(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2015年9月3日 (30.09.2015)

(51) 国際特許分類:
C04B 35/00 (2006.01)
C23C 14/58 (2006.01)
C23C 14/34 (2006.01)
H01L 21/063 (2006.01)

(21) 国際出願番号:
PCT/JP2015/053848

(22) 国際出願日:
2014年8月8日 (08.08.2014)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2014-337022 2014年2月27日 (27.02.2014) J
特願2014-1463 2014年8月8日 (08.08.2014) J

(71) 出願人:

(72) 発明者:
中山 佳行 (NAKAYAMA, Tokuyuki); 〒1988601 東京都青梅市未広町1丁目6番1号 住友金属塩山株式会社 青梅事業所内 Tokyo (JP).

(74) 代理人:
正林 真之, 外出メイチ MASAYUKI et al.; 〒1000005 東京都千代田区丸の内1-7-1 サビアタワー Tokyo (JP).

(54) Title: OXIDE SINTERED BODY, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR THIN FILM OBTAINED USING SPUTTERING TARGET

(56) 明細発明の名称: 酸化物焼結体、スパッタリング用ターゲット、及びそれを利用して得られる酸化物半導体薄膜

(57) Abstract: A n oxide sintered body, which, when made into an oxide semiconductor thin film by sputtering, can achieve low carrier density and high carrier mobility, and a sputtering target using said oxide sintered body are provided. This oxide sintered body contains indium, gallium and zircon as oxides. The gallium content, expressed as the atomic ratio u(In/Ga), is 0.20-0.49, and the zircon content, expressed as the atomic ratio Zr(In+Ga+Zn), is 0.0001 or greater and less than 0.08. This amorphous oxide semiconductor thin film is formed with the oxide sintered body as a sputtering target, and can achieve a carrier density of 4.0×10^11cm^-2 or less and a carrier mobility of 10cm^2/Vs or greater.

(57) 要約: スパッタリング法によって酸化物半導体薄膜とした場合に、低キャリア濃度、高キャリア移動度が得られる酸化物焼結体、及びそれを用いたスパッタリング用ターゲットを提供する。この酸化物焼結体は、インジウム、ガリウム及び亜鉛を酸化剤として含有する。ガリウムの含有量がGa/z (I n+ G a) 原子数比で0.20以上、4.0以下であること及び亜鉛の含有量がZn/z (I n+ G a+ Z n) 原子数比で0.0001以上、0.08未満である。この酸化物焼結体をスパッタリング用ターゲットとして形成した非晶質の酸化物半導体薄膜は、キャリア濃度4.0×10^11cm^-2以下、キャリア移動度10cm^2/Vs以上が得られる。
明細書

発明の名称:
酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

技術分野

本発明は、酸化物焼結体、ターゲット、及びそれを用いて得られる酸化物半導体薄膜に関し、より詳細には、亜鉛を含有させることによって結晶質の酸化物半導体薄膜のキャリア濃度を低減し可能にするスパッタリング用ターゲット、それを用いるのに最適な亜鉛を含有する酸化物焼結体、ならびにそれを用いて得られる低いキャリア濃度と高いキャリア移動度を示す非晶質の亜鉛を含有する酸化物半導体薄膜に関する。

背景技術

薄膜トランジスタ（Thin Film Transistor、TFT）は、電界効果トランジスタ（Field Effect Transistor、以下FET）の1種である。TFTは、基本構成としてゲート端子、ソース端子及び、ドレン端子を備えた3端子素子であり、基板上に成膜した半導体薄膜を、電子又はホールが移動するチャネル層として用い、ゲート端子に電圧を印加して、チャネル層に流れる電流を制御し、ソース端子とドレイン端子間の電流をスイッチングする機能を有するアクティブ素子である。TFTは、現在、最も多く実用化されている電子デバイスであり、その代表的な用途として液晶駆動用素子がある。

TFTとして、現在、最も広く使われているのは多結晶シリコン膜又は非晶質シリコン膜をチャネル層材料としたMetal–Insulator– Semiconductor–FET（MIS–FET）である。シリコンを用いたMIS–FETは、可視光に対して不透明であるため、透明回路を構成することができない。このため、MIS–FETを液晶ディスプレイの液晶駆動用スイッチング素子として応用した場合、該デバイスは、ディスプ
レイ画素の開口比が小さくなる。

また、最近では、液晶の高精細化が求められるに伴い、液晶駆動用スイッチング素子にも高速駆動が求められるようになってきている。高速駆動を実現するためには、キャリアである電子又はホールの移動度が少なくとも非晶質シリコンのそれより高い半導体薄膜をチャネル層に用いる必要が出てきている。

