发明名称
一种配制型含乳饮料及其制备方法

摘要
本发明公开了一种配制型含乳饮料及其制备方法。该配制型含乳饮料的配方包括：牛奶 30～60g，低聚异麦芽糖 0.01～10.0g，糖 4.0～12.0g，稳定剂 0.1～1.0g，酸度调节剂 0.2～0.7g，食用香精 0.05～0.4g，加水至 100g。其制备方法包括以下步骤：1）按上述原料配方取料；2）将糖和稳定剂用水溶解后与牛奶充分混合，再在搅拌条件下加入酸度调节剂，混匀；3）将步骤 2）的混合液预热至 25～80℃，再在压力 15～25Mpa 下对其进行均质；4）加入食用香精，搅拌均匀，灭菌，得到配制型含乳饮料。
1. 一种配制型含乳饮料，其配方包括以下组分：

牛奶 30–60g,
低聚异麦芽糖 0.01–10.0g,
糖 4.0–12.0g,
稳定剂 0.1–1.0g,
酸度调节剂 0.2–0.7g,
食用香精 0.01–0.4g,
加水至 100g。

2. 根据权利要求1所述的配制型含乳饮料，其特征在于：所述稳定剂为乳化剂或增稠剂，或由乳化剂和增稠剂两者组合而成，其中，乳化剂与增稠剂的重量份数比为1：1–60；所述乳化剂为蔗糖脂肪酸酯、甘油脂肪酸酯和聚甘油酯中的一种或几种的组合；所述增稠剂为羧甲基纤维素钠、卡拉胶、明胶、微晶纤维素、结冷胶、黄原胶、海藻酸丙二醇酯、魔芋胶、琼脂、刺槐豆胶和果胶中的一种或几种的组合。

3. 根据权利要求1所述的配制型含乳饮料，其特征在于：所述酸度调节剂为乳酸、柠檬酸、磷酸、酒石酸和苹果酸中的一种或几种的组合；所述食用香精为酸奶香精、牛奶香精、橙香精、葡萄香精、桃香精、椰子香精、草莓香精、荔枝香精、苹果香精、密瓜香精、芒果香精、西番莲香精、西柚香精、柠檬香精、蓝莓香精、木瓜香精、香蕉香精、菠萝香精、番茄香精、胡萝卜香精、芦笋香精、菠菜香精、杏香精、梨香精、猕猴桃香精、香草香精、玫瑰香精、巧克力香精、核桃香精、麦香香精和樱桃香精中的一种或几种的组合；所述糖为白砂糖、糖浆和甜味剂中的任意一种或几种的混合。

4. 根据权利要求1–3任一项所述的配制型含乳饮料，其特征在于：所述配方中还包括有0.5–20g果蔬汁或果蔬颗粒，和 / 或0.01–0.5g微量元素，和 / 或0.3–0.8g膳食纤维；所述果蔬汁选自苹果汁、草莓汁、蓝莓汁、木瓜汁、香蕉汁、橙汁、菠萝汁、芒果汁、番茄汁、胡萝卜汁、芦笋汁、菠菜汁、桃汁、南瓜汁、葡萄汁、芦荟汁、猕猴桃汁、荔枝汁、柠檬汁和椰汁中的一种或几种的组合；所述果蔬颗粒选自番茄颗粒、桃颗粒、椰果颗粒、橙果粒、芒果果粒、葡萄果粒、木瓜果粒、菠萝果粒、草莓果粒、芹菜颗粒、梨果粒、瓜果颗粒、萝卜类颗粒和芦荟凝胶颗粒中的一种或几种的组合；所述微量元素选自维生素A、维生素B族、维生素D、维生素C、维生素E、乳酸钙、牛磺酸、叶酸、烟酸、胆碱、硫酸亚铁、柠檬酸铁、硫酸锌、葡萄糖酸锌、
亚硝酸钠、硫酸镁、葡萄糖酸镁和左旋肉碱中的一种或几种的组合；所述果蔬颗粒为直径1-20mm的颗粒状果蔬粒或浆类果蔬粒，或长度为1-20mm、宽度为1-10mm的纤维状果蔬粒。

5. 一种制备权利要求1所述的配制型含乳饮料的方法，包括以下步骤：

1）按下述原料配方取料：牛奶 30-60g，低聚异麦芽糖 0.01-10.0g，糖 4.0-12.0g，稳定剂 0.1-1.0g，酸度调节剂 0.2-0.7g，食用香精 0.01-0.4g，加水至 100g；

2）将糖和稳定剂用水溶解后与牛奶充分混合，再在搅拌条件下加入酸度调节剂，混匀；

3）将步骤2）的混合液预热至 25-80℃，再在压力 13-40Mpa 下对其进行均质；

4）加入食用香精，搅拌均匀，灭菌，得到配制型含乳饮料。

6. 根据权利要求5所述的制备方法，其特征在于：所述步骤1）中的稳定剂为乳化剂或增稠剂，或由乳化剂和增稠剂两者组合而成，其中，乳化剂与增稠剂的重量分数比为 1：1-60；所述乳化剂选自蔗糖脂肪酸酯、甘油脂肪酸酯和聚甘油酯中的一种或几种的组合；增稠剂选自羧甲基纤维素钠、卡拉胶、明胶、微晶纤维素、结冷胶、黄原胶、海藻酸丙二醇酯、魔芋胶、琼脂、刺槐豆胶和果胶中的一种或几种的组合。

7. 根据权利要求5所述的制备方法，其特征在于：所述步骤1）中的酸度调节剂选自乳酸、柠檬酸、磷酸、酒石酸和苹果酸中的一种或几种的组合；所述食用香精选自酸奶香精、牛奶香精、橙香精、葡萄香精、桃香精、椰子香精、草莓香精、荔枝香精、苹果香精、蜜瓜香精、芒果香精、西番莲香精、西柚香精、柠檬香精、蓝莓香精、木瓜香精、香蕉香精、菠萝香精、番茄香精、胡萝卜香精、芦笋香精、菠菜香精、杏香精、梨香精、猕猴桃香精、香草香精、玫瑰香精、巧克力香精、核桃香精、麦香香精和樱桃香精中的一种或几种的组合；所述糖选自白砂糖、糖浆和甜味剂中的任意一种或几种的混合。

8. 根据权利要求5所述的制备方法，其特征在于：所述制备过程中再添加 0.5-20g 果蔬汁和/或果蔬颗粒，和/或 0.01-0.5g 微量元素，和/或 0.3-0.8g 膳食纤维；所述果蔬汁、微量元素和/或膳食纤维于步骤2）中添加，加入后再与酸度调节剂混匀；果蔬颗粒于步骤4）中添加，加入后再灭菌；所述果蔬汁选自苹果汁、草莓汁、蓝莓汁、木瓜汁、香蕉汁、橙汁、菠萝汁、芒果汁、番茄汁、胡萝卜汁、芦笋汁、菠菜汁、桃汁、杏汁、梨汁、葡萄汁、芦荟汁、猕猴桃汁、荔枝汁、柠檬汁和柚汁中的一种或几种的组合；所述微量元素选自维生素A、维生素B族、维生素D、维生素C、维生素E、乳酸钙、牛磺酸、叶酸、烟酸、胆碱、硫酸亚铁、柠檬酸铁、硫酸锌、葡萄糖酸
锌、亚硒酸钠、硫酸镁、葡萄糖酸镁和左旋肉碱中的一种或几种的组合；所述果蔬颗粒选自番茄颗粒、桃颗粒、椰果颗粒、橙果粒、芒果果粒、葡萄果粒、木瓜果粒、菠萝果粒、草莓果粒、芹菜颗粒、梨果粒、黄瓜颗粒、萝卜类颗粒和芦荟凝胶颗粒中的一种或几种的组合。

9、根据权利要求8所述的制备方法，其特征在于：所述果蔬颗粒为直径1-20mm的颗粒状果蔬粒或浆类果蔬粒，或长度为1-20mm、宽度为1-10mm的纤维状果蔬粒。

10、根据权利要求5-9任一项所述的制备方法，其特征在于：所述步骤4）中的灭菌条件为：在90-140℃下杀菌4秒至15分钟。
说明书

一种配制型含乳饮料及其制备方法

技术领域

本发明涉及饮料及其制备方法，特别是涉及一种配制型含乳饮料及其制备方法。

背景技术

目前市场上的配制型含乳饮料，是以鲜乳或乳制品为原料，加入水、糖液、酸味剂等调制而成的。成分中蛋白质含量不低于 1.0%（m/V）的饮料称为乳饮料；蛋白质含量不低于 0.7%的饮料称为乳酸饮料（GB10789--1996）。配制型含乳饮料的主要成分是水、牛奶、白砂糖、增稠剂、乳化剂、酸度调节剂和食用香料，根据人们对健康的要求，还可以在产品中添加维生素、矿物质、氨基酸或果汁等营养物质（谢继志编著，液态乳制品科学与技术）。该类饮料近几年发展非常迅速，每年需求量的增长速度都在 25.0%以上，特别是高温时灭菌和无菌包装在配制型含乳饮料上应用后，不仅最大程度地保留了牛乳的营养成分，还使产品的保质期达到了六个月以上，扩大了产品的销售范围，从而使配制型含乳饮料以其口味多样性、营养价值高和饮用方便等特点，在乳饮料市场中占据了主导位置。

