
JP 5019669 B2 2012.9.5

10

20

(57)【特許請求の範囲】
【請求項１】
　ディジタル・コンピュータ・ネットワークを経由する標準ネットワーク・ファイル・シ
ステム・プロトコルにおいてコンピュータのオペレーティング・システムによって行われ
る遠隔ファイル・システム要求に応じてネットワーク・ファイル・システムの行動をエミ
ュレートするための方法であって、
　ａ）前記ネットワークを経由して前記要求を受信するステップと、
　ｂ）前記要求を標準ネットワーク・ファイル・システム・プロトコルに従ってデコード
するステップと、
　ｃ）前記要求に応じて、プラグイン関数を利用してリアルタイムに仮想ファイルを構成
するコンテンツ・データを生成するステップであって、前記要求に応じて複数のプラグイ
ン関数から前記プラグイン関数を選択すること、選択された前記プラグイン関数を呼び出
して前記コンテンツ・データを生成することを含む、コンテンツ・データを生成するステ
ップと、
　ｄ）前記ネットワークを経由して、前記標準ネットワーク・ファイル・システム・プロ
トコルに従って前記仮想ファイルを前記コンピュータのオペレーティング・システムに対
する応答として送信するステップと、
を含む方法。
【請求項２】
　請求項１に記載の方法において、前記ステップｃ）において、前記仮想ファイルの前記

(2) JP 5019669 B2 2012.9.5

10

20

30

40

50

コンテンツ・データがアルゴリズム的に生成される方法。
【請求項３】
　請求項１に記載の方法において、前記ステップｃ）において、前記仮想ファイルの前記
コンテンツ・データが、格納されている物理ファイルを暗号解読することによって生成さ
れる方法。
【請求項４】
　請求項１に記載の方法において、前記ステップｃ）において、前記仮想ファイルの前記
コンテンツ・データが、格納されている物理ファイルを解凍することによって生成される
方法。
【請求項５】
　請求項１に記載の方法において、前記ステップｂ）、ｃ）およびｄ）において、前記標
準ネットワーク・ファイル・システム・プロトコルがＮＦＳを含む方法。
【請求項６】
　請求項１に記載の方法において、前記ステップｂ）、ｃ）およびｄ）において、前記標
準ネットワーク・ファイル・システム・プロトコルがＳＭＢを含む方法。
【請求項７】
　請求項１に記載の方法において、前記ステップｂ）、ｃ）およびｄ）において、前記標
準ネットワーク・ファイル・システム・プロトコルがＣＩＦＳを含む方法。
【請求項８】
　請求項１に記載の方法において、前記ステップｂ）、ｃ）およびｄ）において、前記標
準ネットワーク・ファイル・システム・プロトコルがＡｐｐｌｅｓｈａｒｅを含む方法。
【請求項９】
　請求項１に記載の方法において、前記ステップａ）において、前記要求がファイル読取
り要求を含み、
　前記ステップｃ）において、前記ファイル読取り要求に応じて前記仮想ファイルのコン
テンツ・データが、データベース・システムに問い合わせることによって生成されるよう
になっている方法。
【請求項１０】
　請求項９に記載の方法において、前記ステップｃ）において、前記データベース・シス
テムが関係データベース・システムである方法。
【請求項１１】
　請求項９に記載の方法において、前記ステップｃ）において、前記データベース・シス
テムがオブジェクト指向データベース・システムである方法。
【請求項１２】
　請求項９に記載の方法において、前記ステップａ）において、前記要求がファイル書込
み要求を含み、
　前記ステップｃ）が、前記要求に応じてデータベース・システムの中にデータを挿入す
るステップをさらに含む方法。
【請求項１３】
　請求項１２に記載の方法において、前記ステップｃ）において、前記データベース・シ
ステムが関係データベース・システムである方法。
【請求項１４】
　請求項１２に記載の方法において、前記ステップｃ）において、前記データベース・シ
ステムがオブジェクト指向データベース・システムである方法。
【請求項１５】
　請求項１に記載の方法において、前記ステップａ）において、前記要求がファイル読取
り要求を含み、
　前記ステップｃ）において、前記要求に対して応答して生成される前記仮想ファイルの
コンテンツが、格納されている物理ファイルのファイル・フォーマットを第２のファイル
・フォーマットに変換することによって生成されるようになっている方法。

(3) JP 5019669 B2 2012.9.5

10

20

30

40

50

【請求項１６】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットがワードプロセッシングのファイル・フォーマットである方法。
【請求項１７】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットがデータベースのファイル・フォーマットである方法。
【請求項１８】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットが画像またはグラフィックスのファイル・フォーマットである方法。
【請求項１９】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットが分子構造のファイル・フォーマットである方法。
【請求項２０】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットが生物情報学的シーケンス・ファイル・フォーマットである方法。
【請求項２１】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットが生物情報学的データベースのファイル・フォーマットである方法。
【請求項２２】
　請求項１５に記載の方法において、前記ステップｃ）において、前記ファイルのフォー
マットがバイナリの実行可能なファイル・フォーマットである方法。
【請求項２３】
　請求項１５に記載の方法において、前記ステップａ）において、前記要求がファイル書
込み要求を含み、
　前記ステップｃ）において、前記仮想ファイルの前記コンテンツ・データを異なるフォ
ーマットに変換するステップをさらに含む方法。
【請求項２４】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１のワードプロセッシングのファイル・フォーマットから第２の
ワードプロセッシングのファイル・フォーマットへ変換されるようになっている方法。
【請求項２５】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１のデータベースのファイル・フォーマットから第２のデータベ
ースのファイル・フォーマットへ変換されるようになっている方法。
【請求項２６】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１のグラフィックスのファイル・フォーマットから第２のグラフ
ィックスのファイル・フォーマットへ変換されるようになっている方法。
【請求項２７】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが第１の分子構造のファイル・フォーマットから第２の分子構造のファ
イル・フォーマットへ変換されるようになっている方法。
【請求項２８】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１の生物情報学的シーケンス・ファイル・フォーマットから第２
の生物情報学的シーケンス・ファイル・フォーマットへ変換されるようになっている方法
。
【請求項２９】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１の生物情報学的データベースのファイル・フォーマットから第

(4) JP 5019669 B2 2012.9.5

10

20

30

40

50

２の生物情報学的データベースのファイル・フォーマットへ変換されるようになっている
方法。
【請求項３０】
　請求項２３に記載の方法において、前記ステップｃ）において、前記仮想ファイルのコ
ンテンツ・データが、第１のバイナリの実行可能なファイル・フォーマットから第２のバ
イナリの実行可能なファイル・フォーマットへ変換されるようになっている方法。
【請求項３１】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルのコンテンツを読み取ることである方法。
【請求項３２】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルに対してデータを書き込むことである方法。
【請求項３３】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルの長さを求めることである方法。
【請求項３４】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルの属性を求めることである方法。
【請求項３５】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルの属性を変更することである方法。
【請求項３６】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルを生成することである方法。
【請求項３７】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルを削除することである方法。
【請求項３８】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がファイルの名称を変更することである方法。
【請求項３９】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がディレクトリを生成することである方法。
【請求項４０】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求がディレクトリを削除することである方法。
【請求項４１】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求が１つのディレクトリの中のファイル名を探索することである方法。
【請求項４２】
　請求項１に記載の方法において、前記ステップａ）、ｂ）およびｃ）において、前記要
求が１つのディレクトリの中のファイルのリストを求めることである方法。
【請求項４３】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が、
格納されている物理ファイルを読み取ることによって前記コンテンツ・データを生成する
ようになっている方法。
【請求項４４】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が前
記コンテンツ・データをアルゴリズム的に生成するようになっている方法。
【請求項４５】

(5) JP 5019669 B2 2012.9.5

10

20

30

40

50

　請求項１に記載の方法において、前記ステップｃにおいて、前記プラグイン関数が、格
納されている物理ファイルを暗号解読することによって前記コンテンツ・データを生成す
るようになっている方法。
【請求項４６】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が、
格納されている物理ファイルを解凍することによって前記コンテンツ・データを生成する
ようになっている方法。
【請求項４７】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が、
前記要求を行っている前記ユーザ、マシンおよびオペレーティング・システムによって変
わる前記コンテンツ・データを生成するようになっている方法。
【請求項４８】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が、
データベース・システムに問い合わせることによって前記コンテンツ・データを生成する
ようになっている方法。
【請求項４９】
　請求項４８に記載の方法において、前記ステップｃ）において、前記データベース・シ
ステムが関係データベース・システムである方法。
【請求項５０】
　請求項４８に記載の方法において、前記ステップｃ）において、前記データベース・シ
ステムがオブジェクト指向データベースである方法。
【請求項５１】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数が、
格納されている物理ファイルの前記ファイル・フォーマットを第２のファイル・フォーマ
ットに変換することによって前記コンテンツ・データを生成するようになっている方法。
【請求項５２】
　請求項５１に記載の方法において、前記ファイル・フォーマットがワードプロセッシン
グのファイル・フォーマットである方法。
【請求項５３】
　請求項５１に記載の方法において、前記ファイル・フォーマットがデータベースのファ
イル・フォーマットである方法。
【請求項５４】
　請求項５１に記載の方法において、前記ファイル・フォーマットが画像またはグラフィ
ックスのファイル・フォーマットである方法。
【請求項５５】
　請求項５１に記載の方法において、前記ファイル・フォーマットが分子構造のファイル
・フォーマットである方法。
【請求項５６】
　請求項５１に記載の方法において、前記ファイル・フォーマットが生物情報学的シーケ
ンス・ファイル・フォーマットである方法。
【請求項５７】
　請求項５１に記載の方法において、前記ファイル・フォーマットが生物情報学的データ
ベースのファイル・フォーマット方法。
【請求項５８】
　請求項５１に記載の方法において、前記ファイル・フォーマットがバイナリの実行可能
なファイル・フォーマットである方法。
【請求項５９】
　請求項１に記載の方法において、前記ステップａ）において、前記要求がファイル読取
り要求を含み、
　前記ステップｃ）において、前記仮想ファイルの前記コンテンツ・データが、データの

(6) JP 5019669 B2 2012.9.5

10

20

30

40

50

非実行可能表現から変換されたバイナリの実行可能な表現を含む方法。
【請求項６０】
　請求項５９に記載の方法において、前記ステップｃ）において、前記バイナリの実行可
能な表現が、前記要求を行っている前記マシンの前記アーキテクチャおよびオペレーティ
ング・システムによって変わるようになっている方法。
【請求項６１】
　請求項１に記載の方法において、前記ステップｃ）において、前記プラグイン関数によ
って生成された前記コンテンツ・データが、他のいくつかの非実行可能表現から変換され
たバイナリの実行可能な表現である方法。
【請求項６２】
　請求項６１に記載の方法において、前記ステップｃ）において、前記バイナリの実行可
能表現が、前記要求を行っている前記マシンの前記アーキテクチャおよびオペレーティン
グ・システムに依存している方法。
【請求項６３】
　請求項１に記載の方法において、前記ステップｃ）において、前記コンテンツ・データ
がデータを呼び出すことによって生成されるようになっている方法。
【請求項６４】
　請求項１に記載の方法において、前記ステップｃ）において、前記コンテンツ・データ
が、データを変更することによって生成されるようになっている方法。
【発明の詳細な説明】
【０００１】
（関連出願の相互参照）
適用無し。
（連邦政府により後援された研究／開発）
適用無し。
（発明の背景）
本発明は、概して、データベースを管理するためのシステムおよび方法に関し、特に、従
来のプロトコル手段によって遠隔マシンの中に格納されているデータを必要とするファイ
ル・システム要求を受信し、それに応答することがさらにできるファイル・システムを提
供するためのシステムおよび方法に関する。
【０００２】
好むと好まざるとにかかわらず、「ファイル」の概念は、コンピュータ・サイエンスにお
いて共通である。データ記憶の命名されたユニットとしてのファイル、およびファイルの
フォーマット、ファイルの中の情報の構成および構造の概念は、プログラマおよびコンピ
ュータ・ユーザによって等しく理解されている。これらの理由のために、ファイルは１９
５０年代以来、プログラムとコンピュータとの間の通信の主な事実上の標準の方法となっ
ているが、ファイル・フォーマットの種類が非常に多いこと、表示の細分性、同時アクセ
ス、そして共同アクセスなどの問題がないわけではない。
【０００３】
１９７０年代以来、ネットワーク上でコンピュータを互いに接続するための機能によって
、異なるコンピュータ間でファイルを共有したいという要望が発生してきた。初期の試み
は、「ｕｕｃｐ」または「ｏｆｔｐ」などのプロトコルを使用して、１つのマシンから別
のマシンへファイル全体を転送することだけができるものであった。１９８０年代半ばに
分散形ファイル・システムが導入され、それによって遠隔マシン上でファイルに対してそ
れらがあたかも局所ディスク上にあるかのようにアクセスすることができるようになった
。これまで、これらの標準のうちの最もポピュラーなものは、ＳＵＮ　Ｍｉｃｒｏｓｙｓ
ｔｅｍｓのＮｅｔｗｏｒｋ　Ｆｉｌｅ　Ｓｙｓｔｅｍ（ＮＦＳ）であった。他の重要な標
準としては、ＭｉｃｒｏｓｏｆｔのＬＡＮ　Ｍａｎａｇｅｒ、ＳＭＢおよびＣＩＦＳネッ
トワーク・ファイル・システム、およびＡｐｐｌｅのＡｐｐｌｅＳｈａｒｅネットワーク
・ファイル・システムなどがある。もっと最近の１９９０年代初期に、Ｗｏｒｌｄ　Ｗｉ