このような状況に対して、特許文献1では、気相成膜法で成膜され、ln、Ga、Zn及び○の元素から構成される透明非晶質酸化物薄膜であって、該酸化物の組成は、結晶化したときの組成がlnGaO₃(ZnO)ₘ(mは6未満の自然数)であり、不純物イオンを添加することなしに、キャリア移動度（キャリア電子移動度ともいう）が1cm²/V·秒、かつキャリア濃度（キャリア電子濃度ともいう）が10¹⁶cm⁻³以下である半絶縁性であることを特徴とする透明半絶縁性非晶質酸化物薄膜、ならびに、この透明半絶縁性非晶質酸化物薄膜をチャネル層としたことを特徴とする薄膜トラシスタが提案されている。

しかし、特許文献1で提案された、スパッタ法、パルスレーザー蒸着法のいずれかの気相成膜法で成膜され、ln、Ga、Zn及び○の元素から構成される透明非晶質酸化物薄膜（a₁GZO膜）は、その電子キャリア移動度が概ね1〜10cm²/V·秒の範囲にとどまり、ディスプレイのさらなる高精細化に対してキャリア移動度が不足することが指摘されている。

また、特許文献2には、特許文献1に記載のアモルファス酸化物薄膜を形成することを目的としたスパッタリングターゲット、すなわち、少なくともln、Zn、Gaを含む焼結体ターゲットであって、その組成にln、Zn、Gaを含み、相対密度が75％以上、かつ抵抗値が50Ωcm以下であることを特徴とするスパッタリングターゲットが開示されている。しかし、特許文献2のターゲットがホモロガス相の結晶構造を示す多結晶酸化物焼結体であるため、これより得られるアモルファス酸化物薄膜は、特許文献1と同様に、キャリア移動度が概ね10cm²/V·s程度にとどまってしまう。
【0008】高いキャリア移動度を実現する材料として、特許文献3では、ガリウムが酸化インジウムに固溶していて、原子数比Ga/(Ga+In)が0.001〜0.12であり、全金属原子に対するインジウムとガリウムの含有率が80原子%以上であり、In2O3のピックスパイト構造を有する酸化物薄膜を用いることを特徴とする薄膜トランジスタが提案されており、その原料として、ガリウムが酸化インジウムに固溶していて、原子数比Ga/(Ga+In)が0.001〜0.12であり、全金属原子に対するインジウムとガリウムの含有率が80原子%以上であり、In2O3のピックスパイト構造を有することを特徴とする酸化物焼結体が提案されている。

【0009】しかしながら、特許文献3で提案されているような結晶質の酸化物半導体薄膜をTFTに適用した場合、結晶粒界に起因するTFT特性のばらつきが課題である。特に、第8世代以上の大型ガラス基板上に、均一にTFTを形成することは極めて困難である。

【0010】特許文献4には、ピックスパイト構造を有し、酸化インジウム、酸化ガリウム、酸化亜鉛を含有する酸化物焼結体であって、インジウム(In)、ガリウム(Ga)及び亜鉛(Zn)の組成量が原子%でIn/(In+Ga+Zn)<0.75の式を満たす組成範囲にある焼結体が記載され、TFT評価では、20cm²/V.s程度の高い移動度を示す実施例が開示されている。

【0011】しかしながら、特許文献4の焼結体によって得られる酸化物半導体薄膜には微結晶などが生成しやすい点が課題であり、特に大型ガラス基板上に歩留まりよくTFTを形成することが困難になる。一般に酸化物半導体の薄膜トランジスタの製造工程では、一旦非晶質膜を形成し、その後のアニール処理によって非晶質あるいは結晶質の酸化物半導体薄膜を得る。非晶質膜形成工程の後には、所望のチャネル層の形状にバターンング加工するため、塩酸や塩酸を含む水溶液などの弱酸によるウエットエッティングを実施する。ところが、特許文献4の実質的にピックスパイト構造のみからなる酸化物焼結体を用いた場合には、形成される非晶質膜の結晶化温度が低くなってしまい
成膜後の段階ですでに微結晶が生成してエッチング工程で残渣が発生する、あるいは部分的に結晶化してエッチングできないといった問題が生じる。すなわち、フォトリソグラフィ技術などを利用して、ウエットエッチング法により、所望のTFTチャネル層のパターンを形成することが困難になる、あるいはTFT形成ができたとしても安定動作しないなどの問題が起こってしまう。

先行技術文献

特許文献

[0012] 特許文献1:特開2010−219538号公報
特許文献2:特開2007−073312号公報
特許文献3:WO2010/032422号公報
特許文献4:WO2009/148154号公報

非特許文献

発明の概要

発明が解決しようとする課題

[0014] 本発明の目的は、良好なウエットエッチング性と高いキャラリア移動度を示す非晶質の酸化物半導体薄膜の形成が可能なスパッタリング用ターゲット、それを得るのに最適な酸化物焼結体、ならびにそれを用いて得られる低いキャラリア濃度と高いキャラリア移動度を示す酸化物半導体薄膜を提供することにある。

課題を解決するための手段

[0015] 本発明者らは、インジウム、ガリウム及び亜鉛を酸化物として含有した酸化物焼結体であって、ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下、かつ亜鉛の含有量がZn/(In+Ga+Zn}
）の原子数比で0.0 0 1以上0.0 8未満である酸化物焼結体を用いて作製された非晶質の酸化物半導体薄膜、酸化物焼結体と同様の原子数比となり、良好なウエットエッチング性と低いキャリア濃度と高いキャリア移動度を示すことを新たに見出した。

