2013/01.4012 A1 |00 OO0 OO O 00

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/014012 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

31 January 2013 (31.01.2013) WIPOIPCT
International Patent Classification: (81)
GO6F 9/38 (2006.01)
International Application Number:

PCT/EP2012/063867

International Filing Date:
16 July 2012 (16.07.2012)

Filing Language: English
Publication Language: English
Priority Data:

11174969.3 22 July 2011 (22.07.2011) EP
61/515,361 5 August 2011 (05.08.2011) US

Applicant (for all designated States except US): ST-ER-
ICSSON SA [CH/CH]; Chemin du Champ-des-Filles 39,
CH-1228 Plan-les-Ouates (CH).

Inventors; and

Inventors/Applicants (for US only): SMEETS, Jean-Paul
[NL/NL]; Loondermolen 23, NL-5612 MH Eindhoven
(NL). RIJSHOUWER, Erik [NL/NL]; Genneperweg 2,
NL-5654 AH Eindhoven (NL).

Agent: STROM & GULLIKSSON AB; P.O. Box 793, S-
220 07 Lund (SE).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR BRANCH PREDICTION

r/500
BPU
PC from ~ 502 504
instructicuj Branch Search PC Pattern
fetch Unit prediction History
logical ‘Branch source address \Memory
circuit 508 PHM read/write (PHM)
Branch info from 506
" . ~
execution unit FIFO Branch source address _ [granch
510 Branch target || arget Buffer
(BTB)
Next PC Next branch BTB read/write
FIG. 5

(57) Abstract: A branch prediction unit BPU (500) for prediction of a next taken branch instruction in a processing unit (100). The
BPU (500) comprises a pattern history memory (504) comprising branch source addresses and branch indicators; a branch target
butfer (506) comprising branch targets; and branch prediction logical circuit (502). By means of a search PC, the circuit finds in the
memory a branch indicator indicating a predicted taken branch instruction. The circuit selects a first found branch indicator as an in -
dication of a first predicted taken branch instruction. Using the first found branch indicator, the circuit retrieves from the memory, a
branch source address of the first predicted taken branch instruction. When the retrieved branch source address is the branch source
address nearest to the search PC, the circuit outputs as next PC a branch target retrieved from the buffer. Then the prediction stops.

20

25

30

WO 2013/014012 PCT/EP2012/063867

METHOD AND APPARATUS FOR BRANCH PREDICTION

TECHNICAL FIELD
Embodiments herein relate to a branch prediction unit and a method therein. In

particular, embodiments relate to prediction of a next taken branch instruction.

BACKGROUND

Microprocessors are electronic devices that can perform a variety of computing
operations in response to instructions that implement a computer program. A common
technique for implementing computer programs is to send multiple instructions in a
predetermined sequence to an execution unit of the microprocessor. The execution unit
executes the instructions in accordance with the predetermined sequence. The order in
which instructions are executed is referred to as control flow. In some circumstances,
control flow does not follow a linear path but jumps to an instruction which is not the next
instruction in the sequence. Instructions that cause jumps in the control flow are referred
to as control instructions, an example of such a control instruction is the branch
instruction. When a branch instruction is executed, the execution unit jumps to the target
instruction identified by the branch instruction and executes the target instruction next,
rather than the next sequential instruction.

Microprocessors often process instructions using several processing stages,
which can include an instruction fetch stage in which instructions are fetched from an
instruction memory; an instruction decoding stage in which the fetched instructions are
decoded:; an instruction execution stage in which the instructions are executed, and a
writeback stage in which the results of the executed instructions are written back to
some kind of memory. To improve the speed at which multiple instructions are
processed through the various stages, some microprocessors use a technique known as
pipelining.

In a so called pipelined processor comprising multiple processing stages, the
multiple processing stages concurrently perform different parts of the process on several
different instructions. In an exemplifying pipelined processor, a first instruction is
processed by the first stage of the pipelined processor in a first clock cycle. In a second
clock cycle, the first instruction is processed in a second stage of the pipelined processor

and a second instruction is processed by the first stage. In a third clock cycle, the first

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

instruction is processed by a third stage of the pipelined processor, the second
instruction is processed by the second stage and a third instruction is processed by the
first stage. This procedure continues for all instructions until they have been processed
by the total number of processing stages.

In high performance Central Processing Units (CPUs), pipelines with a large
number of processing stages are needed to achieve a high clock frequency. These
pipelined processors are efficient at executing linear code, i.e., instructions in a
predetermined sequential order, but have difficulties in executing branch instructions.
The changes in control flow caused by branch instructions can lead to substantial loss of
performance. For example, an error in the branch prediction, such as a wrong prediction
of the next instruction, may cause the processor to stall. A wrong prediction may also
cause the currently pipelined sequence of instructions to be thrown out or “flushed” from
the pipelined processor, and a new sequence of instructions must be loaded into the
pipeline. A flush of the pipeline results in stall cycles for the execution stage and
therefore degrades the performance of the processor. The number of stalls resulting
from a flush is proportional to the pipeline depth and is referred to as the misprediction
penalty.

To improve the performance of a pipelined processor, the first pipeline stages or
“frontend” of the pipelined processor are often made speculative. This means that the
frontend of the pipelined processor is configured to predict the next address in the
instruction memory at which to continue fetching instructions without knowing the
architectural state (i.e. the state of the processor after execution of all previous
instructions) or even having fully decoded the already fetched instructions.

One of the main functions of a speculative frontend is the prediction of branches.
Branch prediction consists of two tasks: 1) predicting if there is a branch that should be
taken, and 2) predicting where to branch to, i.e., predicting the branch target.

There are two main attributes of branches that have consequences for the
prediction function:

1. The branch condition. Conditional branches are only taken when the condition is
fulfilled, whereas branches without a branch condition are always taken.

2. The branch target type. Branches that have the branch target address encoded
as part of the branch instruction are referred to as direct branches. When the
branch instruction is decoded the target is known with certainty. Branches that
refer to a storage location for the branch target are called indirect branches. The

20

25

30

WO 2013/014012 PCT/EP2012/063867

value stored at the storage location that is to be used as the branch target can

change up until the last instruction before the branch instruction.

In case of fixed instruction sizes where a small number of instructions are fetched
each cycle, the positions of the instructions in the memory word are known and therefore
a limited amount of decoding can be done on this data. Basically a small number of
partial decoders are used in parallel. These partial decoders can identify branches very
early in the pipeline. In this case only for indirect or conditional branches the branch
needs to be predicted.

In case of variable instruction sizes the instructions can start at arbitrary
addresses in the instruction memory. In such case partial decoding becomes too costly
because all possible positions of the instructions in the memory word must be tried
simultaneously. This means that even for direct branches the branch target will only be
available in the decode stages and therefore the branch target has to be predicted for all

branch instructions.

US 2008/0168263 to Park discloses a pipelined processor comprising an
instruction fetch unit receiving an instruction from a memory. The instruction fetch unit
provides the received instruction to an instruction decoder unit that decodes the
instruction and provides the decoded instruction to an execution unit for execution. In
addition to providing the received instruction to the decoder unit, the instruction fetch unit
provides an instruction portion to a branch prediction unit. The instruction portion
comprises an instruction address. By means of the instruction portion the branch
prediction unit predicts a next instruction and provides a predicted address to the
instruction fetch unit. The instruction fetch unit fetches the instruction corresponding to
the predicted address from the memory and loads it onto the pipeline. The branch
prediction unit also receives a definite next address from the execution unit when the
instruction has been executed and by means of this definite next address, the branch
prediction unit can determine whether the previously predicted next instruction was the
correct next instruction. If the prediction was correct, the pipeline continues forward with
the pipelined sequence of instructions. However, if the prediction was incorrect, the
processor flushes the pipeline and loads the instruction indicated by the next address

indication.

