WO 2006/00:5029 A1 | |00 000 0 000 T D 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 January 2006 (12.01.2006)

525 | 0 00 OO

(10) International Publication Number

WO 2006/005029 A1l

(51) International Patent Classification : HO4L 12/56,
29/06
(21) International Application Number:
PCT/US2005/023660
(22) International Filing Date: 29 June 2005 (29.06.2005)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
10/881,451 29 June 2004 (29.06.2004) US

(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; 5775 Morehouse
Drive, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BABBAR, Up-
pinder, S. [IN/US]; 9454 Capricorn Way, San Diego,
CA 92126 (US). LIOY, Marcello [CA/US]; 11929 Miro
Circle, San Diego, CA 92131 (US).

(74) Agents: OGROD, Gregory, D. et al.; 5775 Morehouse
Drive, San Diego, CA 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, S1, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,

[Continued on next page]

(54) Title: FILTERING AND ROUTING OF FRAGMENTED DATAGRAMS IN A DATA NETWORK

416

IP packet Apply filter(s) to the IP packet
is a fragmented and process/forward the
datagram? IP packet accordingly.

YES L

Determine a datagram
identifier for the IP packet.

424
Create a new routing table
entry for the datagram and
initialize the table entry.
Start a timer for the datagram .

Filter
result available for
datagram?

YES

All filtering
parameters obtained for the
datagram?

434
Apply filter(s) to the filtering
parameters to obtain a filter result.
Store the filter result in the routing
table entry for the datagram.

436
Process/forward all IP
packets received for the
datagram in accordance
444 with the filter result.
NO

Process/forward the
IP packet in accordance
with the filter result.

le
v 442
| Update fragment information.

All
agments of the datagram
received?

446
Delete the routing table entry

438
Allocate a buffer in the fragment
and purge the fragment memory memory for the IP packetand |«
of all fragments of the datagram . store the IP packet in the buffer

¥ v

(57) Abstract: Techniques to efficiently filter fragmented
datagrams and route fragments are described. For each frag-
mented datagram, a filtering node obtains filter parameters
as fragments for the datagram are received. When all filter
parameters are available, the node applies one or more fil-
ters on the filter parameters to obtain a filter result for the
datagram and stores the filter result in an entry in a routing
table. Prior to obtaining the filter result, the node stores all
fragments received for the datagram in a memory. When
the filter result becomes available, the node processes all
fragments already received for the datagram in accordance
with the filter result. As each remaining fragment for the
datagram is received, the node immediately processes the
fragment in accordance with the filter result. When the last
fragment is received, the node clears the memory and the
routing table entry for the datagram.

WO 2006/005029 A1l

0 A 00000 00O O

AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, 1S,
JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU,
ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW,
MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG)

— asto the applicant’s entitlement to claim the priority of the

earlier application (Rule 4.17(iii)) for all designations

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2006/005029 PCT/US2005/023660

FILTERING AND ROUTING OF FRAGMENTED
DATAGRAMS IN A DATA NETWORK

BACKGROUND
L Field

[0001] The present invention relates generally to data communication, and more
specifically to techniques for filtering and routing fragmented datagrams in a data
network.

II. Background

[0002] Internet Protocol (IP) is a protocol that supports transmission of blocks of
data, called datagrams, from sources to destinations in a packet-switched data network.
The sources and destinations are hosts that are identified by fixed length IP addresses.
In IP terminology, a “node” is a device that implements IP, a “host” is a nodg that
terminates IP packets explicitly addressed to itself, and a “router” is a host that also
forwards IP packets not explicitly addressed to itself. To transmit data to a destination,
a source forms a datagram with an IP header and a payload portion. The IP header
contains the IP addresses of the source and destination as well as other fields. The
source then sends the datagram as an IP packet towards the destination based on routing
information the source has for the destination.

[0003] A node may filter IP packets for various reasons, as described below. In the
context of IP, “filtering” is a process to identify different types of IP packets based on
certain characteristics of the IP packets. These characteristics are described or defined
by one or more filter parameters, which may be carried in the IP header or the payload
portion. In a protocol stack, IP resides at a network layer, which is below a transport
layer, which in turn is below an optional session layer that is below an application layer.
A data network may use a Transmission Control Protocol (TCP), a User Datagram
Protocol (UDP), or some other protocol for the transport layer. The filter parameters
may be carried in the IP header, a transport layer header (e.g., a TCP header), a session
layer header, an application layer header, an application layer payload, and so on, or a

combination thereof, all of which are encapsulated in the datagram.

WO 2006/005029 PCT/US2005/023660

[0004] In the context of IP, a “filter” may be viewed as a box that provides different
outputs for different values of the filter parameters. As an example, a filter may be
defined based on a destination IP address and a TCP destination port number of 23. (A
TCP port refers to a logical channel for the associated data.) This filter may be used to
identify all IP packets destined for a telnet server running on a host with that destination
IP address. In general, filtering may be performed to differentiate certain IP packets
from a stream of IP packets based on the characteristics defined by the filter parameters.
The filtering allows for special handling of IP packets having these characteristics.
[0005] IP packet filtering is more challenging in the presence of IP fragmentation.
TP supports fragmentation of datagrams into smaller fragments. IP fragmentation may
be used, for example, if a datagram to be sent is too large to be carried by a protocol
unit at a layer below the network layer. In this case, the large datagram may be divided
into multiple smaller fragments, and each fragment may be sent as a separate IP packet.
The IP packets for the fragments would contain appropriate header information that may
be used by the destination to re-assemble these fragments.
[0006] If a datagram is divided into multiple fragments, then the filter parameters
may be carried in only one fragment or a subset of the fragments, which then
complicates IP packet filtering. For example, the filter parameters may be the source
and destination port numbers in a TCP header, which is typically carried in the first
fragment of a datagram. If a filtering node performs filtering separately on each IP
packet, then IP packets that do not contain all of the filter parameters cannot be filtered
properly. A filtering node is a node that performs IP packet filtering and may be a host
or a router.
[0007] In one conventional scheme for filtering fragmented datagrams, a filtering
node buffers all of the fragments of a datagram, re-assembles the datagram after all of
the fragments have been received, performs filtering on the re-assembled datagram, and
(if necessary) re-fragments the datagram into fragments and sends out the fragments as
separate IP packets. This conventional filtering scheme has several disadvantages.
First, prolonged buffering of all of the fragments of each datagram interrupts the normal
flow of these fragments, introduces extra delays in the transmission of the datagram to
its final destination, and may further cause uneven link usage. Second, the re-assembly

and re-fragmentation of each datagram require additional processing by the filtering

WO 2006/005029 PCT/US2005/023660

node. If the filtering node is a router, then the re-assembly and re-fragmentation would
make routing very inefficient.

[0008] To reduce the amount of processing, the filtering node may perform filtering
on fragmented datagrams without re-assembling the fragments of the datagrams.
However, the node may still need to buffer all fragments of each datagram and apply the
filter only after all fragments have been received. The disadvantages associated with
prolonged buffering would still apply for this case.