[001 6] すなわち、本明の第1は、インジウム、ガリウム及び亜鉛を酸化物とし
て含有し、前記ガリウムの含有量がGa/ (In + Ga) 原子数比で0.2
0以上0.4 9以下であり、前記亜鉛の含有量がZn/ (In + Ga + Zn
)原子数比で0.0 0 1以上0.0 8未満であることを特徴とする酸化物
焼結体である。

[001 7] 本明の第2は、前記亜鉛の含有量がZn/ (In + Ga + Zn) 原子数
比で0.0 1以上0.0 5以下である第1の発明に記載の酸化物焼結体であ
る。

[001 8] 本明の第3は、前記ガリウムの含有量がGa/ (In + Ga) 原子数比
で0.2 0以上0.4 0以下である第1又は第2の発明に記載の酸化物焼結
体である。

[001 9] 本明の第4は、亜鉛以外の正二価元素、及び、インジウムとガリウム以
外の正三価から正六価の元素、を実質的に含有しない第1から第3のいず
れの発明に記載の酸化物焼結体である。

[0020] 本明の第5は、ビックスパイト型構造のIn2O3相と、In2O3相以外
の生成相が β-Ga2O3型構造のGaInO3相、 β-Ga2O3型構造のGa
1nO3相と (Ga, In) 2O3相、 β-Ga2O3型構造のGaInO3相と
Yb2Fe3O7型構造のIn2Ga2ZnO7相、 (Ga, In) 2O3相とYb
2Fe3O7型構造のIn2Ga2ZnO7相、及びβ-Ga2O3型構造のGa
1nO3相と (Ga, In) 2O3相とYb2Fe3O7型構造のIn2Ga2ZnO7
相からなる群より選ばれた生成相によって構成される第1から第4の発明
のいずれかに記載の酸化物焼結体である。

[0021] 本明の第6は、下記の式1で定義されるβ-Ga2O3型構造のGaIn
O3相のX線回折ピーク強度比が3％以上58％以下の範囲である第5の発明
に記載の酸化物焼結体である。

$$100 \times \left\{ \left[\text{GaInO}_3 \text{相 (111)} \right] \div \left[\text{In}_2 \text{O}_3 \text{相 (400)} \right] \right\} + \left[\text{GaInO}_3 \text{相 (-111)} \right] \left[\beta_{\text{GaInO}_3} \text{相 (111)} \right] \right\} \% ... 式 1$$

（式中，$\left[\text{In}_2 \text{O}_3 \text{相 (400)} \right]$ は、ピックスパイト型構造の $\text{In}_2 \text{O}_3$ 相の（400）ピーク強度であり，$\left[\text{GaInO}_3 \text{相 (111)} \right]$ は，β_{GaInO_3} 型構造の複合酸化物 β_{GaInO_3} 相（111）ピーク強度を示す。）

[0022] 本発明の第7は，第1から第6の発明のいずれかに記載の酸化物焼結体を
加工して得られるスパッタリング用ターゲットである。

[0023] 本発明の第8は，第7の発明に記載のスパッタリング用ターゲットを用い
てスパッタリング法によって基板上に形成された後，熱処理された非晶質の
酸化物半導体薄膜である。

[0024] 本発明の第9は，キャリア濃度が 4×10^{18} c m$^{-3}$未満，かつキャリア
移動度が $10 \text{cm}^2/\text{V} \cdot \text{s}$以上であることを特徴とする第8の発明に記載
の非晶質の酸化物半導体薄膜である。

[0025] 本発明の第10は，キャリア濃度が 3×10^{18} c m$^{-3}$以下であること
を特徴とする第9の発明に記載の非晶質の酸化物半導体薄膜である。

[0026] 本発明の第11は，キャリア移動度が $15 \text{cm}^2/\text{V} \cdot \text{s}$以上であることを
特徴とする第9の発明に記載の非晶質の酸化物半導体薄膜である。

発明の効果

[0027] インジウム、ガリウム及び亜鉛を酸化物として含有する酸化物焼結体であ
って，ガリウムの含有量がGa（In+Ga）原子数比で0.20以上0.
49以下，かつ亜鉛の含有量がZn（In+Ga+Zn）の原子数比で
0.0001以上0.08未満である酸化物焼結体は，スパッタリング用ターゲットとして用いられた場合に，スパッタリング成膜によって形成され，
その後熱処理されることにより，本発明に係る非晶質の酸化物半導体薄膜を得ることができる。前記のスパッタリング成膜によって形成された薄膜は，
所定量のガリウムと亜鉛を含む効果により，微結晶などが生成せず，十分な
非晶質性を有しているため、エッチングによって所望の形状にパターンニング加工することができる。また、同効果により、本発明に係る非晶質の酸化物半導体薄膜は、低いキャリア濃度と高いキャリア移動度を示す。よって、本発明の非晶質の酸化物半導体薄膜は、TFTのチャネル層として適用することができる。したがって、酸化物焼結体、及びターゲットを用いて得られる本発明に係る酸化物半導体薄膜は工業的に極めて有用である。

