

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/134358 A1

(43) International Publication Date

25 August 2016 (25.08.2016)

(51) International Patent Classification:

A61K 39/00 (2006.01) *C07K 16/28* (2006.01)
A61K 39/395 (2006.01) *C07K 16/30* (2006.01)
C07K 16/00 (2006.01) *C12P 21/02* (2006.01)

KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2016/018897

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:

22 February 2016 (22.02.2016)

(25) Filing Language:

English

(26) Publication Language:

English

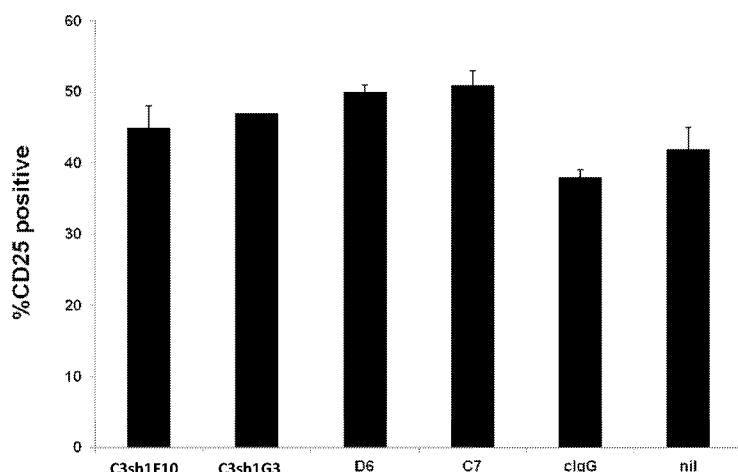
(30) Priority Data:

62/119,211 22 February 2015 (22.02.2015) US

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:


- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(74) Agents: COWLES, Cristin, H. et al.; Mccarter & English, LLP, 265 Franklin Street, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

(54) Title: ANTIBODY THERAPEUTICS THAT BIND CD137

Figure 1A

(57) Abstract: There is disclosed compositions and methods relating to or derived from anti-CD 137 antibodies. More specifically, there is disclosed fully human antibodies that bind CD137, CD137-antibody binding fragments and derivatives of such antibodies, and CD137-binding polypeptides comprising such fragments. Further still, there is disclosed nucleic acids encoding such antibodies, antibody fragments and derivatives and polypeptides, cells comprising such polynucleotides, methods of making such antibodies, antibody fragments and derivatives and polypeptides, and methods of using such antibodies, antibody fragments and derivatives and polypeptides, including methods of treating a disease requiring either stimulation of immune responses or suppression. Diseases amenable to treatment is selected from the group consisting of cancers, autoimmune diseases and viral infections.

Antibody Therapeutics That Bind CD137

Related Applications

5 This application claims priority to United States Provisional Application no. 62/119,211, filed on February 22, 2015, the entire contents of which are incorporated by reference in its entirety herein.

Technical Field

The present disclosure provides compositions and methods relating to or derived from 10 anti-CD137 antibodies. More specifically, the present disclosure provides fully human antibodies that bind CD137, CD137-antibody binding fragments and derivatives of such antibodies, and CD137-binding polypeptides comprising such fragments. Further still, the present disclosure provides nucleic acids encoding such antibodies, antibody fragments and derivatives and polypeptides, cells comprising such polynucleotides, methods of making such 15 antibodies, antibody fragments and derivatives and polypeptides, and methods of using such antibodies, antibody fragments and derivatives and polypeptides, including methods of treating a disease requiring either stimulation of immune responses or suppression.

Background

CD137 is a member of the tumor necrosis factor (TNF) receptor family. Its alternative 20 names are tumor necrosis factor receptor superfamily member 9 (TNFRSF9), 4-1BB and induced by lymphocyte activation (ILA). CD137 can be expressed by activated T cells, but to a larger extent on CD8 than on CD4 T cells. In addition, CD137 expression is found on dendritic cells, follicular dendritic cells, natural killer cells, granulocytes and cells of blood 25 vessel walls at sites of inflammation. One characterized activity of CD137 is its costimulatory activity for activated T cells. Crosslinking of CD137 enhances T cell proliferation, IL-2 secretion survival and cytolytic activity. Further, it can enhance immune activity to eliminate tumors in mice.

CD137 is a T-cell costimulatory receptor induced on TCR activation (Nam et al., *Curr. Cancer Drug Targets*, 5:357-363 (2005); Watts et al., *Annu. Rev. Immunol.*, 23:23-68 30 (2005)). In addition to its expression on activated CD4⁺ and CD8⁺ T cells, CD137 is also expressed on CD4⁺CD25⁺ regulatory T cells, natural killer (NK) and NK-T cells, monocytes, neutrophils, and dendritic cells. Its natural ligand, CD137L, has been described on antigen-presenting cells including B cells, monocyte/macrophages, and dendritic cells (Watts et al.,

Annu. Rev. Immunol., 23:23-68 (2005)). On interaction with its ligand, CD137 leads to increased TCR-induced T-cell proliferation, cytokine production, functional maturation, and prolonged CD8⁺ T-cell survival (Nam et al., *Curr. Cancer Drug Targets*, 5:357-363 (2005), Watts et al., *Annu. Rev. Immunol.*, 23:23-68 (2005)).

5 Signaling through CD137 by either CD137L or agonistic monoclonal antibodies (mAbs) against CD137 leads to increased TCR-induced T cell proliferation, cytokine production and functional maturation, and prolonged CD8+ T cell survival. These effects result from: (1) the activation of the NF- κ B, c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways, and (2) the control of anti-apoptotic and cell cycle-related gene expression.
10 Experiments performed in both CD137 and CD137L-deficient mice have additionally demonstrated the importance of CD137 costimulation in the generation of a fully competent T cell response.

IL-2 and IL-15 activated NK cells express CD137, and ligation of CD137 by agonistic
15 mAbs stimulates NK cell proliferation and IFN- γ secretion, but not their cytolytic activity. Furthermore, CD137-stimulated NK cells promote the expansion of activated T cells *in vitro*. In accordance with their costimulatory function, agonist mAbs against CD137 have been shown to promote rejection of cardiac and skin allografts, eradicate established tumors, broaden primary antiviral CD8+ T cell responses, and increase T cell cytolytic potential.
20 These studies support the view that CD137 signaling promotes T cell function which may enhance immunity against tumors and infection.

Other anti-CD137 antibodies have been disclosed in U.S. 2005/0095244, issued U.S. Patents 7,288,638 (such as 20H4.9-IgG4 [10C7 or BMS-663513] or 20H4.9-IgG1 [BMS-663031]); 6,887,673 [4E9 or BMS-554271]; 7,214,493; 6,303,121; 6,569,997; 6,905,685;
25 6,355,476; 6,362,325 [1D8 or BMS-469492; 3H3 or BMS-469497; or 3E1]; 6,974,863 (such as 53A2); or 6,210,669 (such as 1D8, 3B8, or 3E1). Additional CD137 agonistic antibodies are described in U.S. Patents 5,928,893; 6,303,121 and 6,569,997.

These and other deficiencies in the previous antibodies are overcome by the provision of fully human antibodies to CD137 by the present disclosure.

30 **Summary**

The present disclosure provides a fully human anti-CD137 antibody of an IgG class that binds to a CD137 epitope with a binding affinity of at least 10⁻⁶M, which comprises a heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at

least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and comprises a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128. In one embodiment, the fully human antibody comprises both a heavy chain and a light chain wherein the antibody has a heavy chain/light

chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2 (called A1 herein), SEQ ID NO. 3/SEQ ID NO. 4 (called A4 herein), SEQ ID NO. 5/SEQ ID NO. 6 (called A11 herein), SEQ ID NO. 7/SEQ ID NO. 8 (called B1 herein), SEQ ID NO. 9/SEQ ID NO. 10 (called B3 herein), SEQ ID NO. 11/SEQ ID NO. 12 (called B12 herein), SEQ ID NO. 13/SEQ ID NO. 14 (called C2 herein), SEQ ID NO. 15/SEQ ID NO. 16 (called C3 herein), SEQ ID NO. 17/SEQ ID NO. 18 (called C7 herein), SEQ ID NO. 19/SEQ ID NO. 20 (called C11 herein), SEQ ID NO. 21/SEQ ID NO. 22 (called C12 herein), SEQ ID NO. 23/SEQ ID NO. 24 (called D1 herein), SEQ ID NO. 25/SEQ ID NO. 26 (called D4 herein), SEQ ID NO. 27/SEQ ID NO. 28 (called D6 herein), SEQ ID NO. 29/SEQ ID NO. 30 (called D7 herein), SEQ ID NO. 31/SEQ ID NO. 32 (called D8 herein), SEQ ID NO. 33/SEQ ID NO. 34 (called D10 herein), SEQ ID NO. 35/SEQ ID NO. 36 (called E2 herein), SEQ ID NO. 37/SEQ ID NO. 38 (called E5 herein), SEQ ID NO. 39/SEQ ID NO. 40 (called E7 herein), SEQ ID NO. 41/SEQ ID NO. 42 (called F5 herein), SEQ ID NO. 43/SEQ ID NO. 44 (called F7 herein), SEQ ID NO. 45/SEQ ID NO. 46 (called F11 herein), SEQ ID NO. 47/SEQ ID NO. 48 (called G1 herein), SEQ ID NO. 49/SEQ ID NO. 50 (called G2 herein), SEQ ID NO. 51/SEQ ID NO. 52 (called G3 herein), SEQ ID NO. 53/SEQ ID NO. 54 (called G5 herein), SEQ ID NO. 55/SEQ ID NO. 56 (called G6 herein), SEQ ID NO. 57/SEQ ID NO. 58 (called G8 herein), SEQ ID NO. 59/SEQ ID NO. 60 (called G12 herein), SEQ ID NO. 61/SEQ ID NO. 62 (called H4 herein), SEQ ID NO. 63/SEQ ID NO. 64 (called H7 herein), SEQ ID NO. 65/SEQ ID NO. 66 (called H8 herein), SEQ ID NO. 67/SEQ ID NO. 68 (called H10 herein), SEQ ID NO. 69/SEQ ID NO. 70 (called H11 herein), SEQ ID NO. 71/SEQ ID NO. 72 (called C3sh1A1 herein), SEQ ID NO. 73/SEQ ID NO. 74 (called C3sh1A2 herein), SEQ ID NO. 75/SEQ ID NO. 76 (called C3sh1A5 herein), SEQ ID NO. 77/SEQ ID NO. 78 (called C3sh1A9 herein), SEQ ID NO. 79/SEQ ID NO. 80 (called C3sh1B2 herein), SEQ ID NO. 81/SEQ ID NO. 82 (called C3sh1B4 herein), SEQ ID NO. 83/SEQ ID NO. 84 (called C3sh1B6 herein), SEQ ID NO. 85/SEQ ID NO. 86 (called C3sh1B9 herein), SEQ ID NO. 87/SEQ ID NO. 88 (called C3sh1C1 herein), SEQ ID NO. 89/SEQ ID NO. 90 (called C3sh1C2 herein), SEQ ID NO. 91/SEQ ID NO. 92 (called C3sh1C7 herein), SEQ ID NO. 93/SEQ ID NO. 94 (called C3sh1D1 herein), SEQ ID NO. 95/SEQ ID NO. 96 (called C3sh1D4 herein), SEQ ID NO. 97/SEQ ID NO. 98 (called C3sh1D6 herein), SEQ ID NO. 99/SEQ ID NO. 100 (called C3sh1E2 herein), SEQ ID NO. 101/SEQ ID NO. 102 (called C3sh1E7 herein), SEQ ID NO. 103/SEQ ID NO. 104 (called C3sh1E9 herein), SEQ ID NO. 105/SEQ ID NO. 106 (called C3sh1F1 herein), SEQ ID NO. 107/SEQ ID NO. 108 (called

C3sh1F10 herein), SEQ ID NO. 109/SEQ ID NO. 110 (called C3sh1F12 herein), SEQ ID NO. 111/SEQ ID NO. 112 (called C3sh1F2 herein), SEQ ID NO. 113/SEQ ID NO. 114 (called C3sh1G1 herein), SEQ ID NO. 115/SEQ ID NO. 116 (called C3sh1G11 herein), SEQ ID NO. 117/SEQ ID NO. 118 (called C3sh1G2 herein), SEQ ID NO. 119/SEQ ID NO. 120 (called C3sh1G3 herein), SEQ ID NO. 121/SEQ ID NO. 122 (called C3sh1G5 herein), SEQ ID NO. 123/SEQ ID NO. 124 (called C3sh1G8 herein), SEQ ID NO. 125/SEQ ID NO. 126 (called C3sh1H10 herein), SEQ ID NO. 127/SEQ ID NO. 128 (called C3sh1H4 herein), SEQ ID NO. 129/SEQ ID NO. 28 (called MA8 herein), SEQ ID NO. 130/SEQ ID NO. 28 (called MB1 herein), SEQ ID NO. 131/SEQ ID NO. 28 (called MB3 herein), SEQ ID NO. 132/SEQ ID NO. 28 (called MB10 herein), SEQ ID NO. 133/SEQ ID NO. 28 (called MB12 herein), SEQ ID NO. 134/SEQ ID NO. 28 (called MC8 herein), SEQ ID NO. 135/SEQ ID NO. 28 (called MD1 herein), SEQ ID NO. 136/SEQ ID NO. 28 (called MD4 herein), SEQ ID NO. 137/SEQ ID NO. 28 (called MSA11 herein), SEQ ID NO. 138/SEQ ID NO. 28 (called MSB7 herein), SEQ ID NO. 139/SEQ ID NO. 28 (called MSD2 herein), SEQ ID NO. 140/SEQ ID NO. 28 (called MSE3 herein), SEQ ID NO. 141/SEQ ID NO. 28 (called MSE5 herein), SEQ ID NO. 142/SEQ ID NO. 28 (called MSC8 herein), and SEQ ID NO. 143/SEQ ID NO. 28 (called MSH1 herein).

In one embodiment, the invention includes an isolated anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a heavy chain variable domain comprising complementarity determining regions (CDRs) as set forth in a heavy chain variable domain amino acid sequence selected from the group consisting of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142 and 143; and comprising a light chain variable domain comprising CDRs as set forth in a light chain variable region amino acid sequence selected from the group consisting of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128.

The present disclosure provides a Fab fully human anti-CD137 antibody fragment, comprising a variable domain region from a heavy chain and a variable domain region from a light chain, wherein the heavy chain variable domain sequence that is at least 95% identical,

at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143, and a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

In one embodiment, the fully human antibody Fab fragment comprises a heavy chain/light chain variable domain sequence selected from the group consisting SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

The present disclosure provides an anti-CD137 single chain human antibody, comprising a heavy chain variable domain and a light chain variable domain which are connected by a peptide linker, wherein the heavy chain variable domain sequence is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143, and the light chain variable domain sequence comprises an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO.

108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, SEQ ID NO. 128, and combinations thereof.

In certain embodiments, the fully human single chain antibody comprises a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO.

140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, SEQ ID NO. 143/SEQ ID NO. 28, and combinations thereof.

The present disclosure further provides a method of treating cancer in a subject in need thereof, the method comprising administering an effective amount of the antibody or 5 antibody fragment of any one of the above aspects or embodiments, such that the cancer is treated.

In one embodiment, the cancer is selected from the group consisting of ovarian cancer, colorectal cancer, melanoma, hepatocellular carcinoma, renal cancer, breast cancer, head and neck cancer, lung cancer and liver cancer.

10 The present disclosure further provides a method for treating a disease requiring either stimulation of an immune response or suppression, comprising administering an anti-CD137 polypeptide, wherein the fully human antibody comprises a heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequences selected from the group 15 consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ 20 ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, 25 SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, 30 SEQ ID NO. 142, and SEQ ID NO. 143, and comprises a light chain variable domain sequence that is at least 95% identical to an amino acid consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ

ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128; wherein the Fab fully human antibody fragment comprises a heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and comprises a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to an amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO.

24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, 5 SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, 10 SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128; and wherein the single chain human antibody comprises a heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to an amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, 15 SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, 20 SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, 25 SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and comprises a light chain variable domain 30 sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to an amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO.

24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34,
SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ
ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO.
56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66,
SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ
ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO.
88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98,
SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108,
SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118,
10 SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO.
128.

In one embodiment, the fully human antibody comprises both a heavy chain and a light chain wherein the antibody has a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2 (called A1 herein), SEQ
15 ID NO. 3/SEQ ID NO. 4 (called A4 herein), SEQ ID NO. 5/SEQ ID NO. 6 (called A11
herein), SEQ ID NO. 7/SEQ ID NO. 8 (called B1 herein), SEQ ID NO. 9/SEQ ID NO. 10
(called B3 herein), SEQ ID NO. 11/SEQ ID NO. 12 (called B12 herein), SEQ ID NO.
13/SEQ ID NO. 14 (called C2 herein), SEQ ID NO. 15/SEQ ID NO. 16 (called C3 herein),
SEQ ID NO. 17/SEQ ID NO. 18 (called C7 herein), SEQ ID NO. 19/SEQ ID NO. 20 (called
20 C11 herein), SEQ ID NO. 21/SEQ ID NO. 22 (called C12 herein), SEQ ID NO. 23/SEQ ID
NO. 24 (called D1 herein), SEQ ID NO. 25/SEQ ID NO. 26 (called D4 herein), SEQ ID NO.
27/SEQ ID NO. 28 (called D6 herein), SEQ ID NO. 29/SEQ ID NO. 30 (called D7 herein),
SEQ ID NO. 31/SEQ ID NO. 32 (called D8 herein), SEQ ID NO. 33/SEQ ID NO. 34 (called
D10 herein), SEQ ID NO. 35/SEQ ID NO. 36 (called E2 herein), SEQ ID NO. 37/SEQ ID
25 NO. 38 (called E5 herein), SEQ ID NO. 39/SEQ ID NO. 40 (called E7 herein), SEQ ID NO.
41/SEQ ID NO. 42 (called F5 herein), SEQ ID NO. 43/SEQ ID NO. 44 (called F7 herein),
SEQ ID NO. 45/SEQ ID NO. 46 (called F11 herein), SEQ ID NO. 47/SEQ ID NO. 48 (called
G1 herein), SEQ ID NO. 49/SEQ ID NO. 50 (called G2 herein), SEQ ID NO. 51/SEQ ID
NO. 52 (called G3 herein), SEQ ID NO. 53/SEQ ID NO. 54 (called G5 herein), SEQ ID NO.
30 55/SEQ ID NO. 56 (called G6 herein), SEQ ID NO. 57/SEQ ID NO. 58 (called G8 herein),
SEQ ID NO. 59/SEQ ID NO. 60 (called G12 herein), SEQ ID NO. 61/SEQ ID NO. 62 (called
H4 herein), SEQ ID NO. 63/SEQ ID NO. 64 (called H7 herein), SEQ ID NO. 65/SEQ ID
NO. 66 (called H8 herein), SEQ ID NO. 67/SEQ ID NO. 68 (called H10 herein), SEQ ID

NO. 69/SEQ ID NO. 70 (called H11 herein), SEQ ID NO. 71/SEQ ID NO. 72 (called C3sh1A1 herein), SEQ ID NO. 73/SEQ ID NO. 74 (called C3sh1A2 herein), SEQ ID NO. 75/SEQ ID NO. 76 (called C3sh1A5 herein), SEQ ID NO. 77/SEQ ID NO. 78 (called C3sh1A9 herein), SEQ ID NO. 79/SEQ ID NO. 80 (called C3sh1B2 herein), SEQ ID NO.

5 81/SEQ ID NO. 82 (called C3sh1B4 herein), SEQ ID NO. 83/SEQ ID NO. 84 (called C3sh1B6 herein), SEQ ID NO. 85/SEQ ID NO. 86 (called C3sh1B9 herein), SEQ ID NO. 87/SEQ ID NO. 88 (called C3sh1C1 herein), SEQ ID NO. 89/SEQ ID NO. 90 (called C3sh1C2 herein), SEQ ID NO. 91/SEQ ID NO. 92 (called C3sh1C7 herein), SEQ ID NO. 93/SEQ ID NO. 94 (called C3sh1D1 herein), SEQ ID NO. 95/SEQ ID NO. 96 (called C3sh1D4 herein), SEQ ID NO. 97/SEQ ID NO. 98 (called C3sh1D6 herein), SEQ ID NO. 99/SEQ ID NO. 100 (called C3sh1E2 herein), SEQ ID NO. 101/SEQ ID NO. 102 (called C3sh1E7 herein), SEQ ID NO. 103/SEQ ID NO. 104 (called C3sh1E9 herein), SEQ ID NO. 105/SEQ ID NO. 106 (called C3sh1F1 herein), SEQ ID NO. 107/SEQ ID NO. 108 (called C3sh1F10 herein), SEQ ID NO. 109/SEQ ID NO. 110 (called C3sh1F12 herein), SEQ ID NO.

15 NO. 111/SEQ ID NO. 112 (called C3sh1F2 herein), SEQ ID NO. 113/SEQ ID NO. 114 (called C3sh1G1 herein), SEQ ID NO. 115/SEQ ID NO. 116 (called C3sh1G11 herein), SEQ ID NO. 117/SEQ ID NO. 118 (called C3sh1G2 herein), SEQ ID NO. 119/SEQ ID NO. 120 (called C3sh1G3 herein), SEQ ID NO. 121/SEQ ID NO. 122 (called C3sh1G5 herein), SEQ ID NO. 123/SEQ ID NO. 124 (called C3sh1G8 herein), SEQ ID NO. 125/SEQ ID NO. 126 (called C3sh1H10 herein), SEQ ID NO. 127/SEQ ID NO. 128 (called C3sh1H4 herein), SEQ ID NO. 129/SEQ ID NO. 28 (called MA8 herein), SEQ ID NO. 130/SEQ ID NO. 28 (called MB1 herein), SEQ ID NO. 131/SEQ ID NO. 28 (called MB3 herein), SEQ ID NO. 132/SEQ ID NO. 28 (called MB10 herein), SEQ ID NO. 133/SEQ ID NO. 28 (called MB12 herein), SEQ ID NO. 134/SEQ ID NO. 28 (called MC8 herein), SEQ ID NO. 135/SEQ ID NO. 28 (called MD1 herein), SEQ ID NO. 136/SEQ ID NO. 28 (called MD4 herein), SEQ ID NO. 137/SEQ ID NO. 28 (called MSA11 herein), SEQ ID NO. 138/SEQ ID NO. 28 (called MSB7 herein), SEQ ID NO. 139/SEQ ID NO. 28 (called MSD2 herein), SEQ ID NO. 140/SEQ ID NO. 28 (called MSE3 herein), SEQ ID NO. 141/SEQ ID NO. 28 (called MSE5 herein), SEQ ID NO. 142/SEQ ID NO. 28 (called MSC8 herein), SEQ ID NO. 143/SEQ ID NO. 28 (called MSH1 herein). In one embodiment, the fully human single chain antibody comprises both a heavy chain variable domain region and a light chain variable domain region, wherein the single chain fully human antibody comprises a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO.

3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ 5 ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42.

10 Preferably, the disease is selected from the group consisting of cancers, autoimmune diseases and viral infections.

In certain embodiments, the anti-CD137 antibody, or antigen-binding fragment thereof, of the invention has a K_D of at least 1×10^{-6} M. In other embodiments, the anti-CD137 antibody, or antigen-binding fragment thereof, of the invention has a K_D of at least 1×10^{-7} M. In other embodiments, the anti-CD137 antibody, or antigen-binding fragment 15 thereof, of the invention has a K_D of at least 1×10^{-8} M.

In certain embodiments, the anti-CD137 antibody is an IgG1 isotype. In other embodiments, the anti-CD137 antibody is an IgG4 isotype.

In certain embodiments, the anti-CD137 antibody, or antigen-binding fragment, described herein is recombinant.

20 The invention also provides pharmaceutical compositions comprising an effective amount of an anti-CD137 antibodies or fragments disclosed herein, and a pharmaceutically acceptable carrier.

25 In certain embodiments, the invention features a method of treating cancer in a human subject in need thereof, comprising administering an effective amount of an anti-CD137 antibody, or antigen-binding fragment thereof, disclosed herein to the subject, such that cancer is treated. Examples of cancer that may be treated include, but are not limited to, ovarian cancer, colorectal cancer, melanoma, hepatocellular carcinoma, renal cancer, breast cancer, head and neck cancer, lung cancer and liver cancer.