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

US 7,519,798 to Chung discloses a branch prediction system comprising a
processor core, a branch predictor and a branch target buffer. The processor core may
output branch information to the branch predictor. The branch information may represent
an address of a current instruction and/or may indicate whether a previous instruction is
a branch instruction. The branch predictor may predict a branch of the current instruction
using the address of the current instruction, and may output a final branch prediction
result to the processor core. By means of the final branch prediction result the branch
predictor may indicate to the processor core when to fetch the branch address from the
branch target buffer.

A drawback with the methods and apparatuses disclosed in US 2008/0168263
and US 7,519,798 is that they are based on the operation of a single instruction at a
time, i.e. at each clock cycle, causing these methods and apparatuses to be both time

consuming and power consuming.

US 2010/0169625 to Wang et al. discloses a pipeline microprocessor comprising
an instruction fetch stage in which a plurality of instructions are fetched from an
instruction cache for further processing and execution. Instructions are divided into
control flow instructions and non-control flow instructions and it has been determined
that only control flow instructions can be branch instructions. The microprocessor
comprises further a branch target buffer, a branch history table and a control instruction
identification unit. The control instruction identification unit is configured to identify
control instructions in the fetched group of instructions. Once the control instructions
have been identified, access to the branch target buffer and the branch history table can
be limited so that only the control flow instructions are looked up in the branch target
buffer.

A drawback with the method and apparatus disclosed in US 2010/0169625 is that
the instruction type, i.e. control flow instruction or non-control flow instruction, has to be
known, requiring an extra analysis step to be performed by the control instruction
identification unit causing also this method and apparatus to be unnecessary time and

power consuming.

SUMMARY
Most of the prior art branch prediction apparatuses and methods comprise high

performance computer processing units having high power consumption. Further, in the

10

20

25

30

WO 2013/014012 PCT/EP2012/063867

prior art, the prediction whether or not a branch is taken and the prediction where to
branch to are usually done in parallel. This is expensive in terms of power consumption
and does not take into account that only for the taken branches the branch target needs
to be calculated. Specifically when 2-way associative structures or higher associative

structures are used for holding the branch target the power consumption becomes high.

It is therefore an object of embodiments herein to provide a way of improving

performance of a pipelined processing unit.

According to a first aspect of embodiments herein, the object is achieved by a
method in a branch prediction unit for prediction of a next taken branch instruction in a
processing unit comprising the branch prediction unit. A program counter corresponding
to a start address of an instruction memory word is received and a search program
counter based on the received program counter is determined. In a pattern history
memory comprising a number of branch source addresses and a number of branch
indicators, at least one branch indicator configured to indicate at least one predicted
taken branch instruction that is comprised in an execution path, is found. This is
performed by means of the search program counter. Then a first found branch indicator
is selected as an indication of a first predicted taken branch instruction in the execution
path. By means of the first found branch indicator a branch source address of the first
predicted taken branch instruction is retrieved from the pattern history memory. When
the retrieved branch source address is the nearest branch source address to the search
program counter, a branch target buffer is indexed by means of the retrieved branch
source address, and a branch target retrieved from the branch target buffer is outputted
as a next program counter. Then the prediction of a next taken branch instruction is

stopped.

According to a second aspect of embodiments herein, the object is achieved by a
branch prediction unit for prediction of a next taken branch instruction in a processing
unit comprising the branch prediction unit. The branch prediction unit comprises a
pattern history memory, which pattern history memory comprises a number of branch
source addresses and a number of branch indicators. The branch indicator is configured
to indicate at least one predicted taken branch instruction for a branch source address.

The branch prediction unit comprises further a branch target buffer comprising a number

20

25

30

WO 2013/014012 PCT/EP2012/063867

of branch targets. A branch prediction logical circuit connected to the pattern history
memory and to the branch target buffer is also comprised in the branch prediction unit.
The branch prediction logical circuit is configured to receive a program counter
corresponding to a start address of an instruction memory word and to determine a
search program counter based on the received program counter. By means of the
search program counter, the branch prediction logical circuit is configured to find in the
pattern history memory at least one branch indicator. The at least one branch indicator is
configured to indicate at least one predicted taken branch instruction that is comprised in
an execution path. The branch prediction logical circuit is further configured to select a
first found branch indicator as an indication of a first predicted taken branch instruction in
the execution path. By means of the first found branch indicator, the branch prediction
logical circuit is configured to retrieve from the pattern history memory, a branch source
address of the first predicted taken branch instruction. When the retrieved branch source
address is the nearest branch source address to the search program counter, the branch
prediction logical circuit is configured to index the branch target buffer by means of the
retrieved branch source address and to output a retrieved branch target from the branch
target buffer as a next program counter. Then the branch prediction logical circuit is

configured to stop prediction of a next taken branch instruction.

Since the branch target buffer is only indexed and accessed when the nearest
branch source address has been found, no unnecessary accesses to the branch target
buffer are performed. Further, since the branch prediction unit operates autonomously
and separated from the instruction fetch unit, the branch prediction does not interfere
with instruction fetching and therefore does not negatively influence the performance of
the instruction fetch unit. This results in an improved performance of the pipelined

processing unit.

An advantage with embodiments herein is that the power consumption of the

branch prediction unit is reduced.

A further advantage with embodiments herein is that it is easier to keep up with a

fast working pipeline processing unit since the search does not need to be exhaustive.

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

A further advantage with embodiments herein is that they provide for

simultaneous handling of a plurality of instructions.

A further advantage with embodiments herein is that the search can be paused
when the next predicted branch instruction has been found. This leads to reduced power

consumption of the branch prediction unit.

A further advantage with embodiments herein is that the size of the pattern
history memory and the branch target buffer can be tuned or optimized to the size

required by the taken branch instructions.

BRIEF DESCRIPTION OF THE DRAWINGS
Examples of embodiments herein are described in more detail with reference to

attached drawings in which:

Figure 1 is a schematic block diagram illustrating embodiments of a processing unit;
Figure 2 is a flow chart depicting embodiments of a method in a branch prediction unit;
Figure 3 is a schematic functional block diagram illustrating embodiments of stages in
an instruction fetch unit;

Figure 4 is a schematic functional block diagram illustrating embodiments of stages in
a branch prediction unit;

Figure 5 is a schematic block diagram illustrating embodiments of a branch prediction
unit; and

Figure 6 shows schematic embodiments of a pattern history memory and a branch

target buffer.

DETAILED DESCRIPTION

Embodiments will be exemplified in the following non-limiting description.

Embodiments herein provide for the prediction of a next taken branch instruction
in a pipelined processing unit in order to avoid stalling of the processing unit and in order
to avoid flushing of the processing unit due to the fact that a next instruction in the

pipeline sequence is not the correct instruction.

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

The branch prediction may be performed for all types of branch instructions. This
means that the branch instruction may be a direct branch instruction, an indirect branch
instruction, a conditional branch instruction, an unconditional branch instruction or a
combination thereof, i.e., a direct conditional branch instruction, a direct unconditional
branch instruction, an indirect conditional branch instruction, or an indirect unconditional

branch instruction.

Figure 1 depicts a processing unit 100 in which embodiments herein may be
implemented. The processing unit 100 is a pipelined processing unit 100. The term
“processing unit” when used herein comprises any digital logic device or system capable
of executing or responding to an instruction sequence. The term comprises for example
Central Processing Units (CPUs), microprocessors, Digital Signal Processors (DSPs),
Reduced Instruction Set Computer (RISC) processors, vector processors, and Single-

Instruction-Multiple-Data (SIMD) processors.

The processing unit 100 comprises a front end unit 101 and a back end unit 103.

The front end unit 101 is configured to perform processing of instructions in
front end processing stages of the pipelined processing unit 100. The front end unit 101
comprises an instruction fetch unit 102 configured to receive a program counter (pc).