発明を実施するための形態

以下に、本発明に用いられる酸化物焼結体、スパッタリング用ターゲット、ならびに本発明の酸化物半導体薄膜、及び酸化物半導体薄膜の製造方法について詳細に説明する。

1. 酸化物焼結体
 (a) 組成

本発明に用いられる酸化物焼結体は、インジウム、ガリウム及び亜鉛を酸化物として含有する酸化物焼結体であって、ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下、かつ亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.01001以上0.08未満である。酸化物焼結体をこの範囲とすることことで、本発明に係る非晶質の酸化物半導体薄膜も同様の原子量比とすることができる。

ガリウムの含有量は、Ga/(In+Ga)原子数比で0.20以上0.49以下であり、0.20以上0.40以下であることが多い好ましい。ガリウムは、本発明の非晶質の酸化物半導体薄膜の結晶化温度を高める効果を有する。また、ガリウムは酸素との結合力が強く、本発明に係る非晶質の酸化物半導体薄膜の酸素欠損量を低減させる効果がある。ガリウムの含有量がGa/(In+Ga)原子数比で0.20未満の場合、これらの効果が十分得られない。一方、0.49を超える場合、酸化物半導体薄膜として十分高いキャリア移動度を得ることができない。

本発明に用いられる酸化物焼結体は、上記の通り規定される組成範囲のインジウムとガリウムに加え、亜鉛を含有する。亜鉛濃度はZn/(In+G
a + Z n）の原子数比で0.0001以上0.08未満であり、0.01以上0.05以下であることが好ましい。前記範囲内の亜鉛を添加することで、本発明に係る非晶質の酸化物半導体薄膜のキャリア濃度が抑制される。この効果によって、本発明に係る非晶質の酸化物半導体薄膜をTFTに適用した場合には、TFTのon/offを高めることができる。

なお、本発明に用いられる酸化物焼結体には、亜鉛以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素である元素Mを質的に含有しないことが好ましい。ここで、元素Mを質的に含有しないとは、それぞれ単独のMが、M/(In + Ga + M)の原子数比で500ppm以下であり、好ましくは200ppm以下、より好ましくは100ppm以下である。具体的なMの例示としては、正二価元素としては、Mg、Ni、Co、Cu、Ca、Sr、Pbが例示でき、正三価元素としては、Al、Y、Sc、B、ランタンノイドが例示でき、正四価元素としては、Sn、Ge、Ti、Si、Zr、Hf、C、Ceが例示でき、正五価元素としては、Nb、Taが例示でき、正六価元素としては、W、Moが例示できる。

（b）焼結体組織

本発明に用いられる酸化物焼結体は、主にピックスパイト型構造のIn₂O₃相及びβ-Ga₂O₃型構造のGaInO₃相によって構成されるが、これらに加えて（Ga，In）₂O₃相を多少含んでもよい。ここでガリウムはIn₂O₃相に固溶する、あるいはGaInO₃相ならびに（Ga，In）₂O₃相を構成することが好ましい。基本的に正三価イオンであるガリウムは、In₂O₃相に固溶する場合には同じく正三価イオンであるインジウムの格子位置を置換する。GaInO₃相ならびに（Ga，In）₂O₃相を構成する場合には、基本的にGaが本来の格子位置を占有するが、Inの格子位置に欠陥として若干置換固化していても構わない。また、焼結が進行しないなどの理由によって、ガリウムがIn₂O₃相に固溶しにくし、あるいはβ-Ga₂O₃型構造のGaInO₃相ならびに（Ga，In）₂O₃相が生成しにくくなり、その結果として、β-Ga₂O₃型構造のGa₂O₃相を形成することは好ましくない。
Ga2O3相は導電性に乏しいため、異常放電の原因となる。

また、本発明の酸化物焼結体は、Yb2Fe3O7型構造のIn2Ga2ZnO7相を含んでいてもよいが、In2O3相とIn2Ga2ZnO7相の2相で焼結体が構成される場合は、キャリア移動度が低下するため好ましくない。Yb2Fe3O7型構造のIn2Ga2ZnO7相を含む場合は、他にβ-Ga2O3型構造のGaInO3相、(Ga,In)2O3相、又はβ-Ga2O3型構造のGaInO3相と(Ga,In)2O3相を含むことでキャリア移動度が上昇するため好ましい酸化物焼結体とすることができる。

本発明に用いられる酸化物焼結体は、主にβ-Ga2O3型構造のGaInO3相によって構成され、さらに(Ga,In)2O3相を多少含む場合があるが、これらの相の結晶粒は平均粒径1μm以下であることが好ましい。これらの相の結晶粒は、ビックスパイト型構造のIn2Ga2ZnO7相の結晶粒と比較してスパッタリングされにくいため、掘れ残ることでノジュールが発生し、アークライトの原因になる場合がある。