Description of the Drawings

30 *Figure 1A* is a graph that shows functional activity of the listed anti-CD137 antibodies by their ability to augment T cell activation. To measure cell activation, the cells were labeled with FITC anti-human CD25 after three days of culture. The percentage of cells positive for CD25 expression was measured by flow cytometry. The level of CD25

expression was higher in the cultures where anti-CD137 antibodies had been added. cIg is a control immunoglobulin which is not specific for CD137.

Figure 1B is a graph that shows the results of Figure 1A, normalized relative to the cultures receiving no antibody. A notable level of augmentation was detected in cultures 5 which received the tested anti-CD137 antibodies, and in particular the D6 and C7 antibodies.

Figure 2 graphically depicts cross-reactivity studies determining whether anti-CD137 antibodies D6, MB3, MSC8, and MB12 are able to bind human and/or murine CD137. The results show that each of these antibodies is specific for human CD137, as none of the antibodies showed cross-reactivity to murine CD137.

10 Figure 3A and Figure 3B graphically depict results from an *in vitro* experiment determining cell activation. The percentage of cells positive for CD25 expression was measured by flow cytometry. The level of CD25 expression was higher in the cultures where anti-CD137 antibodies had been added. Figure 3B provides the normalized results of Figure 3A. cIg is a control immunoglobulin which is not specific for CD137.

15 Detailed Description

Definitions

The terms "peptide," "polypeptide" and "protein" each refers to a molecule comprising two or more amino acid residues joined to each other by peptide bonds. These terms encompass, *e.g.*, native and artificial proteins, protein fragments and polypeptide 20 analogs (such as muteins, variants, and fusion proteins) of a protein sequence as well as post-translationally, or otherwise covalently or non-covalently, modified proteins. A peptide, polypeptide, or protein may be monomeric or polymeric.

A "variant" of a polypeptide (for example, a variant of an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from 25 and/or substituted into the amino acid sequence relative to another polypeptide sequence. Disclosed variants include, for example, fusion proteins.

A "derivative" of a polypeptide is a polypeptide (*e.g.*, an antibody) that has been chemically modified, *e.g.*, via conjugation to another chemical moiety (such as, for example, polyethylene glycol or albumin, *e.g.*, human serum albumin), phosphorylation, and 30 glycosylation. Unless otherwise indicated, the term "antibody" includes, in addition to antibodies comprising two full-length heavy chains and two full-length light chains, derivatives, variants, fragments, and muteins thereof, examples of which are described below.

An "antigen binding protein" is a protein comprising a portion that binds to an antigen and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a confirmation that promotes binding of the antigen binding protein to the antigen.

Examples of antigen binding proteins include antibodies, antibody fragments (e.g., an antigen

5 binding portion of an antibody), antibody derivatives, and antibody analogs. The antigen binding protein can comprise, for example, an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, for example, Korndorfer et al., 2003, *Proteins: Structure, Function, and Bioinformatics*, Volume 53, Issue 1:121-129; Roque et al., 2004, *Biotechnol. Prog.* 20:639-654. In addition, peptide antibody mimetics ("PAMs") can be used, as well as scaffolds based on antibody mimetics utilizing fibronectin components as a scaffold.

15 An antigen binding protein can have, for example, the structure of an immunoglobulin. An "immunoglobulin" is a tetrameric molecule composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The 20 carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa or lambda light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Preferably, the anti-EGFR antibodies disclosed herein are characterized by their variable domain region sequences in the heavy V_H and light 25 V_L amino acid sequences. The preferred antibody is A6 which is a kappa IgG antibody. Within light and heavy chains, the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See generally, *Fundamental Immunology* Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)). The variable regions of each light/heavy chain pair form the 30 antibody binding site such that an intact immunoglobulin has two binding sites.

The variable regions of immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. From N-terminus to C-terminus, both

light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242, 1991. Other numbering systems 5 for the amino acids in immunoglobulin chains include IMGT™ (international ImMunoGeneTics information system; Lefranc et al, Dev. Comp. Immunol. 29:185-203; 2005) and AHo (Honegger and Pluckthun, J. Mol. Biol. 309(3):657-670; 2001).

An "antibody" refers to an intact immunoglobulin or to an antigen binding portion thereof that competes with the intact antibody for specific binding, unless otherwise 10 specified. In one embodiment, an antibody comprises a heavy chain variable domain, a light chain variable domain, a light chain constant region (C_L), and heavy chain constant regions C_{H1}, C_{H2} and C_{H3}. The heavy and light chain variable domain sequences may be selected from those described herein in SEQ ID Nos: 1 to 143.

Antigen binding portions of an antibody may be produced by recombinant DNA 15 techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen binding portions include, inter alia, Fab, Fab', F(ab')2, Fv, domain antibodies (dAbs), and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the 20 polypeptide.

In certain embodiments, antibodies can be obtained from sources such as serum or plasma that contain immunoglobulins having varied antigenic specificity. If such antibodies are subjected to affinity purification, they can be enriched for a particular antigenic specificity. Such enriched preparations of antibodies usually are made of less than about 10% 25 antibody having specific binding activity for the particular antigen. Subjecting these preparations to several rounds of affinity purification can increase the proportion of antibody having specific binding activity for the antigen. Antibodies prepared in this manner are often referred to as "monospecific."

The term "monospecific", as used herein, refers to an antibody that displays an 30 affinity for one particular epitope. Monospecific antibody preparations can be made up of about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or 99.9% antibody having specific binding activity for the particular antigen.

An "antibody fragment" or "antigen binding fragment of an antibody" comprises a portion of an intact antibody, and preferably comprises the antibody antigen binding or variable domains. Examples of an antibody fragment include a Fab, an Fab', an F(ab')2, an Fv fragment, and a linear antibody.

5 A Fab fragment is a monovalent fragment having the V_L, V_H, C_L and C_{H1} domains; a F(ab')₂ fragment is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment has the V_H and C_{H1} domains; an Fv fragment has the V_L and V_H domains of a single arm of an antibody; and a dAb fragment has a V_H domain, a V_L domain, or an antigen-binding fragment of a V_H or V_L domain (U.S. Patents 6,846,634; 10 6,696,245, US App. Pub.20/0202512; 2004/0202995; 2004/0038291; 2004/0009507;20 03/0039958, and Ward et al., *Nature* 341:544-546, 1989).

A single-chain antibody (scFv) is an antibody fragment in which a V_L and a V_H region are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain wherein the linker is long enough to allow the protein chain to fold 15 back on itself and form a monovalent antigen binding site (see, e.g., Bird et al., 1988, *Science* 242:423-26 and Huston et al., 1988, *Proc. Natl. Acad. Sci. USA* 85:5879-83).

Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises V_H and V_L domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a 20 complementary domain on another polypeptide chain (see, e.g., Holliger et al., 1993, *Proc. Natl. Acad. Sci. USA* 90:6444-48, and Poljak et al., 1994, *Structure* 2:1121-23). If the two polypeptide chains of a diabody are identical, then a diabody resulting from their pairing will have two identical antigen binding sites. Polypeptide chains having different sequences can be used to make a diabody with two different antigen binding sites. Similarly, tribodies and 25 tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different.

An antigen binding protein, such as an antibody, may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or 30 may be different. For example, a naturally occurring human immunoglobulin typically has two identical binding sites, while a "bispecific" or "bifunctional" antibody has two different binding sites.

The term "human antibody" includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of

the variable and constant domains of the antibody are derived from human immunoglobulin sequences (referred to as a “fully human antibody”). These antibodies may be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies

5 derived from human heavy and/or light chain-encoding genes. In a preferred embodiment, a fully human antibody is made using recombinant methods such that the glycosylation pattern of the antibody is different than an antibody having the same sequence if it were to exist in nature.

A “humanized antibody” has a sequence that differs from the sequence of an antibody 10 derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions, such that the humanized antibody is less likely to induce an immune response, and/or induces a less severe immune response, as compared to the non-human species antibody, when it is administered to a human subject. In one embodiment, certain amino acids in the framework and constant domains of the heavy and/or light chains of the non- 15 human species antibody are mutated to produce the humanized antibody. In another embodiment, the constant domain(s) from a human antibody are fused to the variable domain(s) of a non-human species. In another embodiment, one or more amino acid residues in one or more CDR sequences of a non-human antibody are changed to reduce the likely immunogenicity of the non-human antibody when it is administered to a human subject, 20 wherein the changed amino acid residues either are not critical for immunospecific binding of the antibody to its antigen, or the changes to the amino acid sequence that are made are conservative changes, such that the binding of the humanized antibody to the antigen is not significantly worse than the binding of the non-human antibody to the antigen. Examples of how to make humanized antibodies may be found in U.S. Patents 6,054,297, 5,886,152 and 25 5,877,293.

The term "chimeric antibody" refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. In one embodiment, one or more of the CDRs are derived from a human anti-CD137 antibody. In another embodiment, all of the CDRs are derived from a human anti-CD137 antibody. In 30 another embodiment, the CDRs from more than one human anti-CD137 antibodies are mixed and matched in a chimeric antibody. For instance, a chimeric antibody may comprise a CDR1 from the light chain of a first human anti-PAR-2 antibody, a CDR2 and a CDR3 from the

light chain of a second human anti-CD137 antibody, and the CDRs from the heavy chain from a third anti-CD137 antibody. Other combinations are possible.

Further, the framework regions may be derived from one of the same anti-CD137 antibodies, from one or more different antibodies, such as a human antibody, or from a 5 humanized antibody. In one example of a chimeric antibody, a portion of the heavy and/or light chain is identical with, homologous to, or derived from an antibody from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with, homologous to, or derived from an antibody (-ies) from another species or belonging to another antibody class or subclass. Also included are fragments of 10 such antibodies that exhibit the desired biological activity (*i.e.*, the ability to specifically bind CD137).

An "agonist antibody" as used herein, is an antibody that induces or increases the biological activity of an antigen (for example, CD137) to which the antibody binds. An agonist may, for example, facilitate a receptor's phosphorylation due to binding of the 15 receptor to a ligand or may activate or grow cells activated by the receptor. In one embodiment, the antibodies of the invention are agonist anti-CD137 antibodies.

A "CDR grafted antibody" is an antibody comprising one or more CDRs derived from an antibody of a particular species or isotype and the framework of another antibody of the same or different species or isotype.

20 A "multi-specific antibody" is an antibody that recognizes more than one epitope on one or more antigens. A subclass of this type of antibody is a "bi-specific antibody" which recognizes two distinct epitopes on the same or different antigens.

An antigen binding protein "specifically binds" to an antigen (*e.g.*, human CD137) if it binds to the antigen with a dissociation constant of 1 nanomolar or less.

25 An "antigen binding domain," "antigen binding region," or "antigen binding site" is a portion of an antigen binding protein that contains amino acid residues (or other moieties) that interact with an antigen and contribute to the antigen binding protein's specificity and affinity for the antigen. For an antibody that specifically binds to its antigen, this will include at least part of at least one of its CDR domains.

30 The term "Fc polypeptide" includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties

(and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.

An "epitope" is the portion of a molecule that is bound by an antigen binding protein (e.g., by an antibody). An epitope can comprise non-contiguous portions of the molecule 5 (e.g., in a polypeptide, amino acid residues that are not contiguous in the polypeptide's primary sequence but that, in the context of the polypeptide's tertiary and quaternary structure, are near enough to each other to be bound by an antigen binding protein).

The "percent identity" or "percent homology" of two polynucleotide or two 10 polypeptide sequences is determined by comparing the sequences using the GAP computer program (a part of the GCG Wisconsin Package, version 10.3 (Accelrys, San Diego, Calif.)) using its default parameters.

The terms "polynucleotide," "oligonucleotide" and "nucleic acid" are used 15 interchangeably throughout and include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs (e.g., peptide nucleic acids and non-naturally occurring nucleotide analogs), and hybrids thereof. The nucleic acid molecule can be single-stranded or double-stranded. In one embodiment, the nucleic acid molecules of the invention comprise a contiguous open reading frame encoding an antibody, or a fragment, derivative, mutein, or variant thereof.

Two single-stranded polynucleotides are "the complement" of each other if their 20 sequences can be aligned in an anti-parallel orientation such that every nucleotide in one polynucleotide is opposite its complementary nucleotide in the other polynucleotide, without the introduction of gaps, and without unpaired nucleotides at the 5' or the 3' end of either sequence. A polynucleotide is "complementary" to another polynucleotide if the two 25 polynucleotides can hybridize to one another under moderately stringent conditions. Thus, a polynucleotide can be complementary to another polynucleotide without being its complement.

A "vector" is a nucleic acid that can be used to introduce another nucleic acid linked 30 to it into a cell. One type of vector is a "plasmid," which refers to a linear or circular double stranded DNA molecule into which additional nucleic acid segments can be ligated. Another type of vector is a viral vector (e.g., replication defective retroviruses, adenoviruses and 35 adeno-associated viruses), wherein additional DNA segments can be introduced into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors comprising a bacterial origin of replication and

episomal mammalian vectors). Other vectors (*e.g.*, non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. An "expression vector" is a type of vector that can direct the expression of a chosen polynucleotide.

5 A nucleotide sequence is "operably linked" to a regulatory sequence if the regulatory sequence affects the expression (*e.g.*, the level, timing, or location of expression) of the nucleotide sequence. A "regulatory sequence" is a nucleic acid that affects the expression (*e.g.*, the level, timing, or location of expression) of a nucleic acid to which it is operably linked. The regulatory sequence can, for example, exert its effects directly on the regulated 10 nucleic acid, or through the action of one or more other molecules (*e.g.*, polypeptides that bind to the regulatory sequence and/or the nucleic acid). Examples of regulatory sequences include promoters, enhancers and other expression control elements (*e.g.*, polyadenylation signals). Further examples of regulatory sequences are described in, for example, Goeddel, 1990, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San 15 Diego, Calif. and Baron et al., 1995, *Nucleic Acids Res.* 23:3605-06.

A "host cell" is a cell that can be used to express a nucleic acid, *e.g.*, a nucleic acid of the invention. A host cell can be a prokaryote, for example, *E. coli*, or it can be a eukaryote, for example, a single-celled eukaryote (*e.g.*, a yeast or other fungus), a plant cell (*e.g.*, a tobacco or tomato plant cell), an animal cell (*e.g.*, a human cell, a monkey cell, a hamster 20 cell, a rat cell, a mouse cell, or an insect cell) or a hybridoma. Examples of host cells include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (see Gluzman et al., 1981, *Cell* 23:175), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells or their derivatives such as Veggie CHO and related cell lines which grow in serum-free 25 media (see Rasmussen et al., 1998, *Cytotechnology* 28:31) or CHO strain DX-B11, which is deficient in DHFR (see Urlaub et al., 1980, *Proc. Natl. Acad. Sci. USA* 77:4216-20), HeLa cells, BHK (ATCC CRL 10) cell lines, the CV1/EBNA cell line derived from the African green monkey kidney cell line CV1 (ATCC CCL 70) (see McMahan et al., 1991, *EMBO J.* 10:2821), human embryonic kidney cells such as 293,293 EBNA or MSR 293, human 30 epidermal A431 cells, human Colo205 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HL-60, U937, HaK or Jurkat cells. In one embodiment, a host cell is a mammalian host cell, but is not a human host cell. Typically, a host cell is a cultured cell that can be transformed or transfected with a polypeptide-encoding nucleic acid, which can then be expressed in the

host cell. The phrase "recombinant host cell" can be used to denote a host cell that has been transformed or transfected with a nucleic acid to be expressed. A host cell also can be a cell that comprises the nucleic acid but does not express it at a desired level unless a regulatory sequence is introduced into the host cell such that it becomes operably linked with the nucleic acid. It is understood that the term host cell refers not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to, *e.g.*, mutation or environmental influence, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

10 The term "recombinant antibody" refers to an antibody that is expressed from a cell or cell line transfected with an expression vector (or possibly more than one expression vector, *e.g.*, two expression vectors) comprising at least the coding sequence of the antibody, where said coding sequence is not naturally associated with the cell. In one embodiment, a recombinant antibody has a glycosylation pattern that is different than the glycosylation pattern of an antibody having the same sequence if it were to exist in nature. In one embodiment, a recombinant antibody is expressed in a mammalian host cell which is not a human host cell. Notably, individual mammalian host cells have unique glycosylation patterns.

20 The term "effective amount" as used herein, refers to that amount of an antibody, or an antigen binding portion thereof, that binds CD137, which is sufficient to effect treatment, prognosis or diagnosis of a disease associated with CD137 dependent signaling, as described herein, when administered to a subject. Therapeutically effective amounts of antibodies provided herein, when used alone or in combination, will vary depending upon the relative activity of the antibodies and combinations (*e.g.*, in inhibiting cell growth) and depending 25 upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.

30 The term "isolated" refers to a protein (*e.g.*, an antibody) that is substantially free of other cellular material and/or chemicals. In one embodiment, an isolated antibody is substantially free of other proteins from the same species. In one embodiment, an isolated antibody is expressed by a cell from a different species and is substantially free of other proteins from the different species. A protein may be rendered substantially free of naturally associated components (or components associated with the cellular expression system used to

produce the antibody) by isolation, using protein purification techniques well known in the art. In one embodiment, the antibodies, or antigen binding fragments, of the invention are isolated.

5 CD137 Antigen Binding Proteins

The present invention pertains to CD137 binding proteins, particularly anti-CD137 antibodies, or antigen-binding portions thereof, that bind CD137, and uses thereof. Various aspects of the invention relate to antibodies and antibody fragments, pharmaceutical compositions, nucleic acids, recombinant expression vectors, and host cells for making such 10 antibodies and fragments. Methods of using the antibodies of the invention to detect human CD137, to stimulate CD137 activity, either *in vitro* or *in vivo*, and to prevent or treat disorders such as cancer are also encompassed by the invention.

As described in Table 5 below, included in the invention are novel antibody heavy and light chain variable regions that are specific to CD137. In one embodiment, the 15 invention provides an anti-CD137 antibody, or an antigen-binding fragment thereof, that comprises a heavy chain having a variable domain comprising an amino acid sequence as set forth in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 20 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142 and 143. In one embodiment, the invention provides an anti-CD137 antibody, or an antigen-binding fragment thereof, that comprises a light chain having a variable domain comprising an amino acid sequence as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 25 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128. In one embodiment, the invention provides an anti-CD137 antibody, or an antigen-binding fragment thereof, that comprises a light chain having a variable domain comprising an amino acid sequence as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 30 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128; and a heavy chain having a variable domain comprising an amino acid sequence as set forth in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47,

49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142 and 143.

Complementarity determining regions (CDRs) are known as hypervariable regions

5 both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody may be identified using the system described by Kabat *et al.* *supra*; Lefranc *et al.*, *supra* and/or Honegger and Pluckthun, *supra*. Also familiar to those in the art is the numbering system described in Kabat *et al.*
10 (1991, NIH Publication 91-3242, National Technical Information Service, Springfield, Va.). In this regard Kabat *et al.* defined a numbering system for variable domain sequences that is applicable to any antibody. One of ordinary skill in the art can unambiguously assign this system of "Kabat numbering" to any variable domain amino acid sequence, without reliance on any experimental data beyond the sequence itself.

15 In certain embodiments, the present invention provides an anti-CD137 antibody comprising the CDRs of the heavy and light chain variable domains described in Table 5 (SEQ ID Nos: 1 to 143). For example, the invention provides an anti-CD137 antibody, or antigen-binding fragment thereof, comprising a heavy chain variable region having the CDRs described in an amino acid sequence as set forth in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 20, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142 and 143. In one embodiment, the invention provides an anti-CD137 antibody, or antigen-binding fragment thereof, comprising a light chain variable region
25 having the CDRs described in an amino acid sequence as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128. In one embodiment, the invention provides an anti-CD137 antibody, or antigen-binding fragment
30 thereof, comprising a light chain variable region having the CDRs described in an amino acid sequence as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118,

120, 122, 124, 126 and 128; and a heavy chain variable region having the CDRs described in
an amino acid sequence as set forth in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111,
5 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139,
140, 141, 142 and 143.

One or more CDRs may be incorporated into a molecule either covalently or
noncovalently to make it an antigen binding protein.

An antigen binding protein may incorporate the CDR(s) as part of a larger
10 polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may
incorporate the CDR(s) noncovalently. The CDRs permit the antigen binding protein to
specifically bind to a particular antigen of interest.

In one embodiment, the present disclosure provides a fully human antibody of an IgG
class that binds to a CD137 epitope with a binding affinity of 10^{-6} M or less, that has a heavy
15 chain variable domain sequence that is at least 95% identical to the amino acid sequences
selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID
NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15,
SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ
ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO.
20 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47,
SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ
ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO.
69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79,
SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ
25 ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO.
101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO.
111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO.
121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO.
130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO.
30 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO.
140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143, and combinations thereof, and
that has a light chain variable domain sequence that is at least 95% identical to the amino acid
sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ

ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 5 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, 10 SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, SEQ ID NO. 128, and combinations thereof.