[0009] There is therefore a need in the art for techniques to efficiently filter and
route fragmented datagrams.

SUMMARY

[0010] Techniques for efficiently filtering fragmented datagrams and routing
fragments for these datagrams are described herein. For each fragmented datagram,
which is identified by a unique datagram identifier, a filtering node obtains filter
parameters for the datagram as fragments of the datagram are received. When all of the
filter parameters for the datagram are available, the node applies one or more filters on
the filter parameters, obtains a filter result for the datagram, and stores the filter result in
an entry in a routing table (i.e., a routing table entry) for the datagram. The filter result
(which may also be called a routing decision) indicates the processing to be performed
by the node for all fragments of that datagram. For example, the filter result may
indicate whether the node should pass fragments for the datagram to a higher layer,
forwards the fragments to the destination for the datagram, forward the fragments on to
a specific logical or physical link towards the destination of the datagram, purge all
fragments for the datagram, and so on. The filter result is obtained based on the one or
more filters, which are typically designed for a specific application.

[0011] Prior to obtaining the filter result, the filtering node stores all fragments
received for the datagram in a “fragment” memory, wlﬁch may be any memory suitable
for storing data. When the filter result becomes available, the node can process all
fragments already received for the datagram in accordance with the filter result. As
each remaining fragment for the datagram is subsequently received, the node can
immediately process the fragment in accordance with the filter result stored for the

datagram. When the last fragment for the datagram is received, the node can clear the

WO 2006/005029 PCT/US2005/023660

portion of the fragment memory used by the datagram and purge the routing table entry
for the datagram.
[0012] Various aspects and embodiments of the invention are described in further

detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The features and nature of the present invention will become more apparent
from the detailed description set forth below when taken in conjunction with the
drawings in which like reference characters identify correspondingly throughout and
wherein:

[0014] FIG. 1 shows an IP packet for a datagram;

[0015] FIG. 2 shows the fields of an exemplary datagram identifier;

[0016] FIG. 3 shows fragmentation of a datagram into multiple fragments;

[0017] FIG. 4 shows a process performed by a filtering node to filter a fragmented
datagram and to route fragments of the datagram;

[0018] FIG. 5 shows a process for handling timers for fragmented datagrams;

[0019] FIG. 6 shows a routing table entry for a fragmented datagram;

[0020] FIG. 7 shows a block diagram of the filtering node; and

[0021] FIG. 8 shows a block diagram of a wireless device and a terminal equipment.

DETAILED DESCRIPTION

[0022] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any embodiment or design described herein as “exemplary”
is not necessarily to be construed as preferred or advantageous over other embodiments
or designs.

[0023] For clarity, the following terminology is used in the description below. The
network layer may receive data from a higher layer (e.g., the transport layer) and form
Internet datagrams (or simply, datagrams). The network layer may also receive IP
datagrams from other network elements via one of its network interfaces for processing
or forwarding via one of its remaining network interfaces. A datagram may be
processed and sent as a single IP packet at the network layer. A datagram may also be
partitioned into multiple fragments, and each fragment may be sent as a separate IP
packet at the network layer. Each IP packet may thus be for an entire unfragmented

WO 2006/005029 PCT/US2005/023660

datagram or for one fragment of a fragmented datagram. Each IP packet includes an IP
header and a payload portion.

[0024] FIG. 1 shows an IP packet for a datagram. The IP packet includes a number
of fields and, for simplicity, only the fields that are pertinent to the present disclosure

are described below.

e Internet Header Length (IHL) — indicates the length of the IP header (in units of
32-bit words).

e Total Length — indicates the total length of the IP packet, including the IP header
and the payload portion (in units of 8-bit octets).

e Identification — carries an identification value assigned by a source host to aid in
the re-assembly of fragments (if any) for the datagram.

e Flags — contains three bits, with an MF bit being set to “0” to indicate the last
fragment for the datagram and to “1” to indicate one or more fragments to
follow for the datagram.

e Fragment Offset — indicates the position of the fragment in the datagram, which
allows a destination host to properly re-assemble fragments of the datagram.

e Time to Live — indicates the maximum time the datagram is allowed to remain in
an IP data network.

e Protocol — indicates the next higher layer protocol used in the payload portion of
the IP packet.

e Source Address — carries the IP address of the source host.

e Destination Address — carries the IP address of the destination host.

e Payload — carries the payload for the IP packet and is of variable length.

[0025] The IP packet format is described in RFC 791, entitled “Internet Protocol
DARPA Internet Program Protocol Specification,” September 1981. Other protocols
for other layers also define formats for their data units. For example, at the transport
layer, the format used by TCP is described in RFC 793, entitled “Transmission Control
Protocol,” September 1980, and the format used by UDP is described in RFC 768,
entitled “User Datagram Protocol,” August 1980.

[0026] FIG. 2 shows the fields of an exemplary datagram identifier 200 used to
uniquely identify each datagram. Datagram identifier 200 is formed by concatenating
the Identification, Protocol, Source Address, and Destination Address fields of the IP

WO 2006/005029 PCT/US2005/023660

header. RFC 791 requires the source host to set the Identification field to a value that is
unique for both (1) a given combination of source IP address, destination IP address,
and protocol used for the datagram and (2) the time that the datagram will be active in
the data network. The same identification value is used for all fragments of a given
datagram. Thus, all IP packets with the same set of values for these four fields may be
considered as belonging to the same datagram. In a common implementation, the
source host randomly selects a value for the Identification field when it starts sending
datagrams and thereafter increments the identification value whenever it sends a new
datagram (regardless of the protocol). In this case, a datagram identifier may be defined
by a concatenation of just the Identification, Source Address, and Destination Address
fields.

[0027] FIG. 3 shows fragmentation of a datagram into multiple fragments. The
original datagram comprises an IP header and a payload portion, and may be larger than
the data-carrying capacity of a data unit in a lower layer (e.g., a link layer). If the
payload portion of the datagram contains M octets and if each data unit in the lower
layer can carry L octets plus the IP header, then the datagram may be partitioned into
I—M/L_I fragments, where fx_] denotes a ceiling operator that gives the next higher

integer for x. Since RFC 791 requires the payload portion of the datagram to be
partitioned on an 8-octet boundary, more than I_M/ L—] fragments may be required for

the datagram. The datagram may be partitioned into N fragments, which are labeled as
fragments 1 through N, where N may be equal to or greater than I-M/L-|.