人体内双歧杆菌的增殖对人体有裨益，然而提高人体内双歧杆菌的数量迄今为止仍然是一个技术难题。这是因为双歧杆菌是厌氧型菌群，在空气中很难存活，再加上胃酸的酸性很强，双歧杆菌经过胃时绝大部分都被杀死了，只有极少部分可到达肠内，从而使其对人体的有益功效很难体现出来，而且不同人的双歧杆菌的菌群也不完全相同，即使能够补充活的双歧杆菌，也不能够适应所有的人群。

低聚异麦芽糖（IMO）是淀粉糖的一种，主要成分是由a-1，6-糖苷键结合的异麦芽糖（IG），潘糖（P）、异麦芽三糖（IG3）及四糖以上（G4）组合成的功能性低聚糖。按形态可分为低聚异麦芽糖浆和低聚异麦芽糖粉两种。糖浆为无色或浅黄色，透明的粘稠液体，甜味柔和，无异味，无正常视力可见杂质。糖粉为白色无定形粉末，甜味柔和，无异味，无正常视力可见杂质。不同纯度低聚异麦芽糖（IMO）的基本组成如表 1 所示。低聚异麦芽糖（IMO）的生产工艺大致为：精致玉米淀粉—液化—糖化—灭酶—精滤—转苷—灭酶—精滤（微滤）—离子交换—浓缩—成品。

<table>
<thead>
<tr>
<th>项目</th>
<th>IMO-50型</th>
<th>IMO-90型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5
<table>
<thead>
<tr>
<th></th>
<th>糖浆</th>
<th>糖粉</th>
<th>糖浆</th>
<th>糖粉</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO含量（占干物质%）</td>
<td>≥50</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ig₂+P+Ig₃含量（占干物质%）</td>
<td>≥35</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>干物质（固体）%</td>
<td>≥75</td>
<td>-</td>
<td>≤75</td>
<td>-</td>
</tr>
<tr>
<td>水分%</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
</tr>
<tr>
<td>pH</td>
<td>4.0–6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>透射比%</td>
<td>≥95</td>
<td>-</td>
<td>≥95</td>
<td>-</td>
</tr>
<tr>
<td>溶解度%</td>
<td>≥99</td>
<td>-</td>
<td>≥99</td>
<td>-</td>
</tr>
<tr>
<td>硫酸灰分%</td>
<td>≤0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>砷/(mg/kg)</td>
<td>≤0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>铅/(mg/kg)</td>
<td>≤0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>菌落总数/[cfu/(g或mL)]</td>
<td>≤1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大肠菌群/[MPN/(100g或100mL)]</td>
<td>≤30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>致病菌（沙门氏菌）</td>
<td>不得检出</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

发明内容

本发明的目的是提供一种含低聚异麦芽糖（IMO），可促进体内有益菌－双歧杆菌增殖的配制型含乳饮料。

本发明提供的配制型含乳饮料，其配方包括以下组分（每100g）：

- 牛奶：30–60g
- 低聚异麦芽糖（IMO）：0.01–10.0g
- 糖：4.0–12.0g
- 稳定剂：0.1–1.0g
- 酸度调节剂：0.2–0.7g
- 食用香精：0.01–0.4g
- 加水至100g

上述配制型含乳饮料配方中低聚异麦芽糖的添加量是以50%纯度的低聚异麦芽糖（IMO）为标准计量的，即Ig₂+P+Ig₃≥35%，甜度为蔗糖的40–50%，口味纯正，类似蔗糖。其它纯度的低聚异麦芽糖可以按照含量的不同进行折算。

所述稳定剂为乳化剂或增稠剂，或由乳化剂和增稠剂两者组合而成，其中，乳化剂与增稠剂的重量份数比为1：1–60；所述乳化剂可选自蔗糖脂肪酸酯、甘油脂肪酸酯、
酯和聚甘油酯中的一种或几种的组合；增稠剂可选自羧甲基纤维素钠、卡拉胶、明胶、
微晶纤维素、结冷胶、黄原胶、海藻酸丙二醇酯、魔芋胶、琼脂、刺槐豆胶和果胶中
的一种或几种的组合。

所述酸度调节剂可选自乳酸、柠檬酸、磷酸、酒石酸和苹果酸中的一种或几种的
组合。

所述食用香精可选自酸奶香精、牛奶香精、橙香精、葡萄香精、桃香精、椰子香
精、草莓香精、荔枝香精、苹果香精、密瓜香精、芒果香精、西番莲香精、西柚香精、
柠檬香精、蓝莓香精、木瓜香精、香蕉香精、菠萝香精、番茄香精、胡萝卜香精、芦
笋香精、菠菜香精、杏香精、梨香精、猕猴桃香精、香草香精、玫瑰香精、巧克力香
精、核桃香精、麦香香精和樱桃香精中的一种或几种的组合。

所述糖可以是白砂糖、糖浆和甜味剂中的任意一种或几种的混合，计算糖度时折
算为白砂糖糖度。

所述牛奶定义为：普通的牛乳，包括全脂、脱脂和半脱脂；或用奶粉、奶油、水
解蛋白、乳清粉或牛奶的其它组分配制而成的还原奶。

为了改善本发明配制型含乳饮料的营养价值和风味口味，其配方中可再添加
0.5–20g 果蔬汁或果蔬颗粒，和 / 或 0.01–0.5g 微量元素，和 / 或 0.3–0.8g 膳食纤维。

所述果蔬颗粒可选自番茄颗粒、桃颗粒、椰果颗粒、橙果粒、芒果果粒、葡萄果
粒、木瓜果粒、菠萝果粒、草莓果粒、芹菜颗粒、梨果粒、黄瓜颗粒、萝卜类颗粒和
芦荟凝胶颗粒等各种果蔬颗粒中的一种或几种的组合；通常选用直径 1–20mm 的颗粒
状果蔬粒或浆类果蔬粒，或长度为 1–20mm、宽度为 1–10mm 的纤维状果蔬粒。

所述果蔬汁可选自苹果汁、草莓汁、蓝莓汁、木瓜汁、香蕉汁、橙汁、菠萝汁、
芒果汁、番茄汁、胡萝卜汁、芦笋汁、菠菜汁、桃汁、杏汁、梨汁、葡萄汁、芦荟汁、
猕猴桃汁、荔枝汁、柠檬汁和椰汁等各种果蔬汁中的一种或几种的组合。

微量元素可选自维生素 A、维生素 B 族、维生素 D、维生素 E、乳酸钙、
牛磺酸、叶酸、烟酸、胆碱、硫酸亚铁、柠檬酸铁、硫酸锌、葡萄糖酸锌、亚硒酸钠、
硫酸镁、葡萄糖酸镁和左旋肉碱等对人体有益的微量元素中的一种或几种的组合。

本发明的第二个目的是提供一种上述配制型含乳饮料的制备方法。

本发明所提供的制备方法，可包括以下步骤：

1）按下述原料配方取料（每 100g）：牛奶 30–60g，低聚异麦芽糖（IMO）
0.01–10.0g，糖 4.0–12.0g，稳定剂 0.1–1.0g，酸度调节剂 0.2–0.7g，食用香精
0.01–0.4g，加水至 100g；

2）将低聚异麦芽糖（IMO）、糖和稳定剂用水溶解后与牛奶充分混合，再在搅拌

7
条件下加入酸度调节剂，混匀；

3）将步骤 2）的混合液预热至 25-80℃，再在压力 13-40Mpa 下对其进行均质；

4）加入食用香精，搅拌均匀，灭菌，得到配制型含乳饮料。

在本发明配制型含乳饮料的制备过程中，原料中的低聚异麦芽糖（IMO）的添加量是以 50％纯度的低聚异麦芽糖（IMO）为标准计算的，即 IG₆₊P₊IG₆≥35％，甜度为蔗糖的 40-50％，口味纯正，类似蔗糖。其它纯度的低聚异麦芽糖（IMO）可以按照含量的不同进行折算。所述低聚异麦芽糖（IMO）可以自制或从市场上购买，如购自山东保龄宝、郑州福润德生物工程有限公司或上海好成食品发展有限公司等公司的低聚异麦芽糖（IMO）。