本発明に用いられる酸化物焼結体は、主にビックスパイト型構造のIn2Ga2ZnO7相及びβ-Ga2O3型構造のGaInO3相によって構成され、さらに(Ga,In)2O3相を多少含む場合があるが、特にβ-Ga2O3型構造のGaInO3相については、下記の式1で定義されるX線回折ピーク強度比が3％以上58％以下での範囲において含むことが好ましい。X線回折ピーク強度比が3％以上58％以下の範囲とすることで、酸化物半導体膜としたときのキャリア移動度を好ましい範囲とすることができる。

100×1[GaInO3相(111)]/1[In2O3相(400)]+1[GaInO3相(−111)]% ～式1
（式中、1[In2O3相(400)]は、ビックスパイト型構造のIn2O3相の(400)ピーク強度であり、1[GaInO3相(111)]は、β-Ga2O3型構造の複合酸化物β-GaInO3相(111)ピーク強度を示す。）

また、本発明に用いられる酸化物焼結体は、ホモロガス構造化合物を実質
的に含有しないことが好ましい。ここで、ホモロガス構造とは、In、Ga 及びZnを含む酸化物の場合、InGaO₃（ZnO）ₘ（ₘは2〜20の自然数）の組成式で表される六方晶ベースの層状構造を指す。例えば、ₘ = 1 のInGaO₃(ZnO)₄は、InO₂層と（Ga, Zn）O₃層がc軸方向に繰り返した構造をとる。その存在はX線回折測定によって確認することができる。

本発明においては、酸化物焼結体がホモロガス構造化合物を実質的に含有しないことで、得られた非晶質の酸化物半導体薄膜が高いキャリア移動度を示すという効果が得られる。なお、ホモロガス構造化合物を実質的に含有しないとは、本発明に用いられる酸化物焼結体を構成する全ての相に対するホモロガス化合物からなる相（以下、ホモロガス相と呼ぶ場合がある。）の、例えばリーテルト解析で求められる重量比が8％以下であり、またそれ以下で5％以下であり、より好ましくは3％以下であり、さらに好ましくは1％以下であり、なお一層好ましくは0％である。

２．酸化物焼結体の製造方法

本発明に用いられる酸化物焼結体の製造では、酸化インジウム粉末、酸化ガリウム粉末、ならびに酸化亜鉛粉末を原料粉末として用いる。

本発明に用いられる酸化物焼結体の製造工程では、これらの原料粉末が混合された後、成形され、成形物を常圧焼結法によって焼結される。本発明に用いられる酸化物焼結体組織の生成相は、酸化物焼結体の各工程における製造条件、例えば原料粉末の粒径、混合条件及び焼結条件に強く依存する。

本発明に用いられる酸化物焼結体の組織は、Ga₂O₃型構造のGaInO₃相、さらに（Ga, In）₂O₃相の各結晶粒が5μm以下になるとすることが好ましく、1.0μm以下とすることがより好ましい。前記の通り、ガリウムの含有量がGa/(In+Ga)原子数比で0.08以上の場合には、In₂O₃相以外にGa₂O₃型構造のGaInO₃相、あるいはGa₂O₃型構造のGaInO₃相と（Ga, In）₂O₃相が含まれるが、これらの相の生成を極力抑制するためには、各原料粉末の平均粒径を1.0μm以下と
することが好ましい。

[0042] 酸化インジウム粉末は、ITO（スズ添加インジウム酸化物）の原料であり、焼結性に優れた微細な酸化インジウム粉末の開発は、ITOの改良とともに進められてきた。酸化インジウム粉末は、ITO用原料として大量に継続して使用されているため、最近では平均粒径１．０μm以下の原料粉末を入手することが可能である。

[0043] 酸化亜鉛粉末も、AZO（アルミニウム添加亜鉛酸化物）の主原料であるため、酸化インジウム粉末と同様の理由から、平均粒径１．０μm以下の原料粉末を入手することが可能である。

[0044] ところが、酸化ガリウム粉末の場合、酸化インジウム粉末に比べて依然使用量が少ないため、平均粒径１．０μm以下の原料粉末を入手することは困難な場合がある。粗大な酸化ガリウム粉末が入手できない場合、平均粒径１．０μm以下まで粉砕することが必要である。

[0045] 本発明に用いられる酸化物焼結体制備工程では、常圧焼結法の適用が好ましい。常圧焼結法は、簡便かつ工業的に有利な方法であって、低コストの観点からも好ましい手段である。

