适合变频电机用的电磁漆包线的制造方法

摘要
本发明涉及一种适合变频电机用的电磁漆包线的制造方法，属电磁绝缘线制备工艺技术领域。本发明方法主要是在常规漆包线绝缘层中增加一层由纳米无机金属氧化物与有机绝缘材料组成的防护层，本发明方法的特征在于先对纳米金属氧化物填料进行干燥预处理，然后加入到绝缘聚合物树脂和有机溶剂的体系中，再加入一定的有机分散剂，将混合物进行高速均质和高速砂磨处理，使纳米填料在绝缘聚合物树脂和溶剂体系中达到良好的分散。将具有纳米金属氧化物颗粒的复合绝缘树脂漆作为第二层的面漆涂布于裸铜线上，最终制得一种适合变频电机的电磁漆包线。该漆包线具有较高的耐脉冲浪涌电压寿命。
1. 一种适合变频电机用的电磁漆包线的制造方法，主要是将常规漆包线绝缘层中添加一层由纳米无机金属氧化物与有机绝缘材料组成的防护层，本方法的特征在于，该方法包括有以下几个工艺步骤：

a. 将纳米无机金属氧化物作为填料，先将其进行微波干燥预处理；纳米填料有：氧化钛、氧化铬、氧化铁、氧化锆、氧化镁等；可用其中的一种或一种以上的混合物；

b. 将纳米填料加入到绝缘聚合物树脂和有机溶剂的体系中；绝缘聚合物树脂为聚酰胺、聚酰胺酰亚胺、聚酯树脂等，可使用其中任一种；有机溶剂为甲基吡咯烷酮、醋酸丁酯等，可使用其中任一种；纳米金属氧化物粉体与绝缘树脂的重量比为 1:10；

c. 再加入分散剂，分散剂为三（三辛酯磷酸氧基）钛酸异丙酯和二[焦磷酸二烷氧基酯]-2-羟基丙酸铁或失水山梨醇三硬脂酸酯，可使用其中一种或一种以上的混合物；

d. 将上述混合物进行高速均质处理和高速砂磨，使纳米填料在绝缘树脂和溶剂体系中达到良好的微观分散，由此制成具有纳米金属氧化物颗粒的复合绝缘树脂漆；

e. 在裸铜线上先涂上一层聚酯亚胺底漆，然后再涂布一层上述的具有纳米金属氧化物颗粒的复合绝缘树脂面漆，最终制得一种适合变频电机用的电磁漆包线

2. 根据权利要求 1 所述的一种适合变频电机用的电磁漆包线的制造方法，其特征是所述的纳米金属氧化物填料可优先采用金红石二氧化钛；微波干燥时间为 5～50 分钟，最佳为 30 分钟。

3. 根据权利要求 1 所述的一种适合变频电机用的电磁漆包线的制造方法，其特征是所述的绝缘聚合物树脂和有机溶剂体系是采用聚酰胺酰亚胺树脂和甲基吡咯烷酮溶剂构成的绝缘漆体系。

4. 根据权利要求 1 所述的一种适合变频电机用的电磁漆包线的制造方法，其特征在于所述的分散剂的添加量可以为 0.05～5%（重量），最佳为 0.5%（重量）。

5. 根据权利要求 1 所述的一种适合变频电机用的电磁漆包线的制造方法，其特征是所述的高速均质处理和高速砂磨，其高速均质处理的线速度为 14.4 米/秒，处理时间为 20 分钟；其高速砂磨的线速度为 10 米/秒，砂磨时间为 2 小时。

6. 根据权利要求 1 所述的一种适合变频电机用的电磁漆包线的制造方法，其特征在
于所述的裸铜线的直径为 1.02mm，裸铜线上先涂布一层聚酯亚胺底漆的厚度为 0.06mm，然后再涂布一层上述的具有纳米二氧化钛颗粒的复合聚酰胺酰亚胺树脂绝缘面漆的厚度为 0.02mm，其中二氧化钛粉体与树脂的比例为 1:10（重量）。
适合变频电机用的电磁漆包线的制造方法

技术领域

本发明涉及一种适合变频电机用的电磁漆包线的制造方法，属电磁绝缘线制备工艺技术领域。

背景技术

变频调速电机由于高效、精确、节能和维护简单等优点，已经成为电机发展的重要方向。然而，变频电机中绝缘材料过早损坏导致电机寿命下降。其原因主要是变频电机使用变频器提供电源，由于变频器与电机馈线和马达线圈组之间的阻抗不匹配，产生脉冲浪涌电压，其具有高过冲电压、高频、高速度脉冲上升速度等特点，会产生局部放电、空间电荷积累和绝缘介质发热，致使绝缘材料快速老化损坏。这已成为制约变频调速电机广泛应用的技术难点之一。提高绝缘材料在变频电机中的使用寿命，必须提高绝缘材料的耐变频脉冲浪涌电压能力。

