(54) Title: A GOAL AND SHELTER DEVICE

(57) Abstract: A collapsible goal and shelter system (102). The system (102) comprising: a collapsible frame (104) comprising a plurality of frame members, the collapsible frame having a first, erect configuration, and a second, collapsed configuration; the frame defining an opening in the erect configuration; the system further comprising a net (108) operable to be attached to the frame, when the frame is in the erect configuration to thereby form a goal; and the system further comprising a cover (110) operable to be attached to the frame, when the frame is in the erect configuration to thereby form a shelter.
A Goal and Shelter Device

The present invention relates to a goal and shelter device, in particular to a collapsible goal and shelter device, preferably one which, in a collapsed state at least, is substantially portable.

Sports goals well known in the art. Goals are used in many sports and often involve a frame which defines an area into which a projectile (often a ball) may be struck to score points/goals. The goal often also includes a net attached to the frame and operable to retain the projectile within the goal. Goals are used in many games such as, for example, football (soccer), hockey, etc.

Sports shelters are also well known in the art and are often situated next to a sports ground, such as a football or baseball pitch, and allow users not participating in the game (coaches, substitute players etc.) to sit in a comfortable, position sheltered from the weather. In the sports arena, sheltering from extremely hot weather is just as important to preserve energy as being sheltered from rain and wind. In view of this, such shelters are often used in places were any extreme weather condition may be experienced.

Such shelters are normally static and solid in construction. This means that it is necessary to erect a permanent shelter at every sports ground. Furthermore, owing to their solid construction, they often require lots of materials and are therefore costly to construct.

It is an aim of objects of the present invention to address the above mentioned or other problems.

According to a first aspect of the present invention there is provided a collapsible goal and shelter system, the system comprising;
a collapsible frame comprising a plurality of frame members, the collapsible frame having a first, erect configuration, and a second, collapsed configuration; the frame defining an opening in the erect configuration;
the system further comprising a net operable to be attached to the frame, when the frame is in the erect configuration to thereby form a goal; and
the system further comprising a cover operable to be attached to the frame, when the frame is in the erect configuration to thereby form a shelter.

Preferably, the frame comprises two posts, which are preferably operable to be upwardly extending when the frame is in the erect configuration, which posts may each be formed from two or more post elements, which may be detachably connectable. The two or more post elements may be loosely secured together by an elastic member, which may be an elastic cord, for example. The elastic member may extend internally through a portion of the or each post element.

Preferably, the frame comprises a cross bar, which is preferably operable to be substantially horizontally extending when the frame is in the erect configuration, which crossbar may be formed from two or more crossbar elements which may be detachably connectable. In one embodiment, the crossbar may be formed from three or more crossbar elements which may be detachably connectable. The two or more cross bar elements may be loosely secured together by an elastic member, which may be an elastic cord, for example. The elastic member may extend internally through a portion of the or each cross bar element.

The same elastic member that extends through a portion of the post may also extend through a portion of the crossbar, and/or a crossbar connected connector, such as to loosely secure together at least a portion of the post and at least a portion of the crossbar.

The cross bar is suitably arranged to be attachable to the posts to define an opening, when the frame is in the erect configuration.
Preferably, the frame comprises two side members. The side members may each be formed from at least two side member elements which may be detachably connectable. The side members may be operable to be operable to be detachably connected to the posts. In the erect configuration, each side member may be attached at or toward each end thereof to each of the posts. The two or more side member elements may be loosely secured together by an elastic member, which may be an elastic cord, for example. The elastic member may extend internally through a portion of the or each side member element.

Preferably, the frame comprises a lower support bar. The lower support bar may be formed from at least two lower support bar elements, which may be detachably connectable. In the erect configuration, the lower support bar is preferably operable to connect between the two side members. The two or more lower support bar elements may be loosely secured together by an elastic member, which may be an elastic cord, for example. The elastic member may extend internally through a portion of the or each lower support bar element.