[0028] To fragment the datagram, the IP header for each of the N fragments is
generated using the IP header of the datagram. New values for the Total Length,
Fragment Offset, and Flag fields are determined for the IP header of each fragment.
The remaining fields of the IP header of each fragment are copied from the original IP
header of the datagram. Options from the original IP header are only copied to the IP
header of the first fragment. Finally, the IP header checksum for each fragment is
recalculated. The payload portion of the datagram is partitioned into N smaller parts at
the appropriate 8-octet boundary. The payload portion of each fragment is filled with a
corresponding one of the N parts. The MF bit in the Flags field of the IP header for
each of fragments 1 through N —1 is set to “1” to indicate that one or more fragments
will follow for the datagram. The MF bit for fragment N is set to “0” to indicate that
this fragment is the last fragment for the datagram. The Fragment Offset field for each

WO 2006/005029 PCT/US2005/023660

fragment is set to a value that indicates the starting position of the payload portion in
that fragment relative to the start of the payload portion in the datagram. The Total
Length field is set to the length of fragment.

[0029] The source host sends the N fragments for the datagram as N separate IP
packets, typically one IP packet at a time, over the data network. Because these IP
packets may be sent via different routes, a given node may receive these IP packets out
of sequence. In the following description, “fragment 1” refers to the first fragment of
the datagram, and the “first received fragment” refers to the first fragment received for
the datagram, which may or may not be fragment 1.

[0030] A filtering node may efficiently perform filtering on fragmented datagrams
and routing of fragments for these datagrams in the following manner. For each
fragmented datagram, the node obtains filter parameters for the datagram as fragments
of the datagram are received. As soon as all of the filter parameters for the datagram are
available, the node applies one or more filters on the filter parameters, obtains a filter
result for the datagram, and stores the filter result in an entry (or row) in a routing table.
The filter result indicates the processing to be performed by the node for all fragments
of the datagram. Prior to obtaining the filter result, the node stores all fragments
received for the datagram in a fragment memory. As soon as the filter result becomes
available, the node can process all fragments already received for the datagram in
accordance with the filter result. As each remaining fragment for the datagram is
subsequently received, the node can immediately process the fragment in accordance
with the filter result. When the last fragment for the datagram is received, the node can
clear the portion of the fragment memory used by the datagram and purge the routing
table entry for the datagram.

[0031] The fragments of a datagram may be stored in various manners in the
fragment memory before the routing result becomes available. Since the sizes of the
fragments may not be known a priori and the fragments may be received out of
sequence, each fragment may be stored in a separate buffer as the fragment is received.
A buffer may be a portion of the fragment memory, of the proper size, which is
allocated as needed. This allows for efficient use of the fragment memory since a buffer
of the proper size may be allocated if and when the buffer is needed. A mechanism may
be used to (1) determine which fragments of the datagram have been received, (2) the

buffers where the received fragments are stored, and (3) other pertinent information, if

WO 2006/005029 PCT/US2005/023660

any, for the datagram. This mechanism may be implemented, for example, with a queue
list, a linked list, and so on, as is known in the art. The following description assumes
that fragments are stored in separate buffers. However, the fragments may also be
stored in other manners, and this is within the scope of the invention.

[0032] In general, the filter parameters for each fragmented datagram may be
carried in one or more fragments, which are referred to as “target” fragments. However,
many applications use filter parameters that are carried in the IP header and/or a header
for an upper layer protocol such as TCP, UCP, ICMP, and so on. Since the minimum
size of a fragment is 576 octets, the IP header and upper layer headers are typically
carried in fragment 1 of a datagram. For applications that use filter parameters carried
in the IP header and upper layer headers, there is typically only one target fragment,
which is normally fragment 1 of the datagram. For these applications, all of the filter
parameters for a datagram may be obtained from fragment 1 of the datagram, which is
typically also the first received fragment for the datagram, and a filter result may be
obtained for the datagram based on the first received fragment. All subsequent
fragments for the datagram may be processed as they are received without having to
buffer these fragments.

[0033] A filtering node may use a timer for each fragmented datagram to ensure that
fragments for “stale” datagrams are purged from the fragment memory. The timer for
each datagram may be set to an initial value when the first fragment is received for the
datagram. This initial value may be, for example, the Time to Live value in the IP
header of the fragment. When the timer expires, the routing table entry for the datagram
may be deleted, and all fragments stored in the fragment memory for the datagram may
be purged, thus clearing the portion of the fragment memory used by the datagram.
[0034] The filtering node may perform the following overhead processing for
different fragments of a fragmented datagram:

o First received fragment for the datagram — create an entry for the datagram in the
routing table and start the timer for the datagram;

e Target fragment(s) — obtain all of the filter parameters for the datagram and
apply at least one filter on the filter parameters to obtain a filter result for the
datagram; and

o Last fragment for the datagram — clear the portion of the fragment memory used
by the datagram and purge the routing table entry for the datagram.

WO 2006/005029 PCT/US2005/023660

[0035] FIG. 4 shows a flow diagram of a process 400 performed by a filtering node
to filter a fragmented datagram and to route fragments of the datagram. A fragmented
datagram is composed of multiple fragments, and each fragment is sent as one IP
packet. Thus, “fragments” and “IP packets” are synonymous terms for a fragmented
datagram. FIG. 4 shows the processing for one IP packet.

[0036] Initially, the filtering node receives an IP packet (block 412). The node then
determines whether the IP packet is a fragmented datagram (block 414). This may be
achieved by examining the MF bit and the Fragment Offset field in the IP header of the
IP packet. The IP packet is an unfragmented datagram if the Fragment Offset field is
set to 0 (which is only true for fragment 1) and the MF bit is set to “0” (indicating that
no other fragment will follow for the datagram). If the IP packet is an unfragmented
datagram (i.e., the answer is ‘no’ for block 414), then the node applies one or more
filters on the IP packet and processes and/or forwards the IP packet based on the
outcome of the filtering (block 416). The node then returns to block 412 to process the
next IP packet.

[0037] If the current IP packet is a fragmented datagram, as determined in block
414, then the filtering node determines whether this IP packet is the first fragment
received for the datagram, which may or may not be fragment 1 of the datagram since
the node may receive fragments out of sequence (block 422). This determination may
be made by (1) obtaining the datagram identifier, e.g., as a concatenation of the
Identification, Protocol, Source Address, and Destination Address values in the IP
header of the IP packet, (2) looking up the routing table entries for this datagram
identifier, and (3) indicating the current IP packet to be the first received fragment if the
datagram identifier is not found in any of the routing table entries.

