by rivets 28 is an elongated spring steel leaf spring 30, whose outer extremities are rounded as at 32, and adapted to bear upon the outside surface of the frame side 18 to which the channel is applied. The ends may be secured to the side of the frame by screws 34 passing through slots 36. The channel flange on the inside will be at least nine and a half inches long so as to be enabled to tangentially contact the surfaces of the base line of five balls simultaneously.

When it is desired to rack a set of balls into a compact pyramid, the frame will be laid over the fifteen balls in the usual surrounding fashion, and the apex ball and frame moved to place the same on the foot spot. Thereafter by finger and thumb pressure on the flange 24, the channel member will be moved inwardly of the frame to thrust the base row of balls toward the apex to compact all fifteen balls into tight engagement. Thereafter the thumb pressure on the flange 24 is relaxed, the spring 30 returning the channel member to its position with its inside flange lying against the inside face of the frame, whereupon after moving the frame slightly toward the apex ball, adequate clearance is provided for the lifting of the frame from the pyramid of balls without disturbing the balls as set in. It will be understood that the screws 30 and slots 32 may be eliminated, whereby the device can be applied or removed from any frame, the pressure of the spring leaf being sufficient to frictionally hold the device in place.

In the modification shown in FIGURES 4 to 6 inclusive, an angle sectioned member 38 is disposed between the inside and upper face of one side 42 of the triangle. Guide posts 44 and 46, having reduced diameter portions riveted as at 47 in apertures in the angled sectioned members, extend outwardly through apertures 48 in the triangle frame. A leaf spring 50 is affixed to the frame side 42 at its center as at 52, and its opposite ends are provided with apertures 54 to receive screws 56 threaded into the ends of the posts 44 and 46. The spring ends 58 and 60 extend beyond the posts to provide convenient thumb...
bearing ends for manipulation of the device in the same manner as the previous modification. By pressing the spring ends 58 and 60 toward the frame 42, the angle sectioned member 40 is thrust tangentially against the five balls in the base line, to cause all the balls in the frame to be moved into tight engagement. Thereafter thumb pressure on the spring ends is relaxed to allow the angle member 49 to return. The triangle frame is then moved slightly toward the apex ball to provide clearance all around, after which the frame is lifted from the pyramidal of balls in tight contact, without disturbing the balls.

It will be understood that when the fifteen balls are pressed into tight engagement, the felt of the pool table affords sufficient friction against rolling of the balls out of engagement, so that by merely relaxing the pressure on the spring, and allowing the ball engaging member to return to its position along the inside face of one side of the triangle, the triangle is thereafter readily removed from the ball formation thus established without disturbing the formation.

While one modification of the invention illustrated may be quickly applied to or removed from existing frames, and the other is adapted to be a part of the frame, it is to be understood that the invention is not limited thereto. As various changes in the construction and arrangement may be made without departing from the spirit of the invention, as will be apparent to those skilled in the art, reference will be had to the appended claims for a definition of the limits of the invention.

What is claimed is:

1. A pool ball racking device comprising an equilateral triangular frame, a channel sectioned member disposed over an edge of the frame, and having one flange lying along the inside surface of one side of the frame, said flange being of a length to tangentially contact a base row of a pyramid of balls in the frame, and another flange disposed outside of the frame in spaced relation to the one side of the frame, and yielding means between said last named flange and the frame side for yieldably resisting movement of the channel member and said one flange toward a row of balls within the frame.

2. In a pool ball racking device for use on an equilateral pool ball racking frame, a channel sectioned member having a flange of sufficient length to tangentially contact five pool balls disposed in a row, said member having a second flange spaced from the first and joined thereto by a web, said web being of a width at least as great as the combined thickness of one side of the frame plus the amount the frame is oversize in reference to the balls, and resilient means adapted to bear against the outside of the side of the frame affixed to the inside surface of said second flange.

References Cited by the Examiner

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>464,745</td>
<td>12/1891</td>
<td>Sweet</td>
<td>273—22</td>
</tr>
<tr>
<td>484,562</td>
<td>10/1892</td>
<td>Sweet</td>
<td>273—22</td>
</tr>
<tr>
<td>743,464</td>
<td>11/1903</td>
<td>D’Abramo</td>
<td>273—22</td>
</tr>
<tr>
<td>916,193</td>
<td>3/1909</td>
<td>Pierce</td>
<td>273—22</td>
</tr>
<tr>
<td>1,052,461</td>
<td>2/1913</td>
<td>Chase</td>
<td>273—22</td>
</tr>
<tr>
<td>2,405,677</td>
<td>8/1946</td>
<td>Volpe</td>
<td>273—22</td>
</tr>
<tr>
<td>2,422,939</td>
<td>6/1947</td>
<td>Volpe</td>
<td>273—22</td>
</tr>
</tbody>
</table>

RICHARD C. PINKHAM, Primary Examiner.

GERALD L. PRICE, Assistant Examiner.