Preferably, the frame comprises an upper support bar. The upper support bar may be formed from at least two upper support bar elements, which may be detachably connectable. In the erect configuration, the upper support bar is preferably operable to connect between the two side members. The two or more upper support bar elements may be loosely secured together by an elastic member, which may be an elastic cord, for example. The elastic member may extend internally through a portion of the or each upper support bar element.

The elements of the post, crossbar, side members, upper support bar and/or the lower support bar, may be attached to other elements of the same type or a different type via a connecting member. Typically, the connecting
member is not integrally formed with the components adjacent to which it is arranged in use.

An elastic member may extend through one or more post elements and be connected to, directly or indirectly via a connector, a crossbar element. An elastic member may extend through one or more post elements and be connected to a further post element via a connector.

Typically, the connecting member is of substantially smaller height than the elements it is connecting. Suitably, the width and length, or in the case of a cylindrical connector the diameter, of the connector is substantially the same as at least one of the elements it is connecting.

Preferably, when a connector is connecting post elements, crossbars elements, or post and crossbar elements, the width and length, or in the case of a cylindrical connector the diameter, of the connector is substantially the same as the elements.

A connector may comprise attachment means operable to form a detachable attachment to the post and/or crossbar. Preferably, the connector comprises a first attachment means and a second attachment means, wherein the first attachment means requires more energy to remove that the second attachment means. The first attachment means may be in the form of a rivet, the second attachment means may be in the form of a spring clip.

Preferably, when a connector is connecting post elements or crossbars elements to a side member element the width and length, or in the case of a cylindrical connector the diameter, of the connector is larger than that of the side member elements.

A connector, post, crossbar, side member, upper support bar and/or lower support bar may comprise an internal attachment means to which an elastic member may be secured. Typically, the elastic member may be
secured by forming an attachment to a projection in the internal cavity of the connector, post, crossbar, side member, upper support bar and/or lower support bar, and/or by extending the elastic member through an aperture arranged in the connector, post, crossbar, side member, upper support bar and/or lower support bar, preferably in the internal cavity, and attaching to the elastic member, or forming integrally therein, a holding portion that is unable to pass through the aperture during normal use.

A connector, post and/or crossbar may comprise an at least partially internal bore operably to receive a side member. Preferably, operable to form a close fit with the side member.

Suitably, the internal bore may have a cross-section of a different shape to the cross-section of the side member to be received, for example the side member may have a substantially circular cross-section whereas the cross-section of the bore may a tear shape, i.e. substantially rounded but having a pointed corner. Preferably, at least a portion of the internal face of the bore is substantially planar. Preferably, the bore comprises a fitting member operably to allow the bore to form a close fit with the side member. Preferably, the side member operable to be received in the bore comprises a cross-section operable to form a close fit with the bore comprising the fitting member. Preferably, the fitting member comprises a projection into the cavity of the bore. Preferably, the bore comprises a rib extending longitudinally at long at least part of the internal cavity of the bore, wherein the rib allows the bore to form a close fit with a portion of the side member, preferably a portion of a side member of substantially circular cross-section.

Advantageously, the above configuration permits for improved manufacturing, provides a more uniform wall thickness around the bore, reduces shrinkage, and reduces stresses on the component that may result from uneven wall thickness.
The bore may be arranged inside the connector, post or crossbar such that the walls around the bore provide a fixing point around which an elastic member may be secured, for example, by forming a closed loop of the elastic around the walls of the bore.

A connector may comprise portions of variable width and length. Preferably, the connector comprises a portion of width and length suitable to be inserted into a post and/or crossbar element.

Suitably, the elastic cord may be terminated within a connector. The elastic cord may be terminated by attachment to a connector.

The system preferably comprises securing means operable in use to allow the net and/or the cover to be detachably secured to the frame, in use.

The securing means may be situated on the net. The securing means may be situated on the cover.

In one embodiment, the securing means may allow for a portion of the net to secure to a further portion of the net. In this manner, the net may be wrapped around the frame and secured to itself.