In one embodiment, the fully human antibody has both a heavy chain and a light chain wherein the antibody has a heavy chain/light chain variable domain sequence selected from 15 the group consisting of SEQ ID NO. 1/SEQ ID NO. 2 (called A1 herein), SEQ ID NO. 3/SEQ ID NO. 4 (called A4 herein), SEQ ID NO. 5/SEQ ID NO. 6 (called A11 herein), SEQ ID NO. 7/SEQ ID NO. 8 (called B1 herein), SEQ ID NO. 9/SEQ ID NO. 10 (called B3 herein), SEQ ID NO. 11/SEQ ID NO. 12 (called B12 herein), SEQ ID NO. 13/SEQ ID NO. 14 (called C2 herein), SEQ ID NO. 15/SEQ ID NO. 16 (called C3 herein), SEQ ID NO. 17/SEQ ID NO. 18 20 (called C7 herein), SEQ ID NO. 19/SEQ ID NO. 20 (called C11 herein), SEQ ID NO. 21/SEQ ID NO. 22 (called C12 herein), SEQ ID NO. 23/SEQ ID NO. 24 (called D1 herein), SEQ ID NO. 25/SEQ ID NO. 26 (called D4 herein), SEQ ID NO. 27/SEQ ID NO. 28 (called D6 herein), SEQ ID NO. 29/SEQ ID NO. 30 (called D7 herein), SEQ ID NO. 31/SEQ ID NO. 32 (called D8 herein), SEQ ID NO. 33/SEQ ID NO. 34 (called D10 herein), SEQ ID 25 NO. 35/SEQ ID NO. 36 (called E2 herein), SEQ ID NO. 37/SEQ ID NO. 38 (called E5 herein), SEQ ID NO. 39/SEQ ID NO. 40 (called E7 herein), SEQ ID NO. 41/SEQ ID NO. 42 (called F5 herein), SEQ ID NO. 43/SEQ ID NO. 44 (called F7 herein), SEQ ID NO. 45/SEQ ID NO. 46 (called F11 herein), SEQ ID NO. 47/SEQ ID NO. 48 (called G1 herein), SEQ ID NO. 49/SEQ ID NO. 50 (called G2 herein), SEQ ID NO. 51/SEQ ID NO. 52 (called G3 30 herein), SEQ ID NO. 53/SEQ ID NO. 54 (called G5 herein), SEQ ID NO. 55/SEQ ID NO. 56 (called G6 herein), SEQ ID NO. 57/SEQ ID NO. 58 (called G8 herein), SEQ ID NO. 59/SEQ ID NO. 60 (called G12 herein), SEQ ID NO. 61/SEQ ID NO. 62 (called H4 herein), SEQ ID NO. 63/SEQ ID NO. 64 (called H7 herein), SEQ ID NO. 65/SEQ ID NO. 66 (called H8

herein), SEQ ID NO. 67/SEQ ID NO. 68 (called H10 herein), SEQ ID NO. 69/SEQ ID NO. 70 (called H11 herein), SEQ ID NO. 71/SEQ ID NO. 72 (called C3sh1A1 herein), SEQ ID NO. 73/SEQ ID NO. 74 (called C3sh1A2 herein), SEQ ID NO. 75/SEQ ID NO. 76 (called C3sh1A5 herein), SEQ ID NO. 77/SEQ ID NO. 78 (called C3sh1A9 herein), SEQ ID NO. 79/SEQ ID NO. 80 (called C3sh1B2 herein), SEQ ID NO. 81/SEQ ID NO. 82 (called C3sh1B4 herein), SEQ ID NO. 83/SEQ ID NO. 84 (called C3sh1B6 herein), SEQ ID NO. 85/SEQ ID NO. 86 (called C3sh1B9 herein), SEQ ID NO. 87/SEQ ID NO. 88 (called C3sh1C1 herein), SEQ ID NO. 89/SEQ ID NO. 90 (called C3sh1C2 herein), SEQ ID NO. 91/SEQ ID NO. 92 (called C3sh1C7 herein), SEQ ID NO. 93/SEQ ID NO. 94 (called C3sh1D1 herein), SEQ ID NO. 95/SEQ ID NO. 96 (called C3sh1D4 herein), SEQ ID NO. 97/SEQ ID NO. 98 (called C3sh1D6 herein), SEQ ID NO. 99/SEQ ID NO. 100 (called C3sh1E2 herein), SEQ ID NO. 101/SEQ ID NO. 102 (called C3sh1E7 herein), SEQ ID NO. 103/SEQ ID NO. 104 (called C3sh1E9 herein), SEQ ID NO. 105/SEQ ID NO. 106 (called C3sh1F1 herein), SEQ ID NO. 107/SEQ ID NO. 108 (called C3sh1F10 herein), SEQ ID NO. 109/SEQ ID NO. 110 (called C3sh1F12 herein), SEQ ID NO. 111/SEQ ID NO. 112 (called C3sh1F2 herein), SEQ ID NO. 113/SEQ ID NO. 114 (called C3sh1G1 herein), SEQ ID NO. 115/SEQ ID NO. 116 (called C3sh1G11 herein), SEQ ID NO. 117/SEQ ID NO. 118 (called C3sh1G2 herein), SEQ ID NO. 119/SEQ ID NO. 120 (called C3sh1G3 herein), SEQ ID NO. 121/SEQ ID NO. 122 (called C3sh1G5 herein), SEQ ID NO. 123/SEQ ID NO. 124 (called C3sh1G8 herein), SEQ ID NO. 125/SEQ ID NO. 126 (called C3sh1H10 herein), SEQ ID NO. 127/SEQ ID NO. 128 (called C3sh1H4 herein), SEQ ID NO. 129/SEQ ID NO. 28 (called MA8 herein), SEQ ID NO. 130/SEQ ID NO. 28 (called MB1 herein), SEQ ID NO. 131/SEQ ID NO. 28 (called MB3 herein), SEQ ID NO. 132/SEQ ID NO. 28 (called MB10 herein), SEQ ID NO. 133/SEQ ID NO. 28 (called MB12 herein), SEQ ID NO. 134/SEQ ID NO. 28 (called MC8 herein), SEQ ID NO. 135/SEQ ID NO. 28 (called MD1 herein), SEQ ID NO. 136/SEQ ID NO. 28 (called MD4 herein), SEQ ID NO. 137/SEQ ID NO. 28 (called MSA11 herein), SEQ ID NO. 138/SEQ ID NO. 28 (called MSB7 herein), SEQ ID NO. 139/SEQ ID NO. 28 (called MSD2 herein), SEQ ID NO. 140/SEQ ID NO. 28 (called MSE3 herein), SEQ ID NO. 141/SEQ ID NO. 28 (called MSE5 herein), SEQ ID NO. 142/SEQ ID NO. 28 (called MSC8 herein), SEQ ID NO. 143/SEQ ID NO. 28 (called MSH1 herein), and combinations thereof.

In one embodiment, the invention provides an anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a heavy chain comprising a CDR3 domain as set forth

in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142 and 143 and comprising a

5 variable domain comprising an amino acid sequence that has at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence as set forth in any one of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142 and 143. In one embodiment, the invention provides an anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a light chain comprising a CDR3 domain as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108,

10 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128 and having a light chain variable domain comprising an amino acid sequence that has at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence as set forth in any one of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

15 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128. Thus, in certain embodiments, the CDR3 domain is held constant, while variability may be introduced into the remaining CDRs and/or framework regions of the heavy and/or light chains, while the antibody, or antigen binding fragment thereof, retains the ability to bind to CD137 and retains the functional characteristics, *e.g.*, binding affinity, of the parent.

20

25 In one embodiment, the substitutions made within a heavy or light chain that is at least 95% identical (or at least 96% identical, or at least 97% identical, or at least 98% identical, or at least 99% identical) are conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties

30 (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature

of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson (1994) *Methods Mol. Biol.* 24: 307-331, herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include (1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 5 (2) aliphatic-hydroxyl side chains: serine and threonine; (3) amide-containing side chains: asparagine and glutamine; (4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; (5) basic side chains: lysine, arginine, and histidine; (6) acidic side chains: aspartate and glutamate, and (7) sulfur-containing side chains are cysteine and methionine.

In one embodiment, the present invention is directed to an antibody, or an antigen 10 binding fragment thereof, having the antigen binding regions of any of the antibodies described in Table 5.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody D6. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, 15 comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 27, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 27, and a light chain variable domain comprising the CDRs of SEQ ID NO:28. In one embodiment, the invention features an isolated human antibody, or antigen- 20 binding fragment thereof, that comprises a heavy chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 27, and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% 25 identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MB3. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, 30 comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 131, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 131, and a light chain variable domain comprising the CDRs of SEQ

ID NO:28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 131 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO:28. The antibody may further be an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MSH1. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 143, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 143, and a light chain variable domain comprising the CDRs of SEQ ID NO:28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 143 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MB12. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 133, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 133, and a light chain variable domain comprising the CDRs of SEQ ID NO:28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97%

identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 133 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be

5 an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MB10. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 132, and a

10 light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 132, and a light chain variable domain comprising the CDRs of SEQ ID NO: 28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an

15 amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 132 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be

20 an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MB1. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 130, and a

25 light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 130, and a light chain variable domain comprising the CDRs of SEQ ID NO: 28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an

30 amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 130 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at

least 99% identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MSC8. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 142, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 142, and a light chain variable domain comprising the CDRs of SEQ ID NO: 28. In one embodiment, the invention features an isolated human antibody, or antigen-binding fragment thereof, that comprises a heavy chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 142 and comprises a light chain variable region having an amino acid sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to the sequence set forth in SEQ ID NO: 28. The antibody may further be an IgG1 or an IgG4 isotype.

In one embodiment, the present invention is directed to an antibody, or an antigen binding fragment thereof, having antigen binding regions of antibody MSB7. In one embodiment, the invention provides an antibody, or antigen-binding fragment thereof, comprising a heavy chain variable domain sequence as set forth in SEQ ID NO: 138, and a light chain variable domain sequence as set forth in SEQ ID NO: 28. In one embodiment, the invention is directed to an antibody having a heavy chain variable domain comprising the CDRs of SEQ ID NO: 138, and a light chain variable domain comprising the CDRs of SEQ ID NO: 28. The antibody may further be an IgG1 or an IgG4 isotype.

As described in Table 5, a number of heavy chain variable domain amino acid sequences are at least 95% identical to SEQ ID NO: 27. A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO: 27, including SEQ ID NO: 143 (as described for antibody MSH1), SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 129 (as described for antibody MA8), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:141, including SEQ ID NO: 139 (as described for antibody MSD2), SEQ ID NO: 143 (as described for antibody MSH1), SEQ ID NO: 142 (as described for antibody MSC8) and SEQ ID NO: 129 (as described for antibody MA8).

5 A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:139, including SEQ ID NO: 143 (as described for antibody MSH1) and SEQ ID NO: 142 (as described for antibody MSC8).).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:143, including SEQ ID NO: 139 (as described for antibody MSD2), SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 27 (as described for antibody D6) and SEQ ID NO: 129 (as described for antibody MA8).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:142, including SEQ ID NO: 141 (as described for antibody MSE5), SEQ ID NO: 139 (as described for antibody MSD2), SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 143 (as described for antibody MSH1), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:130, including SEQ ID NO: 143 (as described for antibody MSH1), SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:131, including SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:132, including SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID 5 NO: 27 (as described for antibody D6), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:129, including SEQ ID NO: 143 (as described for antibody MSH1), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as 10 described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6), SEQ ID NO: 133 (as described for antibody MB12) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:133, including SEQ ID NO: 142 (as described for 15 antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6), SEQ ID NO: 129 (as described for antibody MA8) and SEQ ID NO: 135 (as described for antibody MD1).

A number of heavy chain variable domains have amino acid sequences that are at 20 least 95% identical to SEQ ID NO:135, including SEQ ID NO: 142 (as described for antibody MSC8), SEQ ID NO: 130 (as described for antibody MB1), SEQ ID NO: 131 (as described for antibody MB3), SEQ ID NO: 132 (as described for antibody MB10), SEQ ID NO: 27 (as described for antibody D6) and SEQ ID NO: 133 (as described for antibody MB12).

25 SEQ ID NO 28 is included as the light chain variable domain in a number of antibodies, including D6, MA8, MB1, MB3, MB10, MB12, MC8, MD1, MD4, MSA11, MSB7, MSD2, MSE3, MSE5, MSC8 and MSH1, as described in Table 5. A number of light chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:28, including SEQ ID NO: 62 (as described for antibody H4), SEQ ID NO: 90 (as 30 described for antibody C3sh1C2) and SEQ ID NO: 84 (as described for antibody C3sh1B6).

A number of light chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:22, including SEQ ID NO: 118 (as described for antibody C3sh1G2) and SEQ ID NO: 14 (as described for antibody C2).

A number of light chain variable domains have amino acid sequences that are at least 95% identical to SEQ ID NO:128, including SEQ ID NO: 50 (as described for antibody G2) and SEQ ID NO: 126 (as described for antibody C3sh1H10).

A number of light chain variable domains have amino acid sequences that are at least

5 95% identical to SEQ ID NO:126, including SEQ ID NO: 50 (as described for antibody G2), SEQ ID NO: 128 (as described for antibody C3sh1H4), SEQ ID NO:40 (as described for antibody E7), and SEQ ID NO: 98 (as described for antibody C3sh1D6).

Antigen binding proteins (e.g., antibodies, antibody fragments, antibody derivatives, antibody muteins, and antibody variants) are polypeptides that bind to CD137.

10 Antigen-binding fragments of antigen binding proteins of the invention may be produced by conventional techniques. Examples of such fragments include, but are not limited to, Fab and F(ab')2 fragments.

Single chain antibodies may be formed by linking heavy and light chain variable domain (Fv region) fragments via an amino acid bridge (short peptide linker), resulting in a 15 single polypeptide chain. Such single-chain Fvs (scFvs) have been prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (VL and VH). The resulting polypeptides can fold back on themselves to form antigen-binding monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et al., 20 1997, Prot. Eng. 10:423; Kortt et al., 2001, Biomol. Eng. 18:95-108). By combining different VL and VH-comprising polypeptides, one can form multimeric scFvs that bind to different epitopes (Kriangkum et al., 2001, Biomol. Eng. 18:31-40). Techniques developed for the production of single chain antibodies include those described in U.S. Patent 4,946,778; Bird, 1988, Science 242:423; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879; Ward et al., 25 1989, Nature 334:544, de Graaf et al., 2002, Methods Mol. Biol. 178:379-87.

In certain embodiments, the present disclosure provides a Fab fully human antibody fragment, having a variable domain region from a heavy chain and a variable domain region from a light chain, wherein the heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% 30 identical, to the amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ

ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143, and combinations thereof, and that has a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, SEQ ID NO. 128, and combinations thereof. Preferably, the fully human antibody Fab fragment has both a heavy chain variable domain region and a light chain variable domain region wherein the antibody has a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ

ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ 5 ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 10 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ 15 ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 20 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 25 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, SEQ ID NO. 143/SEQ ID NO. 28, and combinations thereof.

In one embodiment, the present disclosure provides a single chain human antibody, having a variable domain region from a heavy chain and a variable domain region from a 30 light chain and a peptide linker connection the heavy chain and light chain variable domain regions, wherein the heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO.

3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ 5 ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, 10 SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, 15 SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143, and combinations thereof, and that has a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 20 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ 25 ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ 30 ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, SEQ ID NO. 128, and combinations thereof. Preferably, the fully human single chain antibody has both a heavy chain variable domain region and a light chain variable domain region, wherein the single chain fully human antibody has a heavy chain/light chain variable domain sequence selected from the group

consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, SEQ ID NO. 143/SEQ ID NO. 28, and combinations thereof.

Techniques are known for deriving an antibody of a different subclass or isotype from an antibody of interest, *i.e.*, subclass switching. Thus, IgG antibodies may be derived from an IgM antibody, for example, and vice versa. Such techniques allow the preparation of new

antibodies that possess the antigen-binding properties of a given antibody (the parent antibody), but also exhibit biological properties associated with an antibody isotype or subclass different from that of the parent antibody. Recombinant DNA techniques may be employed. Cloned DNA encoding particular antibody polypeptides may be employed in such 5 procedures, *e.g.*, DNA encoding the constant domain of an antibody of the desired isotype (Lantto et al., 2002, *Methods Mol. Biol.* 178:303-16). Moreover, if an IgG4 is desired, it may also be desired to introduce a point mutation (CPSC->CPPC) in the hinge region (Bloom et al., 1997, *Protein Science* 6:407) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies. Thus, in one embodiment, the antibody 10 of the invention is a human IgG1 antibody. Thus, in one embodiment, the antibody of the invention is a human IgG4 antibody.

The present disclosure provides a number of antibodies structurally characterized by the amino acid sequences of their variable domain regions. However, the amino acid sequences can undergo some changes while retaining their high degree of binding to their 15 specific targets. More specifically, many amino acids in the variable domain region can be changed with conservative substitutions and it is predictable that the binding characteristics of the resulting antibody will not differ from the binding characteristics of the wild type antibody sequence. There are many amino acids in an antibody variable domain that do not directly interact with the antigen or impact antigen binding and are not critical for 20 determining antibody structure. For example, a predicted nonessential amino acid residue in any of the disclosed antibodies is preferably replaced with another amino acid residue from the same class. Methods of identifying amino acid conservative substitutions which do not eliminate antigen binding are well-known in the art (see, *e.g.*, Brummell et al., *Biochem.* 32: 1180-1187 (1993); Kobayashi et al. *Protein Eng.* 12(10):879-884 (1999); and Burks et al. 25 *Proc. Natl. Acad. Sci. USA* 94:412-417 (1997)). Near et al. *Mol. Immunol.* 30:369-377, 1993 explains how to impact or not impact binding through site-directed mutagenesis. Near et al. only mutated residues that they thought had a high probability of changing antigen binding. Most had a modest or negative effect on binding affinity (Near et al. Table 3) and binding to 30 different forms of digoxin (Near et al. Table 2). Thus, the invention also includes, in certain embodiments, variable sequences having at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, or at least 99% identity to those sequences disclosed herein.

In certain embodiments, an antibody, or antigen-binding fragment thereof, provided herein has a dissociation constant (K_d) of 1×10^{-6} M or less; 5×10^{-7} M or less; 1×10^{-7} M or less; 5×10^{-8} M or less; 1×10^{-8} M or less; 5×10^{-9} M or less; or 1×10^{-9} M or less. In one embodiment, the antibody, or antigen-binding fragment thereof, of the invention as a K_d from 5 1×10^{-7} M to 1×10^{-10} M. In one embodiment, the antibody, or antigen-binding fragment thereof, of the invention as a K_d from 1×10^{-8} M to 1×10^{-10} M.

Those of ordinary skill in the art will appreciate standard methods known for determining the K_d of an antibody, or fragment thereof. For example, in one embodiment, K_d is measured by a radiolabeled antigen binding assay (RIA). In one embodiment, an RIA is 10 performed with the Fab version of an antibody of interest and its antigen. For example, solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of (125 I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (see, e.g., Chen *et al.*, *J. Mol. Biol.* 293:865-881(1999)).

15 According to another embodiment, K_d is measured using a BIACORE surface plasmon resonance assay. The term "surface plasmon resonance", as used herein, refers to an optical phenomenon that allows for the analysis of real-time interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACoreTM system (Biacore Life Sciences division of GE Healthcare, Piscataway, NJ).

20 In particular embodiments, antigen binding proteins of the present invention have a binding affinity (K_a) for CD137 of at least 10^6 . In other embodiments, the antigen binding proteins exhibit a K_a of at least 10^7 , at least 10^8 , at least 10^9 , or at least 10^{10} . In another embodiment, the antigen binding protein exhibits a K_a substantially the same as that of an antibody described herein in the Examples.

25 In another embodiment, the present disclosure provides an antigen binding protein that has a low dissociation rate from CD137. In one embodiment, the antigen binding protein has a K_{off} of 1×10^{-4} to $^{-1}$ or lower. In another embodiment, the K_{off} is 5×10^{-5} to $^{-1}$ or lower. In another embodiment, the K_{off} is substantially the same as an antibody described herein. In another embodiment, the antigen binding protein binds to CD137 with substantially the same 30 K_{off} as an antibody described herein.

In another aspect, the present disclosure provides an antigen binding protein that binds to CD137 expressed on the surface of a cell and, when so bound, inhibits CD137 signaling activity in the cell without causing a significant reduction in the amount of CD137

on the surface of the cell. Any method for determining or estimating the amount of CD137 on the surface and/or in the interior of the cell can be used. In other embodiments, binding of the antigen binding protein to the CD137-expressing cell causes less than about 75%, 50%, 40%, 30%, 20%, 15%, 10%, 5%, 1%, or 0.1% of the cell-surface CD137 to be internalized.

5 In another aspect, the present disclosure provides an antigen binding protein having a half-life of at least one day *in vitro* or *in vivo* (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days. In another embodiment, the antigen binding protein has a half-life of four days or longer. In another embodiment, the antigen binding protein has a half-life of eight days or longer. In another embodiment, the antigen binding protein is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antigen binding protein. In another embodiment, the antigen binding protein contains one or more point mutations to increase serum half life, such as described in WO00/09560, incorporated by reference herein.

10

The present disclosure further provides multi-specific antigen binding proteins, for example, bispecific antigen binding protein, e.g., antigen binding protein that bind to two different epitopes of CD137, or to an epitope of CD137 and an epitope of another molecule, via two different antigen binding sites or regions. Moreover, bispecific antigen binding protein as disclosed herein can comprise a CD137 binding site from one of the herein-described antibodies and a second CD137 binding region from another of the herein-described antibodies, including those described herein by reference to other publications.

15

20 Alternatively, a bispecific antigen binding protein may comprise an antigen binding site from one of the herein described antibodies and a second antigen binding site from another CD137 antibody that is known in the art, or from an antibody that is prepared by known methods or the methods described herein.

25 Numerous methods of preparing bispecific antibodies are known in the art. Such methods include the use of hybrid-hybridomas as described by Milstein et al., 1983, *Nature* 305:537, and chemical coupling of antibody fragments (Brennan et al., 1985, *Science* 229:81; Glennie et al., 1987, *J. Immunol.* 139:2367; U.S. Patent 6,010,902). Moreover, bispecific antibodies can be produced via recombinant means, for example by using leucine zipper 30 moieties (i.e., from the *Fos* and *Jun* proteins, which preferentially form heterodimers; Kostelny et al., 1992, *J. Immunol.* 148:1547) or other lock and key interactive domain structures as described in U.S. Patent 5,582,996. Additional useful techniques include those described in U.S. Patents 5,959,083; and 5,807,706.

In another aspect, the antigen binding protein comprises a derivative of an antibody. The derivatized antibody can comprise any molecule or substance that imparts a desired property to the antibody, such as increased half-life in a particular use. The derivatized antibody can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, 5 colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or streptavidin), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antibody for a particular use (e.g., administration to a subject, such as a human subject, or other *in vivo* 10 or *in vitro* uses). Examples of molecules that can be used to derivatize an antibody include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antibodies can be prepared using techniques well known in the art. In one embodiment, the antibody is conjugated or otherwise linked to transthyretin (TTR) or a TTR variant. The TTR or TTR variant can be chemically modified with, for example, a 15 chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.

Oligomers that contain one or more antigen binding proteins may be employed as CD137 antagonists. Oligomers may be in the form of covalently-linked or non-covalently-linked 20 dimers, trimers, or higher oligomers. Oligomers comprising two or more antigen binding protein are contemplated for use, with one example being a homodimer. Other oligomers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc.

One embodiment is directed to oligomers comprising multiple antigen binding 25 proteins joined via covalent or non-covalent interactions between peptide moieties fused to the antigen binding proteins. Such peptides may be peptide linkers (spacers), or peptides that have the property of promoting oligomerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote oligomerization of antigen binding proteins attached thereto, as described in more detail below.

30 In particular embodiments, the oligomers comprise from two to four antigen binding proteins. The antigen binding proteins of the oligomer may be in any form, such as any of the forms described above, e.g., variants or fragments. Preferably, the oligomers comprise antigen binding proteins that have CD137 binding activity.

In one embodiment, an oligomer is prepared using polypeptides derived from immunoglobulins. Preparation of Fusion Proteins Comprising Certain Heterologous Polypeptides Fused to Various Portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., 1991, *Proc. Natl. Acad. Sci. USA* 88:10535; Byrn et al., 1990, *Nature* 344:677; and Hollenbaugh et al., 1992 "Construction of Immunoglobulin Fusion Proteins", in *Current Protocols in Immunology*, Suppl. 4, pages 10.19.1-10.19.11.

One embodiment is directed to a dimer comprising two fusion proteins created by fusing a CD137 binding fragment of an anti-CD137 antibody to the Fc region of an antibody.

10 The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer.

15 Another method for preparing oligomeric antigen binding proteins involves use of a leucine zipper. Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., 1988, *Science* 240:1759), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring

20 peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al., 1994, *FEBS Letters* 344:191. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in Fanslow et al., 1994, *25 Semin. Immunol.* 6:267-78. In one approach, recombinant fusion proteins comprising an anti-CD137 antibody fragment or derivative fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric anti-CD137 antibody fragments or derivatives that form are recovered from the culture supernatant.

30 Antigen binding proteins directed against CD137 can be used, for example, in assays to detect the presence of CD137 polypeptides, either *in vitro* or *in vivo*. The antigen binding proteins also may be employed in purifying CD137 proteins by immunoaffinity chromatography. Such antigen binding proteins that function as CD137 agonists may be

employed in treating any CD137-induced condition, including but not limited to various cancers.

Antigen binding proteins may be employed in an *in vitro* procedure, or administered *in vivo* to enhance CD137-induced biological activity. Disorders that would benefit (directly or indirectly) from activation of CD137, examples of which are provided herein, thus may be treated. In one embodiment, the present invention provides a therapeutic method comprising *in vivo* administration of a CD137 activating antigen binding protein to a mammal in need thereof in an amount effective for increasing a CD137-induced biological activity.

In certain embodiments of the invention, antigen binding proteins include fully human monoclonal antibodies that enhance a biological activity of CD137.

Antigen binding proteins, including antibodies and antibody fragments described herein, may be prepared by any of a number of conventional techniques. For example, they may be purified from cells that naturally express them (e.g., an antibody can be purified from a hybridoma that produces it), or produced in recombinant expression systems, using any technique known in the art. See, for example, *Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses*, Kennet et al. (eds.), Plenum Press, New York (1980); and *Antibodies: A Laboratory Manual*, Harlow and Land (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1988).

Any expression system known in the art can be used to make the recombinant polypeptides, including antibodies and antibody fragments described herein, of the invention. In general, host cells are transformed with a recombinant expression vector that comprises DNA encoding a desired polypeptide. Among the host cells that may be employed are prokaryotes, yeast or higher eukaryotic cells. Prokaryotes include gram negative or gram positive organisms, for example *E. coli* or *bacilli*. Higher eukaryotic cells include insect cells and established cell lines of mammalian origin. Examples of suitable mammalian host cell lines include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., 1981, *Cell* 23:175), L cells, 293 cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, BHK (ATCC CRL 10) cell lines, and the CV1/EBNA cell line derived from the African green monkey kidney cell line CV1 (ATCC CCL 70) as described by McMahan et al., 1991, *EMBO J.* 10: 2821. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described by Pouwels et al. (*Cloning Vectors: A Laboratory Manual*, Elsevier, N.Y., 1985).