[0038] If the current IP packet is the first received fragment, then the filtering node
creates a new routing table entry for the datagram, initializes the fields of the new
routing table entry, and starts a timer for the datagram (block 424). The routing table
entry for the datagram is indexed by the datagram identifier. The routing table entry
includes a pointer, which points to the fragment memory location used to store the
fragments for the datagram. The node then broceeds to block 432. !‘
[0039] If the current IP packet is not the first received fragment, as determined in
block 422, then the filtering node determines whether a filter result for the datagram is
available in the routing table entry for the datagram (block 426). If the filter result

WO 2006/005029 PCT/US2005/023660
10

exists, then the node processes/forwards the IP packet in accordance with the filter
result (block 428) and then proceeds to block 442. Otherwise, if the filter result is not
available, then the node determines whether all filter parameters for the datagram have
been obtained from the current IP packet and all IP packets already received which are
also fragments of this datagram (block 432). If all filter parameters have not been
obtained, then the node allocates a buffer in the fragment memory for the current IP
packet and stores the IP packet in the buffer (block 438). The node then returns to block
412 to process the next IP packet. Otherwise, if all filter parameters have been
obtained, then the node applies the filter(s) on the filter parameters, obtains a filter result
for the datagram, and saves the filter result in the routing table entry created for the
datagram (block 434). The node then processes/forwards the current IP packet as well
as all IP packets already received, which are also fragment of this datagram and are
stored in the fragment memory, in accordance with the filter result (block 436). The
node then proceeds to block 442.

[0040] For the embodiment shown in FIG. 4, the filtering node also keeps track of
which fragments have been received for the datagram and updates this information
whenever a new fragment is received for the datagram (block 442). The node may
perform this record keeping based on the fragment offset of each fragment (which is
obtained from the Fragment Offset field) and the payload size of each fragment' (which
is obtained based on the IHL and Total Length fields). The node then determines
whether all fragments of the datagram have been received based on the updated
fragment information (block 444). The entire datagram is received if (1) the last
fragment for the datagram has been received (the last fragment has the MF bit set to
“0”) and (2) all other fragments for the datagram have also been received (which may be
determined based on the fragment offset and péyload size of each received fragment). If
the entire datagram has been received, then the node deletes the routing table entry for
the datagram and purges all of the fragments of the datagram from the fragment
memory (block 446). From blocks 444 and 446, the node returns to block 412 to
process the next IP packet.

[0041] In another embodiment, instead of deleting the routing table entry for the
datagram and clearing the fragment memory used by the datagram in block 446, the
filtering node simply forces the timer for the datagram to expire in block 446. A timer

handling mechanism would then delete the routing table entry and clear the fragment

WO 2006/005029 PCT/US2005/023660
11

memory used by this datagram since its timer has expired, as described below. In yet
another embodiment, the filtering node does not keep track of fragment information and
does not perform the processing shown in blocks 442, 444, and 446. For this
embodiment, the filtering node relies on the timer handling mechanism to delete the
routing table entries and purge the fragments in fragment memory for old datagrams
when their timers naturally expire.

[0042] As shown in FIG. 4, fragments for a datagram are temporarily stored in
buffers in the fragment memory until all of the filter parameters for the datagram are
received and a filter result can be obtained for the datagram. If all of the filter
parameters are carried in fragment 1 of the datagram, then the filter result can be
obtained as soon as fragment 1 is received, which is typically the first received fragment
for the datagram unless the fragments are received out of sequence. In this case, routing
delay and buffering requirement are both minimized for the datagram. Furthermore,
fragment 1 can be easily identified by a value of 0 for the Fragment Offset field.

[0043] If all of the filter parameters are not carried in fragment 1, then routing delay
and buffering requirement both increase in proportion to the delay required by the node
to acquire all of the required filter parameters. Furthermore, if multiple fragments are
needed to obtain all of the filter parameters, then the filter parameters would also need
to be temporarily stored as they are received until such time that the filter(s) can be
applied. Appropriate processing is performed to detect for the target fragment(s) that
carry the required filter parameters.

[0044] Efficient filtering may be achieved by designing filters to use parameters that
are expected to be available in only one fragment (to avoid having to buffer the filter
parameters) and preferably in fragment 1 (to avoid having to buffer the fragments). If
the source host is aware of the filtering being performed by the filtering node, then the
source host may send the fragments in a manner such that the filtering node can receive
all of the filter parameters as soon as possible. For example, the source node may send
the fragments out of sequence, with the fragments carrying the filter parameters being
sent first. In general, the filters may be defined and/or the fragments may be sent such
that routing delay and buffering requirement can be minimized to the extent possible.
[0045] The filtering node buffers the fragments of a datagram in buffers until a filter
result is obtained for the datagram. Some fragments may be dropped or corrupted while

transitioning through the data network (for whatever reasons) and may not be received

WO 2006/005029 PCT/US2005/023660
12

by the node. If a fragment containing a required filter parameter is dropped, then a filter
result cannot be obtained for the datagram, and all fragments received for the datagram
may sit in the fragment memory indefinitely unless and until the fragment memory is
cleared by some mechanism. Even if a filter result is obtained for the datagram, any
dropped fragment will result in a failure to receive the entire datagram, and the routing
table entry for the datagram may be retained indefinitely unless the routing table entry is
deleted by some mechanism.

[0046] A timer may be used for each datagram to avoid the situations in which the
routing table entry and/or the buffers for the datagram are retained indefinitely, e.g.,
because a fragment is dropped by the data network. The timer is set to an initial value
when the first fragment is received for the datagram. This initial value should be large
enough so that the node does not prematurely delete the routing table entry or any
outstanding fragments already received for the datagram. This initial value should also
be equal to or smaller than the time it takes for the value in the Identification field to
wrap around, so that the filter result obtained for one datagram is not erroneously
applied to another datagram with the same identification value. The initial value may
be set to the value in the Time to Live field of the IP header, for example, or to some
other time value.

[0047] FIG. 5 shows a flow diagram of a process 500 for handling the timers for
fragmented datagrams. A timer for a fragmented datagram is set when the first
fragment is received for the datagram, as shown in FIG. 4. Thereafter, the timer is
updated (e.g., decremented) by the amount of time that has elapsed since the last update.
Once the timer expires, the datagram is considered “stale” and all fragments received
for the datagram and its routing table entry can be purged. This prevents accumulation
of old fragmented datagrams in the fragment memory.

[0048] The node updates the timer for each fragmented datagram, e.g., periodically
or when triggered by an event (block 512). The node then determines whether the timer
for any datagram has expired (block 514). If the answer is ‘yes’, then the node obtains
the datagram identifier for each stale datagram with an expired timer (block 516). The
node then deletes the routing table entry for each stale datagram and discards all
fragments stored in the fragment memory for the stale datagram (block 518).

Discarding stale and/or incomplete datagrams is not catastrophic since a protocol in a

WO 2006/005029 PCT/US2005/023660
13

higher layer will likely perform the appropriate corrective action, e.g., initiate
retransmission of the missing datagrams.

[0049] Process 500 may be performed periodically, e.g., every predetermined
number of seconds. Process 500 may also be performed when triggered, e.g., after the
processing of each received IP packet.

[0050] FIG. 6 shows an embodiment of a table entry 600 in the routing table for a
fragmented datagram. For this embodiment, a field 612 stores the datagram identifier,
which may be formed from the fields in the IP header of the first received fragment for
the datagram, as described above. The routing table entry is indexed by the datagram
identifier. A field 614 stores the timer for the datagram, which is set to a predetermined
value when the routing table entry is created and is thereafter updated, e.g., periodically
or when triggered by an event.