(7) JP 5019669 B2 2012.9.5

10

20

30

40

50

ｄｅ　Ｗｅｂ（ＷＷＷ）が導入され、それによってファイル全体をインターネット上の任
意のホストからハイパーテキスト転送プロトコル（ＨＴＴＰ）を使用して読むことができ
るようになった。ＨＴＴＰによって導入された技術革新のうち、ｈｔｂｉｎまたはｃｇｉ
‐ｂｉｎ　ＷＷＷページの概念があり、それは遠隔サーバによってオンザフライで生成さ
れたファイルである。これは、ＭＩＭＥ型（ＭａｃｉｎｔｏｓｈのＭａｃＯＳのファイル
・システムに似たファイル・タイピング・システム）と組み合わされて、ソフトウェアお
よびコンピュータ産業の重要な部分を根本から変えた。
【０００４】
（１）ＮＦＳ　ネットワーク・ファイル・システムの概要
このセクションでは、Ｎｅｔｗｏｒｋ　Ｆｉｌｅ　Ｓｙｓｔｅｍ（ネットワーク・ファイ
ル・システム）（ＮＦＳ）プロトコルについて記述する。これは仮想ネットワーク・ファ
イル・サーバによって使用されるプロトコルの１つであり、ＳＵＮ　Ｍｉｃｒｏｓｙｓｔ
ｅｍｓによって１９８５年に導入された。ＮＦＳはクライアント・サーバのアーキテクチ
ャに基づいており、遠隔ファイル・システムに対する透過的なアクセスを提供するための
手段を提供する。ファイル・サーバは一組のファイルをエクスポートするマシンである。
クライアントは、そのようなファイルにアクセスするマシンである。クライアントとサー
バとは同期要求として働く「リモート・プロシージャ・コール」を経由して通信する。ク
ライアント上のアプリケーションが遠隔ファイルにアクセスしようとする時、カーネルが
、応答を受信するまでサーバおよびクライアント・ブロックに対して要求を送信する。サ
ーバは、入りクライアントの要求を待ち、それらを処理し、応答をクライアントに対して
送り返す。
【０００５】
（２）ユーザの展望
ＮＦＳサーバは１つまたはそれ以上のファイル・システムをエクスポートする。エクスポ
ートされる各ファイル・システムは、１つのパーティション全体か、あるいはそのサブツ
リーのいずれであってもよい。サーバは、通常、“／ｅｔｃ／ｅｘｐｏｒｔｓ”ファイル
の中のエントリを通じて、どのクライアントがエクスポートされた各システムに対してア
クセスできるか、その許可されているアクセスが読取り専用であるか、あるいは読取り／
書込み可能であるかどうかを指定することができる。
【０００６】
次に、クライアント・マシンは、そのようなファイル・システムまたはそのサブツリーを
それぞれの既存のファイル階層の中に、それらをあたかも局所ファイル・システム上にマ
ウントするかのように、その中の任意のディレクトリにマウントする。クライアントは、
サーバがそれを読取り／書込み用としてエクスポートした場合であっても、そのディレク
トリを読取り専用としてマウントすることができる。ＮＦＳは２種類のマウント、すなわ
ち、「ハード」および「ソフト」をサポートする。これは、サーバが要求に対して応答し
ない場合におけるクライアントの行動に影響する。ファイル・システムがハード・マウン
ト型であった場合、クライアントは応答が受信されるまで再試行を継続する。ソフトマウ
ント型のファイル・システムの場合、クライアントはしばらくしてから諦め、そしてエラ
ーを返す。「マウント」が成功すると、クライアントは、局所ファイルに対して適用され
るのと同じ動作を使用して遠隔ファイル・システムの中のファイルにアクセスすることが
できる。
【０００７】
（３）プロトコルの設計目標
元々のＮＦＳ設計には、「ＮＦＳは、ＵＮＩＸに制限されるべきではない」という目標が
あった。任意のオペレーティング・システムがＮＦＳのサーバまたはクライアントを実装
できることが必要である。そのプロトコルは特定のハードウェアに依存すべきではない。
サーバまたはクライアントのクラッシュから単純に回復するメカニズムがなければならな
い。アプリケーションは、特殊なパス名またはライブラリを使用せずに、再コンパイルを
行わずに遠隔ファイルに透過的にアクセスすることができる必要がある。ＵＮＩＸのファ

(8) JP 5019669 B2 2012.9.5

10

20

30

40

50

イル・システムのセマンティックスは、ＵＮＩＸのクライアントに対して維持されなけれ
ばならない。ＮＦＳの性能は、局所ディスクの性能に匹敵するものでなければならない。
その実装はトランスポート独立でなければならない。
【０００８】
ＮＦＳプロトコルの単独の最も重要な特性は、サーバがステートレスであり、そのクライ
アントが正しく動作することに関して何の情報も維持する必要がないことである。各要求
は他と完全に独立であり、それを処理するために必要な情報のすべてを含む。サーバは、
クライアントからの過去の要求の記録を、キャッシングまたは統計情報収集の目的のため
にオプションとしてそうすること以外は維持する必要はない。
【０００９】
例えば、ＮＦＳプロトコルは、ファイルを開くか閉じるかに対する要求を提供しない。と
いうのは、それはそのサーバが覚えておかなければならない状態情報を含むことになるか
らである。同じ理由のために、「読取り」および「書込み」の要求は、局所ファイル上で
の「読取り」および「書込み」の動作と違って、ファイル記述からオフセットを得るパラ
メータとして開始オフセットを渡す。
【００１０】
ステートレス・プロトコルによって、クラッシュからの回復が単純になる。クライアント
がクラッシュした時は、回復は不要である。それはリブートする時にそのファイル・シス
テムを単純に再マウントし、サーバはそのことを知らず、あるいは気にかけない。サーバ
がクラッシュすると、クライアントは、要求がタイムアウトになっていることを知り、単
純にそれらを再送信する。サーバがリブートした後、最終的に答えるまで要求の再送を継
続する。クライアントは、サーバがクラッシュしてリブートしたかどうか、あるいは単純
に遅かったのかどうかを知る方法を持たない。しかし、状態のあるプロトコルは、クラッ
シュ‐回復のメカニズムを必要とする。サーバはクライアントのクラッシュを検出し、そ
のクラッシュに対して維持されていた状態を捨てなければならない。サーバがリブートす
る時、サーバはクライアントに対して通知し、従って、クライアントがそれぞれの状態を
サーバ上に再構築できるようにしなければならない。
【００１１】
（４）ＮＦＳネットワーク・ファイル・システムのプロトコル・スタック
ＮＦＳプロトコル・スタックは、ファイル・システムの動作がネットワーク・プロトコル
上でのパケットに変換される方法を定義するいくつかのコンポーネントまたは層から構成
されている。そのプロトコル・スタックの最低レベルにはネットワーク・トランスポート
層がある。従来はＮＦＳの下で、これはＵＤＰ（Ｕｎｒｅｌｉａｂｌｅ　Ｄａｔａｇｒａ
ｍ　Ｐｒｏｔｏｃｏｌ）（信頼性のないデータグラム・プロトコル）インターネット・ト
ランスポートから構成されている。しかし、現代の実装はＴＣＰ（Ｔｒａｎｓｍｉｓｓｉ
ｏｎ　Ｃｏｎｔｒｏｌ　Ｐｒｏｔｏｃｏｌ）（伝送制御プロトコル）インターネット・プ
ロトコルもサポートする。ＮＦＳプロトコル・スタックの次の層は、ＳＵＮ　Ｍｉｃｒｏ
ｓｙｓｔｅｍｓのＸＤＲ（Ｅｘｔｅｎｄｅｄ　Ｄａｔａ　Ｒｅｐｒｅｓｅｎｔａｔｉｏｎ
）（拡張データ表現）であり、それはネットワーク上で送信するためのデータの符号化の
マシン独立の方法を提供する。次の層はＳＵＮ　ＭｉｃｒｏｓｙｓｔｅｍｓのＲＰＣ（Ｒ
ｅｍｏｔｅ　Ｐｒｏｃｅｄｕｒｅ　Ｃａｌｌ）（リモート・プロシージャ・コール）プロ
トコルであり、それはクライアントとサーバとの間のすべての対話のためのＸＤＲパケッ
トのフォーマットを定義する。この上の次の層は３つのコンポーネント、すなわち、ＮＦ
Ｓ、ＭＯＵＮＴおよびＰＯＲＴＭＡＰプロトコルから構成されている。これらのピアー・
プロトコルは、ＲＰＣを経由してそれぞれリモートＮＦＳ、ＭＯＵＮＴおよびＰＯＲＴＭ
ＡＰのｄａｅｍｏｎｓ（ｎｆｓｄ、ｍｏｕｎｔおよびｐｏｒｔｍａｐｐｅｒ）に対してそ
れぞれ交信するためのＡＰＩレベルのインターフェースを定義する。最後に、最高の層が
論理プロトコルであり、それはＰＯＲＴＭＡＰのｄａｅｍｏｎ（ＭＯＵＮＴおよびＮＦＳ
のｄａｅｍｏｎｓのポートを得るため）、ＭＯＵＮＴのｄａｅｍｏｎ（エクスポートされ
るファイル・システムのｒｏｏｔのファイル・ハンドルを得るため）および最後に、ＮＦ

(9) JP 5019669 B2 2012.9.5

10

20

30

40

50

Ｓのｄａｅｍｏｎに対する要求の順序を定義する（ＭＯＵＮＴのｄａｅｍｏｎまたは前の
ＮＦＳ応答からのファイル・ハンドルを使用して）。
【００１２】
さらに、現在２つのバージョンのＮＦＳおよびＭＯＵＮＴプロトコルがあることに言及す
る必要がある。元々の公開実装は、ＮＦＳバージョン２およびＭＯＵＮＴバージョン１プ
ロトコルから構成されていた。しかし、これらは最近ＮＦＳバージョン３およびＭＯＵＮ
Ｔバージョン３として改訂されており、性能が改善され、そして２Ｇバイトより大きいフ
ァイル・システムに対してサポートする。
【００１３】
（５）層１：ＵＤＰ／ＩＰおよびＴＣＰ／ＩＰプロトコル
ＮＦＳプロトコル・スタックの最低レベルには、トランスポートとして使用されるインタ
ーネット・プロトコルがある。元々の実装は、本来的に信頼性のないＵＤＰプロトコルを
使用していた。これは、コネクションレスのトランスポート・メカニズムであり、ネット
ワーク上のソケット間で任意のサイズのデータ・パケットを送信する。信頼性は低いが、
そのプロトコル・スタックのＲＰＣ層は回答されない要求を追跡し続け、応答が受信され
るまでそれらを定期的に再送信することによって、信頼性の高いデータ・グラム・サービ
スを実装する。ＵＤＰは、その実装が信頼性の高いコネクション・オリエントのＴＣＰの
性能の利点を提供したので、最初は使用されていた。しかし、実装がさらに改善されてこ
の差はもはや存在しない。ほとんどのＮＦＳの実装に対しては、ＵＤＰがまだデフォール
トであるが、多くの実装がＴＣＰ／ＩＰを代わりのものとしてサポートし、最近のＷｅｂ
ＮＦＳの仕様はトランスポートとしてＴＣＰ／ＩＰをサポートすることを要求している。
【００１４】
ＴＣＰ／ＩＰを使用している時、データ転送はパケットの中に整理され、そのパケットの
サイズをサーバが決定できるようにし、従って、完全な要求または応答が受信されたこと
を検出することができる。
【００１５】
（６）層２：拡張型データ表現（ＸＤＲ）
ＸＤＲ標準はネットワーク上でのデータ送信のためのマシン独立の表示を定義する。それ
はいくつかの基本のデータ型（ｉｎｔ、ｃｈａｒおよびｓｔｒｉｎｇなど）および複雑な
データ型（固定長および可変長の配列、構造体およびユニオンなど）を作るための規則を
定義する。この標準は、バイトの順序、ワードのサイズおよび文字列のフォーマットなど
の問題を扱い、それらはネットワーク接続のいずれかの端にある異質のコンピュータおよ
びオペレーティング・システム間で互換性がない可能性がある。
【００１６】
（７）層３：リモート・プロシージャ・コール（ＲＰＣ）プロトコル
ＳＵＮのＲＰＣプロトコルはクライアントとサーバとの間の通信のフォーマットを規定す
る。クライアントは、ＲＰＣ要求をサーバに対して送信し、サーバはそれらを処理し、そ
の結果をＲＰＣの応答の中で返す。このプロトコルはメッセージ・フォーマット、送信お
よび認証の問題に対処し、それはサービスの特定のアプリケーションには依存しない。Ｓ
ＵＮのＲＰＣは同期要求を使用する。クライアントがＲＰＣ要求を行うと、クライアント
は応答を受け取るまでブロックする。これによってローカル・プロシージャ・コールの行
動に似たＲＰＣの行動となる。
【００１７】
ＲＰＣはＸＤＲ符号化を使用して要求および応答のパケットのフォーマットを規定する。
ＲＰＣの要求パケットは、送信ＩＤ、そのパケットが要求であるということ、そのパケッ
トが意図されているプログラムの識別子およびプログラムのバージョン、実行されるべき
プログラムの内部のプロシージャ、クライアントの認証情報（もしあれば）、およびプロ
シージャ固有のパラメータを含む。ＲＰＣの応答パケットは、それが応答している要求の
送信ＩＤ、そのパケットが応答であるということ、その動作が実行されたかどうか、サー
バの認証情報（もしあれば）およびプロシージャ固有の結果を含む。ユニークな送信ＩＤ