A program counter is a register indicating where the processing unit 100 is in its
processing of instructions in a sequence of instructions. The program counter is
configured to hold an instruction address of a next instruction to be fetched or an
address of the instruction memory word containing one or more instructions among
which a next instruction to be fetched.

The instruction fetch unit 102 is configured to fetch instructions from an
instruction memory 104 based on the received program counter. The instruction fetch
unit 102 is further configured to store the fetched instructions in a First In, First Out
(FIFO) memory 106 connected to the instruction fetch unit 102.

In a FIFO memory 106, the first element stored is also the first element to be
removed from the FIFO memory 106 for processing thereof. Further, the second element
stored after the first element is the second element to be removed from the FIFO
element and processed, etc. Thus, in the same sequential order as elements are stored

in the FIFO memory 106, they are also removed from the FIFO memory 106.

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

The instruction memory 104 may be comprised in the front end unit 101 and is
configured to store instructions. In some embodiments, the instruction memory 104 is
arranged in the instruction fetch unit 102. In other embodiments, the instruction memory
104 is arranged in communication with the instruction fetch unit 102. Further, in some
embodiments, the instruction memory 104 is arranged external to the processing unit

100 and in communication with the processing unit 100.

The front end unit 101 comprises further a branch prediction unit (BPU) 500
configured to perform branch predictions based on the received program counter. As
illustrated in Figure 5, the branch prediction unit 500 comprises branch prediction logical
circuit 502, a pattern history memory 504, a branch target buffer 506, a FIFO memory
508, and a next branch memory 510. The branch prediction unit 500 will be described in
more detail below.

The pattern history memory 504 and the branch target buffer 506 may be
realized as processor caches configured to store and provide frequently used
information. The pattern history memory 504 and the branch target buffer 506 may be
configured to provide information in a single clock cycle. The pattern history memory 504
and the branch target buffer 506 will be described in more detail below and with

reference to Figure 6.

The back end unit 103 is configured to perform processing of instructions in
back end processing stages of the processing unit 100. The back end unit 103 is
configured to retrieve instructions to be processed from the FIFO memory 106.

The back end unit 103 comprises an instruction decoding unit 108 configured
to decode instructions as is well-known in the art. The instruction decoding unit 108 is
further configured to check whether an instruction following a direct branch instruction in
the FIFO memory 106 is the correct instruction. The direct branch instruction may be a
conditional direct branch instruction or an unconditional direct branch instruction. Since a
direct branch instruction has the branch target encoded as part of the instruction, the
instruction decoding unit 108 will know the branch target when the instruction has been
decoded. Then the instruction decoding unit 108 can compare the branch target with the
instruction address of the next instruction in the FIFO memory 106. When the branch

target does not match the address of the next instruction, the next instruction is not the

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

correct instruction and the pipeline, e.g. the FIFO memory 106, has to be flushed as
previously described.

Furthermore, the instruction decoding unit 108 may be configured to provide
branch information to the front end unit 101.

The back end unit 103 further comprises an instruction execution unit 110
configured to execute decoded instructions. The instruction execution unit 110 is further
configured to check whether an instruction following a branch instruction, i.e., an indirect
branch instruction or a direct branch instruction, in the FIFO memory 106 is the correct
instruction.

An indirect branch instruction may be a conditional indirect branch instruction or
an unconditional indirect branch instruction. Since an indirect branch instruction refers to
a storage location for the branch target, the indirect branch instruction has to be
executed before the branch target is known. Thus, the instruction execution unit 110 will
know the branch target when the instruction has been executed. Then the instruction
execution unit 110 can compare the branch target with the instruction address of the
next instruction in the FIFO memory 106.

A direct branch instruction may be a conditional direct branch instruction or an
unconditional direct branch instruction. Since a direct branch instruction has the branch
target encoded as part of the instruction, the instruction decoding unit 108 will know the
branch target after the instruction has been decoded. In case of an unconditional direct
branch instruction, the comparison of the branch target with the instruction address of
the next instruction in the FIFO memory 106 can already take place after the decoding of
the branch instruction. For a conditional direct branch instruction the comparison with the
instruction address of the next instruction in the FIFO memory 106 can only be
performed after the conditional direct branch instruction has been executed.

When the branch target matches the address of the next instruction the next
instruction is the correct instruction. When the branch target does not match the address
of the next instruction, the next instruction is not the correct instruction and the pipeline,
e.g. the FIFO memory 106, has to be flushed.

Furthermore, the instruction execution unit 110 is configured to provide branch

information to the front end unit 101.

The branch information thus provided to the front end unit 101 relates to

decoded branch instructions or executed branch instructions and may comprise

10

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

information of the type of the branch, e.g. conditional or unconditional branch and direct
or indirect branch, the instruction address of the branch source, the instruction address
of the branch target, i.e. the address of the target instruction, and/or information about

whether the branch has been taken or not. The branch prediction unit 500 may use the

branch information to update the pattern history memory 504.

Embodiments of a method in the branch prediction unit 500 for prediction of a
next taken branch instruction in the processing unit 100 will now be described with
reference to the flowchart depicted in Figure 2, with further reference to Figures 5 and 6.
As mentioned above, the branch prediction unit 500 is comprised in the processing unit
100. The method comprises the following actions executed during two clock cycles of the
processing unit 100.

If for a search program counter, an instruction branch exists in the administration
, of the branch prediction unit 500, i.e. is registered in the branch prediction unit 500 for
that search program counter, it may take the branch prediction unit 500 one additional
clock cycle to provide the branch prediction. This means that when the instruction fetch
unit 102 and the branch prediction unit 500 are both set to the same address, i.e. they
are having the same program counter, it may take the branch prediction unit 500 one
additional clock cycle to provide the branch prediction for that address. This could for
example be the case after a pipeline flush and means that if a taken instruction branch
exists in the instruction memory word that corresponds with that address, the instruction
fetch unit 102 will already (incorrectly) have moved on to the next instruction word. This
incorrectly fetched instruction word may be flushed from the pipeline according to some
embodiments. Note that this problem only exists when the branch prediction unit 500 did
not have the opportunity to run ahead of the instruction fetch unit 102. Typically the
instruction fetch unit 102 may be stalled frequently since the instruction fetch unit 102
works at one (1) instruction word per clock cycle, while the instruction decoding unit 108
may only process one (1) instruction per clock cycle. Having multiple instructions in a
memory word may therefore lead to stalls of the instruction fetch unit 102. During these
stalls the branch prediction unit 500 may run ahead of the instruction fetch unit 102 and
that typically compensates for the one clock cycle of additional latency to produce the

prediction, according to some embodiments.

11

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

The actions are further performed separated from and concurrently with the
instruction fetching of the processing unit 100. This means that the actions of predicting
a next taken branch is performed independent of and simultaneously with the actions of
fetching instructions. Thereby, branch prediction may be performed independently from,
and simultaneously with, instruction fetching according to some embodiments. However,
it should be understood that the actions of predicting a next taken branch may be carried

out in another suitable order than described below.

Action 201

A program counter corresponding to a start instruction address of an instruction
memory word is received. The start instruction address is the instruction address of the
first instruction comprised in the instruction memory word. The instruction memory word
may comprise a number of instructions, each of which instruction may be a branch
instruction. This means that the instruction memory word may comprise a plurality of
branch instructions. Further, the instructions may have a fixed instruction size or may
have a variable instruction size. The instruction memory word may be comprised in the
instruction memory 104.

in some embodiments, the prediction of a next taken branch instruction is
initiated by a new branch signal sent to the branch prediction unit 500. The new branch
signal indicates that a prediction of a next taken branch instruction has to be performed,
e.g. an indication of a program start, of a pipeline flush or of a corrected program
counter, or an indication that an instruction branch is predicted as taken, or that an
instruction branch has been incorrectly predicted. Basically, a new branch signal is sent
every time the program counter starts a new linear sequence of increments.