[0046] 常圧焼結法を用いる場合、前記の通り、まず成形体を作製する。原料粉末を樹脂製ボットに入れ、バインダー（例えば、PVA）などとともに湿式ボールミルなどで混合する。本発明に用いられる酸化物焼結体はピックスバイト型構造のIn2O₃相及びβ-Ga2O₃型構造のGaInO₃相によって構成され、さらに（Ga，In）₂O₃相を含む場合があるが、これらの相の結晶粒が平均粒径５μm以下に制御されて微細分散していることが好ましい。また、（Ga，In）₂O₃相の生成はなるべく抑制されることが好ましい。加えて、これらの相以外にアーキングの原因となるβ-Ga₂O₃型構造のGa₂O₃相を生成させないことが必要である。これらの要件を満たすためには、上記ボールミル混合を１８時間以上行うことが好ましい。この際、混合用ボールとしては、硬質ZrO₂ボールを用いればよい。混合後、スラリーを取り出し、濾過、乾燥、造粒を行う。その後、得られた造粒物を、冷間静水圧プレス
で9.8 MPa（0.1 ton/cm²）〜294 MPa（3 ton/cm²）程度の圧力をかけて成形し、成形体とする。

[0047] 常圧焼結法の焼結工程では、酸素の存在する雰囲気とすることが好ましく、雰囲気中の酸素体積分率が20％を超えることがより好ましい。特に、酸素体積分率が20％を超えることで、酸化物焼結体がより一層高密度化する。雰囲気中の過剰な酸素によって、焼結初期には成形体表面の焼結が先に進行する。続いて成形体内部の還元状態での焼結が進行し、最終的に高密度の酸化物焼結体が得られる。

[0048] 酸素が存在しない雰囲気では、成形体表面の焼結が先行しないため、結果として焼結体の高密度化が進まない。酸素が存在しなければ、特に900〜1000℃程度において酸化インジウムが分解して金属インジウムが生成するようになるため、目的とする酸化物焼結体を得ることは困難である。

[0049] 常圧焼結の温度範囲は、1200〜1550℃が好ましく、より好ましくは焼結炉内の大気に酸素ガスを導入する雰囲気において1350〜1450℃である。焼結時間は10〜30時間であることが好ましく、より好ましくは15〜25時間である。

[0050] 焼結温度を上記範囲とし、前記の平均粒径1.0μm以下に調整した酸化インジウム粉末、酸化ガリウム粉末、ならびに酸化亜鉛粉末を原料粉末として用いることで、主にビックスパイト型構造のIn₂O₃相によって構成され、特にガリウムの含有量がGa/(In+Ga)原子数比で0.08以上の場合に、ρ-Ga₂O₃型構造のGaInO₃相が生成されやすくなる傾向があり、亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.08未満の場合に、ホモロガス構造化合物が実質的に含まれない酸化物焼結体を得やすくなる傾向がある。

[0051] 焼結温度1200℃未満の場合には焼結反応が十分進行しない。一方、焼結温度が1550℃を超えると、高密度化が進みにくくなる一方で、焼結炉の部材と酸化物焼結体が反応してしまい、目的とする酸化物焼結体が得られなくなる。本発明で用いられる酸化物焼結体のガリウムの含有量はGa/(
In + Ga) 原子数比で 0.20 以上であるため、焼結温度を 1450°C以下とすることが好ましい。1500°C前後の温度域では、(Ga, In)${}_2$O${}_3$相の生成が著しくなる場合があるためである。(Ga, In)${}_2$O${}_3$相は少量であれば支障はないが、多量の場合には成膜速度の低下やアーキングなどを招く恐れがあり好ましくない。

焼結温度までの昇温速度は、焼結体の割れを防ぎ、脱バインダーを進行させるためには、昇温速度を 0.2 〜 5°C/分の範囲とすることが好ましい。この範囲であれば、必要に応じて、異なる昇温速度を組み合わせて、焼結温度まで昇温してもよい。昇温過程において、脱バインダー焼結を進行させる目的で、特定温度で一定時間保持してもよい。焼結後、冷却する際は酸素導入を止め、1000°Cまでを 0.2 〜 5°C/分、特に、0.2°C/分以上 1℃/分以下の範囲の降温速度で降温することが好ましい。

3. ターゲット

本発明に用いられるターゲットは、本発明に用いられる酸化物焼結体を所定の大きさに加工することで得られる。ターゲットとして用いる場合には、さらに表面を研磨加工し、パッキングプレートに接着して得ることができる。ターゲット形状は、平板形が好ましいが、円筒形でもよい。円筒形ターゲットを用いる場合には、ターゲット軸方向のパーティクル発生を抑制することが好ましい。また、上記酸化物焼結体を、例えば円柱形状に加工してタブレットとし、蒸着法やイオンプレーティング法による成膜に使用することができる。

スパッタリング用ターゲットとして用いる場合には、本発明に用いられる酸化物焼結体の密度は 6.3 g/cm³以上であることが好ましく、より好ましくは 6.7 g/cm³以上である。密度が 6.3 g/cm³未満である場合や、量産使用時のノジュール発生の原因となる。また、イオンプレーティング用タブレットとして用いる場合には、6.3 g/cm³未満であることが好ましく、3.4 〜 5.5 g/cm³であればより好ましい。この場合、焼結温度を 1200°C未満としたほうがよい場合がある。
4. 酸化物半導体薄膜とその成膜方法