In one embodiment, the securing means may allow for a portion of the cover to secure to a further portion of the cover. In this manner, the cover may be wrapped around the frame and secured to itself.

In one embodiment, the frame may additionally or alternatively comprise securing means. Securing means on the frame may be arranged and operable to cooperate with securing means on the net or cover. For example, in a hook and loop arrangement or similar.

The cover may be formed from a substantially weatherproof material.
All of the features contained herein may be combined with any of the above aspects and in any combination.

For a better understanding of the invention, and to show how embodiments of the same may be carried into effect, reference will now be made, by way of example, to the accompanying diagrammatic drawings in which:

Figure 1 shows a perspective partially exploded front view of a collapsible team shelter according to a first embodiment of the present invention;

Figure 2 shows a perspective partially exploded rear view of a collapsible team shelter according to a first embodiment of the present invention;

Figure 3 shows a perspective view of a collapsible team shelter according to a first embodiment of the present invention;

Figure 3a shows a perspective view of a second embodiment of a portion of the collapsible team shelter of figure 4;

Figure 3b shows a perspective view of a first embodiment of a portion of the collapsible team shelter of figure 4;

Figure 4 shows a perspective part-cutaway view of the frame of a collapsible team shelter according to a first embodiment of the present invention;

Figure 4a shows a perspective part-cutaway view of a portion of the frame of figure 4;

Figure 4b shows a perspective part-cutaway view of a portion of the frame of figure 4;
Figure 4c shows a perspective part-cutaway view of a portion of the frame of figure 4;

Figure 4d shows a perspective partially exploded view of a portion of the frame of figure 4;

Figure 5 shows a perspective view of a frame of a collapsible team shelter according to a second embodiment of the present invention;

Figure 5a shows a perspective view of a portion of the frame of figure 5;

Figure 5b shows a rear plan view of the portion of figure 5a along line B;

Figure 5c shows a sectional view of the portion of figure 5a along the line C-C;

Figure 5d shows a sectional view of the portion of figure 5a along the line A-A' of figure 5c;

Figure 6 shows a perspective view of a frame of the collapsible team shelter according to a third embodiment of the present invention;

Figure 6a shows a perspective partially-exploded view of a portion of the frame of figure 6;

Figure 6b shows a sectional view of the portion of figure 6a along the line E-E;

Figure 6c shows a part-cutaway view of the portion of figure 6a along the direction of line G;

Figure 6d shows a sectional view of the portion of figure 6a along the line C-C of figure 6c;
Figure 6e shows a sectional view of the portion of figure 6a along the line D-D’ of figure 6c;

5 Figure 7 shows a perspective view of a frame of a collapsible team shelter according to a fourth embodiment of the present invention;

Figure 7a shows a side part-cutaway view of a portion of the frame of figure 7;

10 Figure 7b shows a sectional view of the portion of figure 7a along the line F-F’.

Figures 1 to 4d show a first embodiment of a collapsible team shelter 102 according to the present invention. Collapsible team shelter 102 is formed of frame 104, cover 110 and net 108. Frame 104 has two post sections 112, crossbar section 118, two side members 122, a lower support bar 126 and an upper support bar 130.

20 Each post section 112 is formed of a linear hollow plastic cylindrical lower post element 114b and 114c respectively and an upper hollow plastic cylindrical post element 114a and 114d respectively. The post elements of post sections 112 are detachably joined together by substantially hollow plastic cylindrical post joining element 158 and 158a respectively. Post sections 112 are arranged in a vertical orientation.