The back end unit 103 may send the new branch signal to the branch prediction
unit 500 when the current prediction is used to fetch the next instruction or a flush has

occurred in the pipeline.

Action 202

Determine a search program counter (search pc) based on the received program
counter.

In some embodiments, the search program counter corresponds to or is equal to

the program counter.

12

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

Action 203

By means of the search program counter, at least one branch indicator is found
in a pattern history memory 504.

The branch indicators comprised in the pattern history memory 504 are referred
to as Blgo-Bln.1x, wherein N is the number of branch source addresses A, A4, ..An.1
comprised in the pattern history memory 504, and K is the number of branch indicators
for each branch source address Ay, A4, ..Ax.1. Thus, the branch indicators for the branch
source address A may be referred to as Blgg, Blg 1, Bly2, ... Blok, and the branch
indicators for the branch source address Ay.1 may be referred to as Bly.1g, Bin11, Blnt2,
... Bln.1x. However, it should be understood that the number of branch indicators for
each branch source address may be different for the different branch source addresses.

In some embodiments, the pattern history table 504 is initially empty comprising a
zero in every entry. However, in some other embodiments, all entries may be prefilled
according to a predetermined schema based on e.g. a static code scan by a compiler.

The pattern history memory 504 may comprise the at least one branch indicator
Bloo-Bln.1k relating to at least one previously taken branch instruction, i.e. to at least one
branch instruction taken in the history, thereof the name pattern history. This history
information can be used in the prediction of upcoming branch instructions, meaning that
the branch prediction is based on previously taken branch instructions.

The at least one branch indicator Bly o-Bly.1 « is found by searching the pattern
history memory 504 by means of the search program counter.

The at least one branch indicator Bl o-Bly.1 « is configured to indicate at least one
predicted taken branch instruction that is comprised in an execution path.

In some embodiments, the execution path starts at the program counter and

ends at a last instruction comprised in the instruction memory word.

The at least one branch indicator Bl o-Bln.1 x may be found concurrently for a
plurality of instructions comprised in the instruction memory word. This means that the
pattern history memory 504 has to be searched simultaneously for the plurality of
instructions.

In some embodiments, the search program counter is mapped to a pattern
history index i. By means of the pattern history index i, the at least one branch indicator
Bloo-Bln.1k is found. The at least one branch indicator Bl ¢-Bln.1x is comprised in the

entry of the pattern history memory 504 corresponding to the pattern history index i.

13

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

The search program counter may be mapped to a single pattern history index i or
to multiple pattern history indices i. The mapping will be described in more detail below.

However, it may be noted that according to some embodiments, when there are
no branches to be found in the pattern history memory 504, the search may end and the

branch prediction unit 500 may enter idle mode as soon as it arrives at that conclusion.

Action 204

A first found branch indicator Bl o-Bln.1« is selected as an indication of a first
predicted taken branch instruction in the execution path. This means that the first found
branch indicator among all the found branch indicator(-s) is considered as an indication

of the first predicted taken branch instruction in the execution path.

Action 205

By means of the first found branch indicator Bl ¢-Bn.1«, @ branch source address
A,, ..., An1 is retrieved from the pattern history memory 504. The branch source address
Aq, ..., Ax.1 is the branch source address Ay, ..., An.1 of the first predicted taken branch
instruction. The branch source address of the first predicted taken branch is used to
check whether the first predicted taken branch instruction is a first predicted taken

branch instruction for the search program counter, which will be checked in action 206.

Action 206

In this action it is checked whether the retrieved branch source address Ay, -..,An.
1 is the nearest found branch source address to the search program counter or not. This
is performed to check if the first predicted taken branch instruction is a first predicted

taken branch instruction for the search program counter.

Action 207

When the retrieved branch source address Ay, ..., An.1 is the nearest branch
source address to the search program counter, a branch target buffer 506 comprising a
number of branch targets is indexed by means of the retrieved branch source address
Aq, ..., An. This means that the retrieved branch source address is used for accessing
the correct entry of the branch target buffer in order to be able to find the branch target,
cf. action 208. '

In some embodiments this action is performed by indexing of the branch target

14

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

buffer 506 by mapping the retrieved branch source address A, ..., Ay.1 to a branch target
buffer index j. Further, by means of the branch target buffer index j, the branch target
Targety, ..., Targety.1 for the retrieved branch source address Ay, ..., Ax.1 is found in the
branch target buffer 506, wherein M is the number of branch targets stored in the branch
target buffer 506. The branch target Targeto, ..., Targety.¢ is comprised in the entry of
the branch target buffer 506 corresponding to the branch target buffer index j. The
mapping will be described in more detail below.

In some embodiments, the retrieved branch source address A, ..., Ax1 iS
mapped to a single branch target buffer index j or to multiple branch target buffer indices
j-

The branch target Targety, ..., Targety.1 may comprise the instruction address of
the next predicted taken branch instruction or a pointer to the next predicted taken

branch instruction.

Action 208

A branch target Target,, ..., Targetu retrieved from the branch target buffer 506
is outputted as a next program counter. In some embodiments, the branch target
Targety, ..., Targety.1 is outputted to the instruction fetch unit 102 that fetches the

relevant instruction and stores it in the FIFO memory 106.

Action 209

When the branch target has been outputted as the next program counter, the
prediction of a next taken branch instruction is stopped or paused.

In some embodiments, the prediction idles until a new prediction is initiated by a
new branch signal as described above under action 201. This means that the power
consumption in the branch prediction unit 500 is reduced during the idle period.

The pattern history memory 504 and/or the branch target buffer 506 is updated
during the period when it is not predicting a next taken branch instruction. The updating

procedure will be described in more detail below.

Action 210
When the retrieved branch source address Ay, ..., An.1 is not known with certainty
to be nearest branch source address to the search program counter, the retrieved

branch source address (A, ..., An1) is stored in a next branch memory 510, as a

15

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

predicted taken branch for a subsequent instruction in the execution path, and the
actions 203, 204, 205, 206, 210 are continued until it is certain the nearest branch
source address to the search program counter is found, according to some
embodiments.

By a subsequent instruction is meant an instruction that is subsequent to the
instruction corresponding to the search program counter in action 201.

In a first iteration, a second found branch indicator indicating a second predicted
taken branch instruction in the execution path is selected in action 204. In action 205 the
branch source address of the second predicted taken branch instruction is retrieved from
the pattern history memory 504. When the branch source address of the second
predicted taken branch instruction is not the nearest branch source address to the
search program counter, a second iteration may start in action 203. When the branch
source address of the second predicted taken branch instruction is the nearest branch
source address to the search program counter, the branch target buffer 506 is indexed
by means of the retrieved branch source address in action 207. In action 208 a branch
target retrieved from the branch target buffer 506 is output as a next program counter,
and in action 209 the branch prediction unit stops the prediction of a next taken branch

instruction.

Example of an embodiment of a method in a branch prediction unit 500

Given a certain program counter, the branch prediction unit 500 searches for the
first predicted taken branch on a linear execution path starting from the program counter.

The program counter is the start address of the search and the search program
counter points to the instruction word address that is being searched in a particular clock
cycle.

A search for the first, herein also referred to as the nearest, instruction branch
occurring on the execution path that starts at the program counter is performed. The
search program counter is mapped to an index i of the pattern history memory 504 by
means of a first mapping function. An example of a first mapping function for a pattern
history memory 504 having eight (8) entries, wherein each entry contains max four (4)
branch indicators and wherein every instruction branch fits in a byte and which pattern
history memory 504 is byte addressed, is i = ((program counter) / 4) modulo 8. Since
there are many more addresses than indices, every index i may be associated with a

plurality of search program counters.