The transformed cells can be cultured under conditions that promote expression of the polypeptide, and the polypeptide recovered by conventional protein purification procedures.

One such purification procedure includes the use of affinity chromatography, *e.g.*, over a matrix having all or a portion (*e.g.*, the extracellular domain) of CD137 bound thereto.

5 Polypeptides contemplated for use herein include substantially homogeneous recombinant mammalian anti-CD137 antibody polypeptides substantially free of contaminating endogenous materials.

Antigen binding proteins may be prepared, and screened for desired properties, by any of a number of known techniques. Certain of the techniques involve isolating a nucleic acid 10 encoding a polypeptide chain (or portion thereof) of an antigen binding protein of interest (*e.g.*, an anti-CD137 antibody), and manipulating the nucleic acid through recombinant DNA technology. The nucleic acid may be fused to another nucleic acid of interest, or altered (*e.g.*, by mutagenesis or other conventional techniques) to add, delete, or substitute one or more amino acid residues, for example.

15 Polypeptides of the present disclosure can be produced using any standard methods known in the art. In one example, the polypeptides are produced by recombinant DNA methods by inserting a nucleic acid sequence (*e.g.*, a cDNA) encoding the polypeptide into a recombinant expression vector and expressing the DNA sequence under conditions promoting expression.

20 Nucleic acids encoding any of the various polypeptides disclosed herein may be synthesized chemically. Codon usage may be selected so as to improve expression in a cell. Such codon usage will depend on the cell type selected. Specialized codon usage patterns have been developed for *E. coli* and other bacteria, as well as mammalian cells, plant cells, yeast cells and insect cells. See for example: Mayfield et al., *Proc. Natl. Acad. Sci. USA*.

25 2003 100(2):438-42; Sinclair et al. *Protein Expr. Purif.* 2002 (1):96-105; Connell N D. *Curr. Opin. Biotechnol.* 2001 12(5):446-9; Makrides et al. *Microbiol. Rev.* 1996 60(3):512-38; and Sharp et al. *Yeast.* 1991 7(7):657-78.

30 General techniques for nucleic acid manipulation are described for example in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Vols. 1-3, Cold Spring Harbor Laboratory Press, 2 ed., 1989, or F. Ausubel et al., *Current Protocols in Molecular Biology* (Green Publishing and Wiley-Interscience: New York, 1987) and periodic updates, herein incorporated by reference. The DNA encoding the polypeptide is operably linked to suitable transcriptional or translational regulatory elements derived from mammalian, viral, or insect

genes. Such regulatory elements include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. The ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to 5 facilitate recognition of transformants is additionally incorporated.

The recombinant DNA can also include any type of protein tag sequence that may be useful for purifying the protein. Examples of protein tags include but are not limited to a histidine tag, a FLAG tag, a myc tag, an HA tag, or a GST tag. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts can be 10 found in *Cloning Vectors: A Laboratory Manual*, (Elsevier, N.Y., 1985).

The expression construct is introduced into the host cell using a method appropriate to the host cell. A variety of methods for introducing nucleic acids into host cells are known in the art, including, but not limited to, electroporation; transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; 15 microprojectile bombardment; lipofection; and infection (where the vector is an infectious agent). Suitable host cells include prokaryotes, yeast, mammalian cells, or bacterial cells.

Suitable bacteria include gram negative or gram positive organisms, for example, *E. coli* or *Bacillus spp.* Yeast, preferably from the *Saccharomyces* species, such as *S. cerevisiae*, may also be used for production of polypeptides. Various mammalian or insect cell culture 20 systems can also be employed to express recombinant proteins. *Baculovirus* systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, (*Bio/Technology*, 6:47, 1988). Examples of suitable mammalian host cell lines include endothelial cells, COS-7 monkey kidney cells, CV-1, L cells, C127, 3T3, Chinese hamster 25 ovary (CHO), human embryonic kidney cells, HeLa, 293, 293T, and BHK cell lines. Purified polypeptides are prepared by culturing suitable host/vector systems to express the recombinant proteins. For many applications, the small size of many of the polypeptides disclosed herein would make expression in *E. coli* as the preferred method for expression. The protein is then purified from culture media or cell extracts.

Proteins disclosed herein can also be produced using cell-translation systems. For 30 such purposes the nucleic acids encoding the polypeptide must be modified to allow in vitro transcription to produce mRNA and to allow cell-free translation of the mRNA in the particular cell-free system being utilized (eukaryotic such as a mammalian or yeast cell-free translation system or prokaryotic such as a bacterial cell-free translation system).

CD137-binding polypeptides can also be produced by chemical synthesis (*e.g.*, by the methods described in Solid Phase Peptide Synthesis, 2nd ed., 1984, The Pierce Chemical Co., Rockford, Ill.). Modifications to the protein can also be produced by chemical synthesis.

The polypeptides of the present disclosure can be purified by isolation/purification methods for proteins generally known in the field of protein chemistry. Non-limiting examples include extraction, recrystallization, salting out (*e.g.*, with ammonium sulfate or sodium sulfate), centrifugation, dialysis, ultrafiltration, adsorption chromatography, ion exchange chromatography, hydrophobic chromatography, normal phase chromatography, reversed-phase chromatography, gel filtration, gel permeation chromatography, affinity chromatography, electrophoresis, countercurrent distribution or any combinations of these. After purification, polypeptides may be exchanged into different buffers and/or concentrated by any of a variety of methods known to the art, including, but not limited to, filtration and dialysis.

The purified polypeptide is preferably at least 85% pure, more preferably at least 95% pure, and most preferably at least 98% pure. Regardless of the exact numerical value of the purity, the polypeptide is sufficiently pure for use as a pharmaceutical product.

In certain embodiments, the present disclosure provides monoclonal antibodies that bind to CD137. Monoclonal antibodies may be produced using any technique known in the art, *e.g.*, by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, *e.g.*, by fusing them with myeloma cells to produce hybridomas. Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 48210. Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6.

Fragments or analogs of antibodies can be readily prepared by those of ordinary skill in the art following the teachings of this specification and using techniques known in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the

nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Computerized comparison methods can be used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are 5 known. See, Bowie et al., 1991, *Science* 253:164.

Post-Translational Modifications of Polypeptides

In certain embodiments, the binding polypeptides of the invention may further comprise post-translational modifications. Exemplary post-translational protein modifications include phosphorylation, acetylation, methylation, ADP-ribosylation, ubiquitination, 10 glycosylation, carbonylation, sumoylation, biotinylation or addition of a polypeptide side chain or of a hydrophobic group. As a result, the modified soluble polypeptides may contain non-amino acid elements, such as lipids, poly- or mono-saccharide, and phosphates. A preferred form of glycosylation is sialylation, which conjugates one or more sialic acid 15 moieties to the polypeptide. Sialic acid moieties improve solubility and serum half-life while also reducing the possible immunogenicity of the protein. See Raju et al. *Biochemistry*. 2001 31; 40(30):8868-76.

In one embodiment, modified forms of the subject soluble polypeptides comprise linking the subject soluble polypeptides to nonproteinaceous polymers. In one embodiment, the polymer is polyethylene glycol ("PEG"), polypropylene glycol, or polyoxyalkylenes, in 20 the manner as set forth in U.S. Patents 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

PEG is a water soluble polymer that is commercially available or can be prepared by ring-opening polymerization of ethylene glycol according to methods well known in the art (Sandler and Karo, *Polymer Synthesis*, Academic Press, New York, Vol. 3, pages 138-161). 25 The term "PEG" is used broadly to encompass any polyethylene glycol molecule, without regard to size or to modification at an end of the PEG, and can be represented by the formula: $X-O(CH_2CH_2O)_n-CH_2CH_2OH$ (1), where n is 20 to 2300 and X is H or a terminal 30 modification, e.g., a C_{1-4} alkyl. In one embodiment, the PEG of the invention terminates on one end with hydroxy or methoxy, i.e., X is H or CH_3 ("methoxy PEG"). A PEG can contain further chemical groups which are necessary for binding reactions; which results from the chemical synthesis of the molecule; or which is a spacer for optimal distance of parts of the molecule. In addition, such a PEG can consist of one or more PEG side-chains which are linked together. PEGs with more than one PEG chain are called multiarmed or branched

PEGs. Branched PEGs can be prepared, for example, by the addition of polyethylene oxide to various polyols, including glycerol, pentaerythriol, and sorbitol. For example, a four-armed branched PEG can be prepared from pentaerythriol and ethylene oxide. Branched PEG are described in, for example, EP-A 0 473 084 and U.S. Patent. 5,932,462. One form of PEGs 5 includes two PEG side-chains (PEG2) linked via the primary amino groups of a lysine (Monfardini et al., *Bioconjugate Chem.* 6 (1995) 62-69).

The serum clearance rate of PEG-modified polypeptide may be decreased by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or even 90%, relative to the clearance rate of the unmodified binding polypeptide. The PEG-modified polypeptide may have a half-life 10 ($t_{1/2}$) which is enhanced relative to the half-life of the unmodified protein. The half-life of PEG-binding polypeptide may be enhanced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 125%, 150%, 175%, 200%, 250%, 300%, 400% or 500%, or even by 15 1000% relative to the half-life of the unmodified binding polypeptide. In some embodiments, the protein half-life is determined *in vitro*, such as in a buffered saline solution or in serum. In other embodiments, the protein half-life is an *in vivo* half life, such as the half-life of the protein in the serum or other bodily fluid of an animal.

Therapeutic Methods, Formulations and Modes of Administration

The present disclosure further provides a method for treating a disease requiring either stimulation of immune responses, comprising administering an anti-CD137 polypeptide. Any 20 of the antibodies disclosed herein may be used in such methods. For example, the methods may be performed using an anti-CD137 polypeptide selected from the group consisting of a fully human antibody of an IgG class that binds to a CD137 epitope with a binding affinity of at least $10^{-6}M$, a Fab fully human antibody fragment, having a variable domain region from a heavy chain and a variable domain region from a light chain, a single chain human antibody, 25 having a variable domain region from a heavy chain and a variable domain region from a light chain and a peptide linker connection the heavy chain and light chain variable domain regions, including the heavy and light chain variable regions (and CDRs within said sequences) described in SEQ ID Nos. 1-143 (Table 5).

For example, in one embodiment, the methods disclosed herein include the use of a 30 fully human antibody having a heavy chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to an amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO.

11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21,
SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ
ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO.
43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53,
5 SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ
ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO.
75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85,
SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ
ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID
10 NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID
NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID
NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID
NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID
NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ
15 ID NO. 143, and that having a light chain variable domain sequence that is at least 95%
identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99%
identical, to an amino acid sequence selected from the group consisting of SEQ ID NO. 2,
SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID
NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO.
20 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34,
SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ
ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO.
56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66,
SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ
25 ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO.
88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98,
SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108,
SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118,
SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO.
30 128.

In one embodiment, the methods described herein include the use of a fully human
Fab antibody fragment has the heavy chain variable domain sequence that is at least 95%
identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99%

identical, to an amino acid sequences selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ 5 ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, 10 SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID 15 NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and that has the light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to the amino acid sequence consisting SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, 30 SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

In one embodiment, the methods described herein include the use of a single chain human antibody having a heavy chain variable domain sequence that is at least 95% identical,

at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and having a light chain variable domain sequence that is at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical, to an amino acid sequence consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

In one embodiment, the fully human antibody has both a heavy chain and a light chain wherein the antibody has a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

In one embodiment, the fully human antibody Fab fragment has both a heavy chain variable domain region and a light chain variable domain region wherein the antibody has a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ 5 ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 10 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ 15 ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 20 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 25 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID 30 NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

In one embodiment, the fully human single chain antibody has both a heavy chain variable domain region and a light chain variable domain region, wherein the single chain fully human antibody has a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ

5 ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 10 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ 15 ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 20 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 25 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, 30 SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

In one embodiment, the anti-CD137 antibodies and antibody fragments of the invention are used to treat a disease selected from the group consisting of cancers, autoimmune diseases and viral infections.

Due to the role of CD137 signaling in promoting T cell and NK cell proliferation, 5 IFN- γ secretion, and prolonging the survival of CD8+ T cells, CD137 engagement may provide an attractive strategy for immunotherapy of cancer. Antibodies against CD137 have variable anti-tumor therapeutic effects depending on the immunogenicity of the experimental tumor and anatomical site of tumor growth. Treatment with agonist anti-CD137 mAbs caused regression of large, well-established tumors in mice, including Ag104A sarcoma, P815 10 mastocytoma, EL4E7 lymphomas and B10.2 fibrosarcoma. This treatment also generated systemic antitumor effects in established intracranial tumors including MCA sarcoma and GL261 glioma, but not in established subcutaneous and pulmonary tumors.

Altogether, CD137 stimulation results in enhanced expansion, survival, and effector 15 functions of newly primed CD8+ T-cells, acting, in part, directly on these cells. Both CD4+ and CD8+ T-cells have been shown to respond to CD137 stimulation, however, it appears 20 that enhancement of T-cell function is greater in CD8+ cells (W. Shuford et al., J. Exp. Med., 186(1):47-55 (1997); I. Gramaglia et al., Eur. J. Immunol., 30(2):392-402 (2000); C. Takahashi et al., J. Immunol., 162:5037 (1999)). Based on the critical role of CD137 stimulation in CD8+ T-cell function and survival, manipulation of the CD137/CD137L 25 system provides an approach for the treatment of tumors and viral pathogens. Thus, in one embodiment, the anti-CD137 agonist antibodies of the invention (e.g., those described in Table 5) may be used in a method of treating a patient having a cancer, including, for example, ovarian cancer, colorectal cancer (e.g. colorectal adenocarcinoma), melanoma, hepatocellular carcinoma, renal cancer, breast cancer, head and neck cancer, lung cancer, non-hodgkin lymphoma, and liver cancer.

CD137 seems to play a role in CD8+ T cell-mediated antiviral responses. CD137L-deficient mice had decreased CTL responses to influenza virus in the late stage of primary response and defective secondary response. There was also diminished CD8+ T cell responses and IFN- γ expression after lymphocytic choriomeningitis virus (LCMV) infection. 30 There was impaired efficacy of vaccination with LCMV peptide in long term protection generation against LCMV infection. CD137-deficient mice showed decreased CTL activity against vesicular stomatitis virus (VSV). However, these mice showed normal humoral immune responses to viruses.

CD137 stimulation also restored CD8+ T cell response to an immunodominant influenza epitope in the absence of CD28 stimulation. Promoting CD8+ T cell responses by modifying CD137 signaling may be a useful approach to improve antiviral CD8+ T cell responses.

5 CD137/CD137L interaction plays an important role in regulating alloresponses *in vivo*. Anti-CD137 mAbs enhance cardiac allograft and MHC-mismatched skin transplant rejection with dramatically increased INF- γ production by CD8+ T cells and CTL activity against alloantigens. Blocking CD137/CD137L interaction by anti-CD137L mAbs significantly inhibited rejection of intestinal allografts by CD8+ but not CD4+ T cells. Anti-
10 CD137 mAbs promoted both CD8+ and CD4+ T cell-mediated graft-versus-host disease (GVHD) and host anti-donor-mediated graft rejection could be regulated through CD137/CD137L interaction by using anti-CD137 mAbs, CD137-/- donor T cells, or CD137L-/- recipients. Blocking CD137/CD137L interaction may reduce GVHD and prevent CD8+ T cell-mediated allograft rejection. For allograft rejection involving both CD4+ and
15 CD8+ T cells, combined blockade of CD137/CD137L and other costimulatory signaling is required.

T cells are involved in the pathogenesis of many autoimmune diseases. The activation of T cells in response to their cognate peptide/MHC targets requires costimulatory signals delivered by APCs occurring at multiple steps. Conventional costimulation blockade is an
20 attractive therapeutic approach for the treatment of T cell-dependent auto immune diseases. Anti-CD137 Mabs can block several costimulatory pathways, such as CD28/B7, CD40L/CD40 and OX-40L/OX-40R, with either soluble receptors or neutralizing anti-ligand mAbs. However, costimulatory agonists of CD137 could also prevent and have therapeutic effects on CD4+ T cell-involved autoimmune diseases. A single low dose of agonistic anti-
25 CD137 mAb treatment prevented the development of EAE, a Th1 cell-mediated demyelinating disease of the central nervous system used as a murine model for human multiple sclerosis. Draining lymph node cells from anti-4-1BB-treated mice failed to respond to antigen stimulation *in vitro* or to transfer disease to RAG-1-deficient recipient mice. When treatment was initiated after disease onset, early EAE relapse was also inhibited. Agonistic
30 anti-4-1BB mAbs treatment initially increased T cell activation, and then promoted the clearance of these activated CD4+ T cells, resulting in the attenuation of their effector functions. Administering agonistic anti-CD137 mAbs also showed promising therapeutic effect in both CD4+ T cell and B cell involved spontaneous systemic autoimmune disease.

MRL/lpr mice spontaneously develop lymphadenopathy and a severe autoimmune disease resembling human SLE due to the lymphoproliferative (lpr) mutation in the *Fas* gene. Short-term treatment with anti-CD137 blocked lymphadenopathy and spontaneous autoimmune diseases in MRL/lpr mice, ultimately leading to their prolonged survival. This therapeutic 5 regimen was also effective when started after the mice had already showed clinically detectable autoimmune disease. The therapeutic effects of anti-CD137 were mediated by the depletion of auto-reactive B cells, activated CD4+ T cells and the aberrant CD4-CD8-B220+ CD3+ T cells that principally contribute to lymphadenopathy in MRL/lpr mice. Giving lupus-prone NZB×NZW F1 female mice three injections of anti-CD137 mAbs between 26 and 35 10 weeks of age reversed acute disease, blocked chronic disease, and prolonged the mice's lifespan. Autoantibody production in treated mice, regardless of their age or disease status, was rapidly suppressed without inducing systemic immunosuppression or massive depletion of lymphocytes. In this model, adoptive transfer of antigen-primed CD4+ T cells or DCs overrode anti-CD137-mediated protection, which suggests that unresponsiveness is not 15 achieved by active suppression. However, CD137 engagement *in vivo* does not ameliorate all autoimmune diseases. Transgenic non-obese diabetic (NOD) mice overexpressing membrane-bound agonistic anti-CD137 scFv in pancreatic beta cells exhibited increased GAD-specific T cell responses, and developed more severe diabetes than their non-transgenic littermates, with earlier onset, faster diabetic processes, and higher mortality. Anti-CD137 20 treatment, starting around the onset of disease, promoted disease onset in NOD mice. Thus, in one embodiment, the anti-CD137 agonist antibodies of the invention (e.g., those described in Table 5) may be used in a method of treating a patient having an autoimmune disease, including, for example, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and myasthenia gravis.

25 The present disclosure features methods for treating or preventing the *S. aureus* infection comprising administering an anti-CD137 polypeptide. Techniques and dosages for administration vary depending on the type of specific polypeptide and the specific condition being treated but can be readily determined by the skilled artisan. In general, regulatory agencies require that a protein reagent to be used as a therapeutic is formulated so as to have 30 acceptably low levels of pyrogens. Accordingly, therapeutic formulations will generally be distinguished from other formulations in that they are substantially pyrogen free, or at least contain no more than acceptable levels of pyrogen as determined by the appropriate regulatory agency (e.g., FDA).

Therapeutic compositions of the present disclosure may be administered with a pharmaceutically acceptable diluent, carrier, or excipient, in unit dosage form. Administration may be parenteral (*e.g.*, intravenous, subcutaneous), oral, or topical, as non-limiting examples. In addition, any gene therapy technique, using nucleic acids encoding the 5 polypeptides of the invention, may be employed, such as naked DNA delivery, recombinant genes and vectors, cell-based delivery, including *ex vivo* manipulation of patients' cells, and the like.

The composition can be in the form of a pill, tablet, capsule, liquid, or sustained release tablet for oral administration; or a liquid for intravenous, subcutaneous or parenteral 10 administration; gel, lotion, ointment, cream, or a polymer or other sustained release vehicle for local administration.

In certain embodiments, the disclosed antibodies are administered by inhalation, but aerosolization of full IgG antibodies may prove limiting due to their molecular size (~150kDa). To maximize available commercial aerosolization devices, smaller Fab fragments 15 may be required. In this case, we may also need to generate Fab fragments from the parental IgG molecules. Therefore, we will perform initial studies using standard enzyme-based digestion methodologies for the generation of Fab fragments, which will then be characterized in parallel with full IgG molecules.

Methods well known in the art for making formulations are found, for example, in 20 "Remington: The Science and Practice of Pharmacy" (20th ed., ed. A. R. Gennaro A R., 2000, Lippincott Williams & Wilkins, Philadelphia, Pa.). Formulations for parenteral administration may, for example, contain excipients, sterile water, saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated naphthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or 25 polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Nanoparticulate formulations (*e.g.*, biodegradable nanoparticles, solid lipid nanoparticles, liposomes) may be used to control the biodistribution of the compounds. Other potentially useful parenteral delivery systems include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. The concentration of 30 the compound in the formulation varies depending upon a number of factors, including the dosage of the drug to be administered, and the route of administration.

The polypeptide may be optionally administered as a pharmaceutically acceptable salt, such as non-toxic acid addition salts or metal complexes that are commonly used in the

pharmaceutical industry. Examples of acid addition salts include organic acids such as acetic, lactic, pamoic, maleic, citric, malic, ascorbic, succinic, benzoic, palmitic, suberic, salicylic, tartaric, methanesulfonic, toluenesulfonic, or trifluoroacetic acids or the like; polymeric acids such as tannic acid, carboxymethyl cellulose, or the like; and inorganic acid such as

5 hydrochloric acid, hydrobromic acid, sulfuric acid phosphoric acid, or the like. Metal complexes include zinc, iron, and the like. In one example, the polypeptide is formulated in the presence of sodium acetate to increase thermal stability.

Formulations for oral use include tablets containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients. These excipients may be, for 10 example, inert diluents or fillers (e.g., sucrose and sorbitol), lubricating agents, glidants, and anti-adhesives (e.g., magnesium stearate, zinc stearate, stearic acid, silicas, hydrogenated vegetable oils, or talc).

Formulations for oral use may also be provided as chewable tablets, or as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, or as soft gelatin 15 capsules wherein the active ingredient is mixed with water or an oil medium.

A therapeutically effective dose refers to a dose that produces the therapeutic effects for which it is administered. The exact dose will depend on the disorder to be treated, and may be ascertained by one skilled in the art using known techniques. In general, the polypeptide is administered at about 0.01 $\mu\text{g}/\text{kg}$ to about 50 mg/kg per day, preferably 0.01 20 mg/kg to about 30 mg/kg per day, most preferably 0.1 mg/kg to about 20 mg/kg per day. The polypeptide may be given daily (e.g., once, twice, three times, or four times daily) or 25 preferably less frequently (e.g., weekly, every two weeks, every three weeks, monthly, or quarterly). In addition, as is known in the art, adjustments for age as well as the body weight, general health, sex, diet, time of administration, drug interaction, and the severity of the disease may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A CD137 binding polypeptide, as disclosed herein, can be administered alone or in combination with one or more additional therapies such as chemotherapy radiotherapy, immunotherapy, surgical intervention, or any combination of these. Long-term therapy is 30 equally possible as is adjuvant therapy in the context of other treatment strategies, as described above.

In certain embodiments of such methods, one or more polypeptide therapeutic agents can be administered, together (simultaneously) or at different times (sequentially). In

addition, polypeptide therapeutic agents can be administered with another type of compounds for treating cancer or for inhibiting angiogenesis.

In certain embodiments, the subject anti-CD137 antibodies agents of the invention can be used alone.

5 In certain embodiments, the binding polypeptides of fragments thereof can be labeled or unlabeled for diagnostic purposes. Typically, diagnostic assays entail detecting the formation of a complex resulting from the binding of a binding polypeptide to CD137. The binding polypeptides or fragments can be directly labeled, similar to antibodies. A variety of labels can be employed, including, but not limited to, radionuclides, fluorescers, enzymes, 10 enzyme substrates, enzyme cofactors, enzyme inhibitors and ligands (*e.g.*, biotin, haptens). Numerous appropriate immunoassays are known to the skilled artisan (see, for example, U.S. Patents. 3,817,827; 3,850,752; 3,901,654; and 4,098,876). When unlabeled, the binding polypeptides can be used in assays, such as agglutination assays. Unlabeled binding polypeptides can also be used in combination with another (one or more) suitable reagent 15 which can be used to detect the binding polypeptide, such as a labeled antibody reactive with the binding polypeptide or other suitable reagent (*e.g.*, labeled protein A).