[0051] A field 616 stores the filter parameters already received for the datagram. If
all of the filter parameters are carried in one fragment, then the filter(s) may be applied
and the filter result may be obtained when this fragment is received. In this case, field
616 is not used. However, if all of the filter parameters for the datagram are carried in
multiple fragments, then filter parameters may be stored in field 616 as they are
received, and the filter(s) may be applied once all of the filter parameters have been
received. Field 616 may be consulted for the determination in block 432 in FIG. 4.
[0052] A field 618 stores the filter result for the datagram, which is obtained from
applying the filter(s) to the filter parameters for the datagram. Field 618 is reset to a
known state when the routing table entry is created to indicate that the filter result is not
yet available. Field 618 may be checked to determine whether the filter result is
available, for block 426 in FIG. 4. The filter result, if available, is used to
process/forward all fragments of the datagram. The filter result may include various
types of information such as, for example, (1) whether to pass the fragments of the
datagram up to a higher layer, delete the fragments, or forward the fragments to the
destination host, (2) routing information for the destination host such as the interface
address and gateway, if applicable, (3) link identifier for multilink interfaces, (4) tags
for QoS classification, and so on.

[0053] A field 620 stores information for the fragments of the datagram, e.g., the
fragment offset and payload size of each fragment. This fragment information is used

to determine whether the entire datagram has been received, for block 444 in FIG. 4.

WO 2006/005029 PCT/US2005/023660
14

Field 620 may be cleared when the routing table entry is created and thereafter
populated with the MF bit, fragment offset, and payload size for each received
fragment. A field 622 stores a pointer to a location in the fragment memory which
stores fragments of the datagram.

[0054] FIG. 7 shows a block diagram of an embodiment of a node 700 capable of
filtering datagrams and routing fragments. Within node 700, a processor 720 receives
IP packets and processes each received IP packet (e.g., as shown in FIG. 4). For each
received IP packet, processor 720 stores the IP packet in a fragment memory 730 if a
filter result is not available and processes/forwards the IP packet if the filter result is
available. A main memory 722 stores data and program codes used by processor 720.
[0055] Fragment memory 730 stores IP packets for fragments of datagrams for
which filter results are not available. A routing table 732 stores a table entry for each
fragmented datagram currently being processed by processor 720. Processor 720
creates a new entry in routing table 732 whenever it receives a new fragmented
datagram and purges the table entry if the entire datagram has been received or if the
timer for the datagram expires. A time source 734 provides timing information used to
update the timers for the fragmented datagrams.

[0056] Node 700 may be a device or apparatus within a core network, e.g., a router
in a data network. Node 700 may also be a device or apparatus coupled to the data
network. The data network may be a wireline network, a wireless network, or a
combination of both types of network.

[0057] FIG. 8 shows a block diagram of a wireless device 810 and a terminal
equipment 850. Wireless device 810 may communicate with one or more wireless
communication systems such as a Code Division Multiple Access (CDMA) system, a
Global System for Mobile Communications (GSM) system, and so on. A CDMA
system may implement one or more CDMA standards such as IS-2000, IS-856, IS-95,
Wideband-CDMA (W-CDMA), and so on. Wireless device 810 is capable of providing
bi-directional communication via a transmit path and a receive path.

[0058] For the transmit path, a modem processor 840 processes (e.g., encodes and
modulates) data to be transmitted by wireless device 810 and provides data chips to a
transmitter unit (TMTR) 842. Transmitter unit 842 conditions (e.g., converts to analog,
filters, amplifies, and frequency upconverts) the data chips and generates a modulated

signal, which is transmitted via an antenna 844. For the receive path, signals

WO 2006/005029 PCT/US2005/023660
15

transmitted by base stations in one or more systems are received by antenna 844 and
provided to a receiver unit (RCVR) 846. Receiver unit 846 conditions (e.g., filters,
amplifies, and frequency downconverts) the received signal, digitizes the conditioned
signal, and provides data samples to modem processor 840 for demodulation and
decoding.

[0059] A main processor 820 performs various functions and controls the operation
of the processing units within wireless device 810. A main memory unit 822 stores data
and program codes used by main processor 820. An input/output (I/O) unit 836
provides an interface to external entities, e.g., terminal equipment 850. A bus 838
interconnects various units within wireless device 810.

[0060] Wireless device 810 may also be a filtering node. In this case, a fragment
memory 830 stores fragments of datagrams for which filter results are not available. A
routing table 832 stores entries for fragmented datagrams being processed. A time
source 834 provides timing information used to maintain timers for the fragmented
datagrams.

[0061] Terminal equipment 850 may be, for example, a laptop computer, a personal
digital assistant (PDA), or some other electronics unit. Terminal equipment 850
includes a processor 860 that performs processing for the terminal equipment, a
memory 862 that stores data and program codes used by processor 860, and a
communication unit 864 that support communication with other entities, e.g., wireless
device 810.

[0062] The techniques described herein can efficiently filter fragmented datagrams.
This is achieved by collecting filter parameters for each fragmented datagram as they
are received and applying the one or more filters for the datagram as soon as all filter
parameters for the datagram are received. The filter(s) may thus be applied quickly
(e.g., on the first fragment received for the datagram) without having to wait for all
fragments to be received. The techniques described herein can also efficiently route
fragments. This is achieved by obtaining a filter result for each fragmented datagram as
soon as all filter parameters for the datagram are received, storing the filter result in the
routing table entry, and applying the filter result to each fragment subsequently received
for the datagram.

[0063] The techniques described herein ensure that each fragment undergoes
minimal delay when passing through the filtering node. The additional delay

WO 2006/005029 PCT/US2005/023660
16

experienced by a fragment of a datagram may be as much as the amount of time it takes
for the node to receive all filter parameters for the datagram. Subsequent fragments for
the datagram may be processed/forwarded as soon as each fragment is received.
[0064] If all of the filter parameters for a datagram are carried in fragment 1 and this
fragment is received first by the node, then the node does not need to store any of the
fragments for the datagram. If a required filter parameter is carried in a subs;aquently
received fragment (e.g., because fragment 1 is received out of sequence or because the
filter parameter is carried in a fragment other than fragment 1), then the node may need
to buffer some fragments for a short time duration until all filter parameters are
received. With a proper filter design and for the common case in which the fragments
are received in order, the fragments can be processed/forwarded as soon as they are
received by the node. In the worst case, a required filter parameter is carried in the last
fragment received for the datagram, and all fragments for the datagram need to be
buffered and delayed. However, this worst-case scenario for the techniques described
* herein would be the nominal case for a conventional filtering scheme that applies the
filter(s) only after all fragments have been received for the datagram.
[0065] IP packet filtering may be used for various applications in data environments
where routing solely based on destination IP address may not be appropriate. Some
exemplary filtering applications are described below.
[0066] IP packet filtering may be used to support local socket applications at a
wireless device. As an example, a wireless device (e.g., a cellular phone, a wireless data
card, or a wireless module capable of providing packet data service) may be coupled to
a terminal equipment (e.g., a laptop computer), as shown in FIG. 8. The terminal
equipment uses the wireless device to obtain IP connectivity over a wireless network,
and the wireless device forwards IP packets received from the wireless network to the
terminal equipment. Many wireless data networks (e.g., a CDMA network) typically
assign a single IP address to the wireless device. The wireless device may then provide
this IP address to the terminal equipment for use for data communication. In this case,
if the wireless device receives IP packets with this IP address as the destination IP
address, then the wireless device would forward these IP packets to the terminal
equipment.
[0067] The simple IP address based routing described above does not support local

socket applications at the wireless device. Such applications may include, for example,