16

15

20

25

WO 2013/014012 PCT/EP2012/063867

Assume the pattern history memory 504 has the content illustrated in Table 1
below. As illustrated, the index i can take a value between 0 and 7. Further, the branch
source address A4 has a value of 4, the branch source address A, has a value of 72, and
the branch source address of A; has a value of 60. Furthermore, the pattern history
memory 504 illustrated in Table 1, comprises for each index i four branch indicators,

Bl 0-Bl; 3, each branch indicator corresponding to an offset relative the branch source
address, A. In this example, branch indicators Bl o-Bl; o correspond to an offset of +0
byte, branch indicators Bl 4-Bl7,1 correspond to an offset of +1 byte, branch indicators
Blo2-Bl7 > correspond to an offset of +2 bytes, and branch indicators Bl 5-Bl7 5 correspond
to an offset of +3 bytes relative the respective branch source address Aq-A;. In table 1,

instruction branches are shown as BR.

Branch indicators, Bl (offsets)
indexi | Branch source +0 +1 +2 +3
address, A;

0

1 4 BR

2 72 BR
3

4

5

6

7 60 BR BR

Table 1. Exemplifying content of a pattern history memory 504.

Further, assume that the program counter is 6, that a new branch signal is active
and received in the branch prediction unit 500. This relates to action 201. Then the
search program counter 6 is mapped to index 1, by means of the first mapping function
described above. Therefore, at clock cycle 0, the branch prediction unit 500, by means of
the search program counter, starts searching for a branch indicator indicating an
instruction branch at index 1, offset +2. This relates to actions 202 and 203.

Table 2 below schematically illustrates the search program counter, the index i,
the offset and the taken action for the following clock cycles 1-7.

As shown, in clock cycle 1, the search program counter is 6, the index is 1 and
the offset is 2, and no instruction branch is found. Therefore, the branch prediction unit

500 continues to search.

17

10

15

20

25

WO 2013/014012 PCT/EP2012/063867

In clock cycle 2, the search program counter is 8, the index is 2 and the offset is
0. In this clock cycle an instruction branch BR at the branch address 75 is found. This
instruction branch is stored in a next branch memory 510 as the nearest found
instruction branch.

In clock cycle 3, the search program counter is 12, the index is 3 and the offset is
0, and no instruction branch is found. Therefore, the branch prediction unit 500
continues to search.

In clock cycle 4, the search program counter is 16, the index is 4 and the offset is
0, and no instruction branch is found. Therefore, the branch prediction unit 500
continues to search.

In clock cycle 5, the search program counter is 20, the index is 5 and the offset is
0, and no instruction branch is found. Therefore, the branch prediction unit 500
continues to search.

In clock cycle 6, the search program counter is 24, the index is 6 and the offset is
0, and no instruction branch is found. Therefore, the branch prediction unit 500
continues to search.

In clock cycle 7, the search program counter is 28, the index is 7 and the offset is
0. In this clock cycle an instruction branch BR at the branch address 60 is found. This
instruction branch is compared with the branch stored in the next branch memory and
since the branch instruction is nearer to the program counter from action 201 than the
branch stored in the next branch memory, the newly found branch instruction is stored in
the next branch memory as the nearest found instruction branch. After 7 clock cycles all
entries of the exemplifying pattern history memory 504 have been visited, the search
concludes that the branch source address of 60 is the branch source address nearest to

the search program counter. This relates to the actions 203, 204, 205, 206, and 210.

Clock cycle | Search PC | Index i | Offset | Action

1 6 1 2 continue search

2 8 2 0 found BR at 75, store as nearest found
3 12 3 0 continue search

4 16 4 0 continue search

5 20 5 0 continue search

6 24 6 0 continue search

7 28 7 0 found BR at 60, store as nearest found,

all entries visited, report 60

18

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

Table 2 schematic illustration of the search program counter, the index i, the offset and

the taken action for the clock cycles 1-7

Now when the branch at address 75 would have been a branch at address 9, then table

2 above would have looked like table 3 below:

Clock cycle | Search PC |indexi | Offset | Action

1 6 1 2 continue search

2 8 2 0 found BR at 9, match with Search
PC, nearest found, report 9

Table 3

Thus, a search ends or is paused when all entries in the pattern history memory 504
have been visited or when an instruction branch has been found for which the branch
source address A; matches (ignoring offsets / last x bits) the Search PC (implies nearest
branch has been found). The nearest branch, if any, will be used to index the branch
target buffer 506, whereby a branch target is retrieved from the branch target buffer 506
and outputted as a next program counter. The indexing of the branch target buffer 506 is
performed by first translating the nearest branch source address to an index j according
to a second mapping function. An example of a second mapping function is: j = (branch
source address) modulo 64 for a branch target buffer 506 comprising 64 entries. This

relates to actions 207-209.

Updating of pattern history memory 504 and branch target buffer 506

In some embodiments, cf. e.g. Figure 5, at least one pattern history update to the
pattern history memory 504 is buffered in a FIFO memory 508 and the pattern history
memory 504 is updated with the buffered at least one pattern history update when the
pattern history memory 504 is not searched.

The at least one pattern history update may relate to at least one new or updated
branch source address or fo at least one new or updated taken branch instruction
received from the back end unit 103, i.e., received from the instruction decoding unit 108
and/or from the instruction execution unit 110.

In some embodiments, at least one branch target buffer update to the branch
target buffer 506 is buffered in the FIFO memory 508 and the branch target buffer 506 is

19

20

25

30

WO 2013/014012 PCT/EP2012/063867

updated with the buffered at least one branch target buffer update when the branch
target buffer 506 is not indexed.

The at least one branch target buffer update relates to at least one new or
updated branch target Targety, ..., Targety..

The at least one pattern history update and/or branch target buffer update may
be determined when the instruction decoding unit 108 and/or the instruction execution
unit 106 after decoding and/or execution of a branch instruction.

By buffering the updates to the FIFO-memory 508 and updating the pattern
history memory 504 and the branch target buffer 506 when no prediction of a next taken
branch is in progress (so called background updating), the updating does not interfere
with the prediction procedure and therefore does not negatively influence the

performance of the branch prediction unit 500.

Mapping of search program counter to pattern history index i and mapping
of branch source address to branch target buffer index j

The mapping of the search program counter to a pattern history index i and the
mapping of the branch source address to a branch target buffer index j may be

performed in different ways that will be described below, cf. Figure 6.

Single index mapping

In some embodiments, the mapping of the search program counter to index i is
such that each value of the search program counter that is used to access the pattern
history memory 504 is associated with a single index i.

The mapping of the branch source address to the index j of the branch target
buffer may also be a single mapping, i.e. such that the branch source address A, ..., Ax.
1 that is used to access the branch target buffer 506 is associated with a single index j.

By mapping the search program counter and the branch source address to a
single index i, and single index j, respectively, the power consumption can be reduced or
minimized as compared to the case when the search program counter and/or the branch
source address are mapped to multiple indices, because such mapping to multiple
indices will require a policy that determines which of the indices to be used causing the
power consumption to increase. Further, a mapping to single indices provides for a
cheap implementation. However, mapping the search program counter and/or the

branch source address to multiple indices may lead to better branch prediction and

20

10

20

25

30

WO 2013/014012 PCT/EP2012/063867

therefore requiring fewer pipeline flushes, which in turn may result in reduced power
consumption.

By mapping the search program counter and the branch source address to
different indices, i.e., to index i and index j, respectively, the size of the pattern history
memory 504 and the branch target buffer 506, could be tuned or optimized to the size

required.

Multiple indices mapping
In some embodiments, the mapping of the search program counter to index i is

such that each value of the search program counter that is used to access the pattern

history memory 504 is associated with multiple indices i.

The mapping of the branch source address to the index j of the branch target
buffer may also be a multiple mapping, i.e. such that the branch source address A, ...,
Ay that is used to access the branch target buffer 506 is associated with multiple
indices j.