原料中的稳定剂为乳化剂或增稠剂，或由乳化剂和增稠剂两者组合而成，其中，乳化剂与增稠剂的重量份数比为 1:1-60；所述乳化剂可选自蔗糖脂肪酸酯、甘油脂肪酸酯和聚甘油酯中的一种或几种的组合；增稠剂可选自羧甲基纤维素钠、卡拉胶、明胶、微晶纤维素、结冷胶、黄原胶、海藻酸丙二醇酯、魔芋胶、琼脂、刺槐豆胶和果胶中的一种或几种的组合。

原料中的酸度调节剂可选自乳酸、柠檬酸、磷酸、酒石酸和苹果酸中的一种或几种的组合。

原料中的食用香精可选自酸奶香精、牛奶香精、橙香精、葡萄香精、桃香精、椰子香精、草莓香精、荔枝香精、苹果香精、蜜瓜香精、芒果香精、西番莲香精、西柚香精、柠檬香精、蓝莓香精、木瓜香精、香蕉香精、菠萝香精、番茄香精、胡萝卜香精、芦笋香精、菠菜香精、杏香精、梨香精、猕猴桃香精、香草香精、玫瑰香精、巧克力香精、核桃香精、麦香香精和樱桃香精中的一种或几种的组合。

原料中的糖可以是白砂糖、糖浆或甜味剂中的任意一种或几种的混合，计算糖度时折算为白砂糖糖度。

原料中牛奶定义为：普通的牛乳，包括全脂、脱脂和半脱脂；或用奶粉、奶油、水解蛋白、乳清粉或牛奶的其他组分配制而成的还原奶。

步骤 4）中灭菌的条件优选为：在 90-140℃下杀菌 4 秒至 15 分钟。

为了改善本发明配制型含乳饮料的营养价值和风味口味，在其制备过程中可再添加 0.5-20g 蔬果汁和/或果蔬颗粒，和/或 0.01-0.5g 微量元素，和/或 0.3-0.8g 膳食纤维；所述蔬果汁、微量元素和/或膳食纤维于步骤 2）中添加，加入后再与酸度调节剂混匀；果蔬颗粒于步骤 4）中添加，加入后再灭菌。

所述果蔬颗粒可选自番茄颗粒、桃颗粒、椰果颗粒、橙果粒、芒果果粒、葡萄果粒、木瓜果粒、菠萝果粒、草莓果粒、芹菜颗粒、梨果粒、黄瓜颗粒、萝卜类颗粒和
芦荟凝胶颗粒等各种果蔬颗粒中的一种或几种的组合：通常选用直径1-20mm的颗粒状果蔬颗粒或浆类果蔬粒，或长度为1-20mm、宽度为1-10mm的纤维状果蔬粒。

所述果蔬汁可选自苹果汁、草莓汁、蓝莓汁、木瓜汁、香蕉汁、橙汁、菠萝汁、芒果汁、番茄汁、胡萝卜汁、芦笋汁、菠菜汁、桃汁、杏汁、梨汁、葡萄汁、芦荟汁、猕猴桃汁、荔枝汁、柠檬汁和椰汁等各种果蔬汁中的一种或几种的组合。

微量元素可选自维生素A、维生素B族、维生素C、维生素E、乳酸钙、牛磺酸、叶酸、烟酸、胆碱、硫酸亚铁、柠檬酸铁、硫酸锌、葡萄糖酸锌、亚硝酸钠、硫酸镁、葡萄糖酸镁和左旋肉碱等对人体有益的微量元素中的一种或几种的组合。

本发明提供了一种配制型含乳饮料及其制备方法。该配制型含乳饮料是添加了低聚异麦芽糖（IMO）的乳饮料，与现有同类产品相比，具有以下优点和有益的效果：1）本发明饮料中的低聚异麦芽糖（IMO）和牛奶、肠道中所含有的各种有益菌（比如双歧杆菌、乳酸菌等）相互协调，相得益彰，不仅改善口味，还可以更好的发挥有益菌群的作用；2）可使体内多种有益菌（特别是双歧杆菌）增殖，进而起到改善人体肠胃环境、促进肠道蠕动、减少有毒发酵产物及有害细菌、防止便秘、保护肝脏功能、降低血清胆固醇、降低血压、提高人体免疫力、促进B族维生素合成、帮助钙、铁、锌等营养元素吸收的功效。人体实验结果表明，服用前、后各实验组肠道内双歧杆菌的数量明显增加，增幅可达10倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖；3）突破了原有配制型含乳饮料的产品结构和配方组成，并可根据需要加入果蔬汁、果蔬粒或微量元素，使配制型乳饮料更具有综合营养作用，并使产品品类更加丰富；4）原料来源广泛，制备方法简单，易于进行工业化生产。本发明将在配制型含乳饮料以及有效增殖双歧杆菌的保健食品的生产领域发挥重要作用，市场前景广阔。

下面结合具体实施例对本发明做进一步详细说明。

附图说明

图1为本发明配制型含乳饮料的生产流程图

具体实施方式

下述实施例中所用方法如无特别说明均为常规方法。下述实施例中所用百分比含量如无特别说明均为质量百分含量。

实施例1.低聚异麦芽糖（IMO）调节肠道菌群功能的动物实验

受试样品：低聚异麦芽糖（IMO），购自山东保龄宝公司，纯度50%，为白色粉末。阴凉、干燥、通风处保存。

实验动物：选用购自中国医学科学院实验动物研究所（许可证号：SCXK－（京）
2004-0001）的18-22g，BALB/C健康清洁级雄性小鼠48只，分为四组，每组12只。

剂量：低聚异麦芽糖（IMO）的推荐量为成人（按60kg体重计）每日10g、20g和30g，分别依照三个推荐剂量的10倍设置小鼠实验剂量，即每日剂量分别为1.67g/kgBW（低剂量组）、3.33g/kgBW（中剂量组）、5.00g/kgBW（高剂量组）。受试物用水（已消毒）配制，经口每日一次给予小鼠受试物，连续灌胃14天后测试各项指标。小鼠灌胃体积为0.10mL/10g鼠重。同时设空白对照组（0g/kgBW），用水（已消毒）代替受试物，每日灌胃体积与受试物组相同。

给予受试样品前，无菌取小鼠粪便数粒，放置无菌的器皿中，用分析天平称量，记录重量。然后，在洁净工作台中，无菌操作，加入稀释液（二次蒸馏水），稀释至10^2，充分振荡混匀，依10倍系列稀释至10^4，每种测定菌按常规方法选择合适的稀释度，接种平板，检测肠道五种典型菌（双歧杆菌、乳杆菌、肠球菌、肠杆菌、产气荚膜梭菌）的菌群数量。培养基、培养和鉴定方法如表2所示，然后计算出每克湿便中的菌落数（cfu/g），除产气荚膜梭菌外，均取对数进行统计处理。在最后一次给予受试样品之后24h，再次检测上述肠道五种典型菌的菌群数量，方法步骤同上。

数据处理：用SPSS软件对各实验组的原始数据进行数据处理，采用方差分析的程序先进行方差齐性检验，方差齐，计算F值，F值≤F_{0.05}，结论：各组均数间差异无显著性；F值＞F_{0.05}，P≤0.05，用多个实验组和一个对照组间均数的两两比较方法进行统计。对非正态分布或方差不齐的数据进行适当的变量转换，待满足正态或方差齐要求后，用转换后的数据进行统计，若变量转换后仍为达到正态或方差齐的目的，改用秩和检验进行统计。

结果判定：最后，根据《保健食品检验与评价技术规范》（2003年版）的判定标准，比较实验前后自身与组间双歧杆菌、乳杆菌、粪球菌、肠杆菌、产气荚膜梭菌的数量变化情况，实验组实验前后自身比较差异有显著性，或实验后实验组与对照组组间比较差异有显著性，且实验组实验前后自身比较差异有显著性，符合以下一项，可以判定该组受试样品动物实验结果阳性：（1）粪便中双歧杆菌和/或乳杆菌明显增加，产气荚膜梭菌减少或不增加，肠杆菌、粪球菌无明显变化。（2）粪便中双歧杆菌和/或乳杆菌明显增加，产气荚膜梭菌减少或不增加，肠杆菌和/或粪球菌明显增加，但增加的幅度低于双歧杆菌/乳杆菌增加的幅度。

低聚异麦芽糖（IMO）对小鼠体重影响的检测结果如表3所示，小鼠的初始体重和实验后体重在各剂量组与0g/kgBW组比较，差异均无显著性（P＞0.05），表明低聚异麦芽糖（IMO）对小鼠的体重无不良影响。

实验前后小鼠肠道中肠杆菌菌群数量的检测结果如表4所示，给受试物前各剂量
组与 0g/kgBW 组间比较，肠杆菌的数量均无显著差异（P>0.05），而给受试物 14 天后与 0g/kgBW 组比较，5.00g/kgBW 组肠杆菌的数量减少，有显著差异（P<0.05）。
实验前后各剂量组自身比较肠杆菌数量均无显著性差异（P>0.05）。