(10) JP 5019669 B2 2012.9.5

10

20

30

40

50

によって、クライアントは応答が到着した要求を識別することができ、そしてサーバは複
製の要求（クライアントからの再送信によって発生した）を検出することができる。プロ
グラム識別子およびプログラム・バージョンによって、単独のアプリケーション（または
ソケット）が複数のプログラム要求にサービスし、そして同時に複数のプロトコル・バー
ジョンをサポートすることができる。
【００１８】
ＲＰＣはサーバに対して呼出し側を識別するために５つの認証メカニズムを使用する。そ
れらは、ＡＵＴＨ＿ＮＵＬＬ（認証なし）、ＡＵＴＨ＿ＵＮＩＸ（ＵＮＩＸスタイルの信
用証明、クライアントのマシン名、ユーザＩＤおよび１つまたはそれ以上のグループＩＤ
を含む）、ＡＵＴＨ＿ＳＨＯＲＴ（前のＡＵＴＨ＿ＵＮＩＸ要求からのクッキー）、ＡＵ
ＴＨ＿ＤＥＳ（データ暗号化標準の認証）およびＡＵＴＨ＿ＫＥＲＢ（Ｋｅｒｂｅｒｏｓ
認証）である。ＡＵＴＨ＿ＳＨＯＲＴの概念は、クライアントがＡＵＴＨ＿ＵＮＩＸ信用
証明を使用して認証されると、サーバはそのクライアントが将来のＲＰＣ要求において使
用することができる短いトークンまたはクッキーを発生する。このＡＵＴＨ＿ＳＨＯＲＴ
は、既知のクライアントを非常に迅速に、暗号化することができ、高速の認証を提供する
。
【００１９】
（８）層４Ａ：　ｐｏｒｔｍａｐ（ｒｐｃｂｉｎｄ）プロトコル
ＮＦＳプロトコル・スタックの第１のサーバ・プロセス（ｄａｅｍｏｎ）は、ＲＰＣのｐ
ｏｒｔｍａｐのｄａｅｍｏｎ（ｒｐｃｂｉｎｄとしても知られている）である。このサー
バ・プロセスは、ソケットのコネクションを生成するためのＢＳＤスタイルのポート番号
に対してプログラムの識別情報およびプログラムのバージョン番号をマップするディレク
トリ・サービスを提供する。ＲＰＣの要求は、遠隔マシン上の特定のサービス（例えば、
ＮＦＳバージョン３）を見つけるために、または局所マシン上でサービスを登録（および
登録解除）するためにサーバに対して送信される。このポート・マッピングのサービスは
、そのｐｏｒｔｍａｐのｄａｅｍｏｎのポート（普通、ポート１１１）だけが前もってク
ライアントによって知られている必要があることを意味する。次に、クライアントはこの
サーバに問い合わせてｍｏｕｎｔのｄａｅｍｏｎおよびＮＦＳのｄａｅｍｏｎが実行中で
あるかどうかを知り、実行中の場合、それぞれのポート番号を問い合わせる。サーバは、
通常、自分がスタートアップする時にｐｏｒｔｍａｐのｄａｅｍｏｎと交信して、自分が
要求を待っているポートの番号をそれに知らせ、またサーバが自分自身の登録を解除する
ために遮断している時にｐｏｒｔｍａｐのｄａｅｍｏｎと交信する。
【００２０】
（９）層４Ｂ：　ｍｏｕｎｔプロトコル
ＮＦＳプロトコル・スタックの次のサーバ・プロセス（ｄａｅｍｏｎ）は、ｍｏｕｎｔの
ｄａｅｍｏｎである。ＭＯＵＮＴプロトコルは、ＮＦＳプロトコルとは別であるが、それ
に関連付けられている。それはオペレーティング・システム固有のサービス、例えば、サ
ーバのパス名の探索、ユーザのアイデンティティの検証、およびアクセス許可のチエック
などを提供する。ｍｏｕｎｔプロトコルは、ＮＦＳプロトコルから別のものとしてキープ
され、ＮＦＳプロトコルを変更することなしに新しいアクセス・チエックおよび検証方法
を実装し易くしている。また、ｍｏｕｎｔはディレクトリのパス名を必要とするが、ＮＦ
Ｓプロトコルはオペレーティング・システム依存のディレクトリ構文とは無関係である。
ＮＦＳのクライアントは、ＭＯＵＮＴプロトコルを使用して最初のファイル・ハンドルを
取得しなければならない。そのハンドルによってクライアントは遠隔ファイル・システム
の中に入ることができる。ｍｏｕｎｔのｄａｅｍｏｎは、現在エクスポートされているフ
ァイル・システムのリストを知るために問い合わせることもできる
【００２１】
（１０）層４Ｃ：　ＮＦＳプロトコル
ＮＦＳプロトコル・スタックの主要な、そして最終のサーバ・プロセス（ｄａｅｍｏｎ）
は、ＮＦＳのｄａｅｍｏｎそのものである。そのステートレス・サーバは、読取り、書込

(11) JP 5019669 B2 2012.9.5

10

20

30

40

50

みおよび削除などのすべてのファイル操作要求を処理することを担当する。そのプロトコ
ルの第１の最初の公開バージョンはＮＦＳバージョン２であった。それは１９８５年にＳ
ｕｎＯＳ　２．０においてリリースされたもであり、すべてのＮＦＳ実装によってサポー
トされている。１９９３年に、高機能版のプロトコルＮＦＳバージョン３が発表され、現
在ほとんどの実装によってサポートされている。（興味深いことに、この明細書の執筆時
には、現在のＬｉｎｕｘ　ＮＦＳサーバおよびカーネルの実装はＮＦＳのバージョン２だ
けをサポートしている）。ＮＦＳのバージョン３は、４Ｇバイトより大きいファイル・シ
ステムに対する性能を増加させ、そしてサポートを可能にするいくつかの小変更を提供す
る。ＮＦＳｖ２プロトコルにおけるそのプロシージャのすべてが、その操作が完了し、そ
してその要求に関連付けられているデータがすべて安定な記憶装置に対して引き渡された
後でのみ制御がクライアントに対して戻る時に同期的であると仮定されている。ＮＦＳｖ
３においては、この条件はＷＲＩＴＥ要求に対しては緩和されており、クライアントとサ
ーバがＣＯＭＭＩＴ要求の使用をネゴシエートし、書込みをさらに高速に完了することが
できるようにしている。さらに、ＮＦＳｖ３はほとんどの操作の後にファイル属性を返し
、そしてディレクトリを読み取っている時、ＮＦＳｖ２を使用している時に要求される多
くのＧＥＴＡＴＴＲコールを不要にしている。
【００２２】
（１１）ＮＦＳのネットワーク・ファイル・システム・プロトコルの仕様
ＮＦＳｖ２プロトコルはＮＦＳサーバによってエクスポートされる１５個のプロシージャ
（操作または方法）を規定している。ＲＰＣのプロシージャ番号は、シーケンシャルでは
ない。というのは、２つの操作はバージョン２プロトコルにおいては決して実装または廃
棄されないからである。これらはＲＯＯＴ（ｐｒｏｃｎｏ＝３）およびＷＲＩＴＥＣＡＣ
ＨＥ（ｐｒｏｃｎｏ＝７）のプロシージャである。
【００２３】

【００２４】

【００２５】

【００２６】

【００２７】

【００２８】

【００２９】

【００３０】

ＮＦＳｖ３プロトコルはＮＦＳサーバによってエクスポートされる２１個のプロシージャ
を規定している。これらのプロシージャのほとんどは、バージョン２のものと構文が同じ
である。しかし、ほとんどの操作の後、ファイル属性が返され、いくつかのフィールドが

(12) JP 5019669 B2 2012.9.5

10

20

30

40

50

大きくなっているので、引数および結果の正確な型は僅かに異なっている。
【００３１】

【００３２】

【００３３】

【００３４】

【００３５】

【００３６】

【００３７】

【００３８】

【００３９】

【００４０】

【００４１】
（１２）他の遠隔ファイル・システムプロトコル
上記のＮＦＳプロトコルの詳細内容は本発明の「好適な実施形態」に対する背景を提供す
る。しかし、その仮想ネットワーク・ファイル・サーバの発明は、他の共通のネットワー
ク・ファイル・システム・プロトコルをカバーするように容易に拡張することができ、そ
の「好適な実施形態」は、本発明の一例、またはアプリケーションに過ぎない。次のパラ
グラフではＮＦＳと他のポピュラーなネットワーク・ファイル・システム・プロトコル、
Ｍｉｃｒｏｓｏｆｔのサーバ・メッセージ・ブロック（ＳＭＢ）との間の類似性について
説明する。
【００４２】
ＳＭＢプロトコルは現在、共通インターネット・ファイル・システム（ＣＩＦＳ）として
改訂されつつあり、それは次の数年にわたって重要な標準プロトコルとなる可能性がある
。
【００４３】
Ｍｉｃｒｏｓｏｆｔのサーバ・メッセージ・ブロック（ＳＭＢ）は、ＭＳ‐Ｎｅｔ、ＬＡ
Ｎ　ＭａｎａｇｅｒおよびＷｉｎｄｏｗｓ　Ｎｅｔｗｏｒｋｉｎｇによって使用されてい
るファイル共有プロトコルである。このプロトコルは、ＭｉｃｒｏｓｏｆｔのＷｉｎｄｏ

(13) JP 5019669 B2 2012.9.5

10

20

30

40

50

ｗｓ　９ｘ、Ｗｉｎｄｏｗｓ　ＮＴおよびＯＳ／２のオペレーティング・システムのネイ
ティブのファイル共有プロトコルである。ＮＦＳプロトコル・スタックの層２および３の
中で使用されているＳＵＮのＸＤＲおよびＲＰＣ層の代わりに、ＳＭＢがその中間層とし
て使用されているＮｅｔＢＩＯＳである。ＮｅｔＢＩＯＳは、ＩＢＭ　ＰＣのネットワー
ク・ブロードバンドＬＡＮに対する高級プログラミング言語のインターフェースとして始
まったが、トークン・リング、ＴＣＰ／ＩＰ、ＩＰＸ／ＳＰＸなどの底流にあるトランス
ポート・メカニズムのいくつかの上の「書込みプロトコル」として進化した。現在好まれ
ているトランスポートは、ＴＣＰ／ＩＰおよびＵＤＰ／ＩＰ（インターネットのＲＦＣ　
１００１および１００２において記述されている）であり、層１をＮＦＳとＳＭＢとの間
で同じものにしている。ｐｏｒｔｍａｐのｄａｅｍｏｎと交信する代わりに、ＳＭＢは遠
隔ファイル・サーバを見つけるためにＮｅｔＢＩＯＳのネーム・サーバ（Ｍｉｃｒｏｓｏ
ｆｔのＷＩＮＳなど）に対して要求をブロードキャストする。ｐｏｒｔｍａｐのｄａｅｍ
ｏｎと同様に、ネーム・サーバは名前付きのファイル・システムをサポートしているサー
バのＩＰアドレスを回答する。次に、ＳＢＭのクライアントはＮｅｔＢＩＯＳのセッショ
ン・マネージャを使用してこのホスト上のファイル・サービスと交信し、ＭＯＵＮＴのｄ
ａｅｍｏｎと交信した後、ＴＣＰ／ＩＰ上でＮＦＳに似たコネクションを生成する。次に
、ＴＣＰ／ＩＰをまったく同様に使用して、マシン間の送信されるメッセージのフォーマ
ットを除くすべてにおいてＮＦＳに対してパケットが送信および受信される。これらのメ
ッセージを正しく解釈して応答することによって、仮想ファイル・サーバはネットワーク
上でのＷｉｎｄｏｗｓベースのＰＣに対して仮想ＳＭＢファイル・システムを提供するこ
とができる。
【００４４】
（１３）生物学的シーケンスのデータベース・マネジメント
前記のフレームワークを念頭において、蛋白質および核酸シーケンスのデータベースの効
率的な記憶が生物情報学（ｂｉｏｉｎｆｏｒｍａｔｉｃｓ）における主要な課題の１つで
ある。問題は４つの項目、すなわち、データベースのサイズ、データのフォーマッティン
グ、データのサブセットおよびデータの完全性の相互作用から生じる。
【００４５】
最も明らかな問題点は、現在のデータベースのサイズが非常に大きいことである。現在の
データベースのサイズは数百万の核酸および数十万の蛋白質のシーケンスを表すためのデ
ータの１０～１００Ｇバイトの範囲にある。この問題は、約１８カ月で倍になるこれらの
データベースの成長の速度によって倍加される。実際、科学者達がヒト・ゲノムのプロジ
ェクトの最終段階に入っている状態で、この速度は近い将来において減少するどころか、
増加すると予想されている。次の問題点はデータ表現の問題点である。
【００４６】
ほとんどの生物情報学のサイトは、Ｂｌａｓｔ、ＦＡＳＴＡおよびＧＣＧなどのプログラ
ムを含んでいるデータベースのサーチ用ソフトウェアをいくつか維持している。不幸なこ
とに、この多様性の結果、ほとんどの生物情報学的サイトは、元のフラットなファイル、
ＦＡＳＴＡフォーマット、ＧＣＧ／ＰＩＲフォーマット、Ｂｌａｓｔ圧縮フォーマットお
よびインデックス、およびＳＲＳのインデックスなどの複数のファイル・フォーマットで
主要なデータベースを維持している。追加の各表示は、通常、そのデータベースのために
数十ギガバイトの追加のファイル記憶装置を必要とする。次の問題は、データベースのサ
ブセットおよびスーパーセットの問題である。各スタティック・データベースの他に、生
物情報学的サイトはすべての蛋白質シーケンス（ｐｒｏｔｅｉｎ＝ｓｗｉｓｓｐｒｏｔ＋
ｇｅｎｐｅｐｔ＋ｐｉｒ＋ｐｄｂまたはｓｗｉｓｓｐｒｏｔ＝ｓｗｉｓｓｍａｉｎ＋ｓｗ
ｉｓｓｎｅｗ）およびすべての核酸シーケンス（ｎｕｃｌｅｉｃ＝ｅｍｂｌ＋ｇｅｎｂａ
ｎｋ）などの複合データベース（またはスーパーセット）を維持していることが多い。
【００４７】
スーパーセットのいくつかのフォームを、複合型仮想データベースとして複数のデータベ
ースを処理するデータベース探索ソフトウェアによって処理することができる。しかし、