In some embodiments comprising multiple indices mapping, a policy is used to
determine which one of the plurality of indices to use for accessing the pattern history
memory 504 or the branch target buffer 506.

As an example, a policy may say that the index referring to an empty entry is to
be used when storing new data in the pattern history memory 504 and/or the branch
target buffer 506. However, as another example, a policy may say that the entry
comprising data produced in a specific time window is to be used when retrieving data
from the pattern history memory 504 and/or the branch target buffer 506. By time-
stamping data when storing data in the pattern history memory 504, it is possible to
determine which one of the entries comprises the required data and to retrieve that data.

By mapping a search program counter to multiple indices i of the pattern history
memory 504, the likeliness that two entries that are to be written to the pattern history
memory 504 will map to the same index and overwrite one another is smaller than in the
case when the search program counter is mapped to a single index i of the pattern
history memory 504. The same is true for the mapping of branch source address to
multiple indices j of the branch target buffer 506.

As described above, by mapping the search program counter and the branch
source address to different indices, the size of the pattern history memory 504 and the
branch target buffer 506, could be tuned or optimized to the size required.

21

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

This may be expressed in an alternative way by referring to the number of entries
in the pattern history table 504 and the branch target buffer 506, respectively. Assume
the pattern history memory 504 has as a pointer the search program counter, is indexed
with index i and has n entries. Assume also that the branch target buffer 506 has as a
pointer the branch source address, is indexed with index j, and has m entries. Further,
every index i is associated with multiple search program counters, and every search
program counter is associated with either a single index i or multiple indices i’s (i.e. the
two mapping alternatives previously described, wherein the association with multiple
indices i's can lead to less overwrites). Furthermore, every index j is associated with
multiple branch source addresses, and every branch source address is associated with
either a single index j or multiple indices j's (i.e. the two mapping alternatives previously
described, wherein the association with multiple indices j's can lead to less overwrites).
The tuning or optimization potential may then be described as allowing the number of

entries n and m to be different.

Decoupled branch prediction

The prediction of a next taken branch may be separated from the fetching of
instructions from an instruction memory. This means that the branch prediction unit 500
operates autonomously and separated from the instruction fetching unit 102. This is also
referred to as the decoupled branch prediction and will be described in more detail below

with reference to Figure 3 and Figure 4.

Figure 3 depicts embodiments of processing stages comprised in the instruction
fetch unit 102.

In a first processing stage, stage 1, a program counter PC is received from a
pipeline control logical circuit (not depicted) in the Front End Unit 101 or from the branch
prediction unit 500 (not shown in this figure). When the program counter PC is received
from the branch prediction unit 500, the program counter PC is the branch target
outputted from the branch prediction unit 500, as previously described under action 208
above.

Further, in stage 1, the program counter PC is transmitted from the instruction
fetch unit 102 to the branch prediction unit 500. By means of the program counter, the
branch prediction unit 500 may start a prediction of a next taken branch instruction. This

relates to action 201 described above.

22

20

25

30

WO 2013/014012 PCT/EP2012/063867

In a second processing stage, stage 2, the instruction fetch unit 102 fetches an
instruction from a functional memory unit, denoted Mem in figure 3, by means of the
program counter. The functional memory unit corresponds to the instruction memory 104
in figure 1.

In subsequent processing stages, stage 3 to stage N, the instruction fetch unit
103 processes data comprised in the fetched instruction. The instruction fetch unit 102
may perform some additional operations, such as expansion or alignment correction of
the instruction data until finally in stage N it communicates the data to the FIFO memory
106.

Figure 4 depicts embodiments of processing stages comprised in the branch
prediction unit 500.

In a first processing stage, stage 1, a program counter PC is received in the
branch prediction unit 500. This relates to action 201 previously described. In figure 4 it
is illustrated that the program counter is received in a functional search unit, denoted
Search, configured to search the pattern history memory 504 and to retrieve the branch
source address of a first found predicted taken branch instruction.

In some embodiments, the functional search unit is configured to perform action
201 to action 206 previously described. The functional search unit may correspond to or
be comprised in a branch prediction logical circuit 502.

In a second processing stage, stage 2, the branch prediction logical circuit 502
performs the actions 207-209 previously described. Thus, the branch prediction logical
circuit 502 indexes the branch target buffer 406 by means of the retrieved branch source
address and retrieves a branch target for the retrieved branch source address from the
branch target buffer 506. Further, the branch prediction logical circuit 502 outputs the

branch target as a next program counter.

Figure 5 depicts embodiments of the branch prediction unit 500 for prediction of
a next taken branch instruction. As previously mentioned the branch prediction unit 500
is comprised in the processing unit 100. The branch prediction unit 500 may according to
some embodiments be configured to perform the prediction during e.g. two clock cycles
of the processing unit 100. However, in other embodiments, the prediction may be
performed during another number of clock cycles, such as e.g. one clock cycle, or n

clock cycles, where n is an arbitrary integer, just to mention some non-limiting examples.

23

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

Since the branch prediction unit 500 is configured to use search program
counters that after each search program counter increment during the search process
point to instruction memory word addresses, as described above, it is possible for the
branch prediction unit 500 to handle instructions of fixed size and instructions of variable
sizes.

During every unstalled clock cycle of the processing unit 100, the branch
prediction unit 500 may be configured to provide the predictions for the branches of all
instructions in an instruction memory word up until the first predicted taken branch. Thus,
the branch prediction unit 500 may be configured to handle multiple instructions
simultaneously. Thereby, the branch prediction unit 500 may be configured to keep up

with an unstalled pipeline of the processing unit 100 that uses variable instruction sizes.

The branch prediction unit 500 comprises a pattern history memory 504
comprising a number of branch source addresses Ao, ..., Anx.1 and a number of branch
indicators Bl o-Bln.1 k. The branch indicator Blgo-Bln.1 « is configured to indicate at least
one predicted taken branch instruction for a branch source address A, ..., Ax.1. The
pattern history memory 504 will be described in more detail below with reference in

Figure 6.

The branch prediction unit 500 comprises further a branch target buffer 506
comprising a number of branch targets Targety, ..., Targety.s. The branch target buffer

506 will be described in more detail below with reference to Figure 6.

Furthermore, the branch prediction unit 500 comprises a branch prediction
logical circuit 502. The branch prediction logical circuit 502 is connected to the pattern
history memory 504 and to the branch target buffer 506.

The branch prediction logical circuit 502 is configured to receive a program counter
corresponding to the address of an instruction and to determine a search program
counter based on the received program counter. The branch prediction logical circuit 502
may receive the program counter from the instruction fetch unit 102.

in somé embodiments, the branch prediction logical circuit 502 is configured to
start the prediction of a next taken branch instruction upon reception of a new branch
signal indicating that the prediction of a next taken branch instruction has to be

performed, e.g. when an instruction branch has been predicted as taken.

24

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

By means of the search program counter, the branch prediction logical circuit 502
is configured to find in the pattern history memory 504 at least one branch indicator Blg o-
Bln.1 k- The at least one branch indicator Bl g-Bln.1x is configured to indicate at least one

predicted taken branch instruction that is comprised in an execution path. |

In some embodiments, the branch prediction logical circuit 502 is configured to find
at least one branch indicator Bl ¢-Bly.1 x comprised in the pattern history memory 504

concurrently for a plurality of instructions comprised in the instruction memory word.

The branch prediction logical circuit 502 may be configured to find the at least one
branch indicator Blyo-Bly.1 in the pattern history memory 504 by mapping the search
program counter to a pattern history index i. By means of the pattern history index i, the
branch prediction logical circuit 502 may find the at least one branch indicator Bl o-Blx.
1k- The at least one branch indicator Blg-Bln.1 « may be comprised in the entry of the
pattern history memory 504 corresponding to the pattern history index .