实验前后小鼠肠道中肠球菌菌群数量的检测结果如表 5 所示，给受试前各剂量组与 0g/kgBW 组间比较，肠球菌的数量均无显著性差异（P>0.05），给受试物 14 天后与 0g/kgBW 组比较，5.00g/kgBW 组肠球菌的数量减少，有显著差异（P<0.05）。实验前后各剂量组自身比较肠球菌均无显著性差异（P>0.05）。

实验前后小鼠肠道中乳杆菌菌群数量的检测结果如表 6 所示，给受试物前、后各剂量组与 0g/kgBW 组间比较，乳杆菌的数量均无显著性差异（P>0.05）。给受试物前、后各剂量组自身比较，乳杆菌的数量均无显著性差异（P>0.05）。

实验前后小鼠肠道中产气荚膜梭菌群数量的检测结果如表 7 所示，给受试前、后各剂量组与 0g/kgBW 组间比较，产气荚膜梭菌的数量均无显著性差异（P>0.05）。给受试物前后各组自身比较，产气荚膜梭菌的数量均无显著差异（P>0.05）。

实验前后小鼠肠道中双歧杆菌菌群数量的检测结果如表 8 和表 9 所示，由表 8 可知，给受试物前、后各剂量组与 0g/kgBW 组间比较，双歧杆菌的数量均无显著性差异（P>0.05）。给受试物后 0g/kgBW、1.67g/kgBW 组经自身比较，双歧杆菌的数量均无显著性差异（P>0.05）；3.33g/kgBW 组自身比较，双歧杆菌的数量增加，有显著性差异（P<0.05）；5.00g/kgBW 实验组自身比较，双歧杆菌的数量增加，有显著性差异（P<0.01）。由表 9 可知，给受试物前、后各剂量组与 0g/kgBW 组间比较，双歧杆菌的数量均无显著性差异（P>0.05）。给受试物前后 3.33g/kgBW 组自身比较，双歧杆菌的数量增加 1.4 倍；5.00g/kgBW 组自身比较，双歧杆菌的数量增加 2.0 倍。

综上所述，经口给予小鼠低聚异麦芽糖（IMO）14 天前后，3.33g/kgBW 组自身比较，小鼠肠内双歧杆菌的数量增加 1.4 倍，有显著性差异（P<0.05）；5.00g/kgBW 组自身比较，双歧杆菌的数量增加 2.0 倍，有显著性差异（P<0.01）。经口给予小鼠低聚异麦芽糖（IMO）14 天后，与 0g/kgBW 组比较，5.00g/kgBW 组肠杆菌数量减少（P<0.05）；肠球菌数量显著减少（P<0.05）。给低聚异麦芽糖（IMO）前后，各组小鼠产气荚膜梭菌数量均无显著变化。低聚异麦芽糖（IMO）对小鼠体重无不良影响。

上述实验结果表明，低聚异麦芽糖（IMO）调节肠道菌群功能实验结果为阳性，证明低聚异麦芽糖（IMO）能够明显增殖肠道双歧杆菌。

表 2 肠道菌群检验用培养基、培养和鉴定方法

<table>
<thead>
<tr>
<th>鉴定方法</th>
<th>培养基</th>
<th>培养条件</th>
</tr>
</thead>
</table>

11
### 表3 实验前后各组小鼠的体重（\( \bar{x} \pm SD \)）

<table>
<thead>
<tr>
<th>组别</th>
<th>动物数（只）</th>
<th>实验前体重（g）</th>
<th>与0g/kgBW组比较的P值</th>
<th>实验后体重（g）</th>
<th>与0g/kgBW组比较的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g/kgBW</td>
<td>12</td>
<td>21.4±0.9</td>
<td>0.095</td>
<td>26.6±1.2</td>
<td>0.156</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>21.1±1.3</td>
<td>0.895</td>
<td>25.5±1.7</td>
<td>0.890</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>21.4±1.1</td>
<td>1.000</td>
<td>26.3±1.8</td>
<td>1.037</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>21.4±0.8</td>
<td>1.000</td>
<td>25.4±1.2</td>
<td>0.137</td>
</tr>
</tbody>
</table>

### 表4 小鼠肠道中肠杆菌菌群数量的检测结果（log10cfu/g，\( \bar{x} \pm SD \)）

<table>
<thead>
<tr>
<th>组别</th>
<th>动物数（只）</th>
<th>给受试物</th>
<th>与0g/kgBW组比较的P值</th>
<th>给受试物后</th>
<th>与0g/kgBW组比较的P值</th>
<th>本组给受试物前后的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g/kgBW</td>
<td>12</td>
<td>5.97±0.27</td>
<td>0.062</td>
<td>6.32±0.4</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>6.14±0.31</td>
<td>0.338</td>
<td>6.12±0.31</td>
<td>0.271</td>
<td>0.751</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>6.09±0.24</td>
<td>0.635</td>
<td>6.04±0.27</td>
<td>0.087</td>
<td>0.587</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>6.07±0.33</td>
<td>0.763</td>
<td>5.96±0.23'</td>
<td>0.021</td>
<td>0.207</td>
</tr>
</tbody>
</table>

\( a: \)与0g/kgBW组比较有显著差异

### 表5 小鼠肠道中肠球菌菌群数量检测结果（log10cfu/g，\( \bar{x} \pm SD \)）

<table>
<thead>
<tr>
<th>组别</th>
<th>动物数（只）</th>
<th>给受试物</th>
<th>与0g/kgBW组比较的P值</th>
<th>给受试物后</th>
<th>与0g/kgBW组比较的P值</th>
<th>本组给受试物前后的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g/kgBW</td>
<td>12</td>
<td>6.98±0.30</td>
<td>0.068</td>
<td>7.29±0.61</td>
<td>0.068</td>
<td>0.068</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>7.04±0.38</td>
<td>0.974</td>
<td>7.11±0.39</td>
<td>0.677</td>
<td>0.546</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>6.82±0.53</td>
<td>0.669</td>
<td>6.84±0.47</td>
<td>0.065</td>
<td>0.828</td>
</tr>
</tbody>
</table>
表 6 小鼠乳杆菌菌群数量检测结果（log10cfu/g, X ± SD）

<table>
<thead>
<tr>
<th>组别（g/kgBW）</th>
<th>动物数（只）</th>
<th>给受试物</th>
<th>与0g/kgBW组比较的P值</th>
<th>给受试物后</th>
<th>与0g/kgBW组比较的P值</th>
<th>本组给受试物前后的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g/kgBW</td>
<td>12</td>
<td>8.30±0.29</td>
<td>……</td>
<td>8.39±0.54</td>
<td>……</td>
<td>0.559</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>8.31±0.19</td>
<td>1.000</td>
<td>8.41±0.39</td>
<td>0.999</td>
<td>0.313</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>8.29±0.25</td>
<td>1.000</td>
<td>8.42±0.25</td>
<td>0.998</td>
<td>0.128</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>8.28±0.50</td>
<td>0.998</td>
<td>8.56±0.30</td>
<td>0.605</td>
<td>0.120</td>
</tr>
</tbody>
</table>

表 7 小鼠产气荚膜梭菌菌群数量检测结果（cfu/g, X ± SD）

<table>
<thead>
<tr>
<th>组别（g/kgBW）</th>
<th>动物数（只）</th>
<th>给受试物前</th>
<th>与0g/kgBW组比较的P值</th>
<th>给受试物后</th>
<th>与0g/kgBW组比较的P值</th>
<th>本组给受试物前后的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g/kgBW</td>
<td>12</td>
<td>17±25</td>
<td>……</td>
<td>21±26</td>
<td>……</td>
<td>0.723</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>17±33</td>
<td>1.000</td>
<td>21±26</td>
<td>1.000</td>
<td>0.674</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>17±23</td>
<td>0.970</td>
<td>12±23</td>
<td>0.736</td>
<td>1.000</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>17±33</td>
<td>1.000</td>
<td>12±23</td>
<td>0.736</td>
<td>0.586</td>
</tr>
</tbody>
</table>