(14) JP 5019669 B2 2012.9.5

10

20

30

40

50

これは、データベース間の重複しているエントリを消去するあらかじめ定義された非冗長
性データベースよりずっと性能が悪い。同様に、センシブルなデータのサブセッティング
を実行することができるパッケージは非常に少なく、従って、ほとんどのサイトは、すべ
てのイースト・シーケンス、すべてのヒトＥＳＴシーケンス、すべての蛋白質キナーゼな
どのサブセット・データベースも独立に維持している。最後に、いくつかの機関にとって
、頻繁に更新されるシーケンスのデータベースの利用可能性が保証されていることが不可
欠であると考えられる。従って、これらのサイトは複製のデータベースを維持し、１つを
更新および修正することができるようにし、一方、他のデータベースによって通常のサー
ビスを提供することができる。この方法で、自動更新ができなくなるか、あるいはデータ
ベースのフォーマットまたは編成が変わった場合でも、「ライブ」のデータベースは壊さ
れない。
【００４８】
この制約は、ほとんどの競合している生物情報学的サイトが利用可能性の高い数百ギガバ
イトの記憶装置を必要とすることを意味する。実際、これらの需要は非常に大きいので、
多くのサイト（ほとんどの大学のサイトを含む）は、潜在的な開示の問題がある場合でも
、インターネット上での生物情報学的リソースにアクセスすることが制限されている。
【００４９】
（発明の概要）
本発明は、現代の技術における上記の欠点に対処し、それらを緩和するために特に設計さ
れている。これに関して、本発明は、仮想ファイル・サーバに関しており、標準プロトコ
ル手段を使用することによってデータベースを効率的に管理する方法を提供し、ディスク
空間（すなわち、メモリ）が少なくて済み、通信データを受け渡す新しい方法をさらに提
供する。本発明は生物学的シーケンスのデータベース管理の上記の問題に対処するのに特
によく適している。
【００５０】
仮想ファイル・サーバは、本質的に、遠隔ファイル・システムからのファイルの内容をフ
ァイル・システムの要求に応じて生成して返すことができるプロセスを含む。
【００５１】
仮想ファイル・サーバは、遠隔ファイル・システムをシミュレートし、ネットワーク・イ
ンターフェースを経由してローカル・エリア・ネットワーク上で要求を行うマシンに対し
て「仮想の」ファイルおよびディレクトリを提供する。これに関して、仮想ネットワーク
・ファイル・システムは、そのような仮想ネットワーク・ファイル・システムが物理記憶
媒体（すなわち、ハード・ディスク）上でファイルの検索および記憶を行っているかのよ
うにネットワークからのファイル・システム要求を受信し、それに応答するように動作す
る。動作において、その仮想ネットワーク・ファイル・サーバが、例えば、ファイルの読
取り要求を受信すると、仮想ネットワーク・ファイル・サーバは、その指定された「仮想
の」ファイルの内容を生成し、その内容はそのファイル名および環境からアルゴリズム的
に生成されるか、あるいは暗号化、圧縮解凍等によって格納されている物理的なファイル
を転送することなどによって生成することができる。
【００５２】
クライアントのアプリケーションに対して、仮想ファイル・サーバは、適切なフォーマッ
トで適切なファイルを階層的に含んでいる普通のディレクトリのように見える。有利なこ
ととして、仮想ネットワーク・ファイル・サーバは、クライアントのオペレーティング・
システムに関与せず、遠隔マシンにアクセスするためにそのネイティブのメカニズムを使
用する。さらに、ＮＦＳまたはＳＭＢなどの標準プロトコルを使用することによって、仮
想ファイル・サーバは、特殊化されたネットワーク・ソフトウェアが、そのクライアント
に対して書き込まれることを必要とせず、従って、既存のソフトウェアがそのファイル・
サーバと修正なしで動作することができる。例えば、ＮＦＳのクライアント・ソフトウェ
アは、ＵＮＩＸによって分配され、ＭｉｃｒｏｓｏｆｔのＷｉｎｄｏｗｓ、Ａｐｐｌｅの
ＭａｃｉｎｔｏｓｈおよびＶＡＸ／ＶＭＳなどの実質的にすべてのオペレーティング・シ

(15) JP 5019669 B2 2012.9.5

10

20

30

40

50

ステムに対して利用できる。同様に、ＭｉｃｒｏｓｏｆｔのＳＭＢクライアントは、Ｍｉ
ｃｒｏｓｏｆｔのＷｉｎｄｏｗｓ　ＮＴ、Ｗｉｎｄｏｗｓ　９５およびＷｉｎｄｏｗｓ　
９８の中に含まれている。
【００５３】
データ管理の観点から、仮想ファイル・サーバは、単独のフォーマットで内部的に主題の
データベースを維持することができる。ファイル要求時に、仮想ファイル・サーバは、サ
ブセットおよびスーパーセットの動作を実行することができ、次に適切な再フォーマット
化を行うことができる。データベースの１つのフォーマットだけが維持されているので、
サーバ上のキャッシングは遥かに効率的である。多くのシーケンス・データベース・フォ
ーマット変換を非常に効率的に実装することができ（例えば、有限の状態マシンを使用し
て）、その結果として性能損失が無視できる。実際に、サーバは非常に効率的な圧縮され
たフォーマットでデータを内部的に自由に表示し、例えば、重複シーケンスの除去、残差
のビットごとの符号化またはハフマン符号化、および親の中の場所に対する参照として別
のサブシーケンスであるシーケンスを表すことができる。
【００５４】
もう１つの重要なアプリケーションは、個々のシーケンス・データベースのエントリを個
々のシーケンス・ファイルとしてエクスポートすることができることである。これによっ
て、生物情報学的アルゴリズムに対して、問合わせシーケンスを、それらをデータベース
から先ず最初に抽出する（「取り出す」）ことなしに指定することができる。
【００５５】
また、仮想ファイル・サーバのアーキテクチャは、構造的データベースの記憶管理および
外部計算化学の応用の統合化に対しても適用することができる。１つの大きな応用はＢｒ
ｏｏｋｈａｖｅｎ　Ｐｒｏｔｅｉｎ　Ｄａｔａｂａｎｋ（ブルックヘブンン蛋白質データ
バンク）、ＰＤＢ（およびルートガー大学（Ｒｕｔｇｅｒｓ　Ｕｎｉｖｅｒｓｉｔｙ）の
核酸構造データベースＮＤＢも）の記憶装置およびメンテナンスにある。現在この「デー
タベース」は、ＡＳＣＩＩテキスト・ファイルとして格納されている約７０００個のファ
イルの集合として維持されている。これらのデータ・ファイルを、圧縮および表示におけ
る冗長性の削減の両方によって、より効率的に内部的に表すことができる。
【００５６】
最後に、仮想ファイル・サーバは、計算化学サービスを提供するための便利なメカニズム
を提供する。例えば、仮想ファイル・サーバは、Ｓｙｂｙ１　Ｍｏｌ２、ＸＰＬＯＲ　Ｐ
ＤＢおよび他のファイル・フォーマットをエクスポートすることによって、ファイルのフ
ォーマット変換を実行することができる。計算的には、サーバは各ＰＤＢファイルの中で
のＤＳＳＰまたはＳｔｒｉｄｅ二次構造割当てを提供することができ、アルファ炭素専用
ファイルからのバックボーンおよび／またはサイドチェインの座標を再構成し、結晶学的
対称性を生成し、代表的なＮＭＲモデルを選択し、あるいはプロパティの計算を実行する
こともできる。
本発明のこれらおよび他の特徴は、図面を参照することによってさらに明らかになるだろ
う。
【００５７】
（発明の詳細な説明）
添付図面に関して以下に説明される詳細な説明は、本発明のこの好適な実施形態の説明を
意図しており、本発明を構築あるいは利用することができる唯一の形式を表すことが意図
されているわけではない。この記述は示されている実施形態に関して本発明を構築し、動
作させるための機能およびシーケンスを示している。しかし、これと同じか、あるいは等
価な機能およびシーケンスを異なった実施形態によって実現できること、そしてそれらも
本発明の範囲内に含まれることが意図されていることを理解されたい。
【００５８】
本発明は、仮想ネットワーク・ファイル・サーバに関しており、遠隔ファイル・システム
を含むコンピュータのオペレーティング・システムに対する要求に応じて指定されたファ

(16) JP 5019669 B2 2012.9.5

10

20

30

40

50

イルの内容を生成し、その内容をその要求がなされたコンピュータに対して、その要求が
なされたコンピュータとそのような要求を受信するサーバ・マシンとの間でネットワーク
・インターフェースを経由して返す。この例に関して実際には、オペレーティング・シス
テムを経由してそのような要求を受信するサーバ・マシンは、そのような要求を仮想ネッ
トワーク・ファイル・サーバに対して渡し、後者はユーザ・プロセスとして実行している
。
【００５９】
図１に示されているように、コンピュータ上で実行されているユーザのアプリケーション
またはプロセス１０が論理ファイル・システムおよびディレクトリ３０にアクセスするた
めに、そのマシン上にオペレーティング・システム２０に対して要求を行う。その要求の
中で指定されている論理ファイル名（およびディレクトリ）は、そのオペレーティング・
システムのファイル・サーバによって、局所記憶装置４０上に格納されているのではなく
、遠隔ファイル・システムに属しているとして理解される。次に、オペレーティング・シ
ステム２０は、その従来の遠隔ファイル・システムのマッピングを使用して要求されたフ
ァイルに対するファイル・サーバのネットワーク上の場所を知る。次に、オペレーティン
グ・システム２０は、ネットワーク・ファイル・サーバのネットワーク・インターフェー
ス５０を経由して、そのネットワーク・ファイル・サーバに対するＴＣＰ／ＩＰ要求を発
生する。ネットワーク・ファイル・サーバは同じマシン上にあってもよく（その場合はネ
ットワーク・インターフェースはサーバ・プロセスに対する要求パケットを単純にコピー
する）、あるいは遠隔マシン上にあってもよい（その場合はネットワーク・インターフェ
ース５０がその要求パケットをローカル・エリア・ネットワーク６０上で送信する）。サ
ーバ・マシンは、そのパケットをそのネットワーク・インターフェース７０経由で受け取
り、オペレーティング・システム８０は、その要求をユーザ・プロセスとして動作してい
る仮想ネットワーク・ファイル・サーバ９０に対して渡す。
【００６０】
仮想ネットワーク・ファイル・サーバ９０は、ファイル・システムをエミュレートし、ロ
ーカル・ネットワーク上でのマシンの「仮想」ファイルおよびディレクトリをエミュレー
トする。ファイル読取り要求を受け取ると、それは指定された「仮想」ファイルの内容を
生成する。そのファイル内容はそのファイル名および環境からアルゴリズム的に生成され
るか、あるいは暗号化によって格納された物理ファイルを変換することによってのいずれ
かで生成することができる。トリビアル（重要でない）変換と、非トリビアル（重要な）
変換との間の区別が行われる。いくつかの既存のファイル・サーバを、ファイルを遠隔マ
シンに対してエクスポートする前に、ライン・ターミネーション・キャラクタを変換する
ように構成することができる。ここで説明されるメカニズムは、データを異なるフォーマ
ットに、例えば、画像ファイル・フォーマット間で、あるいは共通の表示間で生物情報学
的データベースに変換するために適用される。そのような変換機能をさらに有利に利用し
て１つの特定のワードプロセッシング・フォーマットまたはプログラムで存在しているテ
キスト・ファイルを別のタイプのワードプロセッシング・フォーマットに迅速に変換する
ことができる。同様に、そのような変換特性によって、１つの暗号化されたファイルを別
のファイルに、あるいは特定のタイプの圧縮されたフォーマットで格納されているデータ
を、別のフォーマットに迅速に変換することができる。このことに関して、仮想ファイル
の内容が一度生成されると、その同じものをネットワーク上でその要求しているユーザ・
プロセスに対して応答パケットとして送り返すことができる。
【００６１】
従来の技術の仮想ファイル・システムはすべてクライアントのオペレーティング・システ
ム２０を、ファイルが局所ホスト上の論理ファイル・システム３０によって変換されるよ
うに修正されることを要求した。例えば、フス（Ｈｓｕ）に対する「Ｃｏｍｐｕｔｅｒ　
Ｓｙｓｔｅｍ　Ｉｎｃｌｕｄｉｎｇ　ａ　Ｔｒａｎｓｐａｒｅｎｔ　ａｎｄ　Ｓｅｃｕｒ
ｅ　Ｆｉｌｅ　Ｔｒａｎｓｌａｔｉｏｎ」（透過的で安全なファイル変換メカニズムを含
んでいるコンピュータ・システム）と題する米国特許第５，５８４，０２３号の内容を参