利用纳米材料优异特性来提高变频电机电磁线绝缘材料耐变频脉冲浪涌电压能力是一种行之有效的手段。

美国专利 4,935,302 提出在绝缘材料中添加纳米无机氧化物如氧化铝、氧化铁及它们的混合物可以提高绝缘材料的耐脉冲浪涌电压能力。美国专利 6,190,770 B1 发明了在绝缘材料中添加纳米级 α 型氧化铝和 γ 型氧化铝混合物以提高绝缘材料的耐脉冲浪涌电压能力。美国专利 5,654,095 发明了一种耐脉冲浪涌电压漆包线。该发明是在常规漆包线绝缘层中加入了一层由纳米金属无机氧化物与有机绝缘材料组成的防护层，其中金属无机氧化物的种类包括纳米级二氧化钛、氧化铝、氧化硅、氧化锌、氧化铁以及各种粘土。中国专利 02111615.6 提出使用一种具有多层结构的纳米复合颗粒为添加物的耐脉冲浪涌电压绝缘材料的制造方法。

由于纳米材料巨大的表面活性，在储运和应用过程中常常发生吸潮、难分散等现象，直接影响其在聚合物和有机溶剂体系的使用性能，最终影响其在变频电机电磁线绝缘材料中的功能发挥。另外在以往方法中，常规纳米金属氧化物填料不能在聚合物树脂和有机溶剂体系中达到良好的微观分散，如一般使用的研磨手段，分散效果不理想，因而影响其功能的发挥。
发明内容

本发明的目的在于提供一种新颖的耐脉冲浪涌电压的电磁漆包线的工艺制造方法。本发明的又一目的是克服上述现有技术存在的缺陷，采用一些必要的技术手段，使纳米金属氧化物填料在绝缘树脂和有机溶剂体系中均匀分散，以提高电磁漆包线的绝缘性能。

本发明的上述目的可以通过以下技术手段和技术措施来达到的：

本发明的一种适合变频电机用的电磁漆包线的制造方法，主要是在常规漆包线绝缘层中添加一层由纳米无机金属氧化物与有机绝缘材料组成的防护层，本方法的特征在于，包括以下几个步骤：

a. 将纳米无机金属氧化物作为填料，先将其进行微波干燥预处理；纳米填料有：氧化钛、氧化铬、氧化铁、氧化锆、氧化镁等；可用其中的一种或一种以上的混合物；

b. 将纳米填料加入到绝缘聚合物树脂和有机溶剂的体系中；绝缘聚合物树脂为聚酰胺、聚酰胺酰亚胺、聚酯树脂等，可使用其中任一种；有机溶剂为甲基吡咯烷酮、醋酸丁酯等，可使用其中任一种；纳米金属氧化物粉体与绝缘树脂的重量比为1:10；

c. 再加入分散剂，分散剂为三（二辛酯磷酰氧基）钛酸异丙酯、二[焦磷酸二烷氧基]-2-羟基丙酸甲酯或失水山梨醇三硬脂酸酯，可使用其中一种或一种以上的混合物；

d. 将上述混合物进行高速均质处理和高速砂磨，使纳米填料在绝缘树脂和溶剂体系中达到良好的微观分散，由此制成具有纳米金属氧化物颗粒的复合绝缘树脂漆；

e. 在裸铜线上先涂上一层聚酯亚胺底漆，然后在涂布一层上述的具有纳米金属氧化物颗粒的复合绝缘树脂面漆，最终制得一种适合变频电机用的电磁漆包线。

上述工艺过程中，纳米金属氧化物填料可采用粒径为25mm的二氧化钛，微波干燥预处理的时间为5～50分钟，最佳为30分钟，分散剂的添加量可以为0.05～5%（重量），最佳为0.5%（重量）。