25 Horizontally orientated crossbar 118 is formed of three linear hollow plastic cylindrical crossbar elements 120a, 120b and 120c. Crossbar elements 120a and 120b are detachably joined together at one respective end by hollow plastic cylindrical crossbar joining element 164a. The other end of crossbar element 120b is detachably joined to an end of crossbar element 120c by crossbar joining element 164.
Each of posts 112 are attached to a respective end of crossbar 118 via corner connectors 162. Corner connectors 162 are of a substantially hollow cylindrical tube having a first cylindrical section arranged at right angles to a second cylindrical section. The first section of corner connector 162 is slotted into an upper end of posts 112 and secured in place by the application of a rivet 144a through cooperating apertures in the upper end of posts 112 and the first section of corner connector 162. The second section of corner connectors 162 is slotted into a respective end of crossbar 118 and secured in place by the passage of a projection on a spring clips 142 arranged in the second section of corner connectors 162 through cooperating apertures in the crossbar 118.

The posts 112 and crossbar 118 thus joined form a planer three-sided rectangular structure that when placed on a surface defines rectangular opening 166.

Posts 112 have running along at least a portion thereof elastic cord 116 an 116a. Post connector 158 has laterally extending solid disc 168 extending across the internal cavity of the connector. Disc 168 is continuous apart from a central aperture through which elastic cord 116 is passed. The portion of cord 116 arranged below the underside face of disc 168 is in the form of a knot of sufficient size to prevent passage through the aperture of disc 168. The cord 116 extends from the knot through the apertures of disc 168 and the internal cavity of post element 114a up to corner connector 162. Corner connector 162 also has a disc (not shown) extending across the internal cavity of the connector, the disc is continuous apart from an aperture through which the end of cord 116 is passed. The portion of cord 116 arranged at the other side of the aperture is in the form of a knot of sufficient size to prevent passage through the aperture of the disc.

In use, post element 114a may be disconnected from post connector 158 and corner connector 162 and yet maintain a connection to the remaining posts connector 114b and the crossbar 118. Such an elastically connection permits
the components to be folded and arranged in a collapsed state (not shown) whilst still maintaining a connection to allow for easy assembly.

Post elements 114c and 114d are arranged in a similar manner except that elastic cord 116a is not terminated at post connector 158a. Rather cord 116a extends through connector 158a and post element 114c and is attached to tube 146a in foot connector 160 by forming a closed loop of cord 116a around the tube 146a.

Side members 122 are formed of side member elements 124a, 124b, 124c and 124d. Cylindrical side members 124a, 124b, 124c and 124d are connected such as to form substantially crescent shaped side members 122.

Linear horizontally orientated lower support bar 126 is formed of linear cylindrical lower support bar elements 128a, 128b and 128c, wherein support bar element 128b is attached at one end to element 128a and at the other end to element 128c. Each end of lower support bar 126 is attached to a side member 122 towards the lower corner of the apex of the side member 122.

Linear horizontally orientated upper support bar 130 is formed of linear cylindrical upper support bar elements 132a, 132b and 132c, wherein support bar element 132b is attached at one end to element 132a and at the other end to element 132c. Each end of upper support bar 130 is attached to a side member 122 towards the upper corner of the apex of side member 122.

Corner connectors 162 further have internal hollow cylindrical tubes 146 extending laterally along the join of the first and section sections of the connector 162. Tubes 146 are closed at one end and open at the other, wherein the open ends of the tubes 146 project slightly outwardly from a side wall of connectors 162. The non-side member element attached ends of side member elements 124d are inserted into the tubes 146 of connectors 162. Side member elements 124d are attached to the connectors 162 such that the side members extend perpendicularly away from crossbar 118 and posts 112.
The lower ends of posts 112 and the non-side member element attached ends of side member elements 124c are attached via foot connectors 160. Foot connectors 160 are in the form of an open-ended cylinder wherein the upper open end of the connectors 160 is inserted into the lower ends of posts 112 and secured in place by rivet 144b. Foot connectors 160 have internal hollow laterally extending tubes 146a extending along the base of the connectors. Tubes 146a are closed at one end and open at the other, wherein the open end of tubes 146a project slightly outwardly of a side wall of connectors 160. The non-side member element attached end of side member elements 124c are inserted into the tubes 146a of connectors 160. Side member elements 124c are attached to connectors 160 such that the side members extend perpendicularly away from posts 112.