表 8 小鼠肠道中双歧杆菌菌群数量检测结果（log10cfu/g, X ± SD）

<table>
<thead>
<tr>
<th>组别（g/kgBW）</th>
<th>动物数（只）</th>
<th>给受试物前</th>
<th>与0g/kgBW组比较的P值</th>
<th>给受试物后</th>
<th>与0g/kgBW组比较的P值</th>
<th>本组给受试物前后的P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g/kgBW</td>
<td>12</td>
<td>8.60±0.23</td>
<td>……</td>
<td>8.77±0.36</td>
<td>……</td>
<td>0.165</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>8.59±0.36</td>
<td>1.000</td>
<td>8.81±0.36</td>
<td>0.984</td>
<td>0.062</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>8.55±0.30</td>
<td>0.970</td>
<td>8.88±0.40</td>
<td>0.805</td>
<td>0.040</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>8.65±0.36</td>
<td>0.956</td>
<td>9.11±0.35</td>
<td>0.069</td>
<td>0.001</td>
</tr>
</tbody>
</table>

b: 与本组给受试物前比较有显著差异

表 9 小鼠肠道中双歧杆菌菌群数量检测结果（×10^6 cfu/g, X ± SD）

<table>
<thead>
<tr>
<th>组别（g/kgBW）</th>
<th>动物数（只）</th>
<th>给受试物前</th>
<th>给受试物后</th>
<th>本组给受试物前后比较增加</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g/kgBW</td>
<td>12</td>
<td>4.4±1.9</td>
<td>7.5±5.2</td>
<td>——</td>
</tr>
<tr>
<td>1.67g/kgBW</td>
<td>12</td>
<td>5.4±4.7</td>
<td>8.3±5.3</td>
<td>——</td>
</tr>
<tr>
<td>3.33g/kgBW</td>
<td>12</td>
<td>4.5±3.9</td>
<td>10.8±9.4</td>
<td>1.4倍</td>
</tr>
<tr>
<td>5.00g/kgBW</td>
<td>12</td>
<td>5.5±2.9</td>
<td>16.5±10.6</td>
<td>2.0倍</td>
</tr>
</tbody>
</table>

实施例2、低聚异麦芽糖（IMO）调节肠道菌群功能的人体实验

受试样品：低聚异麦芽糖（IMO），购自山东保龄宝公司，纯度50%，为白色粉
末。阴凉、干燥、通风处保存。

受试人群：经临床体检指标全部正常的成年人 60 名，男女各半。受试者中部分为便秘者。

肠道细菌培养方法如下：

双歧杆菌：BBL 琼脂培养基（青岛海博生物技术有限公司），37℃，48-72 小时厌氧培养；

乳杆菌：LBs 琼脂培养基（青岛海博生物技术有限公司），37℃，48 小时培养；

肠杆菌：EMB 琼脂培养基（青岛海博生物技术有限公司），37℃，24-48 小时培养；

肠球菌：叠氮钠-结晶紫-七叶苷琼脂培养基（青岛海博生物技术有限公司），37℃，
24-48 小时培养；

拟杆菌：Bd 琼脂培养基（青岛海博生物技术有限公司），37℃，24 小时厌氧培养；

产气荚膜梭菌：TSC 琼脂培养基（青岛海博生物技术有限公司），37℃，24 小时
厌氧培养。

随机抽取上述 60 例受试者，分为 3 组（低、中、高剂量组），每组 20 人，男女
各半。在食塞受试样品之前，无菌采集受试者粪便，放到无菌的器皿中，用分析天平称量，记录重量。然后，在洁净工作台中，无菌操作，加入稀释液（二次蒸馏水），
稀释至 10^{-2}，充分振荡混匀，依 10 倍系列稀释至 10^8，每种测定菌选择合适的稀释度，
接种平板，检验上述六种肠道菌群数（双歧杆菌、乳杆菌、肠杆菌、肠球菌、拟杆菌、
产气荚膜梭菌）。然后，低、中、高剂量组受试者每日分别服用低聚异麦芽糖（IM0）
5g、10g、15g，连续 14d。分别于服用受试物 3d、7d、10d、14d，及停服后 3d、7d、
14d 时，无菌采取受试者粪便检测并用相同方法检测上述六种肠道菌群数。观察、记
录受试者食用前后自觉症状。

数据处理方法与实施例 1 相同。

每日服用 5g 受试物（低剂量组）, 服用 14d，肠道菌群数量检测结果如表 10 所
示，5g/d 实验组的肠杆菌、肠球菌、产气荚膜梭菌服用前、后数量无显著变化(p>0.05)；拟杆菌在服用后第 10d 和停服后第 3d 较服用前数量增加，差异有显著性(p<0.05)；双歧杆菌在服用后第 7d、第 10d 数量增加，差异有显著性(p<0.05)；乳杆菌在停服后第 7d 数量降低，差异有极显著性(p<0.01)。

每日服用受试物 10g（中剂量组），服用 14d，肠道菌群数量检测结果如表 11 所
示，10g/d 实验组的肠杆菌、乳杆菌数量无明显差异(p>0.05)；肠球菌在停服后第
14d 数量增加，差异有显著性（p<0.05）；拟杆菌在服用后第 10d 及停服后第 3d 数量增加，其中，服用后第 10d 差异具极显著性（p<0.01），停服后第 3d 差异具显著性（p<0.05）；产气荚膜梭菌在服用后第 7d、第 10d、第 14d 数量下降，其中第 10d 差异性极显著性（p<0.01），第 7d、第 14d 差异具显著性（p<0.05）；双歧杆菌在服用后第 7d、第 10d 及停服后第 7d 数量增加，服用后第 10d 差异具显著性（p<0.01），服用后第 7d 及停服后第 7d 差异具显著性（p<0.05）。

每日服用受试物 15g（高剂量组），服用 14d，肠道菌群数量检测结果如表 12 所示，15g/d 实验组的肠球菌、乳杆菌数量无显著的变化（p>0.05）；肠杆菌在服用后第 14d 及停服后第 3d 数量减少，差异有显著性（p<0.05）；拟杆菌在服用后第 7d、第 14d 停服后第 7d、14d 数量减少，其中服用后第 7d 和停服后第 14d 差异有极显著性（p<0.01），服用后第 14d 和停服后第 7d 差异有显著性（p<0.05）；产气荚膜梭菌在服用后第 7d 和第 10d 数量下降，其中第 10d 差异有显著性（p<0.01），第 7d 差异有显著性（p<0.05）；双歧杆菌在服用后第 3d、第 10d 数量增加，差异均具显著性（p<0.01）。

综上所述，以 5g/d、10g/d、15g/d 剂量的低聚异麦芽糖（IMO）连续服用 14d，双歧杆菌有明显增加。5g/d 实验组经自身比较，双歧杆菌的数量增加 10 倍，（P<0.05），差异有显著性；10g/d 实验组和 15g/d 实验组经自身比较，双歧杆菌的数量增加 10 倍，差异具显著性（P<0.01）。上述实验结果表明，各剂量组的双歧杆菌数量都有明显提高，进一步证明低聚异麦芽糖（IMO）能够明显促进肠道内双歧杆菌增殖。

实验期间每天记录受试者的主诉症状，结果受试者服用受试物—低聚异麦芽糖（IMO）后，排便次数规律，粪便性状正常，排便通畅，饮食、睡眠及精神状态均保持良好，证明低聚异麦芽糖（IMO）对人无不良影响，服用安全。

表 10 服用低聚异麦芽糖人体肠道菌群动态观察结果 I（5g/d）（logCFU/g，x±S，n=10）

<table>
<thead>
<tr>
<th>细菌</th>
<th>肠杆菌</th>
<th>肠球菌</th>
<th>拟杆菌</th>
<th>产气荚膜梭菌</th>
<th>双歧杆菌</th>
<th>乳杆菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>服用前</td>
<td>7.11±1.38</td>
<td>5.95±1.32</td>
<td>8.05±2.28</td>
<td>1.79±0.93</td>
<td>8.00±1.81</td>
<td>8.11±1.04</td>
</tr>
<tr>
<td>服用后 3d</td>
<td>7.53±0.97</td>
<td>5.59±1.32</td>
<td>8.06±1.95</td>
<td>1.63±0.81</td>
<td>8.29±1.76</td>
<td>8.32±0.75</td>
</tr>
<tr>
<td>7d</td>
<td>7.10±1.13</td>
<td>5.72±1.67</td>
<td>8.80±2.18</td>
<td>1.81±1.00</td>
<td>9.32±0.44*</td>
<td>7.97±0.80</td>
</tr>
<tr>
<td>10d</td>
<td>7.32±0.85</td>
<td>5.80±1.48</td>
<td>9.74±0.82*</td>
<td>1.67±1.00</td>
<td>9.50±0.63*</td>
<td>7.57±1.28</td>
</tr>
</tbody>
</table>
*表示：服用受试物后与服用受试物前比较 p<0.05，**表示：服用受试物后与服用受试物前比较 p<0.01。