(17) JP 5019669 B2 2012.9.5

10

20

30

40

50

照されたい。１つの大きな違いは、本発明の仮想ネットワーク・ファイル・システムは、
クライアントのオペレーティング・システムを関与させず、そのネイティブのメカニズム
を使用して遠隔マシンにアクセスすることである。代わりに、仮想ネットワーク・ファイ
ル・システムは、あたかも物理記憶媒体上のファイルを読取りおよび格納しているかのよ
うに、ネットワークからのファイル・システムに対する要求を受け取り、それに応答する
。
【００６２】
サーバ・プロセス１００は、１つのマシン上でステップ１１０において開始されると、ス
テップ１２０においてサーバを初期化し、連続のループ１３０に入ってステップ１４０に
おいて遠隔マシンまたはシステムに対して向けられたファイル・システム要求を待ち、そ
の要求をステップ１５０においてデコードし、その応答をステップ１６０において決定し
、すなわち、その要求されたデータを生成するか、あるいはその要求されたアクションを
実行し、ステップ１７０においてその応答を符号化し、そして次にステップ１８０におい
てその結果を要求しているプロセスに対して図２に示されているように送信する（すなわ
ち、送り返す）。「要求をデコードする」のステップ１５０および「応答を符号化する」
のステップ１７０は、ネイティブのファイル・システムの要求と、仮想ネットワーク・フ
ァイル・サーバによって使用されている内部のデータ構造およびルーチンとの間でそれぞ
れマッピングを実行する。これによって、仮想ファイル・サーバがＵＮＩＸのＮＦＳ、Ｍ
ｉｃｒｏｓｏｆｔのＬａｎＭａｎａｇｅｒ、ＡｐｐｌｅＳｈａｒｅなどの複数の遠隔ファ
イル・システム・プロトコルをサポートすることができる。
【００６３】
第１に、現在の実装は、複数のスレッド（またはプロセス）を使用し、複数のファイル・
システム要求が同時に実施されるようにし、そして仮想サーバに対して仮想ファイル・シ
ステムの内容を、ファイル・システム要求を受信せずに更新し続ける処理を実行させるこ
とができる。
【００６４】
図３に示されている、前のフローチャートの１つの変形版１９０は、仮想ファイル・シス
テムの内容および行動が仮想ネットワーク・ファイル・サーバそのものから隔離されてい
る実装である。この方法で、本発明の仮想ネットワーク・ファイル・サーバによって、複
数の使用（または実装）を実行時に決定することができる。これはプラグインと呼ばれる
ことが多い動的共有オブジェクトの技術を使用して実現される。これらのプラグインは、
通常、ＵＮＩＸマシン上での共有ライブラリ、ＭｉｃｒｏｓｏｆｔのＷｉｎｄｏｗｓでの
ＤＬＬ、およびＡｐｐｌｅ　Ｍａｃｉｎｔｏｓｈ上でのＣｏｄｅＦｒａｇｍｅｎｔｓの形
を取る。サーバが最初にステップ２００からスタートアップすると、それはステップ２１
０において仮想ファイル・システムの中で「プラグイン」を見つけ、動的にリンクする。
そのプラグインは仮想ファイル・システムのユーザ定義行動を表し、符号化する。クライ
アント・マシンに対してこれらのプラグインは図４に概念的に示されているように、遠隔
ファイル・システム上の独立のファイルまたはディレクトリを形成する。
【００６５】
要求が受信されるたびに、ネットワーク・ファイル・サーバは、ステップ２２０において
初期化し、ロードされたどのプラグインがその要求を扱い、ディスパッチし、デコードし
、そしてその要求を適切に待つかをステップ２３０、２４０において決定する。ステップ
２６０においてそのような要求がファイル・システムに対して向けられていない範囲に対
して、その後、サーバはステップ２７０において応答を発生し、その結果のデータを要求
しているシステムのネイティブ・フォーマットに変換し、ステップ２８０においてそれを
その要求しているマシンに対して送り返す。しかし、仮想ネットワーク・ファイル・サー
バはステップ２９０において選択的にプラグインを選定し、ステップ３００において呼び
出すことによって、ステップ２６０においてそのようなファイル・システムの「ハウスキ
ーピング」要求を有利に処理することもでき、その後、ステップ３２０においてそれから
応答を符号化し、従って、トリビアル機能あるいは普通の機能を実施するタスクの他のプ

(18) JP 5019669 B2 2012.9.5

10

20

30

40

50

ラグインを解放する。この方法で、仮想ネットワーク・ファイル・サーバは、プラグイン
からその遠隔ファイル・システムの符号化および解読の複雑性を隠し、また、その動作を
単純化する。
【００６６】
各仮想ファイル・システムのプラグイン動作は、図４に概念的に示されている遠隔ファイ
ル・システム要求の単純化された組を処理することである。そのような要求は、ファイル
からのデータの読取り（ＲＥＡＤ）３４０、ファイルへのデータの書込み（ＷＲＩＴＥ）
３６０、ファイル上のセキュリティ保護および許可（ＣＨＭＯＤ）３８０、新しいファイ
ルの作成（ＣＲＥＡＴＥ）４００、およびディレクトリまたはフォルダの内容の決定（Ｒ
ＥＡＤＤＩＲ）４２０を含む。各プラグインに対して、仮想ネットワーク・ファイル・サ
ーバは、そのプラグインの内部に各遠隔ファイル・システム要求に対するルーチンのテー
ブルを維持する。仮想ネットワーク・ファイル・サーバが要求をデコードし、どのプラグ
インがそれに応答する必要があるかを決定すると、それはその適切なプラグインの「機能
ディスパッチ」テーブルの内部の要求された機能を探索し、その後、その機能を呼び出す
。
【００６７】
この方法で、ファイル・システムの正確な行動を、仮想ネットワーク・ファイル・サーバ
が設計されるか、あるいは実装される時点で規定する必要はない。しかし、仮想ネットワ
ーク・ファイル・サーバおよび非トリビアル変換、例えば、データベース変換または計算
を提供する実装は、新しく、実際的であり、商用の利点があるものである。
【００６８】
仮想ファイル・システムのプラグインの必要なタスクを拡張するために、図５はＲＥＡＤ
機能３４０に対する単純化されたフローチャートを表し、ステップ４６０においてファイ
ル名をデコードし、ステップ４８０において仮想ファイルの内容を生成し、そしてステッ
プ５００において仮想ファイルの内容を返す。プラグインの読取り機能は、ファイル識別
子、そのファイルの中のロケーションおよび読み取られるべきデータの量においてステッ
プ４６０において呼び出される。そのプラグインはそのファイルの内容が何であるべきか
を主としてそのサーバの開始時に、そのデータを要求しているユーザおよび／またはマシ
ンまたは他のファクタに基づいてステップ４８０において自由に選定する。例えば、その
プラグインはその要求されたファイル“ｄａｔｅ．ｔｘｔ”の内容が常に現在の時刻およ
び日付、すなわち、“Ｗｅｄ　Ａｕｇ　１２　１１：２８：４３　ＭＤＴ　１９９８”で
あることを宣言することができる。次の日の同じファイルの内容または丁度数秒後の内容
の読取りが異なる結果を生成すること、およびファイルの内容が物理記憶媒体上に存在し
ていないが、ホストのＣＰＵの時計からアルゴリズム的に生成されていることに留意され
たい。この例を続けると、プラグインに対して渡されたネットワークの読取り要求が、そ
のファイルの５番目および６番目および７番目の文字を要求していた場合、そのプラグイ
ンは“Ａｕｇ”を返すことになる。次に、このデータがステップ５００においてネットワ
ーク・ファイル・サーバに対して送り返され、ネットワーク・ファイル・サーバは実遠隔
ファイル・サーバからの応答をエミュレートするパケットの中にそのデータを符号化して
送り返すタスクを実行する。
【００６９】
（１）仮想ＮＦＳサーバの実行
仮想ファイル・サーバのプロトタイプは現在ＮＦＳプロトコルのバージョン２および３お
よびＭＯＵＮＴプロトコルのバージョン１および３を、ＵＤＰ／ＩＰトランスポート・プ
ロトコル上に実装している。以下に説明されるこの実装は、仮想ファイル・サーバのこの
好適な実施形態であるが、いずれにしても本発明の範囲をＮＦＳプロトコルまたはＵＮＩ
Ｘオペレーティング・システムに対して制限するものではない。そのように、例題の「実
施形態」は「ｖｎｆｓｄ」のＵＮＩＸバージョンを記述する次のセクションにおいては、
仮想ＮＦＳサーバまたは「ｖｎｆｓｄ」と呼ばれる。
【００７０】

(19) JP 5019669 B2 2012.9.5

10

20

30

40

50

仮想ＮＦＳサーバ（ｖｎｆｓｄ）は、単純に“ｖｎｆｓｄ”とタイプすることによって、
ＵＮＩＸのコマンド・ラインから開始することができる。そのサーバは実行するためにス
ーパユーザの特権を必要としない。従って、「ｒｏｏｔ」から開始される必要はない。
【００７１】
“ｖｎｆｓｄ”は、次のオプションのコマンド・ラインの引数も受け付ける。
１．）－ｐｏｒｔ　＜ｎ＞は、省略時ポート２１０６９の代わりに指定されたポートを使
用する。
【００７２】
２．）－ｄａｅｍｏｎ　バックグラウンドにおいてｄａｅｍｏｎとして実行し、親プロセ
スから離れる。
３．）－ｄｅｂｕｇ　各ＲＰＣ要求パケットに対してデバッグ情報をｓｔｄｏｕｔに表示
する。
【００７３】
４．）－ｎｏｒｅｇ．　ＲＰＣ　ｐｏｒｔｍａｐｐｅｒ　ｄａｅｍｏｎでサーバを登録し
ようとしない。
システムの“／ｅｔｃ／ｒｃ．＊”スクリプトのネットワーキング・セクションに対して
ｖｎｆｓｄコマンドを追加することによって、マシンがリブートされる時に自動的にｖｎ
ｆｓｄをスタートさせるのが普通の慣習である。唯一の条件は、従来のｍｏｕｎｔおよび
ＮＦＳのｄａｅｍｏｎがスタートした後で“ｖｎｆｓｄ”がスタートされることである。
【００７４】
２）仮想ＮＦＳサーバの終了
現在、ｖｎｆｓｄのｄａｅｍｏｎを停止させるための唯一の方法は、ＳＩＧＩＮＴの割込
み信号をそれに送信する方法である。そのプログラムがフォアグラウンドにおいて実行し
ている場合、これは制御しているＵＮＩＸのシェルから“＾Ｃ”（あるいは同様なプロセ
ス制御文字をタイプすることによって行うことができる。プログラムがｄａｅｍｏｎとし
て実行している場合、それはコマンド“ｋｉｌｌ　－ＩＮＴ＜ｐｉｄ＞”を使用して停止
させることができる。ここでＰＩＤは、実行しているｄａｅｍｏｎのプロセスｉｄである
。
【００７５】
ファイル・システムを現在マウントしているクライアントは、サーバを停止させる前に該
当のディレクトリをアンマウントする必要がある。さもなければ、そのクライアント・マ
シンは、ｖｎｆｓファイル・システムに次にアクセスする時にハングする可能性がある。
ｍｏｕｎｔコマンドが「ソフト」を指定した場合、そのクライアント・プロセッサは、何
秒か後にタイムアウトするが、システム性能が大きく劣化する可能性がある。
【００７６】
仮想ＮＦＳのｄａｅｍｏｎは、停止させられず、割込みが掛かるだけでなければならない
。ｄａｅｍｏｎは、その割込み信号を捉え、適切なファイルをすべて優美に閉じてフラッ
シュし、自分自身をＲＰＣのｐｏｒｔｍａｐのｄａｅｍｏｎから登録解除して停止する。
【００７７】
（３）仮想ＮＦＳファイル・システムのマウント
理想的には、次に、ＵＮＩＸクライアントは、次のコマンドによって仮想ファイル・シス
テムをマウントする。
ｍｏｕｎｔ　－ｔ　ｎｆｓ　－ｏ　ｐｏｒｔ＝２１０６９、ｍｏｕｎｔｐｏｒｔ＝２１０
６９　ｓｅｒｖｅｒ：／／ｖｎｆｓ
【００７８】
このコマンドは局所カーネルに遠隔マシン“ｓｅｒｖｅｒ”から局所マウント・ポイント
“／ｖｎｆｓ”上にＮＦＳを直接マウントするよう指示する。ｍｏｕｎｔオプションが指
定されると、遠隔にエクスポートされたファイルは、そのサーバ、上記の例の中のｒｏｏ
ｔ・ディレクトリによって解釈されない。局所マウント・ポイント／ｖｎｆｓは、局所フ
ァイル・システム上の既存のディレクトリでなければならない。さらに、“ｓｏｆｔ”マ