WO 2006/005029 PCT/US2005/023660
17

Mobile IP used to provide IP connectivity for the wireless device in a mobile
environment, GPS for position determination, and so on. These applications may
require interaction between the wireless device and the wireless network to exchange
pertinent information. Thus, due to the nature of these applications, it may be more
appropriate to run the applications on the wireless device instead of the terminal
equipment.

[0068] The filtering and routing techniques described herein may be used to
simultaneously support, with a single IP address, both (1) system applications running
over local sockets at the wireless device and (2) end-user applications running at the
terminal equipment. One or more filters may be defined with filter parameters that are
applicable for the system applications but not the end-user applications. For example, a
filter parameter may be defined for TCP port numbers used by the system applications
but not the end-user applications. The filter(s) would then be applied on each datagram
received by the wireless device from the wireless network to obtain a filter result for the
datagram. The filter result would indicate whether the datagram should be forwarded to
the terminal equipment or sent up the protocol stack at the wireless device. The IP
packet filtering may thus be used to differentiate IP packets for the wireless device from
those for the terminal equipment.

[0069] IP packet filtering may also be used to support different grades of quality of
service (QoS) in a data network. Different types of traffic data (e.g., for the system
and/or end-user applications) may be assigned different QoS grades and may be sent on
different logical channels. The desired QoS of each datagram may be set by the source
node and determined by a set of filter parameters. IP routers in the data network may
use pre-defined filters that operate on the filter parameters for each datagram to
determine which logical channel should be used for the datagram to provide the desired
QoS. If all IP packets are destined to a device which has multiple logical links on the
same IP interface, then IP address based routing alone would not be sufficient to
determine which logical channel to use for each datagram. One or more additional
fields in a datagram may be used as filter parameter(s) to route datagrams requiring
different QoS grades to the appropriate logical channels.

[0070] IP packet filtering may also be used to efficiently support broadcast and
multicast. To support multicast, a node joins a multicast group which is identified by a

multicast IP address. Typically, all IP packets with the multicast IP address are sent to

WO 2006/005029 PCT/US2005/023660
18

the node regardless of the transport layer port numbers for which these IP packets are
intended. The node may then process these IP packets and pass all of the IP packets up
to the transport layer, which may then discard unwanted IP packets. Transmission of
unwanted IP packets is undesirable for a wireless data network, since precious air-link
resources are used to send unwanted IP packets, which are subsequently discarded by
the wireless device. An IP router in the wireless data network may use IP packet
filtering to more efficiently support multicast. A filter may be defined based on
transport layer port numbers or some other filter parameters. The IP router would then
apply the filter to all datagrams and selectively forward only datagrams desired by the
node. IP packet filtering may be applied in a similar manner to efficiently support
broadcast.

[0071] IP packet filtering may also be used by packet logging tools to selectively
log IP packets. Certain IP packets may be selected based on one or more filter
parameters from among numerous IP packets received by a node. The selected IP
packets may be logged for subsequent evaluation. IP packet filtering may also be used
to implement a network emulator by simulating various network conditions by
selectively duplicating, corrupting, and/or dropping IP packets.

[0072] IP packet filtering may thus be used for various filtering applications to
selectively process and/or forward datagrams. For all of these filtering applications, the
techniques described herein may be used to efficiently filter IP packets and route IP
packets for fragmented datagrams.

[0073] The IP packet filtering may be performed by various devices in a network.
For example, the IP packet filtering may be performed by a wireless device, a router in
the network (e.g., to provide QoS), a standalone device (which may or may not be
coupled to a terminal equipment), and so on.

[0074] Different filtering applications use different filters that may operate on the
same or different sets of filter parameters. The filter parameters may be carried in the IP
header, a higher layer protocol header (e.g., the TCP header), a higher layer payload,
and so on, as noted above. As some examples, the following may be used as filter
parameters: (1) from the IP header — the source IP address, destination IP address,
subnet mask, protocol number, security information such as IPSec Security Parameter
Index (SPI), type of service (e.g., in IPv4), traffic class (e.g., in IPv6), flow label (e.g.,

in IPv6), and so on, and (2) from the transport layer header — the source port, destination

WO 2006/005029 PCT/US2005/023660
19

port, source port range, and destination port range. A subnet mask specifies a range of
IP addresses that may be used for a subnet in a data network. In general, any field of
any header or payload in any layer may be used for the filter parameters.

[0075] The filtering and routing techniques described herein may be implemented
by various means. For example, these techniques may be implemented in hardware,
software, or a combination thereof. For a hardware implementation, the processing
units used to perform the filtering and routing may be implemented within one or more
application specific integrated circuits (ASICs), digital signal processors (DSPs), digital
signal processing devices (DSPDs), programmable logic devices (PLDs), field
programmable gate arrays (FPGAs), processors, controllers, micro-controllers,
microprocessors, other electronic units designed to perform the functions described
herein, or a combination thereof.

[0076] For a software implementation, the filtering and routing techniques may be
implemented with modules (e.g., procedures, functions, and so on) that perform the
functions described herein. The software codes may be stored in a memory unit (e.g.,
memory unit 722 in FIG. 7 or memory unit 822 in FIG. 8) and executed by a processor
(e.g., processor 720 in FIG. 7 or main processor 820 in FIG. 8). The memory unit may
be implemented within the processor or external to the processor, in which case it can
be communicatively coupled to the processor via various means as is known in the art.
[0077] The previous description of the disclosed embodiments is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other embodiments without
departing from the spirit or scope of the invention. Thus, the present invention is not
intended to be limited to the embodiments shown herein but is to be accorded the widest

scope consistent with the principles and novel features disclosed herein.

[0078] WHAT IS CLAIMED IS:

WO 2006/005029 PCT/US2005/023660
20

CLAIMS

1. A method of processing fragmented datagrams in a data network,
comprising:)

obtaining at least one filter parameter for a datagram sent as a plurality of
fragments, wherein the at least one filter parameter is carried in at least one of the
plurality of fragments and is used by at least one filter for the datagram,

obtaining a filter result for the datagram based on the at least one filter
parameter;

storing the filter result for the datagram; and

processing each fragment received for the datagram in accordance with the filter

result for the datagram.