本発明に係る非晶質の酸化物半導体薄膜は、主に、前記のスパッタリング用ターゲットを用いて、スパッタリング法で基板上に一旦非晶質の酸化物薄膜を形成し、次いでアニール処理を施すことによって得られる。

前記のスパッタリング用ターゲットは酸化物焼結体より得られるが、その酸化物焼結体組織、すなわちピックスパイト型構造のIn2O3相及びGa2O3型構造のGaInO3相によって基本構成されている組織が重要である。本発明に係る非晶質の酸化物半導体薄膜を得るためには、非晶質の酸化物半導体薄膜の結晶化温度が高いことが重要であるが、これには酸化物焼結体組織が関係する。すなわち、本発明に用いられる酸化物焼結体のように、ピックスパイト型構造のIn2O3相だけでなく、Ga2O3型構造のGaInO3相も含む場合には、これから得られる酸化物薄膜は高い結晶化温度、すなわち300℃以上、より好ましくは350℃以上の結晶化温度を示し、安定な非晶質となる。これに対して、酸化物焼結体がピックスパイト型構造のIn2O3相のみによって構成される場合、これから得られる酸化物薄膜は、その結晶化温度が200〜250℃程度と低く、非晶質性が安定でなくなる。このため、後述のように、250℃以上、さらには300℃以上でアニール処理すると結晶化してしまう。なお、この場合には、成膜後にすでに微結晶が生成して非晶質性が維持されず、エッチングによるパターンング加工が困難になる。これについては、一般的なITO（スズ添加酸化インジウム）透明導電膜においてよく知られている。

本発明に係る非晶質の酸化物半導体薄膜の成膜工程では、一般的なスパッタリング法が用いられるが、特に、直流（DC）スパッタリング法であれば、成膜時の熱影響が少なく、高速成膜が可能であるため工業的に有利である。本発明に係る酸化物半導体薄膜を直流スパッタリング法で形成するには、スパッタリングガスとして不活性ガスと酸素、特にアルゴンと酸素からなる混合ガスを用いることが好ましい。また、スパッタリング装置のチャンバー内を0.1〜1 Pa、特に0.2〜0.8 Paの圧力として、スパッタリング
グすることが好ましい。

[0058] 基板は、ガラス基板が代表的であり、無アルカリガラスが好ましいが、樹脂板や樹脂フィルムのうち上記プロセス条件に耐えうるものであれば使用できる。基板温度は、スパッタリング成膜において600℃以下とするのが好ましく、特に室温近傍の温度以上300℃以下とするのが好ましい。

[0059] 前記の非晶質の酸化物薄膜形成工程は、例えば、2×10⁻⁴Pa以下まで真空排気後、アルゴンと酸素からなる混合ガスを導入し、ガス圧を0.2〜0.8Paとし、ターゲットの面積に対する直流電力、すなわち直流電力密度が1〜7 W/cm²程度の範囲となるよう直流電力を印加して直流プラズマを発生させ、プラズマパッタリングを実施することができる。このプラズマパッタリングを5〜30分間行った後、必要により基板位置を修正したうえでスパッタリングすることが好ましい。なお、前記の成膜工程におけるスパッタリング成膜では、成膜速度を向上させるために、膜質に悪影響を及ぼさない範囲で、投入する直流電力を高めることが行われる。

[0060] 本発明に係る非晶質の酸化物半導体薄膜は、前記の非晶質の酸化物薄膜を成膜後、これをアニール処理することによって得られる。アニール処理までの方法の1つとしては、例えば室温近傍など低温で一旦非晶質の酸化物薄膜を形成し、その後、結晶化温度未満でアニール処理して、非晶質を維持したままの酸化物半導体薄膜を得る。もう1つの方法としては、基板を結晶化温度未満の温度、好ましく100〜300℃に加熱して、非晶質の酸化物半導体薄膜を成膜する。これに続いて、さらにアニール処理をしてもよい。これら2つの方法での加熱温度は概ね600℃以下で済み、無アルカリのガラス基板の歪み点以下とすることができる。

[0061] 本発明に係る非晶質の酸化物半導体薄膜は、一旦非晶質の酸化物薄膜を形成した後、アニール処理することで得られる。アニール処理条件は、酸化性雰囲気において、結晶化温度未満の温度である。酸化性雰囲気としては、酸素、オゾン、水蒸気、あるいは窒素酸化物などを含む雰囲気が好ましい。アニール温度は、250〜600℃であり、300〜550℃が好ましく、3
50 〜 500°C がより好ましい。アニール時間は、アニール温度に保持される時間が 1 〜 120 分間であることが好ましく、5 〜 60 分間がより好ましい。

前記の非晶質の酸化物薄膜及び非晶質の酸化物半導体薄膜のインジウム、ガリウム、及び亜鉛の組成は、本発明に用いられる酸化物焼結体の組成とほぼ同じである。すなわち、インジウム及びガリウムを酸化物として含有し、かつ亜鉛を含有する非晶質の酸化物焼半導体薄膜である。ガリウムの含有量がGa／(In + Ga) 原子数で 0．20 以上 0．49 以下であり、前記亜鉛の含有量がZn／(In + Ga + Zn) 原子数で 0．0001 以上 0．08 未満、好ましくは 0．05 以下である。