(20) JP 5019669 B2 2012.9.5

10

20

30

40

50

ウント・オプションも含めて、遠隔ｖｎｆｓのｄａｅｍｏｎが故障した場合に、そのマシ
ンをハングさせるのではなく、クライアントがＮＦＳの要求をタイムアウトすることがで
きる。
【００７９】
不幸なことに、ｍｏｕｎｔコマンドに対して“ｍｏｕｎｔｐｏｒｔ”のオプションを現在
サポートしているオペレーティング・システムはほとんどない。そのような場合、適切な
ＵＮＩＸのコマンドは次のようになる。
【００８０】
ｍｏｕｎｔ　－ｔ　ｎｆｓ　ｏ　ｐｏｒｔ＝２１０６９，ｓｏｆｔ　ｓｅｒｖｅｒ；／ｖ
ｎｆｓ／ｖｎｆｓ
遠隔サーバ上のディレクトリのパスが異なっている理由は、ｍｏｕｎｔｐｏｒｔオプショ
ンがない場合、ＭＯＵＮＴプロトコル要求が遠隔“ｓｅｒｖｅｒ”上での従来のマウント
に進むことである。次に、ベンダ供給のｍｏｕｎｔが、有効なマウント・ポイントを求め
て”／ｅｔｃ：ｅｘｐｏｒｔｓ”の中のエクスポート・リストをチエックする。そのサー
バが現在ファイル・システムをエクスポートしている場合、それらのどのパスでも十分で
ある。上記の比較的良好な解決策は空のディレクトリ”／ｖｎｆｓ”を遠隔マシン上に単
純に生成し、［ｖｎｆｓｄのマウント・ポイント］そしてこれを“／ｅｔｃ／ｅｘｐｏｒ
ｔ”ファイルに対して追加することである。
【００８１】
代わりに、そのサーバを指定しているクライアント・マシン上の“／ｅｔｃ／ｆｓｔａｂ
”に対して１つのエントリを追加することができ、遠隔ディレクトリおよびｍｏｕｎｔオ
プションを局所ＮＦＳに対して追加することができる。ｖｎｆｓのｄａｅｍｏｎに対する
代表的なｆｓｔａｂエントリは、次のようになる。
【００８２】
ｓｅｒｖｅｒ：／ｖｅｆｓ　／ｖｎｆｓ　ｎｆｓ　ｐｏｒｔ＝２１０６９，ｓｏｆｔ，ｎ
ｏａｕｔｏ　０　０
“ｎｏａｕｔｏ”オプションが上記のように指定された場合、仮想ＮＦＳサーバはクライ
アントがブートされる時に自動的にマウントされない。このラインが／ｅｔｃ／ｆｓｔａ
ｂに対して挿入されると、ｖｎｆｓのｄａｅｍｏｎは、ずっと単純なコマンドｍｏｕｎｔ
　／ｖｎｆｓによって手動でマウントすることができる。
【００８３】
（４）仮想ＮＦＳファイル・システムのアンマウント
クライアント・マシンが仮想ＮＦＳサーバに対するアクセスを終了すると、次のＵＮＩＸ
コマンドを使用してクライアントのファイル・システムから／ｖｎｆｓディレクトリをア
ンマウントすることができる。
【００８４】
ｕｍｏｕｎｔ／ｖｎｆｓ
すべてのプロセスが仮想ファイル・システム上で開いていたファイルを閉じていなければ
ならず、そしてどのプロセスも現在のワーキング・ディレクトリとしてマウント・ポイン
トのサブディレクトリを有していてはならない。ファイル・システムが現在使用中である
場合、ｕｍｏｕｎｔコマンドは失敗する。サーバが終了される前に、クライアント・マシ
ンがファイル・システムを正常にアンマウントしなかった場合、それらがその仮想ファイ
ル・システムに対して次にアクセスしようとした時に応答を待ち続けてハングする危険性
がある。
【００８５】
（５）ＲＰＣ　Ｐｏｒｔｍａｐｐｅｒ　Ｄａｅｍｏｎとの相互作用
ｖｎｆｓｄのｄａｅｍｏｎによって実行される最初のタスクは、それが現在、従来のＮＦ
Ｓおよびｍｏｕｎｔのｄａｅｍｏｎを実行しているかどうかを知るために局所マシン上の
ｐｏｒｔｍａｐのｄａｅｍｏｎと交信することである。デフォールトによって、これらの
どれもが現在実行中でないことをｐｏｒｔｍａｐのｄａｅｍｏｎが示していた場合、それ

(21) JP 5019669 B2 2012.9.5

10

20

30

40

50

はｐｏｒｔｍａｐのｄａｅｍｏｎと一緒に自分自身を実ＮＦＳおよびｍｏｕｎｔのｄａｅ
ｍｏｎとして局所マシン上に登録する。
【００８６】
サーバが終了する際、サーバはｐｏｒｔｍａｐのｄａｅｍｏｎともう一度交信して、自分
がまだそのシステム上の登録されたＮＦＳおよびＭＯＵＮＴのｄａｅｍｏｎであるかどう
かを知る。そうであった場合、それは自分自身の登録を解除し、他のプログラムがＮＦＳ
およびＭＯＵＮＴサービスがもはやそのサーバ・マシンによっては提供されないことに気
付くようにする。
【００８７】
ＲＰＣのｐｏｒｔｍａｐｐｅｒとのこの相互作用は、そのサーバが最初にスタートする時
に“－ｎｏｒｅｇ”コマンド・ライン・オプションを使用してオフにすることができる。
これはそのサーバ・マシン上で従来のＮＦＳが実行中であることが前もって知られている
時に、スタートアップおよび遮断の性能を僅かに改善するはずである。
【００８８】
従来のＭＯＵＮＴのｄａｅｍｏｎが局所マシン上で稼働している可能性があり、クライア
ントの“ｍｏｕｎｔ（１）”コマンドが”ｍｏｕｎｔｐｏｒｔ”オプションをサポートし
ない可能性があるので、クライアントからの最初の要求は“ｆｏｒｅｉｇｎ”ファイル・
ハンドルを伴うＮＦＳ要求とすることができる。仮想ＮＦＳのｄａｅｍｏｎは、任意の未
登録のファイル・ハンドルをそのシステムのｒｏｏｔのファイル・ハンドルとして扱うこ
とによって、この動作モードをサポートする。
【００８９】
（６）総称仮想ファイル・システムのアプリケーション
仮想ファイル・システムのアーキテクチャに対するいくつかの総称アプリケーションもあ
る。これらは以下に説明されるような、圧縮、据置き削除、レビジョン管理およびＮＦＳ
Ｗｅｂなどである。
【００９０】
（ａ）“Ｍａｋｅｆｉｌｅ”ファイル・システム
仮想ファイル・システム・アーキテクチャの１つの興味深いバリエーションは、Ｍａｋｅ
ｆｉｌｅファイル・システムである。ＵＮＩＸのｍａｋｅ（１）ユーティリティは、大型
のアプリケーションをコンパイルしてリンクするタスクを単純化するプログラム開発ツー
ルである。”ｍａｋｅ”プログラムは、アプリケーションを生成するために必要なコマン
ドおよびその依存性（すなわち、順序付け情報）のリストをＭａｋｅｆｉｌｅの中に格納
する。このアプリケーションによってファイルがどのように生成されるかを指定するため
の広く受け入れられているメカニズムを使用して、任意の外部プログラムを仮想ファイル
・サーバの中に統合化することができる。Ｍａｋｅｆｉｌｅファイル・システムの各ディ
レクトリは、どのファイルがエクスポートされるか、そしてどのプログラムがそれらの内
容を生成することを実行するかを仮想ＮＦＳのｄａｅｍｏｎに知らせるＭａｋｅｆｉｌｅ
を含んでいる。
【００９１】
（ｂ）圧縮されたファイル・システム
経済的な制約のためにほとんどのパーソナル・コンピュータ・システム上ではポピュラー
であるが、ディスクの自動圧縮および自動解凍のソフトウェアは、ＵＮＩＸおよびＶＭＳ
のシステムにおいては稀である。現在のワークステーションのディスクがずっと大型であ
り、プロセッサがずっと高速であることは、理論的にはオンザフライでの圧縮および解凍
の利点が何倍にもなるはずである。実際に、“Ｓｔａｃｋｅｒ”および”ＤｏｕｂｌｅＳ
ｐａｃｅ”などのＰＣシステムのソフトウェアは、圧縮および解凍のコストがファイルＩ
／Ｏの削減より小さいので性能が向上したことを示している。従って、本発明を“ｚｌｉ
ｂ”、“ｇｚｉｐ”または”ｂｚｉｐ”ベースのファイル・システムを提供するために適
合させることがさらに考えられる。
【００９２】

(22) JP 5019669 B2 2012.9.5

10

20

30

40

50

（ｃ）据置き削除
ファイル・システムは、クライアントが“ｒｍ”または“ｄｅｌ”コマンドを発行した時
点でサーバからファイルを削除または取り除く必要はない。代わりに、そのファイルを“
ごみ箱”または“リサイクル”のエリアに、それが自動的に適切な期間経過後に削除され
るまで一時的に移動しておくことができる。これによって普通のユーザの誤操作を、その
“ごみ箱”からそのファイルを復元することによって訂正することができる。そのような
ごみ箱のエリアを圧縮して格納し、そしてディスクの自由空間があるしきい値以下に落ち
入った時に自動的に不要部分の整理を行うことができる。
【００９３】
（ｄ）レビジョン管理
ファイル・システムは、特定のファイルの複数のレビジョンまたはバージョンを格納する
ために使用されることが多い。世代番号に似たものが、ＶＭＳファイル・システムの中の
ファイル名に対して付加される。一組のファイルの内容が同様であるか、あるいは既存の
ファイルの修正されたものであることをファイル・システムが知っている場合、仮想ネッ
トワーク・ファイル・サーバは、ファイル全体の内容ではなく、ファイル間の差（または
編集）を維持することができる。これによって定期的に変更されるドキュメントの前のバ
ージョンを維持するための大きなディスク空間が必要になるのを避けることができる。
【００９４】
（ｅ）ＮＦＳＷｅｂ
ＷＷＷのクライアントが修正されたＮＦＳプロトコル上でＮＦＳサーバにアクセスするこ
とができる提案されているＷｅｂＮＦＳプロトコルと違って、ＮＦＳＷｅｂは局所ファイ
ル・システム上のファイルを経由してＷＷＷのページがアクセスされるようにすることが
できる。Ａｎｄｒｅｗファイル・システム（ＡＦＳ）と同様に、“／ｈｔｔｐ／ｗｗｗ・
ｍｉｃｒｏｓｏｆｔ．ｃｏｍ／ｉｎｄｅｘ．ｔｈｍ”などのファイルに対するアクセスの
結果、適切なＨＴＴＰ要求となり、その返される内容がファイルの内容としてエクスポー
トされる。
【００９５】
（７）実装の機能の詳細例
この分野に熟達した人によって認識されるように、上記の仮想ファイル・サーバは本質的
に開発者が実行時にｖｎｆｓｄのｄａｅｍｏｎによってリンクされる共有のライブラリと
して仮想ファイル・システムを実装することができるようにする。ｖｎｆｓｄサーバがす
べての低レベルのＴＣＰ／ＩＰベースのソケット、コネクション管理およびＳｕｎ　Ｍｉ
ｃｒｏｓｙｓｔｅｍｓのＸＤＲ、ＲＰＣ、ＭＯＵＮＴおよびＮＦＳのｗｉｒｅプロトコル
の面倒を見る。このファイル・システムのライブラリは、約１２のサブルーチンのエント
リ・ポイントのずっと単純な機能的ＡＰＩを実装するだけで済む。これサブルーチンの多
くはファイル・システムのタイプに依存するオプションである。これによって単独ファイ
ルの読取り専用ファイル・システムを、最小限の２つの関数を使用して実装すること、そ
して複数ファイルの読取り専用ファイル・システムを最小限９個の関数を使用して実装す
ることができる。
【００９６】
前のパラグラフで述べたように、２種類のファイル・システムがある。それらは単独のフ
ァイルだけを記述する単独ファイルのファイル・システムおよび、任意の数のファイルお
よびサブディレクトリを記述する複数ファイルのファイル・システムである。この２つの
間の主な相違点は、ｒｏｏｔのｉｎｏｄｅ、ゼロのｉｎｏｄｅが前者の場合は普通のファ
イルであり、後者の場合はディレクトリであることである。単独ファイルのファイル・シ
ステムは、２つのサブルーチンだけによってプラグインを定義することができる仮想ＮＦ
ＳのＡＰＩの単純化であるが、ｐｌｕｇｉｎｆｓのダイナミック・リンキングを使用しな
ければならず、ｖｎｆｓｄサーバに対してスタティックにリンクすることができない。
【００９７】
仮想ファイル・システムの開発者は、ファイル・システムの内容を記述するこれらの必要

(23) JP 5019669 B2 2012.9.5

10

20

30

40

50

なサブルーチンの実装を単純に作成する。すべてのサブルーチンが実装される場合、その
ファイル・システムのオブジェクトは、ｖｎｆｓｄディレクトリの中にスタティックにリ
ンクされるか、あるいは提供されている”ｐｌｕｇｉｎｆｓ”ファイル・システムによっ
て動的共有オブジェクトとして実行時にリンクされるかのいずれかが可能である。すべて
の関数が実装されない場合、ｐｌｕｇｉｎｆｓが使用されなければならず、そして欠落し
ているエントリ・ポイントに対して省略時実装を提供することになる。プロダクションの
環境においては、動的にリンクされるｐｌｕｇｉｎｆｓのソリューションが好ましいが、
スタティックなリンキングが開発およびデバッグのために役立つ。
【００９８】
ｐｌｕｇｉｎｆｓは共有ライブラリの名前の形式が“＊ｆｓ．ｓｏ”であること、そして
ｖｎｆｓｄのプラグインのディレクトリの中に置かれていることが必要である。
【００９９】
（８）ＡＰＩの機能の概要
仮想ネットワーク・ファイル・システムを現在定義している１２個の関数が以下にリスト
される。各関数のプロトタイプの前に、実装が必要であるかどうか、特定のタイプのファ
イル・システムに対して適用可能かどうかを示すキーがある。
【０１００】
‘Ｄ’は、その関数が複数ファイルのファイル・システムに対して必要であることを示す
。
‘ｄ’は、その関数が複数ファイルのファイル・システムに対して適用できることを示し
ている。
【０１０１】
‘Ｆ’は、その関数が単独ファイルのファイル・システムに対して必要であることを示し
ている。
‘ｆ’は、その関数が単独ファイルのファイル・システムに対して適用できることを示し
ている。
【０１０２】