2. The method of claim 1, wherein the datagram is an Internet Protocol (IP)

datagram.

3. The method of claim 1, further comprising:

receiving a fragment for the datagram;

determining whether the filter result for the datagram is available;
storing the fragment if the filter result is not yet available; and

processing the fragment in accordance with the filter result if available.

4. The method of claim 3, further comprising:
maintaining a timer for the datagram; and

clearing stored fragments for the datagram after the timer expires.

5. The method of claim 1, further comprising:
identifying each fragment of the datagram based on an datagram identifier.

6. The method of claim 2, wherein the datagram identifier comprises a
source address, a destination address, an identification value, and a protocol number

included in an IP header for the fragment.

WO 2006/005029 PCT/US2005/023660
21

7. The method of claim 1, further comprising:

receiving a fragment for the datagram; and

if the fragment is a first fragment received for the datagram, creating a table
entry for the datagram in a first memory, wherein the table entry includes a field for

storing the filter result.

8. The method of claim 7, wherein the table entry for the datagram further
includes a timer used to count an amount of time elapsed since the first fragment was

received for the datagram.

9. The method of claim 7, further comprising:
if the filter result for the datagram is not available, storing the received fragment

in a second memory.

10. The method of claim 9, wherein the table entry for the datagram further
includes a pointer to a location in the second memory used to store the fragments

received for the datagram.

11. The method of claim 9, further comprising:

determining whether the plurality of fragments for the datagram have been
received; and

if the plurality of fragments have been received, deleting the table entry in the
first memory and clearing the second memory used to store the received fragments of

the datagram.

12. The method of claim 1, wherein the obtaining the filter result for the
datagram comprises

determining whether all of the at least one filter parameter is available, and

applying the at least one filter to the at least one filter parameter, if available, to

obtain the filter result.

13. The method of claim 1, further comprising:

WO 2006/005029 PCT/US2005/023660
22

detecting for the at least one fragment carrying the at least one filter parameter
for the datagram.

14. The method of claim 13, wherein the at least one filter parameter is
carried in a first fragment of the datagram, and wherein the detecting is performed based

on a known value for a field in a protocol header for the first fragment of the datagram.

15. The method of claim 1, wherein the at least one filter parameter
comprises a source address, a destination address, a subnet mask, a source port, a
destination port, a source port range, a destination port range, quality of service (QoS)
information, type of service, traffic class, flow label, security information, or a

combination thereof.

16. The method of claim 2, wherein the at least one filter parameter
comprises a source IP address, a destination IP address, a subnet mask, a source port, a
destination port, a source port range, a destination port range, a protocol number, type of
service for IP version 4 (IPv4), traffic class for IP version 6 (IPv6), flow label for IPv6,
IPSec Security Parameter Index (SPI), or a combination thereof, for the IP datagram.

17. A method of processing fragmented datagrams in a data network,
comprising:

receiving a fragment for a datagram sent as a plurality of fragments;

if the fragment is a first fragment received for the datagram, creating an entry in
a routing table for the datagram,;

determining whether all of at least one filter parameter for the datagram has been
obtained;

applying at least one filter to the at least one filter parameter, if available, to
obtain a filter result for the datagram;

storing the filter result, if obtained, in the table entry;

storing the fragment in a memory if the filter result is not yet available; and

processing the fragment in accordance with the filter result if available.

WO 2006/005029 PCT/US2005/023660
23

18. An apparatus operable to process fragmented datagrams in a data
network, comprising:
a processor operable to
obtain at least one filter parameter for a datagram sent as a plurality of
fragments, wherein the at least one filter parameter is carried in at least one of the
plurality of fragments and is used by at least one filter for the datagram,
obtain a filter result for the datagram based on the at least one filter
parameter, and
process each fragment received for the datagram in accordance with the
filter result for the datagram; and

a first memory operable to store the filter result for the datagram.

19. The apparatus of claim 18, further comprising:
a second memory operable to store fragments received for the datagram before

the filter result is available.

20. The apparatus of claim 19, wherein the processor is further operable to

receive a fragment for the datagram,

determine whether the filter result for the datagram is available,

initiate storage of the fragment in the second memory if the filter result is not yet
available, and

process the fragment in accordance with the filter result if available.

21. The apparatus of claim 18, wherein the processor is further operable to

receive a fragment for the datagram, and

if the fragment is a first fragment received for the datagram, create a table entry
for the datagram in the first memory, wherein the table entry includes a field for storing

the filter result.

22. The apparatus of claim 21, wherein the processor is further operable to
determine whether the plurality of fragments for the datagram have been

received, and

WO 2006/005029 PCT/US2005/023660
24

clear the table entry in the first memory for the datagram if the plurality of

fragments for the datagram have been received.

23. The apparatus of claim 19, wherein the processor is further operable to

determine whether the plurality of fragments for the datagram have been
received, and

clear the fragments stored in the second memory for the datagram if the plurality

of fragments for the datagram have been received.

24. The apparatus of claim 19, wherein the processor is further operable to
maintain a timer for the datagram, and

clear the fragments stored for the datagram after the timer expires.

25. A wireless device comprising the apparatus of claim 18.

26. An apparatus operable to process fragmented datagrams in a data
network, comprising:

means for obtaining at least one filter parameter for a datagram sent as a
plurality of fragments, wherein the at least one filter parameter is carried in at least one
of the plurality of fragments and is used by at least one filter for the datagram;

means for obtaining a filter result for the datagram based on the at least one filter
parameter;

means for storing the filter result for the datagram; and

means for processing each fragment received for the datagram in accordance

with the filter result for the datagram.

27. The apparatus of claim 26, further comprising:

means for receiving a fragment for the datagram; and

means for, if the fragment is a first fragment received for the datagram, creating
a table entry for the datagram in a memory, wherein the table entry includes a field for

storing the filter result.

28. The apparatus of claim 26, further comprising:

WO 2006/005029 PCT/US2005/023660
25

means for receiving a fragment for the datagram,;

means for determining whether the filter result for the datagram is available;
means for storing the fragment if the filter result is not yet available; and

means for processing the fragment in accordance with the filter result if

available.

29. The apparatus of claim 26, further comprising:
means for maintaining a timer for the datagram; and

means for clearing stored fragments for the datagram after the timer expires.

30. A processor readable media for storing instructions operable in a device
to:

obtain at least one filter parameter for a datagram sent as a plurality of
fragments, wherein the at least one filter parameter is carried in at least one of the
plurality of fragments and is used by at least one filter for the datagram;

obtain a filter result for the datagram based on the at least one filter parameter;

initiate storage of the filter result for the datagram; and

process each fragment received for the datagram in accordance with the filter

~ result for the datagram.

31. The processor readable media of claim 30 and further for storing
instructions operable to:

receive a fragment for the datagram;

determine whether the filter result for the datagram is available;

initiate storage of the fragment if the filter result is not yet available; and

process the fragment in accordance with the filter result if available.