In some embodiments, the branch prediction logical circuit 502 is configured to
map the search program counter to a single pattern history index i or to multiple pattern

history indices i, as previously described.

The branch prediction logical circuit 502 is further configured to select a first found
branch indicator Bl ¢-Bly.1 « @s an indication of a first predicted taken branch instruction
in the execution path, and to, by means of the first found branch indicator Bl o-Bn.1k,
retrieve a branch source address A,,..., Ax.1 Of the first predicted taken branch instruction

from the pattern history memory 504.

When the retrieved branch source address Ag, ..., An.1 is the nearest branch
source address to the search program counter, the branch prediction logical circuit 502
is configured to index the branch target buffer 506 by means of the retrieved branch
source address (A, ..., An1)-

In some embodiments, the branch prediction logical circuit 502 is configured to
index the branch target buffer 506 by mapping the retrieved branch source address Ay,

..., Anq to a branch target buffer index j.

25

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

The branch prediction logical circuit 502 may be configured to map the retrieved
branch source address A, ..., An.1 to a single branch target buffer index j or to multiple

branch target buffer indices j.

By means of the branch target buffer index j, the branch prediction logical circuit
502 may find, in the branch target buffer 506, the branch target Target,, ..., Targety.4 for
the retrieved branch source address Ay, ..., Ax. The branch target Targety, ..., Targety.4
may be comprised in the entry of the branch target buffer 506 corresponding to the

branch target buffer index j.

The branch prediction logical circuit 502 is further configured to retrieve a branch
target Targety, ..., Targety.q from the branch target buffer 506 and to output the retrieved
branch target Targety, ..., Targetu.s as a next program counter. When the next program
counter has been outputted, the branch prediction logical circuit 502 is configured to stop
or pause the prediction of a next taken branch instruction until a new branch signal is

received.

In some embodiments, when the retrieved branch source address Ay, ..., An.1 is not
the branch source address nearest to the search program counter, the branch prediction

logical circuit 502 is further configured to continue searching.

The branch prediction unit 500 may further comprise or be connected to a FIFO
memory 508. The FIFO memory 508 is configured to store at least one pattern history
update to the pattern history memory 504 or at least one branch target buffer update to
the branch target buffer 506.

The at least one pattern history update relates to at least one new or updated
branch source address or to at least one new or updated taken branch instruction. The
at least one branch target buffer update relates to at least one new or updated branch
target Targety, ..., Targety.1.

In some embodiments, the branch prediction logical circuit 502 is configured to
buffer at least one pattern history update to the pattern history memory 504 in the FIFO
memory 508 and to update the pattern history memory 504 with the buffered at least one
pattern history update when the pattern history memory 504 is not searched. Further, the

branch prediction logical circuit 502 may be configured to buffer at least one branch

26

20

25

30

WO 2013/014012 PCT/EP2012/063867

target buffer update to the branch target buffer 506 in the FIFO memory 508 and to
update the branch target buffer 506 with the buffered at least one branch target buffer

update when the branch target buffer 506 is not indexed.

The branch prediction unit 500 may further comprise or be connected to a next
branch memory 510 configured to store a nearest found instruction branch, as

previously described.

Embodiments herein do also relate to a processing unit 100 comprising the branch
target unit 500, to an integrated circuit comprising the processing unit 100, and to a
communication device comprising the integrated circuit. Such communication device
may comprise e.g. a base station, a network node, a relay station, a user equipment or

any other device configured for communication.

Figure 6 depicts embodiments of the pattern history memory 504 and the branch
target buffer 506.

As previously mentioned, the pattern history memory 504 comprises the at least
one branch indicator Bl o-Bly.1 « relating to at least one previously taken branch
instruction, i.e. to at least one branch instruction taken in the history, thereof the name
pattern history. This history information can be used in the prediction of upcoming
branch instructions, meaning that the branch prediction is based on previously taken
branch instructions. Thus, the branch indicator Blyo-Bln.1 is configured to indicate at
least one predicted taken branch instruction for a branch source address Ay, ..., An-1.
However, as symbolized by the index K in Blgo-Bly.1k, K branch indicators may exist for
each branch source address A, ..., Ax.1. This means that for each branch source
address as a starting address in an instruction memory word, a plurality of branch
instructions comprised in the instruction memory word may be indicated in the pattern
history memory 504. However, it should be understood that the number of branch
indicators for each branch source address may be different, i.e. the value of K may be
different for the different branch source addresses Ay, ..., An.

However, according to some embodiments, when there are no branches to be
found in the pattern history memory 504, the search may end and the branch prediction

unit 500 may enter idle mode as soon as it arrives at that conclusion.

27

10

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

In some embodiments, the pattern history memory 504 is arranged as a table and
referred to as a pattern history table 504. The pattern history table 504 may be a concise
list comprising an ordered set of values. However, it should be understood that pattern
history information could be stored in another suitable way, such as an unordered set of
values with identifiers, wherein the identifiers are configured to identify the values
comprised in the unordered set.

As previously mentioned, the branch target buffer 506 comprises a number of
branch targets Target,, ..., Targety.s. In some embodiments, the branch target buffer
506 is configured to comprise branch target information Branch Infoy, ..., Branch Infoy.
such as branch instruction type, a branch source address, and information about
whether the branch is taken or not.

The branch target Target,, ..., Targety.s may comprise the instruction address of
the next predicted taken branch instruction or a pointer to the next predicted taken
branch instruction.

The pattern history memory 504 and the branch target buffer 506 may be realized
as processor caches configured to store and provide frequently used information. The
pattern history memory 504 and the branch target buffer 506 may be configured to
provide information in a single clock cycle.

In Figure 6 it is schematically illustrated that the search program counter is used to
access the pattern history memory 504, and that the branch source address retrieved
from the pattern history memory 504 is used to access the branch target buffer 506.
Further, as previously described, the search program counter may be mapped to at least
one of indexg-index; of the pattern history memory 504 and the retrieved branch source

address may be mapped to at least one of index,-index; of the branch target buffer 506.

When using the word "comprise" or “comprising” it shall be interpreted as non-
limiting, i.e. meaning "consist at least of".
When using the word “action”/"actions” it shall be interpreted broadly and not to
imply that the actions have to be carried out in the order mentioned. Instead, the actions
may be carried out in any suitable order other than the order mentioned. Further, some

action/actions may be optional.

The embodiments herein are not limited to the above described preferred

embodiments. Various alternatives, modifications and equivalents may be used.

28

WO 2013/014012 PCT/EP2012/063867

Therefore, the above embodiments should not be taken as limiting the scope of the

invention, which is defined by the appending claims.

29

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

Claims

1. A method in a branch prediction unit (500) for prediction of a next taken branch
instruction in a processing unit (100) comprising the branch prediction unit (500), the
method comprises:

- receiving a program counter corresponding to the address of an instruction
(action 201);

- determining a search program counter based on the received program counter
(action 202);

- by means of the search program counter, finding in a pattern history memory
(504) at least one branch indicator configured to indicate at least one predicted taken
branch instruction that is comprised in an execution path (action 203);

- selecting a first found branch indicator as an indication of a first predicted taken
branch instruction in an execution path (action 204);

- by means of the first found branch indicator, retrieving from the pattern history
memory (504), a branch source address of the first predicted taken branch instruction
(action 205); and

- when the retrieved branch source address is the branch source address nearest
to the search program counter,

- indexing a branch target buffer (506) by means of the retrieved branch
source address (action 207);

- outputting a branch target retrieved from the branch target buffer (506)
as a next program counter (action 208); and

- stopping prediction of a next taken branch instruction (action 209).

2. The method of claim 1, further comprising:
- if the retrieved branch source address is not the branch source address nearest

to the search program counter, continuing the search (action 210).