本发明的优点和积极效果是：

1）采用微波干燥纳米填料，可更快、更彻底地去除纳米填料中的水分，防止粒子团聚现象，明显提高纳米填料在耐变频绝缘材料中的添加效果。

2）采用高速均质和高速砂磨的处理方法，大大提高纳米填料分散效果。
3）采用加入特定分散剂，能有效防止纳米填充二次团聚。

本发明方法工艺简单，所制得的变频电机专用电磁漆包线具有较高的耐变频脉冲浪涌电压能力。

本发明中采用的电磁线耐脉冲浪涌电压寿命测试方法为：

(1) 绞线对的制备：在1364g负载下，将两根漆包线绞制8个结点，绞线对长度为0.4m。

(2) 寿命测试：将绞线对放置在恒温箱中，温度为90℃，绞线对一端的两个接头接变频器输出端，另一端空置。变频器提供的输出频率为20KHz，峰值为3KV，峰值上升时间为50ns。根据绞线对击穿时间来衡量漆包线的耐脉冲浪涌电压寿命。

具体实施方式：

现将本发明的实施例叙述于后。

实施例一：称取10g粒径为25nm的金红石二氧化钛，微波干燥30分钟，然后加入400g聚酰胺酰胺树脂甲基丙烯酰氧基化合物的绝缘漆，再加入分散剂2.05克的三（二辛酯磷酸氧基）钛酸异丙酯，再14.4米/秒线速度下用高速均质机处理20分钟，再在10m.s⁻¹的线速度下高速砂磨2小时，使纳米填充在绝缘涂布体系中达到良好的微观分散，由此制成复合绝缘树脂漆。其中二氧化钛纳米填充与绝缘树脂比例为1:10（重量）。

在直径为1.02mm裸铜线上先涂布厚度为0.06mm的聚酰胺底漆，再涂布厚度为0.02mm添加具有纳米二氧化钛颗粒的复合聚酰胺酰胺绝缘树脂面漆，最终制成一种适合变频电机用的电磁漆包线。

本实施例制得的电磁漆包线经耐脉冲浪涌电压寿命测试，其耐脉冲浪涌电压寿命约为29h。

实施例二：称取10g粒径为25nm的金红石二氧化钛，微波干燥30分钟，然后加入400g聚酰胺酰胺树脂甲基丙烯酰氧基化合物的绝缘漆，再加入分散剂2.05克的失水山梨醇三硬脂酸酯，在10m.s⁻¹的线速度下高速砂磨2小时，使纳米填充均匀分散，由此制成复合绝缘树脂漆。其中二氧化钛纳米填充与绝缘树脂比例为1:10（重量）。

用与实施例一相同的方法制备内衬包线，经测试，其耐脉冲浪涌电压寿命约为25h。

实施例三：称取10g粒径为25nm的金红石二氧化钛，微波干燥30分钟后，然后加
入于 400g 聚酰胺酸亚胺树脂—甲基吡咯烷酮溶剂绝缘漆，再加入分散剂 1.05 克的三
（二辛酯磷酸氧基）钛酸异丙酯和 1.00 克的二[焦磷酸二烷氧基酯]-2-羟基丙酸铵，在
10 m.s⁻¹ 线速度下高速砂磨 2 小时，使纳米填料均匀分散，由此制成复合绝缘树脂漆。
其中二氧化钛纳米填料与绝缘树脂比例为 1:10（重量）。

用与实施例一相同方法制备成漆包线漆，经测试，其耐脉冲浪涌电压寿命约为
23h。

实施例四：称取 10g 粒径为 25nm 的金红石二氧化钛，微波干燥 50 分钟后，加入 400g
聚酰胺酰亚胺树脂—甲基吡咯烷酮溶剂绝缘漆，再加入分散剂 2.05 克的二[焦磷酸二
烷氧基酯]-2-羟基丙酸铵，在 10 m.s⁻¹ 线速度下高速砂磨 2 小时。与实施例一相同方
法制备成漆包线漆，经测试，其耐脉冲浪涌电压寿命约为 24h。

实施例五：称取 10g 粒径为 25nm 的金红石二氧化钛，微波干燥 30 分钟后，加入 400g
聚酰胺酰亚胺树脂—甲基吡咯烷酮溶剂绝缘漆，再加入分散剂三（二辛酯磷酸氧基）
钛酸异丙酯分别为 0.21 克、2.05 克、20.5 克（做三个不同量的试验），分别在 10 m.s⁻¹
线速度下高速砂磨 2 小时。与实施例一相同方法制备成漆包线漆，经测试，其耐脉冲
浪涌电压寿命约为 23 小时、26 小时、25 小时。

作为对比参考，在同样试验条件下，未加分散剂最终制得的漆包线，其耐脉冲浪
涌电压寿命约为 18 小时。

作为另一对比参考，若涂布的绝缘漆中不添加纳米二氧化钛填料，则制得的漆
包线的耐脉冲浪涌电压寿命仅为 7 小时。