In one embodiment, the binding polypeptides of the present invention can be utilized in enzyme immunoassays, wherein the subject polypeptides are conjugated to an enzyme. When a biological sample comprising a CD137 protein is combined with the subject binding 20 polypeptides, binding occurs between the binding polypeptides and the CD137 protein. In one embodiment, a sample containing cells expressing a CD137 protein (*e.g.*, endothelial cells) is combined with the subject antibodies, and binding occurs between the binding polypeptides and cells bearing a CD137 protein recognized by the binding polypeptide. These bound cells can be separated from unbound reagents and the presence of the binding 25 polypeptide-enzyme conjugate specifically bound to the cells can be determined, for example, by contacting the sample with a substrate of the enzyme which produces a color or other detectable change when acted on by the enzyme. In another embodiment, the subject binding polypeptides can be unlabeled, and a second, labeled polypeptide (*e.g.*, an antibody) can be added which recognizes the subject binding polypeptide.

30 In certain aspects, kits for use in detecting the presence of a CD137 protein in a biological sample can also be prepared. Such kits will include a CD137 binding polypeptide which binds to a CD137 protein or portion of said receptor, as well as one or more ancillary reagents suitable for detecting the presence of a complex between the binding polypeptide

and the receptor protein or portions thereof. The polypeptide compositions of the present invention can be provided in lyophilized form, either alone or in combination with additional antibodies specific for other epitopes. The binding polypeptides and/or antibodies, which can be labeled or unlabeled, can be included in the kits with adjunct ingredients (e.g., buffers, 5 such as Tris, phosphate and carbonate, stabilizers, excipients, biocides and/or inert proteins, e.g., bovine serum albumin). For example, the binding polypeptides and/or antibodies can be provided as a lyophilized mixture with the adjunct ingredients, or the adjunct ingredients can be separately provided for combination by the user. Generally these adjunct materials will be present in less than about 5% weight based on the amount of active binding polypeptide or 10 antibody, and usually will be present in a total amount of at least about 0.001% weight based on polypeptide or antibody concentration. Where a second antibody capable of binding to the binding polypeptide is employed, such antibody can be provided in the kit, for instance in a separate vial or container. The second antibody, if present, is typically labeled, and can be formulated in an analogous manner with the antibody formulations described above.

15 Polypeptide sequences are indicated using standard one- or three-letter abbreviations. Unless otherwise indicated, each polypeptide sequence has amino termini at the left and a carboxy termini at the right; each single-stranded nucleic acid sequence, and the top strand of each double-stranded nucleic acid sequence, has a 5' termini at the left and a 3' termini at the right. A particular polypeptide sequence also can be described by explaining how it differs 20 from a reference sequence.

Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.

Example 1

25 Human antibodies specific for human CD137 were identified and selected for therapeutic characteristics, including specificity for CD137 and a high degree of affinity for CD137 (e.g., at least 10^{-6} M). The identified antibodies are described in Table 5.

To demonstrate agonistic activity, the ability of the anti-CD137 antibodies (specifically D6, C3sh1G3, C7, and C3sh1F10) to mediate costimulatory activity was 30 assessed. Both anti-CD137 antibodies and anti-CD3 antibody were added to the wells of a 96 well plate in PBS to immobilize the antibodies to the plate. The anti-CD137 was at 10 microgram/ml and the anti-CD3 was at 3 microgram/ml. After a minimum of 2 hours at room temperature, the wells were washed and monocyte depleted lymphocytes were added to the

wells at 2×10^5 per well. The monocytes were depleted by labeling peripheral blood mononuclear cells (PBMC) with biotinylated anti-CD14 antibody followed by incubation with anti-biotin magnetic beads. Passage over a column in the presence of a magnet resulted in depletion of the monocytes.

5 To measure cell activation, the cells were labeled with FITC anti-human CD25 after three days of culture. The percentage of cells positive for CD25 expression was measured by flow cytometry and is described in Figure 1A. The percent change from normal, or normalized data, was determined by the below formula and the results are shown in Figure 1B.

10

$$\left(\frac{\text{test \% CD25} - \text{control \% CD25}}{\text{control \% CD25}} \right) \times 100$$

15 The use of immobilized anti-CD137 antibodies in the assay facilitated their ability to mimic the ligand and promote signaling to the cell resulting in co-stimulation. From the data shown in Figure 1A, antibody D6 consistently, in particular, provided a co-stimulatory signal to the T cells and is an agonistic anti-CD137 antibody. This is more apparent when the data are normalized relative to the control as shown in Figure 1B.

20 The above experiment was repeated in a third experiment testing anti-CD137 antibody D6 and D6 variants MA8, MB3, MSD2, MSH1, MSB7, MSA11, MD4, MB12, MB10, MB1, MSE5, MSC8, MSE3, MD1, and MC8 for their ability to increase CD25 activity as a measure of cell activation. The experiment was performed as described above, and the results are provided in Figures 3A and 3B (normalized; for certain antibodies). As shown in Figures 3A and 4B, out of many CD137 reactive antibodies tested, certain particular 25 antibodies were identified that demonstrate agonistic activity.

Example 2

30 This example describes affinity characteristics for a number of anti-CD137 antibodies that were identified and are described in Table 5. Table 1 describes the affinity characteristics of antibodies MC8 and MSA11. Table 2 describes the affinity characteristics of antibodies MSB7, MSH1, and MD4. Table 3 describes the affinity characteristics of antibodies D6, MB3, and MSC8. Table 4 describes the binding characteristics of antibody B12.

Antibodies MC8, MSA1, MSB7, MSH1, MD4, D6, MB3, MSC8, and MB12 are variants of the D6 antibody. Each antibody has a light chain variable region comprising SEQ ID NO: 28, while the heavy chain of each is varied relative to D6.

5 Table 1: Binding characteristics of antibodies MC8 and MSA11

name	ka (1/Ms)	kd (1/s)	Rmax (RU)	KA (1/M)	KD (M)	Chi2
MC8	2.08E5	6.28E-3	296	3.32E7	3.02E-8	0.807
MSA11	1.35E5	6.31E-3	293	2.13E7	4.69E-8	0.438

Table 2: Binding characteristics of antibodies MSB7, MSH1, and MD4

name	ka (1/Ms)	kd (1/s)	Rmax (RU)	KA (1/M)	KD (M)	Chi2
MSB7	4.56E5	7.56E-3	214	6.03E7	1.66E-8	1.66
MSH1	3.69E5	0.0324	60.6	1.14E7	8.78E-8	0.675
MD4	5.76E5	0.0512	71.3	1.12E7	8.89E-8	1.27

Table 3: Binding characteristics of antibodies D6, MB3, and MSC8

Name	Ka (1/Ms)	Kd (1/s)	Rmax (RU)	KD (M)	Chi2
D6	4.013E5	0.08137	64.5	2.028E-7	0.411
MB3	2.959E5	0.0678	86.15	2.292E-7	1.87
MSC8	2.816E5	0.0615	86.41	2.184E-7	1.51

10 Table 4: Binding characteristics of MB12 for CD137

name	ka (1/Ms)	kd (1/s)	Rmax (RU)	KA (1/M)	KD (M)	Chi2
MB12	4.33E5	0.0669	32.3	6.47E6	1.55E-7	0.0887

This example illustrates binding affinities of exemplary anti-CD137 antibodies disclosed herein. Affinities were determined using surface plasmon resonance (Biacore). Briefly, anti-human Fc antibody (GE, BR-1008-39) was immobilized on CM5 sensor chip to 15 approximately 1000 RU using standard NHS/EDC coupling methodology. Antibodies (about 10 µg/ml) were captured for 60 s at a flow rate 10 µl/min. Recombinant human CD137/His

was serially diluted in running buffer (HBS-EP). All measurements were conducted with a flow rate of 30 μ L/min. Surfaces were regenerated with 3M MgCl₂ for 60 s. A 1:1 (Langmuir) binding model was used to fit the data.

5

Example 3

The following example describes the characterization of anti-CD137 antibodies D6, MB3, MSC8, and MB12. The amino acid sequence of the variable heavy and light chains of each of these antibodies is provided in Table 5.

Cross-reactivity studies of anti-CD137 antibodies D6, MB3, MSC8, and MB12 10 revealed that these antibodies are specific to human CD137 and to not cross react with murine CD137. Results from the cross-reactivity study are described in Figure 2 and show that each antibody was specific for human CD137, and not murine CD137.

A Maxisorp plate was coated with recombinant human CD137/Fc or mouse 15 CD137/Fc at 2 μ g/mL at 4°C, overnight. The plate was blocked for 1 hour at room temperature, washed 3 times with PBS-Tween (PBST), then anti-CD137 antibodies (~1 μ g/mL) diluted in casein were added and incubated for 30 min with shaking. The plate was washed 3 times with PBST, horseradish peroxidase (HRP)-conjugated mouse anti-human 20 Lambda (1:1000 in casein) was added, then 3,3',5,5'-Tetramethylbenzidine (TMB) was added as substrate and developed about 5 min. 2M H₂SO₄ was used to stop the reaction and the OD was read at 450nm.

Table 5: Heavy and Light Chain Variable Domain Amino Acid Sequences

	Heavy chain variable domain regions	Light chain variable domain regions
A1	EVQLVESGAEVKKPGASVKVSCKAS GYTFTSYMMHWVRQAPGQGLEWMG IINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCAVPTDG YNYFGAFDIWGQGTMVTVSS SEQ ID NO. 1	QAGLTQPPSVSEAPRQRTISCSGSYS NIGFNAWSWYQQFPGEAPKLLIYYDD LLSSGVSGRFSGRSRSGTSASLAISGLQS DDEAVYYCATWDDSVNGWVFGGGT KLTVL SEQ ID NO. 2
A4	EVQLVQSGGDLVRPGGSLRLSCTVSG LPYSDYYMMHWIRQAPGKKLEWISDIG PRGTSVHYADSVKGRFTVSRDNTKNS LYLQMNNLRADDTAVYYCANAFASSS WFYNWGRGTLTVSS SEQ ID NO. 3	SSELTQDPAVSVALGQTVRITCQGDSL RYYASWYQQKPGQAPIILLIYGKDLR PSGIPDRFSGSSSENTASLTVGAQAE DEGEYYCNSRDSSGNWVFGGGTQLT VL SEQ ID NO. 4
A11	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTSYDINWVRQAPGQGLEWMG WIGTYNGVTNYAQTFQGRVSMTTDT STSTAYMELRSRLRSDDTAVYYCARDA GPLDYWGQGTLTVSS SEQ ID NO. 5	EIVLTQSPSSLSASVGDRVTITCRASQS ISSYLNWYQQKPGKAPNLLIYGASSL QSGVPSRFSGSGSGTDFTLTISLQPED FATYYCQQSYTTPYTFGQGKVDIK SEQ ID NO. 6
B1	EVQLLESGGGLVKPGGSLRLSCAASG FIFSTYAMTWVRQAPGKGLEWVSSIS SSSSYIYYADSVKGRFTISRDNAKNSL YLQMNSLRAEDTAVYYCARDEGVFD YWGQGTLTVSS SEQ ID NO. 7	QSVLTQPPSASGSPGQSVTISCTGTSSD VGAYNYWSWYQEYPGKAPKLMYEV NKRPSGPDRFSGSKSGNTASLTVSG LQAEDeadYYCYYAGHNNPYVFGT GTKVTVL SEQ ID NO. 8
B3	QVQLVQSGAEVKKPGASVKVSCKTS GYTFTSYNMHWVRQAPGQGLEWMG VINPSDRYTWWYAQKFRGRVTMTRDT STSTVYMELSSLRSEDTAIYYCARGGE DTASYYWGQGTLTVSS SEQ ID NO. 9	SSELTQDPAVSVALGQTLRITCQGDSL RSYYASWYQQKPGQAPVLVIYGKNN RPSGIPDRFSGSTSGNTDSLTITGAQAE DEADYFCSSRDSSDNHNLVLFGGGK LTVL SEQ ID NO. 10
B12	QVQLVQSGGGLIQPGGSLRLSCAASG FTVSNNYMRWVRQAPGKGLEWVSLI YSTGTTYYADSVKGRFTISRDNSKNT LYLQMNSLRAEDTAVYYCARDRGQ WFDPWGQGTLTVSS SEQ ID NO. 11	SSELTQDPAVSVALGQTVRITCQGDSL RSYYASWYQQKPGQAPVLVIYGKNN RPSGIPDRFSGSSSGNTASLTITGAQAE DEADYYCHSRDSNGNHNIFGGGKLT VL SEQ ID NO. 12

	Heavy chain variable domain regions	Light chain variable domain regions
C2	EVQLVQSGAEVKKPGSSVKVSCKASG GTFSSY AISWVRQAPGQGLEWMGDIV PIFGVANYAQKFQGRVTMTRDTSTST VYMDLSSLRSEDTAVYYCARDRGAF DIWGQGTMVTVSS SEQ ID NO. 13	AIRMTQSPSSLSASVGDRVITCRASQ TISSYLNWYQQKPGKAPKLLIYGASSL QSGVPSRFSGSGSGTDFTLTISSLQPED FATYYCQQSYSTPWTFGQGKVDIK SEQ ID NO. 14
C3	QVQLVQSGAEVKKPGSSVKVSCKAS GGTFSSY AISWVRQAPGQGLEWMGGI IPIFGTANYAQKFQGRVTITADESTST AYMELSSLRSEDTAVYYCARVGRLER PYYFDYWGQGTLTVSS SEQ ID NO. 15	SYELTQPPSLSVAPGKTARITCGGDNI RSKSVNWYQQKPGQAPLLVISFDSDR PSGIPERVSGNSGNTATLTISTVEAG DEADYYCQVWDGYVGVFGGGTQLT VL SEQ ID NO. 16
C7	QVQLVQSGTEVKKPGASVKVSCKAS GYTFTGYYIHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT SISTAYMELSRLRSDDTAVYYCARDY YDSSGYFGPDYWGQGTLTVSS SEQ ID NO. 17	QSALTQPPSASGSPGQSVTISCTGTSSD VGAYNFVSWYQQHPGKAPKLMYDV SNRPGVSNRFSGSKSGNTASLTISGL QAEDEADYYCSSYTSSSTRWVFGTGT KVTVL SEQ ID NO. 18
C11	EVQLVESGGALVQPGGSLRLSCAASG FTFTNFWMDWVRQAPGKGLEWVADI NKDGGEKYYVDSVKGRFTISRDNAG NSLYLQMNSLRAEDTAVYYCARDAM RGGDLDYWGQGTLTVSS SEQ ID NO. 19	EIVLTQSPSSLSASVGDRVITCQASQ DIRNYLNWYQQKPGKAPKLLIYAASS LQSGVPSRFSGSGSGTDFTLTISSLQPE DFATYYCQQSYSTPGFGGGTKVDIK SEQ ID NO. 20
C12	QVQLVQSGGGLVQPGGSLRLSCAASG FTFTNFWMDWVRQAPGKGLEWVADI NKDGGEKYYVDSVKGRFTISRDNAG NSLYLQMNSLRAEDTAVYYCARDAM RGGDLDYWGQGTLTVSS SEQ ID NO. 21	AIQMTQSPSSLSASVGDRVITCRASQ SISSYLNWYQQKPGKAPKLLIYAASSL QSGVPSRFSGSGSGTDFTLTISSLQPED FATYYCQQSYSTPTFGQGKVEIK SEQ ID NO. 22
D1	EVQLVESGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGPEWMG VISPGDATTYAPKFQGRLTMTRETST GTDYMELOSSLRSEDTAVYYCAKDLY WGAADYWGQGTLTVSS SEQ ID NO. 23	QSVLTQPASVSGSPGQSITISCTGTSGD VGGYNVSWYQHHPGKAPKLMIFDV SDRPSCVSSRFFGSKSGNTASLTISGL QAEDEADYYCSSYTSSSTWVFGGGTK LTVL SEQ ID NO. 24

	Heavy chain variable domain regions	Light chain variable domain regions
D4	EVQLVESGGGVQPGGSLRLSCAASG FTFRTYAMHWVRQAPDKGLEWVAII S DDETHKYYADSVKGRFTISRDNSKNT LFLQINGLRADDSAVYYCAVHDFDF WGQGTLVTVSS SEQ ID NO. 25	QSVLTQPPSASGSPGQSVTISCTGTNS DIGGNYVSWFQQHPGKAPKLMYD VNKRPSGVPDFSGSKSGNTASLTVS GLQAEDEADYYCSSFAGSNNSIFGTG TKLTVL SEQ ID NO. 26
D6	QMQLVQSGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTIRDT ASTAYMELSSLRSEDTAVYYCAREGE AVGLLDYWGQGTLVTVSS SEQ ID NO. 27	SYELTQPPSVSAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28
D7	QLQLQESGPGLVRPSETSLTCTVSGG SISSFYWTWIRQPPGKALEWIGYIYHN GYSRYSPSLKSRVSMSVDTSRNQFSL HLNSVTAADTAVYYCARANNDYLFF DLWGRGTLVTVSS SEQ ID NO. 29	QSVVTQPPSASGTPGQRTISCSRS NIGSNIVSWYQHVPGTAPKLLIYGNA QRPSGVPDFSGSKSGTSASLAISGLQ SEDEADYYCATWDDSLSGWVLGGGT KVTVL SEQ ID NO. 30
D8	EVQLVESGGGLVQPGGSLRLSCAASG FTFSSYEMNWVRQAPGKGLEWVSYIS SSGSTIYYADSVKGRFTISRDNAKNSL YLQMNSLRAEDTAVYYCARDGVDY YDSSGYYPPSAGMDVWGQGTTVTVS S SEQ ID NO. 31	DIVMTQSPSTLSASVGDRVTITCRASQ SVDTWLAWYQQQPGKAPRLLISKAS RLQTDIPSRFSAGGSGTVFTLTISLQP DDFATYYCQQYYSFPTFGQGKLEIK SEQ ID NO. 32
D10	EVQLVESGGGLVKPGGSLRLSCAASG FTFSDDYYMNWIRQAPGKGLEWVSYIS SGGTTIYYADSVKGRFTISRDNAKTS FLQMDSLAIEDTAVYYCVRDFNSGSA FDLWGQGTMVTVSS SEQ ID NO. 33	QPVLTQSPSVSVPQQTITCSGDKL GDKYVAWYQQKSGQSPVLIYQDNK RPSGIPERFSGNSGNTATLTISGTQPV DEADYYCQAWDSSTVFGGGTKLTVL SEQ ID NO. 34
E2	EVQLVQSGAEVKKPGASVKVSCKAS GYTFTGYFMHWVRQAPGQGLEWMG WINPDSGGTNYAQKFQGRVTMTRDT SISTAYMELNRLRSDDTAVYYCARDN TVRSDYWGQGTLVTVSS SEQ ID NO. 35	QAVVTQPPSASGSPGQSITISCTGTSSD VGGNYVSWYQQHPGKAPKLMYD VSKRPSGVSNRFSGSKSGNTASLTISG LQAEDEADYYCSSYSGTTRWVFGT GTKLTVL SEQ ID NO. 36

	Heavy chain variable domain regions	Light chain variable domain regions
E5	QMQLVQSGAEVKKPGASVKVSCKAS EHTFTSYYMYWVRQAPGQGLEWMGI INPSDDYTNYAQKFQGRVTMTRDTST STVYMESSLRSEDTAVYYCASFNGG GNSVFGALDIWGQGTMVTVSS SEQ ID NO. 37	SSELTQDPAVSVASGQTVRITCQGDSDL RRYYAGWYQQKPGQAPVLVIFGKNN RPSGIPDRFSGSSSGNTASLTITGAQAE DEADYYCNSRDSSGNHYVFGTGTKV TVL SEQ ID NO. 38
E7	EVQLVESGGGLVQPGRSLRLSCAASG FTFGDYAMHWVRQAPGKGLEWVSGI SWNSGSIGYADSVKGRFTISRDNAKN SLYLQMNSLRAEDTALYYCATGLGG WLRIDDAFDIWGQGTMVTVSS SEQ ID NO. 39	SYELTQPPSVVSPGQTARITCSGDAL PKQYAYWYQQKPGQAPVLVIYKDSE RPSGIPERFSGSSSGTTVTLTISGVQAE DEADYYCQSADSSGTYQVFGGGTKL TVL SEQ ID NO. 40
F5	QMQLVQSGAEVKKPGASVKVSCKAS GYTFTNYYLHWVRQAPGQGLEWMG MVNPIGGYTNYSQTFQGRVTVTRDTA TSTAYMELNLRSEDTAVYFCARGFG FIDHWGQGTLTVSS SEQ ID NO. 41	LLVLTQSPSVVSPGQTARITCSGDAL PKQYAYWYQQKPGQAPVLVIYKDSE RPSGIPERFSGSSSGTTVTLTISGVQAA DEADYYCQSADSSDIVVFGGGTQLTV L SEQ ID NO. 42
F7	QVQLVQSGGGLVQPGRSLRLSCAASG FTFDDYAMHWVRQAPGKGLEWVSGI SWNSGSIGYADSVKGRFTISRDNAKN SLYLQMNSLRAEDTALYYCAKDIKV ARGYGMDFWGQGTMVTVSS SEQ ID NO. 43	QPVLTQPPSVSAAPGQMVTCSCGSSS NIGDNYVSWYQQFPGTAPKLLIYGDN RRPSAVPDRFSGNSGTSASLAITGLQ AEDEADYYCQSYDRSLSGWVFGGGT KLTQL SEQ ID NO. 44
F11	QVQLQQSGPGLVKPSQLSLTCAISGD NVSTNISSWNWIRQSPSRGLEWLGR YYRSKWFNDYAVSVKSRITINPDTSK NLFSLQLNSVTPEDTAVYYCARGSAF NIWGQGTMVTVSS SEQ ID NO. 45	SYVLTQPAVGSPGQSITISCIGTSSD VGNSNLVSWYQHHPGKAPKLMIFEV TKRPSGVSNRFGSKSGNTASLTISGL QAEDEADYYCSSYTSSSTLVFGGGTK VTVL SEQ ID NO. 46
G1	EVQLVQSGGGLVQPGGSLRLSCAASG FTFSDYYMNWIRQAPGKGLEWLSYIS SGGSTIYYADSVKGRFTISRDNAKNSL YLQMNSLRAEDTAVYYCAREDYGGN SVLFDYWGQGTLTVSS SEQ ID NO. 47	SSELTQDPAVSVALGQTVRITCQGDSDL RSYYASWYQQKPGQAPVLVIYGDNN RPSGIPDRFSGSSSRNTASLTITGAQAE DEADYYCNSRDSSANHFYVFGTGTK TVL SEQ ID NO. 48