【０１０３】

【０１０４】

【０１０５】

【０１０６】

【０１０７】

【０１０８】

上記のリストから分かるように、単独ファイルのファイル・システムは、通常、２～６個
の関数が実装される必要があり、複数ファイルのファイル・システムは、通常、９～１２

(24) JP 5019669 B2 2012.9.5

10

20

30

40

50

個の関数が実装される必要がある。ファイル・システムのプラグインがロードされる時、
それは初期化され（ｍｘＩＮｏｄｅＩｎｉｔｉａｌｉｚｅが存在する場合）、そして次に
ｍｘＩＮｏｄｅＴｙｐｅが、そのファイル・システムのタイプを決定するために呼び出さ
れる。ｍｘＩＮｏｄｅＴｙｐｅが存在しなかった場合、そのファイル・システムは単独フ
ァイルのシステムであると仮定される。次に、プラグイン・マネージャが必要な関数のす
べてが存在しているかどうかをチエックする。そうでなかった場合、ｍｘＩＮｏｄｅＣｌ
ｅａｎＵｐ関数が呼び出され（存在していた場合）、そしてそのモジュールがアンロード
される。
【０１０９】
仮想ファイル・システムのＡＰＩは、ｉｎｏｄｅおよびディレクトリ・クッキーの概念を
使用する。ｉｎｏｄｅは符号付きの３２ビットの長さであり、それはそのファイル・シス
テム上のすべてのファイルおよびディレクトリを識別するために使用される。下位２８ビ
ットだけに意味があり、任意の単独ファイル・システムが最大２６，８００万個の個々に
命名されたファイルまたはサブディレクトリをエクスポートすることができる。複数ファ
イルのファイル・システムは、ｉｎｏｄｅ　０をそのファイル・システムのｒｏｏｔディ
レクトリとしてマップしなければならず、単独ファイルのファイル・システムはｉｎｏｄ
ｅ　０を仮想ファイルとしてマップしなければならない。ｉｎｏｄｅは１つのファイル・
システムの内部でユニークに命名される必要はない。これによっていくつかのファイル（
またはディレクトリ）が同じ内容を有することが可能である。
【０１１０】
ディレクトリ・クッキーはディレクトリのエントリのリストの中の論理的な位置を概念的
に表す符号付きの３２ビットの整数である。ディレクトリ・クッキーは自分自身のディレ
クトリに対してだけユニークであればよい。ゼロクッキーは、第１のディレクトリ・エン
トリの前の位置または最後のエントリの後の位置のいずれかを表している特殊な意味を有
する。ゼロクッキーは、“ｍｘＩＮｏｄｅＤｉｒＮｅｘｔ”関数に対してのみ渡されるか
、あるいはその関数からのみ返される。ｐｌｕｇｉｎｆｓおよびＵＮＩＸのオペレーティ
ング・システムはディレクトリ・クッキーに追加の制約を課す。決まりによって、クッキ
ー１は局所名“．”を持たなければならず、そして現在のディレクトリを表し、そしてク
ッキー２は局所名“．．”を持たなければならず、それは現在のディレクトリの親［現在
のディレクトリがｒｏｏｔディレクトリである時はそのｒｏｏｔディレクトリ］を持って
いなければならない。クッキーはシーケンシャルである必要はなく、そしてゼロクッキー
まで任意の順序で“ｍｘＩＮｏｄｅＤｉｒＮｅｘｔ”によって返すことができる。
【０１１１】
（９）サーバのスタートアップおよび遮断の機能
仮想ＮＦＳのＡＰＩは、単独の初期化関数および単独のクリーンアップ関数を含んでいる
。これらの関数は両方とも、両方のタイプの仮想ファイル・システムにおいてオプション
である。
【０１１２】
ｍｘＩＮｏｄｅＩｎｉｔｉａｌｉｚｅ
ｃｈａｒ＊　ｍｘＩＮｏｄｅＩｎｉｔｉａｌｉｚｅ（ｖｏｉｄ）；
ｍｘＩＮｏｄｅＩｎｉｔｉａｌｉｚｅ関数は、プラグインが必要なデータ構造をそれぞれ
の初期状態に初期化することができるようにするために使用される。このオプションのル
ーチンには引数がなく、ヌルで終了されたＣの文字列を返す。この文字列がそのファイル
・システムを命名するために使用される。この名前はスタティックにリンクする時には無
視されるが、プラグインのファイル・システムを使用している時に、そのファイル・シス
テムを含んでいるディレクトリ名として使用される。慣習的には、これらの名前は“ｆｓ
．ｓｏ”サフィックスの前のシステムのライブラリ名のプリフィックスである。例えば、
“ｄｅｍｏｆｓ．ｓｏ”の中のデモンストレーション用ファイル・システムは、文字列“
ｄｅｍｏ”を返す。この関数は他のすべての関数の前に、ｖｎｆｓｄサーバが最初にスタ
ートアップする時に一度だけしか呼び出されない。

(25) JP 5019669 B2 2012.9.5

10

20

30

40

50

【０１１３】
ｍｘＩＮｏｄｅＣｌｅａｎＵｐ
ｖｏｉｄ　ｍｘＩＮｏｄｅＣｌｅａｎＵｐ（ｖｏｉｄ）；
ｍｘＩＮｏｄｅＣｌｅａｎＵｐ関数は、ｖｎｆｓｄサーバが終了する前に、任意の割り付
けられていたメモリまたはシステム資源をプラグインが割当て解除できるようにするため
に使用される。この関数は引数を取らず、結果を何も返さない。この関数は一度だけしか
呼び出されず、そしてその後、ふたたび呼び出される他の関数は何もない。
【０１１４】
（１０）一般の関数
仮想ＮＦＳのＡＰＩは、ｉｎｏｄｅ引数のファイル・システムのタイプとは無関係な２つ
の関数を含んでいる。従って、これらの関数は、ファイルまたはディレクトリのいずれか
である可能性があるｉｎｏｄｅ引数を有している。
【０１１５】
ｍｘＩＮｏｄｅＶａｌｉｄ
ｉｎｔ　ｍｘＩＮｏｄｅＶａｌｉｄ（ｌｏｎｇ　ｉｎｏｄｅ）；
この関数はｉｎｏｄｅの値の有効性をチエックするために使用される。それはそのｉｎｏ
ｄｅを指定している引数として単独のｌｏｎｇを取り、そのｉｎｏｄｅがファイル・シス
テムの内部で有効である場合にはゼロでない整数を返し、そうでない場合はゼロを返す。
この戻り値はＣのプログラミング言語におけるＢｏｏｌｅａｎの値の従来の符号化を使用
する。ゼロのｉｎｏｄｅは常に有効でなければならない。この関数によって無効であると
してフラグが立てられているｉｎｏｄｅで他の関数は呼び出されないと仮定するのが安全
である。
【０１１６】
この関数は、複数ファイルのシステムに対して実装されなければならない。単独ファイル
のファイル・システムは、省略時の行動はゼロのｉｎｏｄｅが唯一の有効なｉｎｏｄｅで
あることである。
【０１１７】
ｍｘＩＮｏｄｅＴｙｐｅ
ｉｎｔ　ｍｘＩＮｏｄｅＴｙｐｅ（ｌｏｎｇ　ｉｎｏｄｅ）；
この関数は、ファイル・システムのｉｎｏｄｅの「型」を決定するために使用される。そ
れは引数としてそのｉｎｏｄｅを指定している符号付きのｌｏｎｇを取り、インクルード
・ファイル“ｆｉｌｅｓｙｓ．ｈ”の中にマクロとして定義されている３つの整数のうち
の１つを返す。これらの値は、正規のファイルであるｉｎｏｄｅに対してはＭＸ＿ＩＮＯ
ＤＥＴＹＰＥ＿ＦＩＬＥであり、ディレクトリであるｉｎｏｄｅに対してはＭＸ＿ＩＮＯ
ＤＥ＿ＤＩＲＥＣＴＲＹであり、ｉｎｏｄｅが無効である場合はＭＸ＿ＩＮＯＤＥ＿ＮＯ
ＴＦＯＵＮＤである。
【０１１８】
この関数はゼロのｉｎｏｄｅが常にＭＸ＿ＩＮＯＤＥ＿ＤＩＲＥＣＴＯＲＹを返さなけれ
ばならない時、複数ファイルのファイル・システムに対して実装されなければならない。
単独ファイルのファイル・システムに対して実装された場合、その省略時（そして必須の
）実装は、ゼロのｉｎｏｄｅに対してはＭＸ＿ＩＮＯＤＥ＿ＦＩＬＥを返すことである。
【０１１９】
（１１）ファイル関数
仮想ＮＦＳのＡＰＩは、仮想ファイル・システムの内部の正規のファイルにアクセスする
ための２つの関数を含む。従って、これらの関数はｉｎｏｄｅの引数を有し、それらはフ
ァイルでなければならない。
【０１２０】
ｍｘＩＮｏｄｅＦｉｌｅＬｅｎ
ｕｎｓｉｇｎｅｄ　ｌｏｎｇ　ｍｘＩＮｏｄｅＦｉｌｅＬｅｎ（ｌｏｎｇ　ｉｎｏｄｅ）
；

(26) JP 5019669 B2 2012.9.5

10

20

30

40

50

ｍｘＩＮｏｄｅＦｉｌｅＬｅｎ関数はファイルの長さを求めるために使用される。この関
数はそのファイルのｉｎｏｄｅを表している単独のｌｏｎｇ引数を有し、バイト単位でそ
のファイルの長さを示している符号なしのｌｏｎｇを返す。この制限は現在各仮想ファイ
ルを４Ｇバイトの最大サイズに制限する。無効であるか、あるいはディレクトリであると
決定されるｉｎｏｄｅはゼロの値を返す必要がある。このｍｘＩＮｏｄｅＦｉｌｅＤａｔ
ａ関数によって、そのファイルの指定されたビットのすべてを読むことができなければな
らない。ｍｘＩＮｏｄｅＦｉｌｅＬｅｎがｍｘＩＮｏｄｅＦｉｌｅＤａｔａによって読み
取ることができる大きさより大きい値を返す場合、ほとんどのクライアントは、その仮想
ファイルの終りを超えて連続的に読もうとしてループすることになる。
【０１２１】
この関数は両方のタイプのファイル・システムに対して実装されなければならない。
ｍｘＩＮｏｄｅＦｉｌｅＤａｔａ
ｉｎｔ　ｍｘＩＮｏｄｅＦｉｌｅＤａｔａ（ｌｏｎｇ　ｉｎｏｄｅ，ｕｎｓｉｇｎｅｄ　
ｃｈａｒ　＊ｐｔｒ，ｕｎｓｉｇｎｅｄ　ｌｏｎｇ　ｏｆｆ，ｉｎｔ　ｌｅｎ）；
【０１２２】
ｍｘＩＮｏｄｅＦｉｌｅＤａｔａ関数は、正規のファイルの内容を呼び出すために使用さ
れる。この関数は４つの引数を取る。それらはそのファイルのｉｎｏｄｅを表しているｌ
ｏｎｇ、そのデータを受け取るための符号なし文字のバッファに対するポインタ、読み取
るバイトの数を表している整数をそこから読むファイルの内部のオフセットを表している
符号なしｌｏｎｇである。この関数は、ｉｎｔｅｇｅｒを返す。それはそのバッファの中
に実際に置かれているバイトの数である。そのｉｎｏｄｅが無効であるか、あるいはディ
レクトリであった場合、この関数はゼロを返し、そのバッファを変更せずにおく必要があ
る。同様に、そのオフセットがファイルの長さより大きいか、あるいはそれに等しかった
場合、この関数はゼロを返し、そのバッファを変更しないままにする。この関数は要求さ
れたバイト数以上のバイトでバッファを決して埋めてはならない。この関数は、そのファ
イルの中に残っている数以上の文字をバッファの中に決して置いてはならない。その戻り
値がゼロより大きかった場合、この値＋そのファイルのオフセットの値は、そのファイル
の長さより小さい。
この関数は両方のタイプのファイル・システムに対して実装されなければならない。
【０１２３】
（１２）ディレクトリ関数
仮想ＮＦＳのＡＰＩは、仮想ファイル・システムの中のディレクトリ（またはフォルダ）
にアクセスするための６つの関数を含む。従って、これらの関数は、ｉｎｏｄｅの引数を
有し、それらはディレクトリでなければならない。これらの関数のうちの４つがディレク
トリ・クッキーの引数も有している。これらの関数は、ディレクトリの内容を縦覧するた
めに使用される。
【０１２４】
ｍｘＩＮｏｄｅＤｉｒＥｎｔｒｙ
ｌｏｎｇ　ｍｘＩＮｏｄｅＤｉｒＥｎｔｒｙ（ｌｏｎｇ　ｉｎｏｄｅ，ｕｎｓｉｇｎｅｄ
　ｃｈａｒ　＊ｐｔｒ，ｉｎｔ　ｌｅｎ）；
ｍｘＩＮｏｄｅＤｉｒＥｎｔｒｙ関数は、ディレクトリのエントリを名前で見つけるため
に使用される。この関数は３つの引数を取る。それらはそのディレクトリのｉｎｏｄｅを
表しているｌｏｎｇ、そのファイル名を保持している文字列に対するポインタおよびその
ファイル名の引数の長さを保持しているｉｎｔｅｇｅｒである。この関数は、その見つか
ったディレクトリ・エントリ（ファイルまたはサブディレクトリ）のｉｎｏｄｅ、または
ＭＸ＿ＩＮＯＤＥ＿ＩＮＶＡＬＩＤの値のいずれかを返す。ＭＸ＿ＩＮＯＤＥ＿ＩＮＶＡ
ＬＩＤの値は、そのｉｎｏｄｅの引数が有効なディレクトリのｉｎｏｄｅでない場合、あ
るいはそのファイル名が見つからない場合に返される必要がある。ファイル名のパラメー
タは、ヌルで終了されておらず（されていない場合があり）、そしてその実装は指定され
たバイト数以上に検査する必要はない。すべての実装はディレクトリ・エントリ“．”お