表 11 服用低聚异麦芽糖人体肠道菌群动态观察结果 II (10g/d)（logCFU/g，x±S，n=10）

<table>
<thead>
<tr>
<th>细菌</th>
<th>肠杆菌</th>
<th>肠球菌</th>
<th>拟杆菌</th>
<th>产气荚膜梭菌</th>
<th>双歧杆菌</th>
<th>乳杆菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>服用前</td>
<td>6.73±1.37</td>
<td>5.21±1.11</td>
<td>8.03±2.18</td>
<td>2.00±0.99</td>
<td>7.75±1.58</td>
<td>7.24±1.36</td>
</tr>
<tr>
<td>服用后 3d</td>
<td>7.36±0.99</td>
<td>6.00±1.29</td>
<td>8.20±2.30</td>
<td>2.25±1.02</td>
<td>8.57±0.58</td>
<td>7.76±0.82</td>
</tr>
<tr>
<td>7d</td>
<td>6.64±0.79</td>
<td>4.82±2.03</td>
<td>8.48±2.32</td>
<td>1.25±0.71</td>
<td>8.93±0.44</td>
<td>7.90±1.09</td>
</tr>
<tr>
<td>10d</td>
<td>6.77±0.83</td>
<td>5.28±1.10</td>
<td>9.96±0.31**</td>
<td>1.02±0.02**</td>
<td>9.26±0.36**</td>
<td>7.41±0.96</td>
</tr>
<tr>
<td>14d</td>
<td>6.72±1.01</td>
<td>4.85±1.62</td>
<td>8.88±2.25</td>
<td>1.18±0.49</td>
<td>8.62±0.74</td>
<td>7.41±0.96</td>
</tr>
<tr>
<td>停服后 3d</td>
<td>7.03±0.55</td>
<td>5.59±0.89</td>
<td>9.66±0.36*</td>
<td>2.41±1.13</td>
<td>8.61±0.43</td>
<td>7.36±0.72</td>
</tr>
<tr>
<td>7d</td>
<td>7.20±0.39</td>
<td>5.88±1.14</td>
<td>9.38±1.18</td>
<td>2.52±1.21</td>
<td>8.99±0.44</td>
<td>7.72±0.60</td>
</tr>
<tr>
<td>14d</td>
<td>7.09±0.22</td>
<td>6.51±1.20*</td>
<td>8.47±2.00</td>
<td>1.63±0.97</td>
<td>8.73±0.61</td>
<td>7.61±0.73</td>
</tr>
</tbody>
</table>

*表示：服用受试物后与服用受试物前比较 p<0.05，**表示：服用受试物后与服用受试物前比较 p<0.01。

表 12 服用低聚异麦芽糖人体肠道菌群动态观察结果 III (15g/d)（logCFU/g，x±S，n=10）

<table>
<thead>
<tr>
<th>细菌</th>
<th>肠杆菌</th>
<th>肠球菌</th>
<th>拟杆菌</th>
<th>产气荚膜梭菌</th>
<th>双歧杆菌</th>
<th>乳杆菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>服用前</td>
<td>7.72±0.67</td>
<td>5.38±0.64</td>
<td>9.91±0.24</td>
<td>2.59±1.41</td>
<td>8.69±0.46</td>
<td>7.68±1.48</td>
</tr>
<tr>
<td>服用后 3d</td>
<td>7.76±1.00</td>
<td>7.01±2.07</td>
<td>9.95±0.26</td>
<td>2.65±1.47</td>
<td>9.27±0.25**</td>
<td>8.24±1.69</td>
</tr>
<tr>
<td>7d</td>
<td>7.18±0.93</td>
<td>5.38±1.47</td>
<td>7.87±2.07**</td>
<td>1.55±0.82*</td>
<td>9.06±0.66</td>
<td>7.78±0.92</td>
</tr>
<tr>
<td>10d</td>
<td>7.56±0.86</td>
<td>6.41±1.38</td>
<td>9.88±0.40</td>
<td>1.24±0.69**</td>
<td>9.67±0.50**</td>
<td>8.21±0.86</td>
</tr>
<tr>
<td>14d</td>
<td>7.18±0.59*</td>
<td>5.86±1.43</td>
<td>9.64±0.30*</td>
<td>1.88±1.14</td>
<td>8.88±0.52</td>
<td>7.91±0.34</td>
</tr>
<tr>
<td>停服后 3d</td>
<td>6.95±0.88*</td>
<td>5.60±1.56</td>
<td>9.10±1.93</td>
<td>2.08±1.31</td>
<td>8.92±0.20</td>
<td>7.58±0.98</td>
</tr>
<tr>
<td>7d</td>
<td>7.42±0.71</td>
<td>6.28±1.62</td>
<td>9.60±0.46</td>
<td>1.99±1.52</td>
<td>8.99±0.47</td>
<td>7.92±0.85</td>
</tr>
<tr>
<td>14d</td>
<td>7.20±0.43</td>
<td>6.51±1.84</td>
<td>8.33±1.92**</td>
<td>1.58±1.15</td>
<td>8.26±0.68</td>
<td>7.60±0.61</td>
</tr>
</tbody>
</table>

*表示：服用受试物后与服用受试物前比较 p<0.05，**表示：服用受试物后与服用受
试物前比较 p<0.01。

实施例 3、配制型含乳饮料的制备

原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。
白砂糖：符合国家标准。
果葡糖浆：F≥42.0%。
低聚异麦芽糖（IMO）：IMO≥50%，购自山东保龄宝。
纯净水、乳酸和柠檬酸均符合国家标准。

参照图 1 制备本发明配制型含乳饮料，具体步骤如下：

1）按下列原料配方取料（以 1 吨计）：牛奶 300.0 千克，白砂糖 55.0 千克，果葡糖浆 50.0 千克，低聚异麦芽糖（IMO）20 千克，琼脂 1.6 千克，羧甲基纤维素钠 1.2 千克，乳酸 1.5 千克，柠檬酸 2.5 千克，草莓香精 0.3 千克，纯净水 567.9 千克；

2）将琼脂和羧甲基纤维素钠与白砂糖混合均匀，加入加热至 85℃的纯净水中，保温溶解 25 分钟，经冷板冷却至 30℃，再加入盛有果葡糖浆、低聚异麦芽糖（IMO）及 4℃牛奶的配料罐中，充分搅拌，最后将用常温纯净水（22℃）充分溶解的酸度调节剂（乳酸和柠檬酸）喷淋加入配料罐中，喷淋过程中持续搅拌，不得间断、停止；

3）将步骤 2）的料液预热至 35℃，在压力 22Mpa（一级压力采用 16Mpa，二级压力采用 6Mpa）下对混合液进行均质；

4）将料液均质后暂存在缓冲罐中，加入草莓香精，搅拌均匀，在 90℃下加热 15 分钟灭菌，得到本发明配制型含乳饮料，冷却至 20℃进行灌装。

对用上述方法制备的配制型含乳饮料进行检测，检测指标如下：

蛋白质：0.88%，脂肪：0.91%，可溶性固形物：13.0%，糖度（以白砂糖计）：9.0%，低聚异麦芽糖（IMO）：0.75%，pH：4.02。

此外，还对受试人群进行了口服实验，受试人群选用经临床体检指标全部正常的成年人 60 名，男女各半，再分成 3 组（高、中、低剂量组），每组 20 人（男女各半），高、中、低剂量组每人每天分别服用上述配制型含乳饮料 250mL、500mL、750mL，用与实施例 2 相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组人肠道内双歧杆菌数量明显提高，增幅可达 10 倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖。
实施例4、配制型含乳饮料的制备

原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。
白糖：符合国家一级标准。
低聚异麦芽糖（IMO）：IMO≥50%，购自山东保龄宝。
苹果汁：苹果浓缩汁，果浆体系pH3.7，糖度35Bx。
纯净水、乳酸和柠檬酸均符合国家标准。

参照图1制备本发明配制型含乳饮料，包括以下步骤：

1）按下述原料配方取料（以1吨计）：牛奶400.0千克，白糖45.0千克，低聚异麦芽糖（IMO）15.0千克，苹果汁15千克，果胶3.0千克，海藻酸丙二醇酯1.0千克，乳酸2.0千克，柠檬酸2.5千克，苹果香精0.1千克，纯净水516.4千克；

2）将果胶和海藻酸丙二醇酯与白糖混合均匀，加入加热至75℃的纯净水中，保温溶解20分钟，经冷板冷却至25℃，再加入盛有苹果汁、低聚异麦芽糖（IMO）及6℃牛奶的配料桶中，充分搅拌，最后将用常温纯净水（20℃）充分溶解的酸度调节剂（乳酸和柠檬酸）喷淋加入配料桶中，喷淋过程中持续搅拌，不得间断、停止；

3）将步骤2）的料液预热至55℃，在压力31Mpa（一级压力采用18Mpa，二级压力采用13Mpa）下对混合液进行均质；

4）将料液均质后暂存在缓冲罐中，加入苹果香精，搅拌均匀，在100℃下加热10分钟灭菌，得到本发明配制型含乳饮料，冷却至25℃进行灌装。

对上述产品制备的配制型含乳饮料进行检测，检测指标如下：
蛋白质：1.2%，脂肪：1.28%，可溶性固形物：13.5%，糖度（以白糖计）：4.50%，低聚异麦芽糖（IMO）：0.56%，pH：3.90，果汁含量：10%。