In this arrangement, side members 122, upper support bar 130 and lower support bar 126 form a supporting structure extending from the rear face of the structure formed by the posts 112 and crossbar 118 when the frame 104 is in the erect position (shown).

When frame 104 is in the erect position net 108 may be detachably attached to the frame such as to form a porous barrier around the faces of the supporting structure. In use, this arrangement permits a projectile, such as a football, to enter the interior cavity of frame 104 through opening 166 and be held within, or at least prevented from passing through, the faces of the supporting structure.

Furthermore, when frame 104 is in the erect position waterproof cover 110 may be detachably attached to the frame such as to provide a waterproof barrier around the faces of the supporting structure. In such a configuration users may enter the shelter through opening 166 and obtain protecting from the elements, such as wind and/or rain. To encourage airflow, window 154 is provided in the cover 110.
Cover 110 is detachably attached to frame 104 by a plurality of attachment means 134. Attachment means 134 are formed of elastic loop 136 and toggle 138. Elastic loop 136 is attached to edge of cover 110 with toggle 138 is attached to the cover slightly inwards therefrom. In use, the edges of cover 110 are arranged around the cylindrically shaped posts 112 and crossbar 118 until loop 136 may engage toggle 138 such as to hold the cover 110 around the post 112 or the crossbar 118.

In an alternative embodiment, a plurality of toggles 538 may be attached to posts 112 and crossbar 118 such that, in use, the loops 536 of attachment means 534 are passed around the posts 112 and the crossbar 118 until the loops 536 may engage toggles 538 such as to hold the cover 110 around the post 112 or the crossbar 118.

Figures 5 to 5d show a second embodiment of a collapsible team shelter 202 according to the present invention. Shelter 202 is arranged and works in the same manner as shelter 102 except that the elastic cord 216 is terminated in the corner connectors by forming an attachment to internal projection 252.

Also shown in second embodiment is rib 250. Rib 250 is present but not shown in the first embodiment. Rib 250 projects into the cavity of tube 246 and serves to hold the side frame in place while maintaining a constant wall thickness in the part which stops shrinkage in part during the moulding process.

Figures 6 to 6e show a third embodiment of a collapsible team shelter 302 according to the present invention. Shelter 302 is arranged and works in the same manner as shelters 102 and 202 except that the frame does not have an upper support bar and the posts are formed of one element.

Figures 7 to 7b show a fourth embodiment of a collapsible team shelter 402 according to the present invention. Shelter 402 is arranged and works in
the same manner as shelters 102 and 202 except both posts 412 have the elastic cord terminated at the post connectors.

Attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.

All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.

The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Claims

1. A collapsible goal and shelter system, the system comprising;
 a collapsible frame comprising a plurality of frame members, the
 collapsible frame having a first, erect configuration, and a second,
 collapsed configuration; the frame defining an opening in the erect
 configuration;
 the system further comprising a net operable to be attached to the
 frame, when the frame is in the erect configuration to thereby form a
 goal; and
 the system further comprising a cover operable to be attached to the
 frame, when the frame is in the erect configuration to thereby form a
 shelter.

2. A system according to claim 1, wherein the frame comprises two posts,
 which are preferably operable to be upwardly extending when the frame
 is in the erect configuration, preferably the posts are each formed from
 two or more post elements, which are preferably detachably connectable,
 suitably, the two or more post elements are loosely secured together by
 an elastic member.

3. A system according to claim 1 or 2, wherein the frame comprises a
 crossbar, which is preferably operable to be substantially horizontally
 extending when the frame is in the erect configuration, preferably the
 crossbar is formed from two or more crossbar elements which are
 detachably connectable, suitably the two or more crossbar elements are
 loosely secured together by an elastic member.