(27) JP 5019669 B2 2012.9.5

10

20

30

40

50

よび“．．”を認識しなければならない。それらはその引数のｉｎｏｄｅまたはその親の
ｉｎｏｄｅをそれぞれ返す。実装はディレクトリのクッキーに対応しない「隠された」フ
ァイル名を認識することが許される。
【０１２５】
この関数は複数ファイルのファイル・システムに対して必要である。
ｍｘＩＮｏｄｅＤｉｒＳｕｂｄｉｒｓ
ｉｎｔ　ｍｘＩＮｏｄｅＤｉｒＳｕｂｄｉｒｓ（ｌｏｎｇ　ｉｎｏｄｅ）；
ｍｘＩＮｏｄｅＤｉｒＳｕｂｄｉｒｓ関数は、１つのディレクトリの中のサブディレクト
リの数を効率的に求めるために使用される。この関数は検査されるべきディレクトリのｉ
ｎｏｄｅを保持している単独のｌｏｎｇ引数を取り、サブディレクトリのエントリの数を
含んでいるｉｎｔｅｇｅｒを返す。引数が有効なディレクトリのｉｎｏｄｅでない場合、
あるいはその実装がサブディレクトリの数をレポートしたくない場合、値ゼロを返す必要
がある。
【０１２６】
この関数は、オプションであり、複数ファイルのファイル・システムに対してのみ呼び出
される。この関数がそのプラグインによって実装されていない場合、省略時の行動は常に
ゼロを返す。
【０１２７】
ｍｘＩＮｏｄｅＤｉｒＮｅｘｔ
ｉｎｔ　ｍｘＩＮｏｄｅＤｉｒＮｅｘｔ（ｌｏｎｇ　ｉｎｏｄｅ，ｉｎｔ　ｃｏｏｋｉｅ
）；
ｍｘＩＮｏｄｅＤｉｒＮｅｘｔ関数は、ディレクトリの内容を縦覧するために使用される
。この関数は、２つの引数、すなわち、ディレクトリのｉｎｏｄｅを保持しているｌｏｎ
ｇと、現在のディレクトリのクッキーを保持しているｉｎｔｅｇｅｒとを取り、シーケン
スの中の次のクッキーを表しているｉｎｔｅｇｅｒを返す。ｉｎｏｄｅの引数が有効なデ
ィレクトリのｉｎｏｄｅでない場合、この関数は値ゼロを返す必要がある。ｖｎｆｓｄサ
ーバは、ゼロクッキーでこの関数を呼び出すことによって、そのシーケンスを開始する。
この関数はそのシーケンスの終りを示しているゼロクッキーを返すまで、返されたクッキ
ーで繰返し呼び出される。この関数はゼロクッキーか、あるいは同じディレクトリｉｎｏ
ｄｅでの以前の呼出しによって返されたクッキーのいずれかによってのみ呼び出される必
要がある。しかし（プロトコルのために同時並行性のために）、非ゼロのクッキーは、こ
の関数に対する前の呼出しの結果であることは決して保証することはできない。この関数
は、指定されたディレクトリに対して認識されていないクッキーの値を使用して提示され
た場合、値ゼロを返す必要がある。
【０１２８】
実装はクッキーのそれ自身の内部表示を自由に選択することができる。そのシーケンスは
、連続的または単調である必要はないが、シーケンスの中で同じ値が処理されてはならな
い。クッキーのシーケンスは、値１（現在のディレクトリ“．”を表している）および値
２（親ディレクトリ“．．”を表している）も含む必要があるが、これらの値は、そのシ
ーケンスの中のどの位置に現れてもよい。
【０１２９】
この関数は複数ファイルのファイル・システムに対して必要である。
ｍｘＩＮｏｄｅＤｉｒＮａｍｅ
ｉｎｔ　ｍｘＩＮｏｄｅＤｉｒＮａｍｅ（ｌｏｎｇ　ｉｎｏｄｅ，ｉｎｔ　ｃｏｏｋｉｅ
，ｕｎｓｉｇｎｅｄ　ｃｈａｒ　＊ｐｔｒ）；
ｍｘＩＮｏｄｅＤｉｒＮａｍｅ関数は、ディレクトリの縦覧の間に見つかったディレクト
リ・エントリの名前を見つけるために使用される。この関数は３つの引数、すなわち、そ
のディレクトリのｉｎｏｄｅを保持しているｌｏｎｇ、ディレクトリのクッキーを保持し
ているｉｎｔｅｇｅｒ、およびそのファイル名を返すためのバッファに対するポインタを
取る。この関数は、そのファイル名の長さ（指定されたバッファの中に置かれているバイ

(28) JP 5019669 B2 2012.9.5

10

20

30

40

50

トの数）を含んでいるｉｎｔｅｇｅｒを返す。そのｉｎｏｄｅの引数が有効なディレクト
リでないか、あるいはそのクッキーが与えられたディレクトリに対する認められたクッキ
ーでない場合、この関数は値ゼロを返し、バッファを変更されないままにして置く必要が
ある。２５６バイトを超える数のバイトが指定されたバッファに対して書き込まれてはな
らない。それはファイル名の最大サイズを制限する。その文字列は、ヌルで終了されてい
ることが許されるが、その戻り値は、その末端のゼロのバイトを含んでいてはならない。
このルーチンはゼロクッキーで呼び出されてはならない。
【０１３０】
有効なディレクトリｉｎｏｄｅの場合、クッキー１は結果としてバッファの第１バイトを
‘．’に設定して１の値を返す必要があり、そしてクッキー２は結果としてバッファの最
初の２バイトを“．．”に設定して値２を返す必要がある。この関数は、複数ファイルの
ファイル・システムの場合に必要である。
【０１３１】
ｍｘＩＮｏｄｅＤｉｒＮａｍｅＬｅｎ
ｉｎｔ　ｍｘＩＮｏｄｅＤｉｒＮａｍｅＬｅｎ（ｌｏｎｇ　ｉｎｏｄｅ，ｉｎｔ　ｃｏｏ
ｋｉｅ）；
ｍｘＩＮｏｄｅＤｉｒＮａｍｅＬｅｎ関数は、ディレクトリの縦覧の間に見つかったディ
レクトリ・エントリのファイル名の長さを求めるために使用される。この関数は、ｍｘＩ
ＮｏｄｅＤｉｒＮａｍｅと似ているが、それを呼び出す前に、そのファイル名の長さを求
めるために使用される。この関数は２つの引数、すなわち、そのディレクトリのｉｎｏｄ
ｅを保持しているｌｏｎｇおよび、ディレクトリのクッキーを保持しているｉｎｔｅｇｅ
ｒを取り、そのファイル名の長さを含んでいるｉｎｔｅｇｅｒを返す。ｉｎｏｄｅの引数
が有効なディレクトリでない場合、あるいはクッキーが与えられたディレクトリの有効な
クッキーでない場合、この関数は値ゼロを返す必要がある。この関数は、同じｉｎｏｄｅ
およびクッキーの引数の場合はｍｘＩＮｏｄｅＤｉｒＮａｍｅと同じ値を返す。このルー
チンはゼロクッキーで呼び出されてはならない。
【０１３２】
有効なディレクトリのｉｎｏｄｅの場合、クッキーの値１が値１を返す必要があり、そし
てクッキーの値２が値２を返す必要がある。この関数は複数ファイルのファイル・システ
ムに対して必要である。
【０１３３】
ｍｘＩＮｏｄｅＤｉｒＩＮｏｄｅ
ｌｏｎｇ　ｍｘＩＮｏｄｅＤｉｒＩＮｏｄｅ（ｌｏｎｇ　ｉｎｏｄｅ，ｉｎｔ　ｃｏｏｋ
ｉｅ）；
ｍｘＩＮｏｄｅＤｉｒＩｎｏｄｅ関数は、ディレクトリの縦覧の間に見つかったディレク
トリ・エントリのｉｎｏｄｅを見つけるために使用される。この関数は２つの引数、すな
わち、そのディレクトリのｉｎｏｄｅを保持しているｌｏｎｇおよびディレクトリのクッ
キーを保持しているｉｎｔｅｇｅｒを取り、そのファイル名の長さを含んでいるｉｎｔｅ
ｇｅｒを返す。ｉｎｏｄｅの引数が有効なディレクトリでない場合、あるいはそのクッキ
ーがその与えられたディレクトリに対する有効なクッキーでない場合、この関数は値ＭＸ
＿ＩＮＯＤＥ＿ＩＮＶＡＬＩＤを返す必要がある。
【０１３４】
有効なディレクトリのｉｎｏｄｅおよびクッキーの値１に対して、この関数は、そのディ
レクトリのｉｎｏｄｅの引数を返す必要がある。ゼロのｉｎｏｄｅおよびクッキーの値２
に対しては、この関数はゼロを返す必要がある。有効な非ゼロ・ディレクトリｉｎｏｄｅ
およびクッキーの値２に対しては、この関数はこのディレクトリの親のｉｎｏｄｅを返す
必要がある。この関数は複数ファイルのファイル・システムに対して必要である。
【０１３５】
内容を生成し、それを遠隔ファイル・システム要求に応じて転送することができる効率的
なデータベース管理を提供するアーキテクチャを備えている仮想ネットワーク・ファイル

(29) JP 5019669 B2 2012.9.5

10

20

・サーバが上記のように提供された。この分野に熟達した人によって、これらおよび他の
変更および追加は明らかであり、限定されるものではないが、計算化学およびオブジェク
ト・データ管理などの各種アプリケーションにおいて使用するために本発明を適合させる
ように実装できることを理解することができるだろう。本発明は、従来の技術が許す範囲
でできるだけ広く、必要な場合は、本明細書の範囲において定義されるべきであることを
理解されたい。
【図面の簡単な説明】
【図１】　論理ファイルまたはディレクトリに対してアクセスするための通信フォーマッ
トのブロック図であり、ディレクトリが局所物理記憶媒体上または遠隔マシン上に置かれ
ている。
【図２】　仮想ネットワーク・ファイル・サーバがファイル・システム要求を処理して遠
隔ファイル・システムに対して返す連続ループのプログラムのフローチャートである。
【図３】　図２のフローチャートを示しており、その中でそのようなプログラムは本発明
の仮想ファイル・システムを仮想ネットワーク・ファイル・サーバそのものから隔離する
ことをさらに提供する。
【図４】　遠隔ファイル・システム要求を処理するためにネットワーク・ファイル・サー
バによって転送される独立のファイルまたはディレクトリに対して本発明のサーバによっ
て変換される指定された要求の図である。
【図５】　仮想ネットワーク・ファイル・サーバに対して仮想ファイルの内容を生成して
返すための仮想ファイル・システム「プラグイン」の読取り機能のためのフローチャート
を示している。

【図１】

【図２】

【図３】

(30) JP 5019669 B2 2012.9.5

【図４】 【図５】

(31) JP 5019669 B2 2012.9.5

10

20

フロントページの続き

(72)発明者 セイル、ロジャー　エイ．
 アメリカ合衆国　８７５０１　ニューメキシコ州　サンタフェ　カミーノ　デローラ　１１２８

 合議体
 審判長 清水　稔
 審判官 稲葉　和生
 審判官 衣川　裕史

(56)参考文献 特開平８－１３７７２８（ＪＰ，Ａ）
 特開平７－６５０３２（ＪＰ，Ａ）
 特開平７－１３８４４（ＪＰ，Ａ）
 Ａｌｂｅｒｔ　Ｄ．　Ａｌｅｘａｎｄｒｏｖ　ｅｔ　ａｌ．，Ｕｆｏ：　Ａ　Ｐｅｒｓｏｎａｌ
 　Ｇｌｏｂａｌ　Ｆｉｌｅ　Ｓｙｓｔｅｍ　Ｂａｓｅｄ　ｏｎ　Ｕｓｅｒ－Ｌｅｖｅｌ　Ｅｘｔ
 ｅｎｓｉｏｎｓ　ｔｏ　ｔｈｅ　Ｏｐｅｒａｔｉｎｇ　Ｓｙｓｔｅｍ，ＡＣＭ　Ｔｒａｎｓａｃ
 ｔｉｏｎｓ　ｏｎ　Ｃｏｍｐｕｔｅｒ　Ｓｙｓｔｅｍｓ，米国，ＡＣＭ，１９９８年８月，Ｖｏ
 ｌ．　１６，　Ｎｏ．　３，ｐ．　２０７－２３３

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F12/00
 G06F13/00

	biblio-graphic-data
	claims
	description
	drawings
	overflow