此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人60名，男女各半，再分成3组（高、中、低剂量组），每组20人（男女各半），高、中、低剂量组每人每天分别服用上述配制型含乳饮料333ml、666ml、999ml，用与实施例2相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组人肠道内双歧杆菌数量明显提高，增幅可达10倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖。

实施例5、配制型含乳饮料的制备

原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。

白砂糖：符合国家标准。

低聚异麦芽糖（IMO）： IMO≥50%，购自山东保龄宝。

膳食纤维：水不溶性膳食纤维≥60%。

纯净水、乳酸和苹果酸均符合国家标准。

参照图1制备本发明配制型含乳饮料，具体步骤如下：

1）按如下原料配方取料（以1吨计）：牛奶 550.0 千克，白砂糖 90.0 千克，低聚异麦芽糖（IMO） 25 千克，结冷胶 0.15 千克，黄原胶 2.0 千克，乳酸 1.9 千克，苹果酸 2.0 千克，芒果香精 1.0 千克，膳食纤维 5 千克，纯净水 322.95 千克；

2）将结冷胶、黄原胶、白砂糖混合均匀，加入加热至65℃的纯净水中，保温溶解30分钟，经冷板冷却至28℃，再加入盛有低聚异麦芽糖（IMO）、膳食纤维及6℃牛奶的配料罐中，充分搅拌，最后将用常温纯净水（25℃）充分溶解的酸度调节剂（乳酸和苹果酸）喷淋加入配料罐中，喷淋过程中持续搅拌，不得间断、停止；

3）将步骤2）的料液预热至75℃，在压力25Mpa（一级压力采用18Mpa，二级压力采用7Mpa）下对混合液进行均质；

4）将料液均质后暂存在缓冲罐中，加入苹果香精，搅拌均匀，在115℃下加热5分钟灭菌，得到本发明配制型含乳饮料，冷却至15℃进行灌装。

对采用上述方法制备的配制型含乳饮料进行检测，检测指标如下：

蛋白质：1.65%，脂肪：1.7%，可溶性固形物：16.8%，糖度（以白砂糖计）：9.0%，低聚异麦芽糖（IMO）：0.9%，膳食纤维：0.3%，pH值：3.99。

此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人60名，男女各半，再分成3组（高、中、低剂量组），每组20人（男女各半），高、中、低剂量组每人每天分别服用上述配制型含乳饮料200mL、400mL、600mL，用与实施例2相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组人肠道内双歧杆菌数量明显提高，增幅可达10倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖。

实施例6、配制型含乳饮料的制备

原料标准：

牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。

白砂糖：符合国家标准。

低聚异麦芽糖（IMO）： IMO≥50%，购自山东保龄宝。
果葡糖浆：F≥42.0%。
桃粒：果肉含量≥55.0%；果粒尺寸为2-5mm；果粒体系pH3.6；糖度20BX。
纯净水、乳酸和柠檬酸均符合国家标准。
参照图1制备本发明制配型含乳饮料，包括以下步骤：
1）按下述原料配方取料（以1吨计）：牛奶：360.0千克，白糖：40.0千克，
果葡糖浆：60.0千克，安赛蜜：0.03千克，低聚异麦芽糖（IMO）：100千克，桃粒：
120千克，果胶3.0千克，微晶纤维素1.0千克，单硬脂肪酸酯0.5千克，乳酸：
1.7千克，柠檬酸：2.51千克，酸奶香精：4千克，纯净水：307.26千克；
2）将果胶、微晶纤维素、单硬脂肪酸酯和白砂糖混合均匀，加入加热至70℃的
纯净水中，保温溶解25分钟，经冷板冷却至18℃，再加入融有果葡糖浆、低聚异麦
芽糖（IMO）及8℃牛奶的配制罐中，充分搅拌，最后将用常温纯净水（15℃）充分溶
解的酸度调节剂（乳酸和柠檬酸）喷淋加入配制罐中，喷淋过程中持续搅拌，不得间
断、停止；
3）将步骤2的料液预热至80℃，在压力23Mpa（一级压力采用17Mpa，二级压
力采用6Mpa）下对混合液进行均质；
4）将料液均质后暂存在缓冲罐中，加入香精和桃粒，搅拌均匀，在140℃下加热
4秒灭菌，得到本发明制配型含乳饮料，冷却至20℃进行灌装。
对用上述方法制备的制配型含乳饮料进行检测，检测指标如下：
蛋白质：1.10%，脂肪：1.2%，可溶性固形物：13.5%，糖度（以白砂糖计）：
8.5%，低聚异麦芽糖（IMO）：3.75%，pH：4.1，果粒含量：6.0%。
此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人
60名，男女各半，再分成3组（高、中、低剂量组），每组20人（男女各半），
高、中、低剂量组每人每天分别服用上述制配型含乳饮料50mL、100mL、150mL，用与
实施例2相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组
人肠道内双歧杆菌数量明显提高，增幅可达10倍，表明本发明的饮料可明显促进肠
道内双歧杆菌的增殖。

实施例7、制配型含乳饮料的制备
原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。
白糖：符合国家一级标准。
低聚异麦芽糖（IMO）：IMO≥50%，购自山东保龄宝。
乳酸钙：符合国家标准

草莓汁：草莓原浆，果浆体系 pH 3.7，糖度 35Brix。

纯净水和柠檬酸均符合国家标准。

参照图 1 制备本发明配制型含乳饮料，包括以下步骤：

1）按下述原料配方取料（以 1 吨计）：牛奶：450.0 千克，白砂糖：60.0 千克，
安赛蜜：0.06 千克，纽甜：0.004 千克，低聚异麦芽糖（IMO）：30.0 千克，结冷胶：0.5
千 克，羧甲基纤维素钠：2.5 千克，蔗糖脂肪酸酯：0.8 千克，乳酸钙：1.0 千克，草
莓汁：10 千克，柠檬酸：4.5 千克，草莓香精：0.75 千克，纯净水：439.886 千克；

2）将结冷胶、羧甲基纤维素钠、蔗糖脂肪酸酯、安赛蜜、纽甜和白砂糖混合均匀，
加入加热至 82°C 的纯净水中，保温溶解 18 分钟，经冷板冷却至 25°C，再加入盛
有低聚异麦芽糖（IMO）、草莓汁、乳酸钙及 6.5°C 牛奶的配料罐中，充分搅拌，最后
将用常温纯净水（20°C）充分溶解的酸度调节剂（柠檬酸）喷淋加入配料罐中，喷淋
过程中持续搅拌，不得间断、停止；

3）将步骤 2）的料液预热至 75°C，在压力 40Mpa（一级压力采用 23Mpa，二级压
力采用 17Mpa）下对混合液进行均质；

4）将料液均质后暂存缓冲罐中，加入香精，搅拌均匀，在 121°C 下加热 5 秒灭
菌，得到本发明配制型含乳饮料，冷却至 27°C 进行灌装。

对用上述方法制备的配制型含乳饮料进行检测，检测指标如下：

蛋白质：1.44%，脂肪：1.52%，可溶性固形物：12.9%，糖度（以白砂糖计）：
6.0%，低聚异麦芽糖：1.1%，pH：4.0，乳酸钙：75mg，果汁含量 15%。

此外，还对实验进行了口服试验，受试人群选用经临床体检指标全部正常的成年人
60 名，男女各半，再分成 3 组（高、中、低剂量组），每组 20 人（男女各半）。
高、中、低剂量组每人每天分别服用上述配制型含乳饮料 167mL、334mL、501mL，用
与实施例 2 相同的方法检测服用前、后肠道内双歧杆菌的数 量，结果服用后，各实验
组人肠道内双歧杆菌数量明显提高，增幅可达 10 倍，表明本发明的饮料可明显促进
肠道内双歧杆菌的增殖。