	Heavy chain variable domain regions	Light chain variable domain regions
G2	QVQLVQSGAEVKKPGASVKVSCKAS GYTFLSHYIHWVRQAPGQGLQWMGII NANGGSTTYAQEFLGRVIMTTDTSTG TAYLELISLRSDDTAVYYCARDMAGT WNHGSIDSWGQGTLTVSS SEQ ID NO. 49	LPVLTQPASVSGSPGQSITISCTGTSSD VGGYNVSWYQQHPGKAPKLMYD VSNRPSGVSNRSGSKSGNTASLTISG LQAEDeadYYCSSYTSSSTYVFGTGT KLTVL SEQ ID NO. 50
G3	QMQLVQSGAEVKKPGASVKVSCKAS GYTFTGYYLYWVRQAPGQGLEWMG WIDPNSSGGTNYAQKFQGRVTVRDTS ISTA YMELTRLRSDDTAVYFCAIGYY GSTYFDYWGQGTLTVSSG SEQ ID NO. 51	QSVLTQPPSASATPGQRTISCSGSTS NIGTNAVDWYQQFPGTAPKLLIFSN QRPSGVPDFSGSKSGTSASLAISGLQ SEDEADYYCAAWDDSLNGYVFGTGT KVTVL SEQ ID NO. 52
G5	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTNYYMHWVRQAPGQGLEWMG IMDPSGGSATYAQKLQGRIIMTRDTST STVYMELSNLRSEDTAVYYCARDPDF YGLGSYSHGAFDIWGQGTMVTVSS SEQ ID NO. 53	QPVLTQPASVSGSPGQSVTISCTGAGS DVGGYDYVSWYQQHPGKAPKLIIFD VNNRPSGVSYRSGSKSANTASLTISG LQSEDEADYYCSSYTSSSTWVFGGGT KLTVL SEQ ID NO. 54
G6	QMQLVQSGAEVKKPGESLKISCKGSG YNFTNYFIAWVRQMPGKGLEWMGM FYPGDSKTTYNPSFQGQVIISADKSINT AYLQWSSLKASDTAVYYCARAFYAA GNYFDYWGQGTLTVSSG SEQ ID NO. 55	SSELTQDPAVSVALGQTVRITCQGDSDL RRYYASWYQQKPGQAPRLLMYGKNI RPSGIPDRFSGTDSGNTAFLTITGAQA EDEADYYCNSRDTNANQPLVLFGGG TKVTVL SEQ ID NO. 56
G8	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSSGGTNYAQKFQGRVTMTRDT SISTAYMELSRRLSDDTAVYYCASNY YGSGSSFDYWGQGTLTVSS SEQ ID NO. 57	QPVLTQPRSVSGSPGQSVTISCTGTSS DVGGYNFVSWYQQHPGKAPKLMYD VSKRPSGVSNRSGSKSGNTASLTISG LQAEDeadYYCNSYTSSSTRYVFGTGT TKLTVL SEQ ID NO. 58
G12	QVQLVQSGADVKPGASVKVSCKAS GYTFTSYYMHWVRQAPGQGLEWMG IINPSGGSTSYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGVGE LWGWGQGTLTVSS SEQ ID NO. 59	QSVLTQPASVSGYPGQSITISCIGSSD VGFSQYVSWYQHHPDRPPKLIYDVS NRPSGVSDRFSGSKSGNTASLTISGLQ AEDEADYYCSSYRSSGTYVFGTGTKV TVL SEQ ID NO. 60

	Heavy chain variable domain regions	Light chain variable domain regions
H4	QVQLVESGGGLVKPGRSLRLSCTASG FTFGDYAMSWFRQAPGKGLEWVGFI RSKAFFGTTEYAA SVKGRFSISRDDS KNIAYVQMNSLKTDDTAVYYCTRDS GPGWERSFDYWGQGTLTVSS SEQ ID NO. 61	QSVLTQPPSVS VAPGKTARITCGGNNI GSKSVHWYQQKPGQAPV LVI YYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSDHPVFGGGTQL TVL SEQ ID NO. 62
H7	EVQLVESGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT SISTAYMELSRLRSDDTAVYYCARDI VGSTDYWGQGTLTVSS SEQ ID NO. 63	QAVLTQPA SVSGSPGQSITISCTGTNS DIGTNYVSWYQQHPGKAPKLIYDV TKRPSGVSNRFSGSKSGNTASLTISGL QAEDEADYYCSSYTSSSTRWVFGGGT QLTVL SEQ ID NO. 64
H8	EVQLVESGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WIDPNSGGTNYAQKFQGRVTMTRDT SISTAYMELSRLRSDDTAVYYCAKDD YWGQGTLTVSS SEQ ID NO. 65	QAGLTQPA SVSGSPGQSIAISCTGTSS DVGSY NLVSWYQQHPGKAPKLMIE VIKRPSGISDRFSGSKSGNTASLTISGL QAEDEADYYCFSY TSSTTRYVFGTGT KVTVL SEQ ID NO. 66
H10	QVQLVQSGAEVKKPGASVKVSCKTS GYTFTSYNMHWVRQAPGQGLEWMG VINPSDRYTWYAQKFQGRVTMTRDT STSTVYME LSSLRSEDTAIYYCARGGE DTASYYWGQGTLTVSS SEQ ID NO. 67	SSELTQDPAV SVALGQTLRITCQGDSL RSYYASWYQQKPGQAPV LVIYKNN RPSGIPDRFSGSTSGNTDSLITGAQAE DEADYFCSSRDSSDNHLNVLFGGTK VTVL SEQ ID NO. 68
H11	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTTYYMHWVRQAPGQGLEWMG IINPTGGSTS YAQKFQGRVTMTRDTST STVYME LSSLRSEDTAVYYCARTEYS SGWAGDYWGQGTLTVSS SEQ ID NO. 69	QSVLTQPPSVS VSGSPGQSITISCTGTSRD VGLYNYVSWYQQHPDKAPKLLIYDV SERPSGISNRFSGSKSGNTATLTISGLQ PEDEADYYCGSY TSSTTRYVFGTGT VTVL SEQ ID NO. 70
C3sh1A11	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT SISTAYMELSRLRSDDTAVYYCAREG VGATSWFDPWGQGTLTVSS SEQ ID NO. 71	SSELTQDPAV SVALGQTVRITCQGDSL RRYHASWYQQKPGQAPV LVIYNKNN RPSGIPDRFSGSSSGNTDSLITGAQAE DEADYYCNSRDSSGNVYVFGTGT KLT VL SEQ ID NO. 72

	Heavy chain variable domain regions	Light chain variable domain regions
C3sh1A2	EVQLVQSGGGVVQPGRLRLSCAASG FTFSSYAMHWVRQAPGKGLEWVAA MSHDGIQKDYADSVKGRFTISRDNSK NTLYLQMNSLRAEDTAVYYCAQGGG FAYGMEDYWGQGTLTVSS SEQ ID NO. 73	AIQMTQSPSSLSASVGDRVSFTCQASQ DISNYLNWYQQKPGKAPKLMISDAST LETGVPSRFSGSQSGTYFTFTISSLQPD DFATYYCQHYDSFPLTFGGGTKEIK SEQ ID NO. 74
C3sh1A5	QVQLVQSGAEEKTPGASVKISCKASG NTFNNYDIHWVRQAPGERPEWMGWI NSGNGDTRNSQKFQGRVTITWDTAS TAYMELSSLTSEDTGVYFCARAEGPL DYWGQGTLTVSS SEQ ID NO. 75	DIVMTQTPSSLSASVGDRVITCRASQ GIYNYLAWYQQKLGKAPNLLIYATSN LQSGVPSRFSGSQSGTDFLTITSSLQPE DFATYYCQQSYSTPWTFGQGTTKVEIK SEQ ID NO. 76
C3sh1A9	QVQLVQSGAEVKKPGASVKVSCKAS GYTFTSKWMHWVRQAPGQGPEWMG VINPSSGGTTYAQKFQGRLTVTREDTSS STVYMELSSLRSEDTAVYYCARDDVF DYYFGLDVWGQGTTTVSS SEQ ID NO. 77	SSELTQDPAVSVALGQTVRITCQGDSDL RRYYASWYQQKPGQAPRLLIYGNIR PSGIPDRFSGTDSGNTDFLTITGAQAE DEADYYCNSRDTDANQPLVLFGGGT KLTVL SEQ ID NO. 78
C3sh1B2	QVQLVQSGGDLVQPGGLRLSCAASG FLFSNSWMTWVRQAPGKGLEWLANI KPDGSGQYYVDSLGRFTISRDNAKN SLYLQMNSLRVEDTAMYYCARDRGN DGLDYWGQGTLTVSS SEQ ID NO. 79	SYELTQPPSVSVPQQTARITCSGEKL DDKYTFWYQQRTGQTPVLVIYQDKK RPSGIPERFSGNSGNTATLTISGTQAV DEADYYCQTYDSGAPVFGGGTAKLTV L SEQ ID NO. 80
C3sh1B4	EVQLVESGAELKKPGASVKVSCMAS GYTFTDYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT SISTAYMELSRLRSDDTAVYYCARDG STYTDYWGQGTLTVSS SEQ ID NO. 81	QSVLTQPPSVSGSPGQSITISCTGTSSD VGGYDFVAWYQQHPGKAPKLLIYDV SNRPSGVSNRFSGSKSGNTASLKISGL RAEDEADYYCSSYTSSARWVFGGGT KVTVL SEQ ID NO. 82
C3sh1B6	QVQLVESGGGLVKPGRLRLSCTASG FTFGDYAMSWFRQAPGKGLEWVGF RSKAFGGTTEYAAASVKGRTISRDDS NSIAYLQMNSLKTEDTAVYYCTRDSG PGWERSFDYWGQGTLTVSS SEQ ID NO. 83	SYELTQPPSVSVPQQTARITCGGNNI GSKSVHWYQQKPGQAPVLIYDSD RPSGIPERFSGNSGNTATLTISRVEAG DEADYYCQVWDSSDHGVFGGGTAKL TVL SEQ ID NO. 84

	Heavy chain variable domain regions	Light chain variable domain regions
C3sh1B9	QVQLVQSGAEEKTPGASVKISCKASG NTFNNYDIHWVRQAPGERPEWMGWI NSGNGDTRNSQKFQGRVTITWDTAS TAYMELSSLTSEDTGVYFCARAEGPL DYWGQGTLTVSS SEQ ID NO. 85	DIVMTQSPSSLASVGDRVTITCRASQ GIYNLYAWYQQKLGKAPNLLIYATSN LQSGVPSRFSGSGSGTDFLTISQLQPE DFATYYCQQSYSTPWTFGQGKVEIK SEQ ID NO. 86
C3sh1C1	EVQLVQSGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQSPEWMG WINVGNGNIRYSQKFQGRVTFTGDT ATTAYMDLSSLRSEDTAVFYCAREGA ASGLDLDYWGQGTLTVSS SEQ ID NO. 87	SYELTQPPSVVAPGKTARITCGGNNI GSKHVHWYQQKPGQAPVLVINYDSD RPSGIPERLSGSNSGNTATLTISRVEAG DEADYYCQVWDSTSDHVIFGGGTLK TVL SEQ ID NO. 88
C3sh1C2	EVQLLESGGVVQPGRSRLSCAASG FTFSNYAMHWVRQAPGKGLEWVAVI SLDGSRHYADSVKGRFTISRDNSQN TLYLQMNSLRAEDTAMYCAQDLYD DNRWGVFDYWGQGTLTVSS SEQ ID NO. 89	QSVLTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSDHVVFGGGTLK TVL SEQ ID NO. 90
C3sh1C7	EVQLLESGAEVKKPGASVKVSCKASG YTFSTYYMHWVRQAPGQGLEWMGII NPSGGSTSAYQKFQGRVTMTRDTSTS TVYMELOSSLRSEDTAVYYCARDPGA GGYFDYWGQGTLTVSS SEQ ID NO. 91	SYVLTQPPSASGSPGQSVTISCTGTSSD VGGYNVSWYQQHPGKAPKLMYD VSKRPSGVPDFSGSKSGNTASLTISG LQAEDADYYCSSYTSSSTRYVFGTG TKLTVL SEQ ID NO. 92
C3sh1D11	QVQLVQSGAEMKKPGSSVKVSCKAS GYTFTSYGISWVRQAPGQGLEWMW ISAYNGNTNYAQKLQGRVTMTDTST STAYMELRSRLSDDTAVYYCARDLSQ WYQLYGADYYYGMDVWGQGTTVT VSS SEQ ID NO. 93	QSALTQPPSVSAAPGQKVTTISCGSSS NIGNNYVSWYQQLPGTAPKLLIYDNN KRPSGIPDRFSGSKSGNTASLTISG GDEADYYCGTWDSSLAVVFGGGTK VTVL SEQ ID NO. 94
C3sh1D4	EVQLVQSGAEVTKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT SISTAYMELRSRLSDDTAVYYCARDN AGLGDYWGQGTLTVSS SEQ ID NO. 95	QAGLTQPASVSPGQSITISCTGTSSD VGAYNYVSWYQQHPGKAPKLMYD VSNRPSGVSNRFSGSKSGNTASLTISG LQAEDADYYCSSYSSINSRYVFGTG TKVTVL SEQ ID NO. 96

	Heavy chain variable domain regions	Light chain variable domain regions
C3sh1D6	EVQLVESGAEVKKPGSSVKVSCKASG GYTFTSYAISWVRQAPGQGLEWMGIIN PSGGSTSQAQKFQGRVTMTRDTSTST VYMEMLSSLRSEDTAVYYCAGTPSLKY DYYYYGMDVWGQGTTVTVSS SEQ ID NO. 97	QSVLTQPASVSGSPGQSITISCTGTSSD VGGYNVSWYQQYPGKAPKLMYD VSKRPSGVSHRFSGSKSGNTASLTISG LQAEDeadYYCSSYTSSSTLVFGGGT KLTVL SEQ ID NO. 98
C3sh1E12	EVQLVESGAEVKKPGASVKVSCKAS GYTFTNYYIHWVRQAPGQGLEWMGII NPSGGYTSSAQKFQGRVTMTRDTSTS TVYMEMLSSLRSEDTAVYYCARDRDSG SYYDAFDIWGQGTMVTVSS SEQ ID NO. 99	SSELTQDPAVSVALGQTVRITCQGDSDL RSYYASWYQQKPGQAPLLVIYGKNN RPAGISDRFSGSDSEDIASLTITGAQAE DEADYYCNSRDSNAHWVFGGGTKLT VL SEQ ID NO. 100
C3sh1E7	QVQLVQSGGLVQPGGSLRLSCAASG FTFSSSAMSWVRQAPGKGLEWVSGIS GSGDSAYYADSVKGRFTISRDNSKNT LYLHMNSLTAEDTAVYYCASGGNYG SGTIVSHGMDVWGQGTTVTVSS SEQ ID NO. 101	QSVVTQPPSVSAAPGHKVTISCGNNS NVGRNYVSWYQQVPGTAPKLLIYDD NKRPSGIPDRFSGSTSGASATLVITGL QTGDEADYYCGAWDSSLSAGVFGGG TKLTVL SEQ ID NO. 102
C3sh1E9	EVQLLESGGGLVQPGGSLRLSCAASG FTFNNYAMSWVRQAPGKGLEWVSTI SGSGENTHYADSVKGRFTISRDNSKD TLYLQMSSLRAEDTAVYYCANQYDT TDYYYYWGEYFHHWGQGTLTVSS SEQ ID NO. 103	SYELTQPPSVSVSPGQTARITCSGDAL PKQYAYWYQQKPGQAPVLVIYKDSE RPSGIPERFSGSSSGTTVTLTISGVQAE DEADYYCQSADSSGTYVVFGGGTKL TVL SEQ ID NO. 104
C3sh1F1	EVQLVESGAEVKKPGASVKVSCKAS GYTFTGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTMTRDT STSTVYMEMLSSLRSEDTAVYYCARDI RAFDIWGQGTMVTVSS SEQ ID NO. 105	QPVLTQPASVSGSPGQSITISCTGTSSD VGSYNFVSWYQQHPGKAPKLMYDV SNRPSGVSDRFSGSKSGNTASLTISGL QAEDEADYYCSSYTSSSTRWVFGGGT KLTVL SEQ ID NO. 106

	Heavy chain variable domain regions	Light chain variable domain regions
C3sh1F10	EVQLVQSGVEVKPGASVKVSCKVS GNTLTEISMHWVRQVPGKGLEWMGG FDLEDGETVYAQKFQGRVTLEDTSI DTAYELRSLRSEDTAVYYCATGPAGY RLFEYWGQGTLTVSS SEQ ID NO. 107	LPVLTQPPSVSGAPGQRTISCTGSSS NIGAGYDVHWYQQLPGTAPKLLIYG NSNRPSPVDRFSGSKSGTSASLAITG LQAEDeadYYCQSYDSSLSGYVFGTG TKVTVL SEQ ID NO. 108
C3sh1F12	EVQLVQSGAEVKPGASVKVSCKAS GYTFTSHYMHWVRQAPGQGLEWMG VINPSGGSTSYAQKFQGRVTMTRDTS TSTVYMDLSSLRSEDTAVYYCARRSE AYYHGMDVWGQGTTVTVSS SEQ ID NO. 109	QSVLTQPPSASGTPGQRTISCSGSSS NIGSNTVNWYQQLPGTAPKLLIYSNN QRPSGPVDRFSGSKSGTSASLAISGLQ SEDEADYYCAAWDDSLNGWVFGGG TKLTVL SEQ ID NO. 110
C3sh1F2	EVQLVESGGGLVKPGESRLSCAASG FTFKSYPMAWVRQAPGKGLEVVSSIS SSGDHRYYADSVKGRTFISRDNARN LSLQMNNLRAEDTAVYYCPAGRDFD HWGRGTLTVSS SEQ ID NO. 111	DIVMTQTPLSLPVTPGEPASISCRSSQS LLYSNGNYLDWYLQKPGQSPQLLIY WGSNRASGPVDRFSGSGSGTDFTLKIS RVEAEDVGIYYCMQALHVPPYTFGQ GTKVEIK SEQ ID NO. 112
C3sh1G1	QVQLVESGAEVKKPGASVKVSCKAS GYTFTDYYIHWVRQAPGQGLEWVG WINPNSSGGTNYAQRFQGRVTMTRDT SISTTYMELSRLRFDDTAVYYCASP GGNPYFDYWGQGTLTVSS SEQ ID NO. 113	SYELTQPPSVVAPGKTATITCGGDTI GSKVVHWYQQKPGQAPVLMYYDS ERPSGIPERFSASNNSGNTATLTISRVEA GDEADYYCQVWDSGSVVFGGGTKLT VL SEQ ID NO. 114
C3sh1G11	EVQLVESGGVVQPGRLSCAASG FTFSSYGMHWVRQAPGKGLEWVALI SYDGTNKYYADSVKGRTFISRDNSKN TLYLQMNSLSSEDTALYYCASNHDL TGGDYWGQGTLTVSS SEQ ID NO. 115	SYELTQPPSASGTPGQRTISCSGSSSN IGPYSINWYQQLPGTAPKLLIHSNTQR PSGPVDRFSGSKSGTSASLAISGLQSE DEADYYCAAWDGSLNGVVFGGGTQ LTVL SEQ ID NO. 116
C3sh1G2	EVQLVESGGALVQPGGSLRLSCAGSG FTFSNFWMHWVRQAPGKGLEWVADI SGDGSEKYYVDSVKGRFTFSRDNARN SLYLQMNSLRIEDTAVYYCARDAMR GGDLDYWGQGTLTVSS SEQ ID NO. 117	DIVMTQTPSSLSASVGDRVTITCRASQ SISSYLNWYQQKPGKAPKLLIYAASSL QSGVPSRFSGSGSGTDFTLTISSLQPED FATYYCQQSYSTPHFGGGTKVEIK SEQ ID NO. 118

	Heavy chain variable domain regions	Light chain variable domain regions
C3sh1G3	EVQLVQSGAEVKKPGSSVKVSCKASG GTFSSYAIWVRQAPGQGLEWMGGII PIFGTANYAQKFQGRVTITADESTSTA YMELSSLRSEDTAVYYCAGRFDYYDS SGYYYYGPFDYWGQGTLTVSS SEQ ID NO. 119	QSVVTQPPSVAAAPGHKVTISCSGNSS NVGRNYVSWYQQVPGTAPKLLIYDD NKRPGIPDRFSGSQSGTSATLGITGL QTGDEADYYCGTWDSSLTLYVFGTG TKLTVL SEQ ID NO. 120
C3sh1G5	EVQLVQSGAEVKKPGESLKISCKGSG YSFTSYWIGWVRQMPGKGLEWMGII YPGDSDTIYSPSFQGQVTLASKTST AYVQWNSLAKASDTAVYYCARLTVSG SSTTTGGMDVWGHGTTVTVSS SEQ ID NO. 121	QSVVTQPPSVAAAPGQKVTISCSGSDS NIGNNYVSWYQQVPGTAPKLLIYDNY KRPSGIPDRFSGSKSGTSATLGITGLQT GDEADYYCVTGDGGLGAVVFGGGTK LTVL SEQ ID NO. 122
C3sh1G8	QVQLVQSGAEVKKPGASVKVSCKTS GYNFNTYYIHWVRQAPGQGLEWMGI INPSGGYTSYAQNFQGRVTMTRDTST STVYMELSSLRSEDTALYYCARELGG NVRRDDAFDIWGQGTMVTVSS SEQ ID NO. 123	SSELTQDPAVSVVALGQTVRITCQGDSL RRYYASWYQQKPGQAPLLVMFGEDK RPSGIPDRFSGSSSGNTASLTITGAQAE DEADYYCNSRDTSGSWVFGGGTKLT VL SEQ ID NO. 124
C3sh1H10	QMQLVQSGAEVKKPGASVKVSCKAS GYTFTSYYLHWVRQAPGQGLEWMGI IHSSGGSTTYAQKFQGRVTMTRDTST STVYMELSSLRSEDTAVYYCARGYFG SGSFDFYWGQGTLTVSS SEQ ID NO. 125	QSVLTQPASVSGSPGQSITISCTGTSSD VGGYNVSWYQQHPGKAPKLMYD VSNRPSGVSNRSGSKSGNTASLTISG LQAEDeadYYCSSYTSSSTYVFGTGT KLTVL SEQ ID NO. 126
C3sh1H4	QVQLVQSGAEVKKQPGASVKVSCKAS GYTFTNNYMHWVRQAPGQGLEWMG IINPTGGSTTYAQKFQGRVIMTTDTST STVFMELSSLRSEDTAVYYCARDLGE LLLAFDYWGQGTLTVSS SEQ ID NO. 127	SYVLTQPASVSGSPGQSITISCTGTSSD VGGYNVSWYQQHPGKAPKLMYD VSKRPSGVSNRSGSKSGNTASLTISG LQAEDeadYYCSSYTSSSTLVFGTGT KVTVL SEQ ID NO. 128

	Heavy chain variable domain regions	Light chain variable domain regions
MA8	QMQLVQSGAEVKKPGASVKVSCKAS GYRFGGYYMHWVRQAPGQGLEWM GWINPNSGGTNYAQKFQGRVTIRDT SASTAYMELSSLRSEDTAVYYCAREG EAVGLDLDYWGQGTLTVSS SEQ ID NO. 129	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28
MB1	QMQLVQSGAEVKKPGASVKVSCKAS GYGMKGYYMHWVRQAPGQGLEWM GWINPNSGGTNYAQKFQGRVTIRDT SASTAYMELSSLRSEDTAVYYCAREG EAVGLDLDLWGQGTLTVSS SEQ ID NO. 130	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28
MB3	QMQLVQSGAEVKKPGASVKVSCKAS GYQMRGYYMHWVRQAPGQGLEWM GWINPNSGGTNYAQKFQGRVTIRDT SASTAYMELSSLRSEDTAVYYCAREG EAVGLDLDYWGQGTLTVSS SEQ ID NO. 131	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28
MB10	QMQLVQSGAEVKKPGASVKVSCKAS GYLMQGYYMHWVRQAPGQGLEWM GWINPNSGGTNYAQKFQGRVTIRDT SASTAYMELSSLRSEDTAVYYCAREG EAVGLDLDYWGQGTLTVSS SEQ ID NO. 132	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28
MB12	QMQLVQSGAEVKKPGASVKVSCKAS GYSLEGYYMHWVRQAPGQGLEWMG WINPNSGGTNYAQKFQGRVTIRDTS ASTAYMELSSLRSEDTAVYYCAREGE AVGLDLDYWGQGTLTVSS SEQ ID NO. 133	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSVVFGGGTQLTV L SEQ ID NO. 28

	Heavy chain variable domain regions	Light chain variable domain regions
MC8	QMQLVQSGAEVKKPGASVKVSCKAS GYMPDGYYMHWVRQAPGQGLEWM GWINPRTGGTNYAQKFQGRVTITRDT SASTAYMELSSLRSEDTAVYYCAREG AAFRLELDAWGQGTLTVSS SEQ ID NO. 134	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MD1	QMQLVQSGAEVKKPGASVKVSCKAS GYRLQGYYMHWVRQAPGQGLEWM GWINPNSGGTNYAQKFQGRVTITRDT SASTAYMELSSLRSEDTAVYYCAREG EAVGLDLDYWGQGTLTVSS SEQ ID NO. 135	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MD4	QMQLVQSGAEVKKPGASVKVSCKAS GYNWTGYYMHWVRQAPGQGLEWM GWINPMAGGTNYAQKFQGRVTITRD TSASTAYMELSSLRSEDTAVYYCARE GWARGVELDMWGQGTLTVSS SEQ ID NO. 136	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSA11	QMQLVQSGAEVKKPGASVKVSCKAS GYSFTGYYMHWVRQAPGQGLEWMG WVNPKSGGTNYAQKFQGRVTITRDT ASTAYMELSSLRSEDTAVYYCAREG WARRIDLDEWGQGTLTVSS SEQ ID NO. 137	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSB7	QMQLVQSGAEVKKPGASVKVSCKAS GYSFSGYYMHWVRQAPGQGLEWMG WVNPMSSGGTNYAQKFQGRVTITRDT SASTAYMELSSLRSEDTAVYYCAREG MAMRLELDKWGQGTLTVSS SEQ ID NO. 138	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28

	Heavy chain variable domain regions	Light chain variable domain regions
MSD2	QMQLVQSGAEVKKPGASVKVSCKAS GYNFAGYYMHWVRQAPGQGLEWM GWVNPQSGGTNYAQKFQGRVTITRD TSASTAYMELSSLRSEDTAVYYCARE GEGRGLDDWWGQGTLTVSS SEQ ID NO. 139	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSE3	QMQLVQSGAEVKKPGASVKVSCKAS GYNFSGYYMHWVRQAPGQGLEWMG WINPKSGGTNYAQKFQGRVTITRDT ASTAYMELSSLRSEDTAVYYCAREGG ARGVLDLDTWGQATLTVSS SEQ ID NO. 140	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSE5	QMQLVQSGAEVKKPGASVKVSCKAS GYSFGGYYMHWVRQAPGQGLEWMG WVNPNSGGTNYAQKFQGRVTITRDT ASTAYMELSSLRSEDTAVYYCAREGY GLGLDDLVWGQGTLTVSS SEQ ID NO. 141	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSC8	QMQLVQSGAEVKKPGASVKVSCKAS GYNFGGYYMHWVRQAPGQGLEWM GWVNPKSGGTNYAQKFQGRVTITRD TSASTAYMELSSLRSEDTAVYYCARE GEAVGLDDYWGQGTLTVSS SEQ ID NO. 142	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28
MSH1	QMQLVQSGAEVKKPGASVKVSCKAS GYNFGGYYMHWVRQAPGQGLEWM GWVNPNSGGTNYAQKFQGRVTITRD TSASTAYMELSSLRSEDTAVYYCARE GEAWGLDDLWGQGTLTVSS SEQ ID NO. 143	SYELTQPPSVVAPGKTARITCGGNNI GSKSVHWYQQKPGQAPVLVIYYDSD RPSGIPERFSGSNSGNTATLTISRVEAG DEADYYCQVWDSSSVFGGTQLTV L SEQ ID NO. 28

Incorporation by Reference

The contents of all references, patents, pending patent applications and published
5 patents, cited throughout this application are hereby expressly incorporated by reference.