WO 2006/005029 PCT/US2005/023660
1/6
- 32 bits >
Version| IHL |Type of Service Total Length
Identification Other| M Fragment Offset
Flags| F
Time to Live Protocol Header Checksum
Source Address
Destination Address
Options (+ Padding)
Payload (Variable)
FIG. 1
200
r./
Datagram Identifier
{)
. . Source Destination
Identification Protocol Address Address

FIG. 2

PCT/US2005/023660

WO 2006/005029

2/6

€ 'Ol4
N Juswbel Z Juswbel 4 I Juswbel
] I
JapeaH lapesaH Jopes
peojied YY) eojAe eojA PeESH
dl Nd peoifed dl ¢4 PEOIAEd dlld
J_ J) L J
A
...o. ?... ..>
lllllllllllll 0001 \\\\ 4
[L} I AL
peoikeq JapesH
dl
L
welbeleq

WO 2006/005029

PCT/US2005/023660
3/6
Start) 400
(+ |
Receive an IP packet 412
416
IP packet Apply filter(s) to the IP packet
is a fragmented

datagram?

E
YES 420

Determine a datagram
identifier for the IP packet.

IP packet is
irst received fragment for the
datagram?

and process/forward the

IP packet accordingly.

424
Create a new routing table

entry for the datagram and
initialize the table entry.
Start a timer for the datagram .

Filter
result available for
datagram?

YES

428

Process/forward the
IP packet in accordance
with the filter result.

Apply filter(s) to the filtering
parameters to obtain a filter result.
Store the filter result in the routing

table entry for the datagram.

b 442

Update fragment information.

v

436
Process/forward all IP

received?

446
Delete the routing table entry

and purge the fragment memory

packets received for the
datagram in accordance
with the filter result.

438

of all fragments of the datagram .

v

Allocate a buffer in the fragment
memory for the IP packet and
store the IP packet in the buffer .

A 4

y

FIG. 4

WO 2006/005029

4/6

(Start)

v 512

Update the timer
for each datagram.

514

Timer
for any datagram
expired?

YES
516

Obtain datagram
identifier for each datagram
with an expired timer.

v /518

Delete the routing table entry
and discard all fragments
stored in the fragment
memory for each datagram
with an expired timer.

PCT/US2005/023660

500

i

G

FIG. 5

Table Entry in Routing Table

600
r/

612
J

614 616 618
Z Z Z

620
_

622
J

Datagram

Identifier

Filter

Parameters Filter Result

Timer

Fragment
Information

Buffer
Pointer

FIG. 6

WO 2006/005029 PCT/US2005/023660
5/6

700
Z
Filter Node
722 730
Z Z
Main Fragment
Memory Memory
I m |
]
Incoming Processor > Outgoing
IP Packets IP Packets
I 732 I 734
Z Z
Routing Time
Table Source

FIG. 7

PCT/US2005/023660

WO 2006/005029

6/6

8 "9Id
92I1n0g a|geL Aows nun Hun
> HA0Y awln Bunnoy Jjuswibel4 o/l wwon
7 7 el 7 7 7
9v8 vE8 H c68 H 0€8 H 968 H v98 H
869
H H H 10ssa201d
10Ss9201d Aows Jossaooid ol
ol R WSpon urep ulepy 098 H c98
7 7 I 7 <
cv8 0v8 cc8 0c8 Aiowspy
991A9(SSOJaIIM
78 — juswdinbg
018 [euruua |
\-\
058

Inte nal Application No

INTERNATIONAL SEARCH REPORT PCT/US2005/023660

A. CLASSIFICATION OF SUBJECT MATTER

H04L12/56 H04L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used}

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2003/126272 Al (CORL EVERETT ARTHUR ET 1-31

abstract
column 1, paragraph 2

paragraph 8

paragraph 11
column 3, paragraph 22

paragraph 43

figures 1-11

AL) 3 July 2003 (2003-07-03)

column 1, paragraph 6 - column 1,

column 2, paragraph 9 - column 2,

column 4, paragraph 39 - column 5,

column 6, paragraph 44 - column 7, :
paragraph 47; claims 1-5,9,10,17,33-36;

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special catagories of cited documents

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubis on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
[n?ﬁts, ftUCh combination being obvious to a person skilled
In the an.

'&" document member of the same patent family

Date of the actual completion of the international search

18 November 2005

Date of mailing of the international search report

25/11/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Todorut, C

INTERNATIONAL SEARCH REPORT

Inter. 1al Application No

PCT/US2005/023660

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

EP 0 743 777 A (SUN MICROSYSTEMS, INC)
20 November 1996 (1996-11-20)

abstract

column
column
column
column
column
column
column
claims

EP 1 357 722 A (HUAWEI TECHNOLOGIES CO.,
LTD) 29 October 2003 (2003-10-29)

abstract

column 4, line 5, paragraph 16 - column 6,
line 19, paragraph 20; claims 1,2; figures
1-3

, 1ine 26 - column 2, line b5
, line 40 - column 5, line 2
, 1ine 37 = column 5, Tine 55
, line 20 - column 6, line 38

, line 46 - column 7,

, line 25 - column 8, line 17

1, Tine 18 - column 11, Tine 50;
,3,.4,6; figures 1-3,5-11

Tine 13

| S B B

=S OYOY 01N

ZIEMBA G ET AL: "Security Consideration
for IP Fragment Filtering"

NETWORK WORKING GROUP, REQUEST FOR
COMMENTS, October 1995 (1995-10),
XP002249090

the whole document

US 2003/018591 Al (KOMISKY DENNIS)

23 January 2003 (2003-01-23)

abstract

column 1, paragraph 4 - column 1,
paragraph 5

column 2, paragraph 25 - column 4,
paragraph 36; tables 1-5

column 5, paragraph 45 - column 5,
paragraph 52; claims 1-8,14,18,32; figures
1-5

EP 1 345 361 A (BROADCOM CORPORATION)

17 September 2003 (2003-09-17)

abstract

page 2, line 31 - page 2, line b6

page 3, line 7 - page 3, line 41

page 4, line 14 - page 4, line 47; claims
1,2,11,12,21; figures 3-6

1-31

1-31

1-31

1-31

1-31

INTERNATIONAL SEARCH REPORT - o
. . nte| 1al Application No
Information on patent family members PCT/U52005/023660
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003126272 Al 03-07-2003 NONE
EP 0743777 A 20-11-1996 JP 9224053 A 26-08-1997
SG 73981 Al 18-07-2000
us 5802320 A 01-09-1998
1N 5884025 A 16-03-1999
us 5878231 A 02-03-1999
EP 1357722 A 29-10-2003 CN 1411218 A 16-04-2003
US 2003220996 Al 27-11-2003
US 2003018591 Al 23-01-2003 NONE
EP 1345361 A 17-09-2003 US 2003174705 Al 18-09-2003

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