实施例 8、配制型含乳饮料的制备

原料标准：

牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。

白砂糖：符合国家一级标准。

低聚异麦芽糖（IMO）：IMO≥50%，购自山东保龄宝。
果葡糖浆：F≥42.0%。
纯净水、乳酸、苹果酸：符合国家标准。
柠檬酸铁：符合国家标准。
参照图1制备本发明配制型含乳饮料，包括以下步骤：
1）按下述原料配方取料（以1吨计）：牛奶500千克，白砂糖50.0千克，果葡糖浆50.0千克，低聚异麦芽糖（IMO）50.0千克，魔芋胶1.0千克，羧甲基纤维素钠2.0千克，乳酸1.5千克，苹果酸2.5千克，甜橙香精0.3千克，柠檬酸铁1.0千克，纯净水341.7千克。
2）将魔芋胶、羧甲基纤维素钠、柠檬酸铁和白砂糖混合均匀，加入加热至85℃的纯净水中，保温溶解25分钟后，经冷板冷却至30℃，再加入盛有果葡糖浆、低聚异麦芽糖（IMO）及4℃牛奶的配料罐中，充分搅拌，最后将用常温纯水（22℃）充分溶解的酸度调节剂（乳酸和苹果酸）喷淋加入配料罐中，喷淋过程中持续搅拌，不得间断，停止；
3）将步骤2）的料液预热至65℃，在压力22Mpa（一级压力采用16Mpa，二级压力采用6Mpa）下对混合液进行均质；
4）将料液均质后暂存在缓冲罐中，加入香精，搅拌均匀，在115℃下加热4秒灭菌，得到本发明配制型含乳饮料，冷却至15℃进行灌装。
对用上述方法制备的配制型含乳饮料进行检测，检测指标如下：
蛋白质：1.4%，脂肪：1.6%，可溶性固形物：14.0%，糖度（以白砂糖计）：8.5%，低聚异麦芽糖（IMO）：1.8%，pH：4.02，柠檬酸铁（mg/100g）：100。
此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人60名，男女各半，再分成3组（高、中、低剂量组），每组20人（男女各半），高、中、低剂量组每人每天分别服用上述配制型含乳饮料100mL、200mL、300mL，与实施例2相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组人肠道内双歧杆菌数量明显提高，增幅可达10倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖。
实施例9、配制型含乳饮料的制备
原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。
白砂糖：符合国家标准。
低聚异麦芽糖（IMO）：IMO≥90%，购自山东保龄宝。
橙汁：甜橙浓缩汁，果浆体系 pH 3.6，糖度 42BX。
纯净水、乳酸、柠檬酸：符合国家标准。
参照图 1 制备本发明配制型含乳饮料，包括以下步骤：
1）按下述原料配方取料（以 1 吨计）：牛奶：600.0 千克，白砂糖：70.0 千克，
低聚异麦芽糖（IMO）74.0 千克，橙汁：30 千克，果胶：3.5 千克，刺槐豆胶：1.0
千克，乳酸：2.0 千克，柠檬酸：2.5 千克，甜橙香精：0.1 千克，纯净水：216.9 千克；
2）将果胶、刺槐豆胶和白砂糖混合均匀，加入加热至 70℃的纯净水中，保温溶
解 20 分钟，经冷板冷却至 25℃，再加入盛有橙汁、低聚异麦芽糖（IMO）及 6℃牛奶
的配料罐中，充分搅拌，最后将用常温纯净水（20℃）充分溶解的酸度调节剂（乳酸
和柠檬酸）喷淋加入配料罐中，喷淋过程中持续搅拌，不得间断、停止；
3）将步骤 2）的料液预热至 55℃，在压力 18Mpa（一级压力采用 13Mpa，二级压
力采用 5Mpa）下对混合液进行均质；
4）将料液均质后暂存在缓冲罐中，加入香精，搅拌均匀，在 110℃下加热 1 分钟
灭菌，得到本发明配制型含乳饮料，冷却至 25℃进行灌装。
对用上述方法制备的配制型含乳饮料进行检测，检测指标如下：
蛋白质：1.7%，脂肪：1.9%，可溶性固形物：15.5%，糖度（以白砂糖计）：
7.0%，低聚异麦芽糖（IMO）：5%，pH：4.0，果汁含量：20%。
此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人
60 名，男女各半，再分成 3 组（高、中、低剂量组），每组 20 人（男女各半），
高、中、低剂量组每人每天分别服用上述配制型含乳饮料 37.6mL、75.2mL、112.8mL，
用与实施例 2 相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实
验组人肠道内双歧杆菌数量明显提高，增幅可达 10 倍，表明本发明的饮料可明显促
进肠道内双歧杆菌的增殖。

实施例 10、配制型含乳饮料的制备
原料标准：
牛奶：蛋白质≥2.95%，脂肪≥3.0%，非脂乳固体≥8.5%。
白砂糖：符合国家标准。
低聚异麦芽糖（IMO）：IMO≥50%，购自山东保龄宝。
草莓粒：果肉含量≥65.0%，果粒直径：3-11mm，果肉新鲜，有草莓的正常香气，
pH：4.5，糖度：18BX。
纯净水、乳酸、苹果酸：符合国家标准。

参照图1制备本发明配方型含乳饮料，包括以下步骤：牛奶：350.0千克，白砂糖：85.0千克，低聚异麦芽糖（IMO）：10.0千克，海藻酸丙二醇酯：1.5千克，黄原胶：2.0千克，草莓粒：60.0千克，乳酸：2.0千克，苹果酸：1.5千克，草莓香精：1.0千克，纯净水：495.0千克。

2）将海藻酸丙二醇酯、黄原胶和白砂糖混合均匀，加入热化至65℃的纯净水中，保温溶解30分钟，经冷板冷却至28℃，再加入盛有低聚异麦芽糖（IMO）及6℃牛奶的配料罐中，充分搅拌，最后将用常温纯净水（25℃）充分溶解的酸度调节剂（乳酸和苹果酸）喷淋加入配料罐中，喷淋过程中持续搅拌，不得间段，停止；

3）将步骤2）的料液预热至55℃，在压力25Mpa（一级压力采用18Mpa，二级压力采用7Mpa）下对混合液进行均质；

4）将料液均质后暂存在缓冲罐中，加入草莓粒、香精，搅拌均匀，在95℃下加热10分钟灭菌，得到本发明配方型含乳饮料，冷却至5℃进行灌装。

对用上述方法制备的配方型含乳饮料进行检测，检测指标如下：

蛋白质：1.03%，脂肪：1.1%，可溶性固形物：15.8%，糖度（以白砂糖计）：8.5%，低聚异麦芽糖（IMO）：0.37%，pH：4.15，果肉：3.60%。

此外，还对人体进行了口服实验，受试人群选用经临床体检指标全部正常的成年人60名，男女各半，再分成3组（高、中、低剂量组），每组20人（男女各半），高、中、低剂量组每人每天分别服用上述配方型含乳饮料500mL，1000mL，1500mL，用与实施例2相同的方法检测服用前、后肠道内双歧杆菌的数量，结果服用后，各实验组人肠道内双歧杆菌数量明显提高，增幅可达10倍，表明本发明的饮料可明显促进肠道内双歧杆菌的增殖。

实施例11，产品口感的检验

以实施例3-10制备的配方型含乳饮料为实验样品，进行口味测试，方法如下：

测试人数：300人；

品尝方式：采用不记名打分的方式进行，风味、色泽、口感、咀嚼感四者指标的满分为10分；硬度、酸甜比和营养价值三项指标的满分为20分；分数越高，表示效果越好，对品尝结果进行统计分析，结果如表13所示，表明本发明的含低聚异麦芽糖（IMO）的配方型含乳饮料不论是在风味、口感还是在营养成分上都有明显的改进。

表13 本发明产品品尝结果数据表
<table>
<thead>
<tr>
<th>指标及分数</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
<th>实施例 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>风味 (10)</td>
<td>8.0</td>
<td>8.2</td>
<td>7.8</td>
<td>7.5</td>
<td>9.0</td>
<td>8.5</td>
<td>8.1</td>
<td>7.7</td>
</tr>
<tr>
<td>色泽 (10)</td>
<td>9.0</td>
<td>8.0</td>
<td>8.5</td>
<td>8.8</td>
<td>8.5</td>
<td>8.9</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>口感 (20)</td>
<td>17.0</td>
<td>18.0</td>
<td>17.5</td>
<td>19.0</td>
<td>17.0</td>
<td>19.0</td>
<td>18.5</td>
<td>18.0</td>
</tr>
<tr>
<td>咀嚼感 (20)</td>
<td>18.0</td>
<td>17.5</td>
<td>19.0</td>
<td>17.8</td>
<td>18.0</td>
<td>16.5</td>
<td>19.5</td>
<td>18.5</td>
</tr>
<tr>
<td>糖酸比 (20)</td>
<td>17.0</td>
<td>18.0</td>
<td>16.5</td>
<td>17.5</td>
<td>18.5</td>
<td>18.7</td>
<td>17.7</td>
<td>18.3</td>
</tr>
<tr>
<td>营养价值 (20)</td>
<td>19.0</td>
<td>18.5</td>
<td>17.50</td>
<td>17.0</td>
<td>18.0</td>
<td>19.2</td>
<td>18.3</td>
<td>19.5</td>
</tr>
<tr>
<td>总体</td>
<td>喜欢</td>
<td>230.0</td>
<td>240.0</td>
<td>251.0</td>
<td>225.0</td>
<td>232.0</td>
<td>235</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>良好</td>
<td>50.0</td>
<td>43.0</td>
<td>30.0</td>
<td>55.0</td>
<td>38.0</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>评 (人数)</td>
<td>一般</td>
<td>20.0</td>
<td>17.0</td>
<td>19.0</td>
<td>20.0</td>
<td>30.0</td>
<td>25</td>
<td>17</td>
</tr>
</tbody>
</table>
图 1