We claim:

1. An isolated fully human anti-CD137 antibody of an IgG class that binds to a CD137 epitope, said antibody comprising

a heavy chain variable domain sequence that is at least 95% identical to an amino acid

5 sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ 10 ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, 15 SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, 20 SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, SEQ ID NO. 143; and

a light chain variable domain sequence that is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, 25 SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ 30 ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112,

SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

2. The fully human antibody of claim 1, wherein the antibody comprises a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2 (called A1 herein), SEQ ID NO. 3/SEQ ID NO. 4 (called A4 herein), SEQ ID NO. 5/SEQ ID NO. 6 (called A11 herein), SEQ ID NO. 7/SEQ ID NO. 8 (called B1 herein), SEQ ID NO. 9/SEQ ID NO. 10 (called B3 herein), SEQ ID NO. 11/SEQ ID NO. 12 (called B12 herein), SEQ ID NO. 13/SEQ ID NO. 14 (called C2 herein), SEQ ID NO. 15/SEQ ID NO. 16 (called C3 herein), SEQ ID NO. 17/SEQ ID NO. 18 (called C7 herein), SEQ ID NO. 19/SEQ ID NO. 20 (called C11 herein), SEQ ID NO. 21/SEQ ID NO. 22 (called C12 herein), SEQ ID NO. 23/SEQ ID NO. 24 (called D1 herein), SEQ ID NO. 25/SEQ ID NO. 26 (called D4 herein), SEQ ID NO. 27/SEQ ID NO. 28 (called D6 herein), SEQ ID NO. 29/SEQ ID NO. 30 (called D7 herein), SEQ ID NO. 31/SEQ ID NO. 32 (called D8 herein), SEQ ID NO. 33/SEQ ID NO. 34 (called D10 herein), SEQ ID NO. 35/SEQ ID NO. 36 (called E2 herein), SEQ ID NO. 37/SEQ ID NO. 38 (called E5 herein), SEQ ID NO. 39/SEQ ID NO. 40 (called E7 herein), SEQ ID NO. 41/SEQ ID NO. 42 (called F5 herein), SEQ ID NO. 43/SEQ ID NO. 44 (called F7 herein), SEQ ID NO. 45/SEQ ID NO. 46 (called F11 herein), SEQ ID NO. 47/SEQ ID NO. 48 (called G1 herein), SEQ ID NO. 49/SEQ ID NO. 50 (called G2 herein), SEQ ID NO. 51/SEQ ID NO. 52 (called G3 herein), SEQ ID NO. 53/SEQ ID NO. 54 (called G5 herein), SEQ ID NO. 55/SEQ ID NO. 56 (called G6 herein), SEQ ID NO. 57/SEQ ID NO. 58 (called G8 herein), SEQ ID NO. 59/SEQ ID NO. 60 (called G12 herein), SEQ ID NO. 61/SEQ ID NO. 62 (called H4 herein), SEQ ID NO. 63/SEQ ID NO. 64 (called H7 herein), SEQ ID NO. 65/SEQ ID NO. 66 (called H8 herein), SEQ ID NO. 67/SEQ ID NO. 68 (called H10 herein), SEQ ID NO. 69/SEQ ID NO. 70 (called H11 herein), SEQ ID NO. 71/SEQ ID NO. 72 (called C3sh1A1 herein), SEQ ID NO. 73/SEQ ID NO. 74 (called C3sh1A2 herein), SEQ ID NO. 75/SEQ ID NO. 76 (called C3sh1A5 herein), SEQ ID NO. 77/SEQ ID NO. 78 (called C3sh1A9 herein), SEQ ID NO. 79/SEQ ID NO. 80 (called C3sh1B2 herein), SEQ ID NO. 81/SEQ ID NO. 82 (called C3sh1B4 herein), SEQ ID NO. 83/SEQ ID NO. 84 (called C3sh1B6 herein), SEQ ID NO. 85/SEQ ID NO. 86 (called C3sh1B9 herein), SEQ ID NO. 87/SEQ ID NO. 88 (called C3sh1C1 herein), SEQ ID NO. 89/SEQ ID NO. 90 (called C3sh1C2 herein), SEQ ID NO. 91/SEQ ID NO. 92 (called C3sh1C7 herein), SEQ ID NO. 93/SEQ ID NO. 94 (called C3sh1D1 herein), SEQ ID NO. 95/SEQ ID NO. 96 (called C3sh1D4 herein), SEQ ID NO. 97/SEQ ID NO. 98 (called

C3sh1D6 herein), SEQ ID NO. 99/SEQ ID NO. 100 (called C3sh1E2 herein), SEQ ID NO. 101/SEQ ID NO. 102 (called C3sh1E7 herein), SEQ ID NO. 103/SEQ ID NO. 104 (called C3sh1E9 herein), SEQ ID NO. 105/SEQ ID NO. 106 (called C3sh1F1 herein), SEQ ID NO. 107/SEQ ID NO. 108 (called C3sh1F10 herein), SEQ ID NO. 109/SEQ ID NO. 110 (called 5 C3sh1F12 herein), SEQ ID NO. 111/SEQ ID NO. 112 (called C3sh1F2 herein), SEQ ID NO. 113/SEQ ID NO. 114 (called C3sh1G1 herein), SEQ ID NO. 115/SEQ ID NO. 116 (called C3sh1G11 herein), SEQ ID NO. 117/SEQ ID NO. 118 (called C3sh1G2 herein), SEQ ID NO. 119/SEQ ID NO. 120 (called C3sh1G3 herein), SEQ ID NO. 121/SEQ ID NO. 122 (called C3sh1G5 herein), SEQ ID NO. 123/SEQ ID NO. 124 (called C3sh1G8 herein), SEQ 10 ID NO. 125/SEQ ID NO. 126 (called C3sh1H10 herein), SEQ ID NO. 127/SEQ ID NO. 128 (called C3sh1H4 herein), SEQ ID NO. 129/SEQ ID NO. 28 (called MA8 herein), SEQ ID NO. 130/SEQ ID NO. 28 (called MB1 herein), SEQ ID NO. 131/SEQ ID NO. 28 (called MB3 herein), SEQ ID NO. 132/SEQ ID NO. 28 (called MB10 herein), SEQ ID NO. 133/SEQ ID NO. 28 (called MB12 herein), SEQ ID NO. 134/SEQ ID NO. 28 (called MC8 herein), 15 SEQ ID NO. 135/SEQ ID NO. 28 (called MD1 herein), SEQ ID NO. 136/SEQ ID NO. 28 (called MD4 herein), SEQ ID NO. 137/SEQ ID NO. 28 (called MSA11 herein), SEQ ID NO. 138/SEQ ID NO. 28 (called MSB7 herein), SEQ ID NO. 139/SEQ ID NO. 28 (called MSD2 herein), SEQ ID NO. 140/SEQ ID NO. 28 (called MSE3 herein), SEQ ID NO. 141/SEQ ID NO. 28 (called MSE5 herein), SEQ ID NO. 142/SEQ ID NO. 28 (called MSC8 herein), and 20 SEQ ID NO. 143/SEQ ID NO. 28 (called MSH1 herein).

3. The fully human antibody of claim 1 or 2, wherein the antibody has a K_D of at least 1×10^{-6} M.

4. An anti-CD137 fully human antibody Fab fragment, comprising a heavy chain variable domain comprising an amino acid sequence that is at least 95% identical to the 25 amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, 30 SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87,

SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID

5 SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143; and

a light chain variable domain comprising an amino acid sequence that is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NO. 2,

10 SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO.

15 SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108,

20 SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

5. The fully human antibody Fab fragment of claim 4, wherein the antibody comprises a heavy chain/light chain variable domain sequence selected from the group

25 consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO.

30 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO.

49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 5 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ 10 ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 15 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ 20 ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

6. The fully human antibody Fab fragment of claim 4 or 5, wherein the antibody has a K_D of at least 1×10^{-6} M.

7. An anti-CD137 single chain human antibody comprising a heavy chain 25 variable domain and a light chain variable domain which are connected by a peptide linker, wherein the heavy chain variable domain comprises an amino acid sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 30 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63,

SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, 5 SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, 10 and SEQ ID NO. 143; and

the light chain variable domain comprises an amino acid sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ 20 ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 25 128.

8. The fully human single chain antibody of claim 7, wherein the single chain fully human antibody comprises a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 30 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO.

32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO. 120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

9. The fully human single chain antibody of claim 7 or 8, wherein the antibody has a K_D of at least 1×10^{-6} M.

10. A method of treating cancer in a subject in need thereof, the method comprising administering an effective amount of the antibody or antibody fragment of any one of claims 1 to 9, such that the cancer is treated.

11. The method of claim 10, wherein the cancer is selected from the group consisting of: ovarian cancer, colorectal cancer, melanoma, hepatocellular carcinoma, renal cancer, breast cancer, head and neck cancer, lung cancer and liver cancer.

12. A method for treating a disease requiring either stimulation of an immune response or suppression, comprising administering an effective amount of an anti-CD137 polypeptide, wherein the anti-CD137 polypeptide is selected from the group consisting of

an isolated anti-CD137 fully human antibody of an IgG class comprising a heavy

5 chain variable domain and a light chain variable domain,

an anti-CD137 fully human antibody Fab fragment comprising a heavy chain variable domain and a light chain variable domain, and

a single chain human antibody, having a heavy chain variable domain, a light chain variable domain, and a peptide linker connecting the heavy chain and the light chain;

10 wherein the heavy chain variable domain comprises an amino acid sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 37, SEQ ID NO. 39, SEQ ID NO. 41, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 53, SEQ ID NO. 55, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61, SEQ ID NO. 63, SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 69, SEQ ID NO. 71, SEQ ID NO. 73, SEQ ID NO. 75, SEQ ID NO. 77, SEQ ID NO. 79, SEQ ID NO. 81, SEQ ID NO. 83, SEQ ID NO. 85, SEQ ID NO. 87, SEQ ID NO. 89, SEQ ID NO. 91, SEQ ID NO. 93, SEQ ID NO. 95, SEQ ID NO. 97, SEQ ID NO. 99, SEQ ID NO. 101, SEQ ID NO. 103, SEQ ID NO. 105, SEQ ID NO. 107, SEQ ID NO. 109, SEQ ID NO. 111, SEQ ID NO. 113, SEQ ID NO. 115, SEQ ID NO. 117, SEQ ID NO. 119, SEQ ID NO. 121, SEQ ID NO. 123, SEQ ID NO. 125, SEQ ID NO. 127, SEQ ID NO. 129, SEQ ID NO. 130, SEQ ID NO. 131, SEQ ID NO. 132, 25 SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 135, SEQ ID NO. 136, SEQ ID NO. 137, SEQ ID NO. 138, SEQ ID NO. 139, SEQ ID NO. 140, SEQ ID NO. 141, SEQ ID NO. 142, and SEQ ID NO. 143, and

wherein the light chain variable domain comprises an amino acid sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID

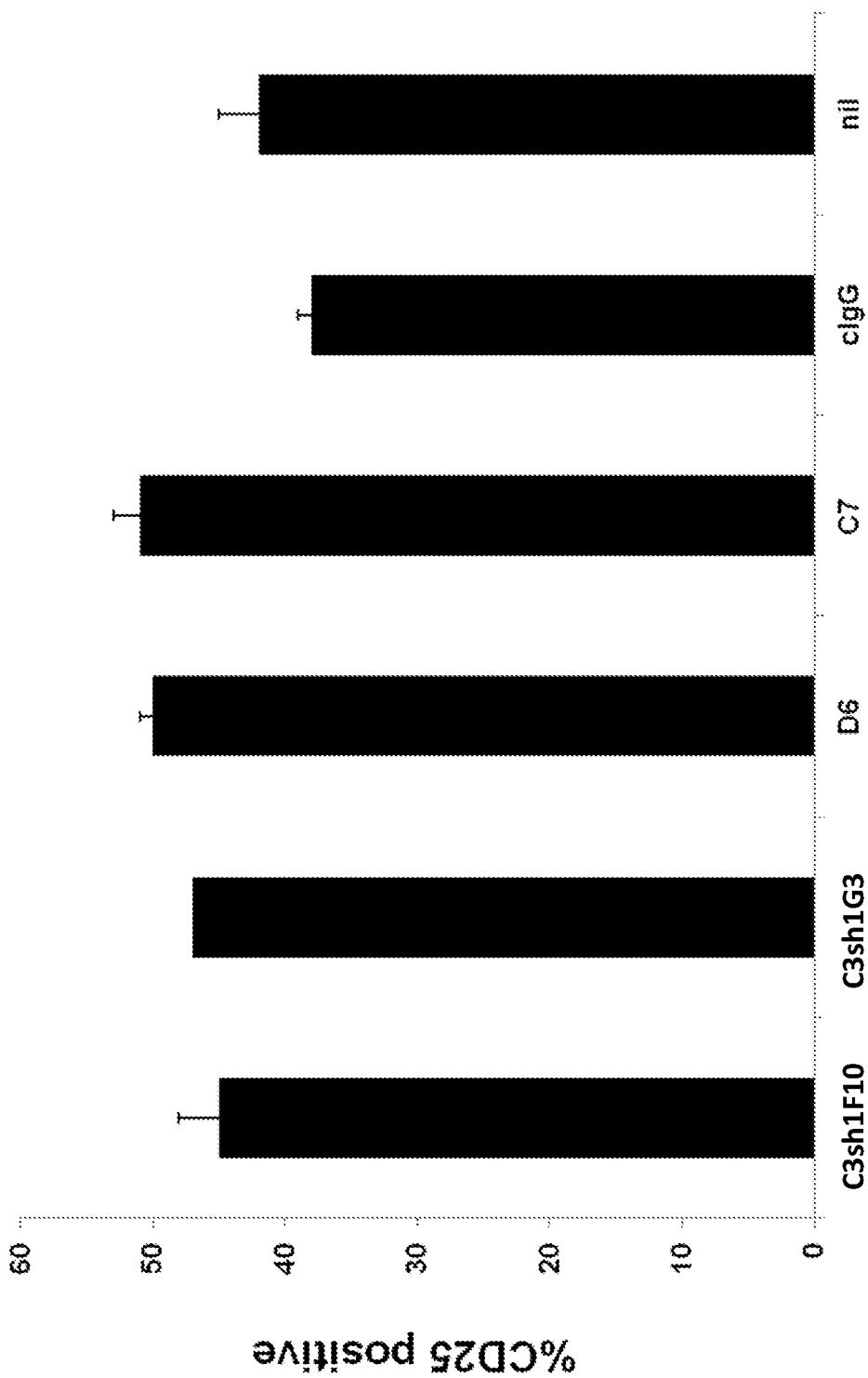
30 NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 36, SEQ ID NO. 38, SEQ ID NO. 40, SEQ ID NO. 42, SEQ ID NO. 44,

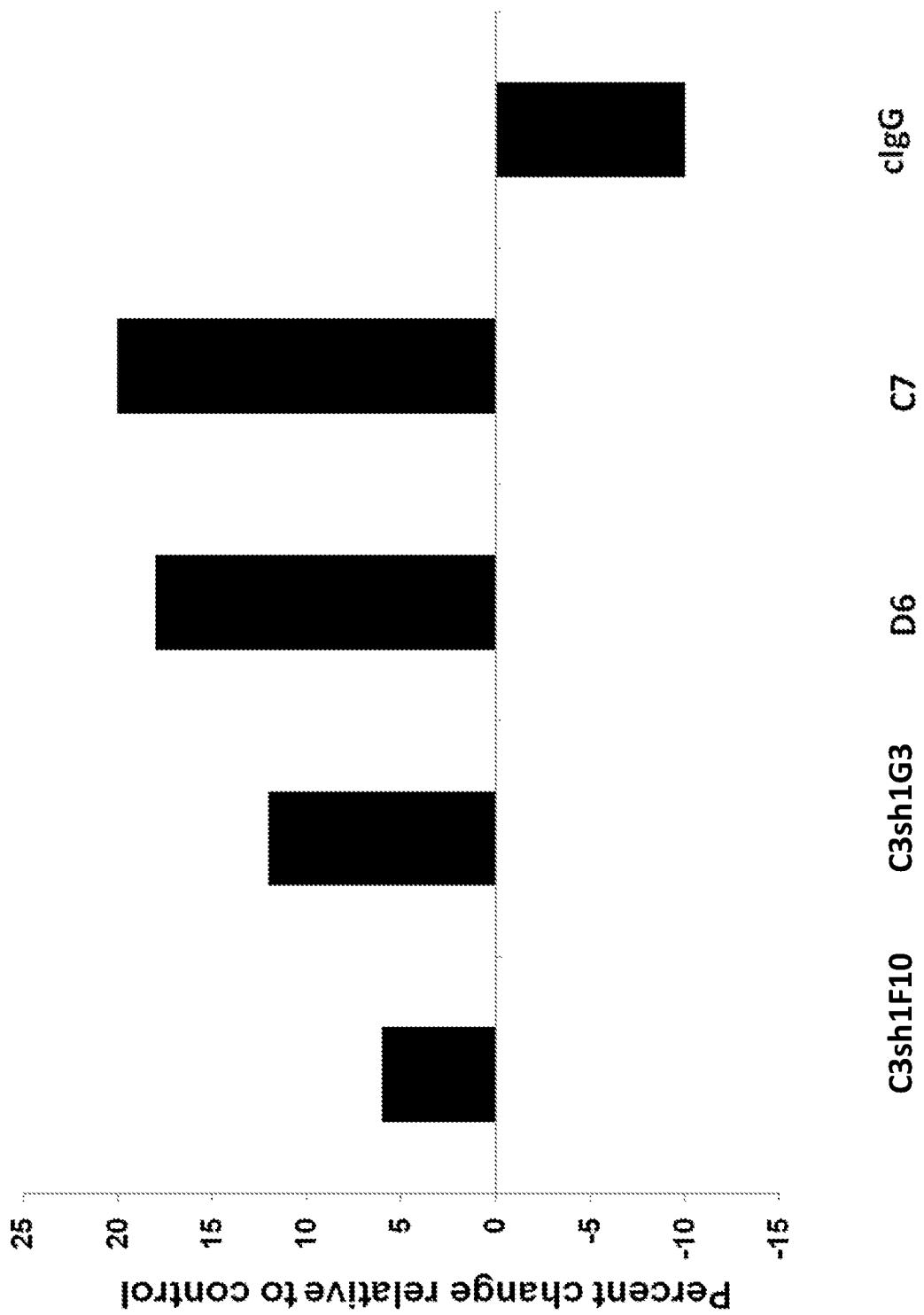
SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 54, SEQ ID NO. 56, SEQ ID NO. 58, SEQ ID NO. 60, SEQ ID NO. 62, SEQ ID NO. 64, SEQ ID NO. 66, SEQ ID NO. 68, SEQ ID NO. 70, SEQ ID NO. 72, SEQ ID NO. 74, SEQ ID NO. 76, SEQ ID NO. 78, SEQ ID NO. 80, SEQ ID NO. 82, SEQ ID NO. 84, SEQ ID NO. 86, SEQ 5 ID NO. 88, SEQ ID NO. 90, SEQ ID NO. 92, SEQ ID NO. 94, SEQ ID NO. 96, SEQ ID NO. 98, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 104, SEQ ID NO. 106, SEQ ID NO. 108, SEQ ID NO. 110, SEQ ID NO. 112, SEQ ID NO. 114, SEQ ID NO. 116, SEQ ID NO. 118, SEQ ID NO. 120, SEQ ID NO. 122, SEQ ID NO. 124, SEQ ID NO. 126, and SEQ ID NO. 128.