3. The method of any of claim 1-2, wherein the finding of the at least one branch
indicator in the pattern history memory (504) for at least one branch indicator is
performed concurrently, during one clock cycle, for a plurality of instructions comprised

in the instruction memory word.

30

15

20

25

30

WO 2013/014012 PCT/EP2012/063867

4. The method of any of claim 1-3, further comprising:

- buffering at least one update to the pattern history memory (504) or at least one update
to the branch target buffer (506} in a FIFO memory (508); and

- updating the pattern history memory (504) or the branch target buffer (506) with the
buffered at least one update when the pattern history memory (504) or the branch target
buffer (506) is not searched.

5. The method of any of claim 1-4, wherein the method is performed during two clock

cycles of the processing unit (100).

6. A branch prediction unit (500} for prediction of a next taken branch instruction in a
processing unit (100) comprising the branch prediction unit (500), the branch prediction
unit (500) is characterized by:

- a pattern history memory (504) comprising a number of branch source
addresses and a number of branch indicators, wherein the branch indicator is configured
to indicate at least one predicted taken branch instruction for a branch source address;

- a branch target buffer (506) comprising a number of branch targets; and

- branch prediction logical circuit (502) connected to the pattern history memory
(504) and to the branch target buffer (506), wherein the branch prediction logical circuit
(502) is configured to:

- receive a program counter corresponding to a start address of an
instruction memory word;

- determine a search program counter based on the received program
counter;

- by means of the search program counter, find in the pattern history
memory (504) at least one branch indicator, wherein the at least one branch indicator is
configured to indicate at least one predicted taken branch instruction that is comprised in
an execution path;

- select a first found branch indicator as an indication of a first predicted
taken branch instruction in the execution path;

- by means of the first found branch indicator retrieve from the pattern
history memory (504), a branch source address of the first predicted taken branch

instruction;

31

10

i5

20

25

30

WO 2013/014012 PCT/EP2012/063867

- when the retrieved branch source address is the nearest branch source
address to the search program counter,
- index the branch target buffer (506) by means of the retrieved
branch source address;
- output a retrieved branch target from the branch target buffer
(506) as a next program counter; and

- stop prediction of a next taken branch instruction.

7. The branch prediction unit (500) of claim 6, characterized in that the branch
prediction logical circuit (502) is further configured to:

- when the retrieved branch source address is not the branch source address
nearest to the search program counter, continue search for a branch source address that

is a branch source address nearest the search program counter.

8. The branch prediction unit (500) of any of claim 6-7, characterized in that the branch
prediction logical circuit (502) is configured to find at least one branch indicator
comprised in the pattern history memory (504) concurrently for a plurality of instructions

comprised in the instruction memory word.

9. The branch prediction unit (500) of any of claim 6-8, characterized in that the branch
prediction logical circuit (502) is configured to find the at least one branch indicator in the
pattern history memory (504) by:

- mapping the search program counter to a pattern history index i; and

- by means of the pattern history index i, finding the at least one branch indicator,
wherein the at least one branch indicator is comprised in the entry of the pattern history

memory (504) corresponding to the pattern history index i.

10. The branch prediction unit (500) of any of claim 6-9, characterized by:

- a FIFO memory (508) configured to store at least one update to the pattern
history memory (504) or to the branch target buffer (506); and

wherein the branch prediction logical circuit (502) is configured to buffer at least
one update to the pattern history memory (504) or the branch target buffer (506) in the
FIFO memory (508), and configured to update the pattern history memory (504) or the

32

10

20

WO 2013/014012 PCT/EP2012/063867

branch target buffer (506) with the buffered at least one update when the pattern history
memory (504) is not searched or when the branch target buffer (506) is not indexed.

11. The branch prediction unit (500) of claim 10, characterized in that the at least one
update relates to at least one new or updated branch source address, to at least one
new or updated taken branch instruction or to at least one new or updated branch target.
12. The branch prediction unit (500) of any claim 6-11, characterized in that the branch
prediction logical circuit (502) is configured to start the prediction of a next taken branch
instruction upon reception of a new branch signal indicating that the prediction of a next

taken branch instruction has to be performed.

13. A processing unit (100) comprising a branch prediction unit (500) of any of claim 6-
12.

14. An integrated circuit comprising a processing unit (100) according to claim 13.

15. A communication device comprising an integrated circuit according to claim 14.

33

PCT/EP2012/063867

WO 2013/014012

1/6

I "Old

UM UoNoeX]
uononJIsu|

)

(ndg) mun

UoNOIPaId
youeig

7
oom\‘\

Aowow
uoonsu|

) vor~

Hun Buipooeq NN yoied |«
uoIoNJIsy| uononsu|
mo:\ o4l Nor\,\
Hun pug yoeg \k nun pug juoid
90l
€0l ~ LOL ~
yun Buissaeooid
\!,\

00l

PCT/EP2012/063867

WO 2013/014012

2/6

¢ "9Old

doig 602

Jsjunod weibold xau e se gl g ayj wodj
paasinal 1eb1e) ysuelq e Inding 802

[

(9.1.9) Jayng 106} youeig e Xapu| "L0Z

yoless 0} snUUOYD 012

£, pUNO} SSBIPPE 82IN0S

SBA poIo)s 1s8JBa) "90¢

[

Jojeoipur ysuelq
p2109]9S S} JO} SS3IPPE S2IN0S Uouelg e
Aowaw Aloisiy uieped wol) aAseY 607

t

ﬁ. JojeoIpul YoURIG PUno} B 199188 “$0T

$

Alowaw Aloisiy
usened ul JOIBDIpUl Yysueiq & puld "¢0zg

+

d U0 paseq Nd Yoiess e sujwlisled 2oz

A

(nd) 181uno) Welboid e 8A1899Y “LOZ

WO 2013/014012 PCT/EP2012/063867

3/6

{~/102

§Stage 1 EStage 2 Stage N

o ilel

E.%?

A I I 3 I

A T I L
e R P
I I -1 s

O fm—rt O p—ri

CLEQ_

FIG. 3

PCT/EP2012/063867

WO 2013/014012

4/6

<
2 i
=) O
R T8
............................... I
B
1noJIo
M. uoapeld | zoifol R
w L
S
M e _ ~/ 0 sojepdn
g yoleeg WHd
] x 2d

PCT/EP2012/063867

WO 2013/014012

5/6

G "Old

(g19)

Jayng 19bie)|
youeug

alim/pesi did

youeiq XaN

18618} Youeig

(NHJ)
Aiowa

AI0ISIH
usepned

Ssalppe a2Inos youeig

sjm/pesl WHd

SS2Ippe 82In0Ss youelg

Od yoless

804G

uonaipa.d
youeig

Od XeN

INoUID
[eo1Boj

HUN UoNND9X?
wiodj ojul youe.g

Nom\\

Ndd

00S ~

R yois}
uoidnASUl

woll Dd

PCT/EP2012/063867

WO 2013/014012

6/6

9 'Old

jeuondo
}

S

Fogup youelg | YWyebue] | 'xepui HENT 0N g ‘gio1eoipul youesg | PNy
ojuj Yyouelg %Yebie] :-z%.._osmmm ppE A0 q g i0)e01pUl Youelg oy
bojuj youelg hoBie) | S°MNOs toUeElq %170 g “s10180pU| YOUBIG ™
Ooyu| youelg %abie] | oxepy) #0700 q g101e01pUI Youelg Oy

Mom vomg £ Y
Joyng jabie] youeig Kiowapy A10)siH uianed

xapu|

AN

194

d yoseas

Sxapuj

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2012/063867

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

2 November 1999 (1999-11-02)

column 4, Tine 59 - column 5, Tine 51
column 10, Tine 35 - column 12, line 23

A US 5 978 908 A (CUMMING PETER [FR] ET AL) 1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 September 2012

Date of mailing of the international search report

14/09/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Daskalakis, T

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2012/063867
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 5978908 A 02-11-1999 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