4. A system according to claim 3, wherein the system comprises an elastic
 member and two posts and the elastic member extends through a portion
 of the post and through a portion of the crossbar, and/or a crossbar
 connected connector, when present, such as to loosely secure together
 at least a portion of the post and at least a portion of the crossbar.
5. A system according to any preceding claim, wherein the frame comprises two side members, preferably the side members are each formed from at least two side member elements which are detachably connectable, suitably in the erect configuration, each side member is attachable at or toward each end thereof to each of the posts, preferably the two or more side member elements may be loosely secured together by an elastic member.

10 6. A system according to claim 5, wherein the frame comprises a lower support bar, preferably, the lower support bar is formed from at least two lower support bar elements which are detachably connectable, suitably in the erect configuration, the lower support bar is operable to connect between the two side members, preferably, the two or more lower support bar elements are loosely secured together by an elastic member.

7. A system according to claim 5 or 6, wherein the frame comprises an upper support bar, preferably the upper support bar is formed from at least two upper support bar elements which are detachably connectable, suitably, in the erect configuration, the upper support bar is operable to connect between the two side members, preferably, the two or more upper support bar elements are loosely secured together by an elastic member.

25 8. A system according to any of claims 2 to 7, wherein at least two of the elements of the post, crossbar, side members, upper support bar and/or the lower support bar, when present, are attached to other elements of the same type or a different type via a connecting member.

30 9. A system according to claim 8, wherein a connecting member comprises attachment means operable to form a detachable attachment to the post and/or crossbar, preferably, the connector comprises a first attachment means and a second attachment means, wherein the first attachment
means requires more energy to remove that the second attachment means.

10. A system according to any claims 2 to 9, wherein at least one of the connector, post, crossbar, side member, upper support bar and/or lower support bar, when present, comprise an internal attachment means to which an elastic member may be secured.

11. A system according to any of claims 5 to 10, wherein the connector, post and/or crossbar, when present, comprise an at least partially internal bore operable to receive a side member, preferably, operable to form a close fit with the side member.

12. A system according to claim 11, wherein the internal bore has a cross-section of a different shape to the cross-section of the side member to be received, preferably, the side member has a substantially circular cross-section and the cross-section of the bore is a tear shape.

13. A system according to claim 11 or 12, wherein the bore comprises a fitting member operably to allow the bore to form a close fit with the side member, preferably, the fitting member comprises a projection into the cavity of the bore.

14. A system according to any of claims 11 to 13, wherein the bore is arranged inside the connector, post or crossbar such that the walls around the bore provide a fixing point around which an elastic member may be secured.

15. A system according to any preceding claim, wherein the system further comprises securing means operable in use to allow the net and or the cover to be detachably secured to the frame.
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A63B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 209 878 B1 (MUNRO ALICK R [US]) 3 April 2001 (2001-04-03) columns 2-7; figure *</td>
<td>1-15</td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/035243 A1 (MUNIN HOLDING APS [DK]) 1 April 2010 (2010-04-01) the whole document</td>
<td>1-15</td>
</tr>
<tr>
<td>X</td>
<td>CA 2 617 073 A1 (HSIAO SIMON [TW]) 27 June 2009 (2009-06-27) the whole document</td>
<td>1-15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

A: document defining the general state of the art which is not considered to be of particular relevance

E: earlier application or patent but published on or after the international filing date

L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another application or other special reason (as specified)

O: document referred to in an oral disclosure, use, exhibition or other means

P: document published prior to the international filing date but later than the priority date claimed

X: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

Y: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

A: document member of the same patent family

Date of the actual completion of the international search

13 March 2015

Date of mailing of the international search report

24/03/2015

Authorized officer

Haller, E
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2005067785 Al</td>
<td>31-03-2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6209878 BI</td>
<td>03-04-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2005189719 Al</td>
<td>01-09-2005</td>
<td>CN 2706201 Y</td>
<td>29-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005189719 Al</td>
<td>01-09-2005</td>
</tr>
<tr>
<td>Wo 2010035243 Al</td>
<td>01-04-2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CA 2617073 Al</td>
<td>27-06-2009</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>