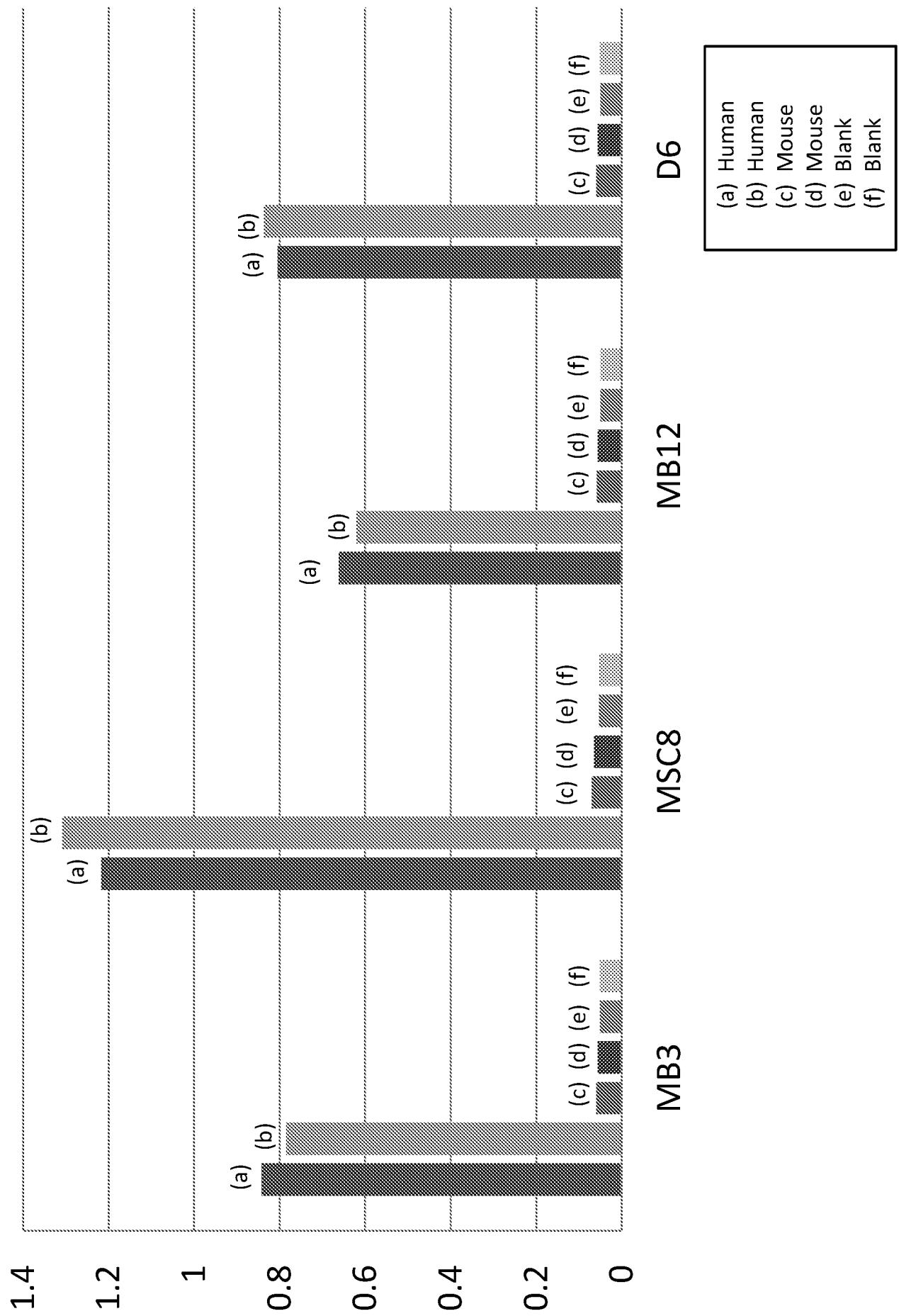
10 13. The method of claim 12, wherein the antibody or antibody fragment comprises a heavy chain/light chain variable domain sequence selected from the group consisting of SEQ ID NO. 1/SEQ ID NO. 2, SEQ ID NO. 3/SEQ ID NO. 4, SEQ ID NO. 5/SEQ ID NO. 6, SEQ ID NO. 7/SEQ ID NO. 8, SEQ ID NO. 9/SEQ ID NO. 10, SEQ ID NO. 11/SEQ ID NO. 12, SEQ ID NO. 13/SEQ ID NO. 14, SEQ ID NO. 15/SEQ ID NO. 16, SEQ ID NO. 17/SEQ 15 ID NO. 18, SEQ ID NO. 19/SEQ ID NO. 20, SEQ ID NO. 21/SEQ ID NO. 22, SEQ ID NO. 23/SEQ ID NO. 24, SEQ ID NO. 25/SEQ ID NO. 26, SEQ ID NO. 27/SEQ ID NO. 28, SEQ ID NO. 29/SEQ ID NO. 30, SEQ ID NO. 31/SEQ ID NO. 32, SEQ ID NO. 33/SEQ ID NO. 34, SEQ ID NO. 35/SEQ ID NO. 36, SEQ ID NO. 37/SEQ ID NO. 38, SEQ ID NO. 39/SEQ ID NO. 40, SEQ ID NO. 41/SEQ ID NO. 42, SEQ ID NO. 43/SEQ ID NO. 44, SEQ ID NO. 20 45/SEQ ID NO. 46, SEQ ID NO. 47/SEQ ID NO. 48, SEQ ID NO. 49/SEQ ID NO. 50, SEQ ID NO. 51/SEQ ID NO. 52, SEQ ID NO. 53/SEQ ID NO. 54, SEQ ID NO. 55/SEQ ID NO. 56, SEQ ID NO. 57/SEQ ID NO. 58, SEQ ID NO. 59/SEQ ID NO. 60, SEQ ID NO. 61/SEQ ID NO. 62, SEQ ID NO. 63/SEQ ID NO. 64, SEQ ID NO. 65/SEQ ID NO. 66, SEQ ID NO. 67/SEQ ID NO. 68, SEQ ID NO. 69/SEQ ID NO. 70, SEQ ID NO. 71/SEQ ID NO. 72, SEQ 25 ID NO. 73/SEQ ID NO. 74, SEQ ID NO. 75/SEQ ID NO. 76, SEQ ID NO. 77/SEQ ID NO. 78, SEQ ID NO. 79/SEQ ID NO. 80, SEQ ID NO. 81/SEQ ID NO. 82, SEQ ID NO. 83/SEQ ID NO. 84, SEQ ID NO. 85/SEQ ID NO. 86, SEQ ID NO. 87/SEQ ID NO. 88, SEQ ID NO. 89/SEQ ID NO. 90, SEQ ID NO. 91/SEQ ID NO. 92, SEQ ID NO. 93/SEQ ID NO. 94, SEQ ID NO. 95/SEQ ID NO. 96, SEQ ID NO. 97/SEQ ID NO. 98, SEQ ID NO. 99/SEQ ID NO. 30 100, SEQ ID NO. 101/SEQ ID NO. 102, SEQ ID NO. 103/SEQ ID NO. 104, SEQ ID NO. 105/SEQ ID NO. 106, SEQ ID NO. 107/SEQ ID NO. 108, SEQ ID NO. 109/SEQ ID NO. 110, SEQ ID NO. 111/SEQ ID NO. 112, SEQ ID NO. 113/SEQ ID NO. 114, SEQ ID NO. 115/SEQ ID NO. 116, SEQ ID NO. 117/SEQ ID NO. 118, SEQ ID NO. 119/SEQ ID NO.

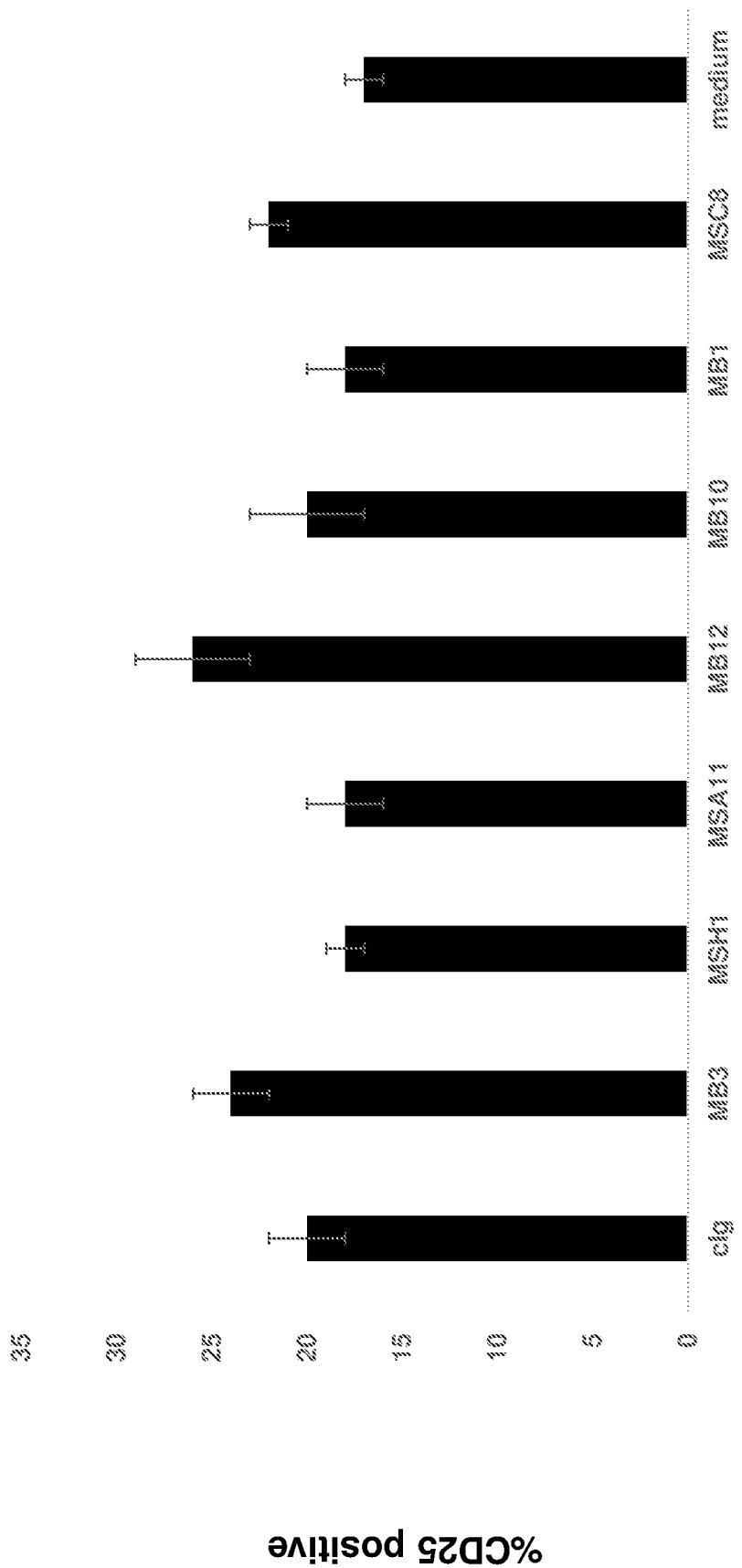
120, SEQ ID NO. 121/SEQ ID NO. 122, SEQ ID NO. 123/SEQ ID NO. 124, SEQ ID NO. 125/SEQ ID NO. 126, SEQ ID NO. 127/SEQ ID NO. 128, SEQ ID NO. 129/SEQ ID NO. 28, SEQ ID NO. 130/SEQ ID NO. 28, SEQ ID NO. 131/SEQ ID NO. 28, SEQ ID NO. 132/SEQ ID NO. 28, SEQ ID NO. 133/SEQ ID NO. 28, SEQ ID NO. 134/SEQ ID NO. 28, SEQ ID NO. 135/SEQ ID NO. 28, SEQ ID NO. 136/SEQ ID NO. 28, SEQ ID NO. 137/SEQ ID NO. 28, SEQ ID NO. 138/SEQ ID NO. 28, SEQ ID NO. 139/SEQ ID NO. 28, SEQ ID NO. 140/SEQ ID NO. 28, SEQ ID NO. 141/SEQ ID NO. 28, SEQ ID NO. 142/SEQ ID NO. 28, and SEQ ID NO. 143/SEQ ID NO. 28.

14. The method of claim 12 or 13, wherein the disease is selected from the group 10 consisting of cancers, autoimmune diseases and viral infections.


15. An isolated anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a heavy chain variable domain comprising complementarity determining regions (CDRs) as set forth in a heavy chain variable domain amino acid sequence selected from the group consisting of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 15 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142 and 143; and


comprising a light chain variable domain comprising CDRs as set forth in a light 20 chain variable region amino acid sequence selected from the group consisting of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 and 128.


16. A pharmaceutical composition comprising the anti-CD137 antibody, or 25 antibody fragment of any one of claims 1 to 9 or 15, and a pharmaceutically acceptable carrier.


17. A method of treating cancer in a human subject in need thereof, comprising administering an effective amount of the anti-CD137 antibody, or antigen-binding fragment thereof, of claim 15 to the subject, such that cancer is treated.

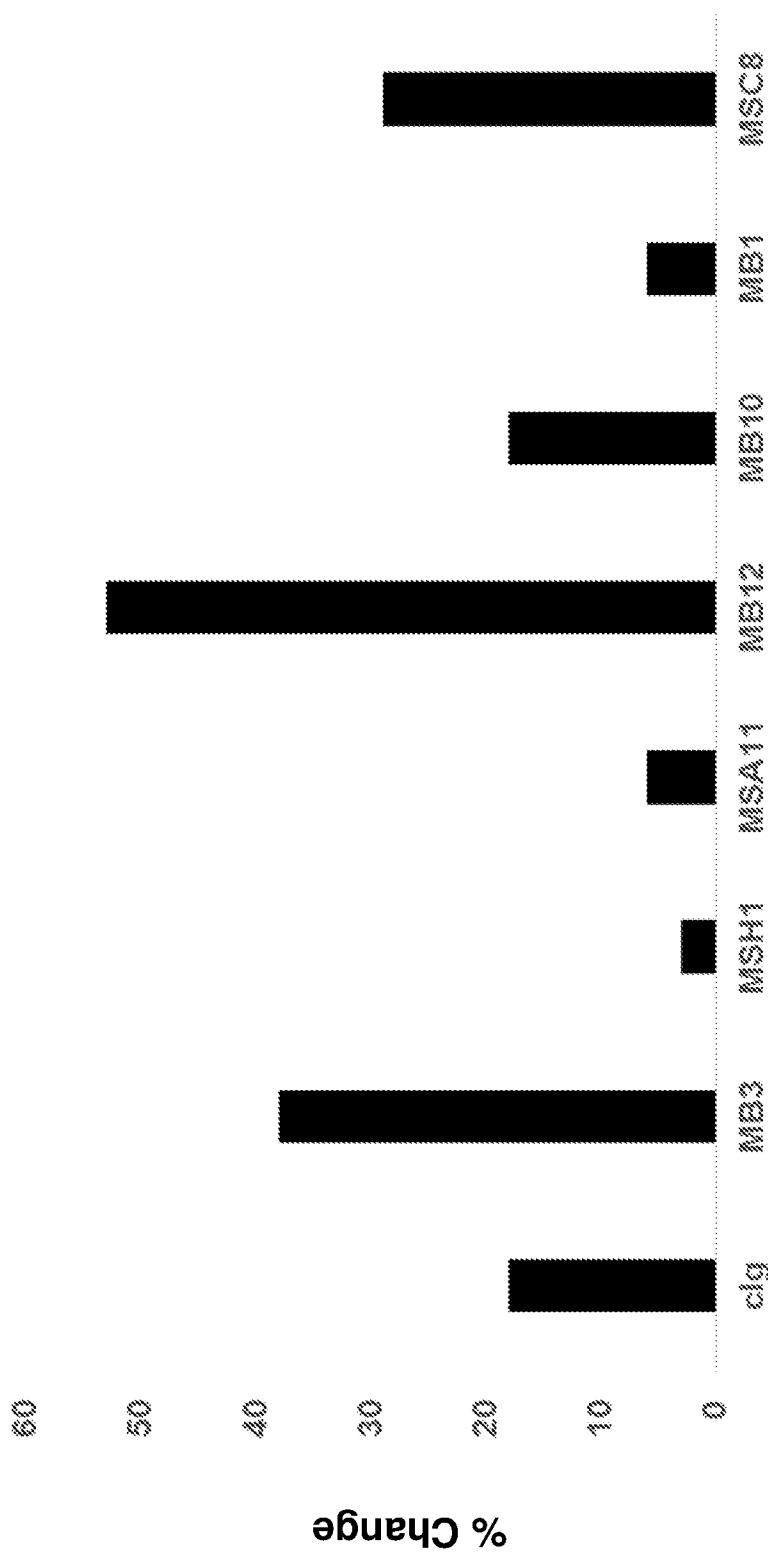

30 18. The method of claim 17, wherein the cancer is selected from the group consisting of: ovarian cancer, colorectal cancer, melanoma, hepatocellular carcinoma, renal cancer, breast cancer, head and neck cancer, lung cancer and liver cancer.

Figure 1A

Figure 1B

Figure 2

Figure 3B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2016/018897

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 39/00; A61K 39/395; C07K 16/00; C07K 16/28; C07K 16/30; C12P 21/02 (2016.01)

CPC - A61K 39/0011; A61K 2039/505; C07K 16/2878; C07K 16/30; C07K 2317/75 (2016.05)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC - A61K 39/00; A61K 39/395; C07K 16/00; C07K 16/28; C07K 16/30; C12P 21/02; C12P 21/08

CPC - A61K 39/0011; A61K 39/12; A61K 39/39; A61K 2039/505; A61K 2039/53; A61K 2039/55516; C07K 16/2878; C07K 16/30; C07K 2317/21; C07K 2317/565; C07K 2317/75; C12N 2740/15034

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 424/130.1; 424/139.1; 424/141.1; 424/142.1; 424/143.1; 424/144.1; 424/152.1; 424/154.1; 530/387.9; 530/387.1; 530/388.75; 530/388.22; 530/388.2; 530/388.15; 530/388.1; 536/23.53 (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, PubMed.

Search terms used: CD137 OR 41BB OR ("4" 1BB) OR CDw137 OR Ly63 OR Tnfrsf9 antibody* OR immunoglob*

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/0223989 A1 (PLUENNEKE) 04 December 2003 (04.12.2003) entire document	1-9, 12-15, 17, 18
A	WO 2006/088447 A1 (GTC BIOTHERAPEUTICS, INC. et al) 24 August 2006 (24.08.2006) entire document	1-9, 12-15, 17, 18
A	WO 2005/035584 A1 (BRISTOL-MYERS SQUIBB COMPANY et al) 21 April 2005 (21.04.2005) entire document	1-9, 12-15, 17, 18
A	KOHRT et al. "Targeting CD137 enhances the efficacy of cetuximab," J Clin Invest. 02 June 2014 (02.06.2014), Vol. 124, Pgs. 2668-2682. entire document	1-9, 12-15, 17, 18
A	HODGE et al. "Targeting peripheral blood pro-inflammatory cytotoxic lymphocytes by inhibiting CD137 expression: novel potential treatment for COPD," BMC Pulmonary Medicine, 15 May 2014 (15.05.2014), Vol. 14, Pgs. 1-11. entire document	1-9, 12-15, 17, 18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search

01 July 2016

Date of mailing of the international search report

29 JUL 2016

Name and mailing address of the ISA/
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450
Facsimile No. 571-273-8300

Authorized officer

Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2016/018897

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
 - a. forming part of the international application as filed:
 in the form of an Annex C/ST.25 text file.
 on paper or in the form of an image file.
 - b. furnished together with the international application under PCT Rule 13*ter*.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
 - c. furnished subsequent to the international filing date for the purposes of international search only:
 in the form of an Annex C/ST.25 text file (Rule 13*ter*.1(a)).
 on paper or in the form of an image file (Rule 13*ter*.1(b) and Administrative Instructions, Section 713).
2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:
SEQ ID NOs:1 and 2 were searched.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2016/018897

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 10, 11, 16 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see Extra Sheet(s).

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-9, 12-15, 17, and 18 restricted to SEQ ID NO:1 and SEQ ID NO:2.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2016/018897

Continued from Box No. III Observations where unity of invention is lacking

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees need to be paid.

Group I+: claims 1-9, 12-15, 17, and 18 are drawn to an isolated anti-CD137 antibody, or an antigen-binding fragment thereof.

The first invention of Group I+ is restricted an isolated anti-CD137 antibody, or an antigen-binding fragment thereof, wherein the anti-CD137 antibody comprises a heavy chain variable domain and a light chain variable domain, wherein the heavy chain variable domain is selected to be SEQ ID NO:1, and the light chain variable domain is selected to be SEQ ID NO:2. It is believed that claims 1-9, 12-15, 17, and 18 read on this first named invention and thus these claims will be searched without fee to the extent that they read on a human anti-CD137 antibody of SEQ ID NO:1 and SEQ ID NO:2.

Applicant is invited to elect additional anti-CD137 antibodies with specified SEQ ID NO for each heavy and light chain variable domain. An exemplary election would be an isolated anti-CD137 antibody, or an antigen-binding fragment thereof, wherein the anti-CD137 antibody comprises a heavy chain variable domain and a light chain variable domain, wherein the heavy chain variable domain is selected to be SEQ ID NO:3, and the light chain variable domain is selected to be SEQ ID NO:4. Additional anti-CD137 antibodies with specified SEQ ID NO for each heavy and light chain variable domain will be searched upon the payment of additional fees. Applicants must specify the claims that read on any additional elected inventions. Applicants must further indicate, if applicable, the claims which read on the first named invention if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined.

The inventions listed in Groups I+ do not relate to a single general inventive concept under PCT Rule 13.1, because under PCT Rule 13.2 they lack the same or corresponding special technical features for the following reasons:

The Groups I+ formulas do not share a significant structural element responsible for binding CD137, requiring the selection of alternatives for each heavy chain variable domain and light chain variable domain, where "a heavy chain variable domain sequence that is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO:25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO:57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, 15 SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, 20 SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143; and a light chain variable domain sequence that is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, and SEQ ID NO: 128".

The Groups I+ share the technical features of an isolated fully human anti-CD137 antibody of an IgG class that binds to a CD137 epitope, said antibody comprising a heavy chain variable domain sequence; a light chain variable domain sequence; an anti-CD137 fully human antibody Fab fragment, an anti-CD137 single chain human antibody comprising a heavy chain variable domain and a light chain variable domain which are connected by a peptide linker, a method for treating a disease requiring either stimulation of an immune response or suppression, comprising administering an effective amount of an anti-CD137 polypeptide, wherein the anti-CD137 polypeptide is selected from the group consisting of an isolated anti-CD137 fully human antibody of an IgG class comprising a heavy chain variable domain and a light chain variable domain, an anti-CD137 fully human antibody Fab fragment comprising a heavy chain variable domain and a light chain variable domain, and a single chain human antibody, having a heavy chain variable domain, a light chain variable domain, and a peptide linker connecting the heavy chain and the light chain; an isolated anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a heavy chain variable domain comprising complementarity determining regions (CDRs) as set forth in a heavy chain variable domain amino acid sequence and comprising a light chain variable domain comprising CDRs as set forth in a light chain variable region amino acid sequence. However, these shared technical features do not represent a contribution over the prior art.

Specifically, US 2003/0223989 A1 to Pluenneke discloses an isolated fully human anti-CD137 antibody of an IgG class that binds to a CD137 epitope (the CD137 agonist is selected from the group consisting of CD137 ligand (CD137L) and agonistic antibodies to CD137, Para. [0006]; IgG, Para. [0009]), said antibody comprising a heavy chain variable domain sequence (the heavy chain of an antibody, Para. [0023]); a light chain variable domain sequence (the light chain of an antibody, Para. [0023]); an anti-CD137 fully human antibody Fab fragment (prepare single chain Fv or scFv, Fab, Para. [0039]), an anti-CD137 single chain human antibody comprising a heavy chain variable domain and a light chain variable domain which are connected by a peptide linker (adapted to produce single chain antibodies against CD137, Para. [0038]; depending on the length of a flexible linker between the two variable domains, Para. [0044]), a method for treating a disease requiring either stimulation of an immune response or suppression, comprising administering an effective amount of an anti-CD137 polypeptide (Methods provided herein comprise administering a CD137 agonist to a patient, thereby inducing a CD137-mediated biological response that plays a role in a particular condition. Treatment encompasses alleviation of at least one symptom of a disorder, or reduction of disease severity, and the like., Para. [0049]), wherein the anti-CD137 polypeptide is selected from the group consisting of an isolated anti-CD137 fully human antibody of an IgG class comprising a heavy chain variable domain and

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2016/018897

a light chain variable domain, an anti-CD137 fully human antibody Fab fragment comprising a heavy chain variable domain and a light chain variable domain (antibodies that bind human CD137 may be isolated, Para. [0032]; the heavy chain of an antibody... the light chain of an antibody, Para. [0023]), and a single chain human antibody (adapted to produce single chain antibodies against CD137, Para. [0038]), having a heavy chain variable domain, a light chain variable domain (antibodies that bind human CD137 may be isolated, Para. [0032]; the heavy chain of an antibody... the light chain of an antibody, Para. [0023]), and a peptide linker connecting the heavy chain and the light chain (depending on the length of a flexible linker between the two variable domains, Para. [0044]); an isolated anti-CD137 antibody, or an antigen-binding fragment thereof, comprising a heavy chain variable domain comprising complementarity determining regions (CDRs) as set forth in a heavy chain variable domain amino acid sequence and comprising a light chain variable domain comprising CDRs as set forth in a light chain variable region amino acid sequence (some residues in the hyper-variable or complementarity determining regions (CDRs), Para. [0036]; adapted to produce single chain antibodies against CD137, Para. [0038]; depending on the length of a flexible linker between the two variable domains, Para. [0044]).

The inventions listed in Groups I+ therefore lack unity under Rule 13 because they do not share a same or corresponding special technical features.