本発明に係る非晶質の酸化物半導体薄膜は、前記のような組成及び組織が制御された酸化物焼結体をスパッタリングターゲットなどに用いて成膜し、上記の適当な条件でアニール処理することで、キャリア濃度が 4．0 × 10^8 cm⁻³ 未満に低下し、より好ましくはキャリア濃度 3．0 × 10^18 cm⁻³ 以下、特に好ましくは 2．0 × 10^18 cm⁻³ 以下が得られる。非特許文献 1 に記載の通り、インジウム、ガリウム、及び亜鉛からなる非晶質の酸化物半導体薄膜は、キャリア濃度が 4．0 × 10^18 cm⁻³ 以上で縮退状態となるため、これをチャネル層に適用した TFF はノーマリーオフを示さなくなる。したがって、本発明に係る非晶質の酸化物半導体薄膜は、上記の TFF がノーマリーオフを示す範囲にキャリア濃度が制御されるため都合がよい。また、キャリア移動度は 10 cm²/V・s 以上を示し、より好ましくはキャリア移動度 15 cm²/V・s 以上を示す。

本発明に係る非晶質の酸化物半導体薄膜は、うえツトエッチングあるいはドライエッチングによって、TFF などの用途で必要な微細加工を施される。通常、結晶化温度未満の温度、例えば室温から 300°C までの範囲から適当な基板温度を選択して一旦非晶質の酸化物薄膜を形成した後、うえツトエッチングによる微細加工を施すことができる。エッチチャントとしては、弱酸であれば概ね使用できるが、塩酸あるいは塩酸を主成分とする弱酸が好まし
し。例えば、関東化学製 IT ○_ 06 Nなどの市販品が使用できる。TFT
の構成によっては、ドライエッチングを選択してもよい。

[0065] 本発明に係る非晶質の酸化物半導体薄膜の膜厚は限定されるものではない
が、10～500 nm、好ましくは20～300 nm、さらに好ましくは3
0～100 nmである。10 nm未満であると十分な半導体特性が得られず
、結果として高いキャリア移動度が実現しない。一方、500 nmを超える
と生産性の問題が生じてしまうので好ましくない。

実施例

[0066] 以下に、本発明の実施例を用いて、さらに詳細に説明するが、本発明は、
これら実施例によって限定されるものではない。

[0067] <酸化物焼結体の評価>

得られた酸化物焼結体の金属元素の組成をICP発光分光法によって調べ
た。得られた酸化物焼結体の端材を用いて、X線回折装置（フィリップス製
）を用いて粉末法による生成相の同定を行った。

[0068] <酸化物薄膜の基本特性評価>

得られた酸化物薄膜の組成をICP発光分光法によって調べた。酸化物薄
膜の膜厚は表面粗さ計（テンコーレ社製）で測定した。成膜速度は、膜厚と
成膜時間から算出した。酸化物薄膜のキャリア濃度及び移動度は、ホール効
果測定装置（東陽テクニカ製）において求めた。膜の生成相はX線回折測定
によって同定した。

[0069] （調整例）

酸化インジウム粉末と酸化ガリウム粉末、ならびに酸化亜鉛粉末を平均粒
径1.0 μm以下となるよう調整して原料粉末とした。これらの原料粉末を
、表1及び表2の実施例及び比較例のGa/L (In + Ga) 原子数比、Zn
Z (In + Ga + Zn) 原子数比の通りになるように調整し、水とともに樹
脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボール
を用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、
乾燥、造粒した。造粒物を、冷間静水圧プレスで3トン/cm2の圧力をか
けた成形した。
[0070] 次に、成形体を次のように焼結した。炉内容積 0.1 m³当り 5 リットル/分の割合で、焼結炉内の大気に酸素を導入する雰囲気で、1350〜1450℃の焼結温度で 20 時間焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は酸素導入を止め、1000℃までを1℃/分で降温した。
[0071] 得られた酸化物焼結体の組成分析を ICP 発光分光法にて行ったところ、金属元素について、原料粉末の配合時の仕込み組成とほぼ同じであることがいずれの実施例でも確認された。
[0072] 次に、X 線回折測定による酸化物焼結体の相同定を行った。なお、β-Ga₂O₃型構造の GaInO₃相を含む場合には、下記の式 1 で定義されるβ-Ga₂O₃型構造の GaInO₃相の X 線回折ピーク強度比を表 1 に示した。
[0073] \[100 \times \left\{ \frac{I_{[\text{GaInO}_3 \text{相 (111)}]}}{I_{[\text{In}_2 \text{O}_3 \text{相 (400)}]}} + \frac{I_{[\text{GaInO}_3 \text{相 (-111)]}}}{I_{[\text{GaInO}_3 \text{相 (111)]}}} \right\} \% \cdots \cdots \text{式1} \]

（式中、I_{[\text{In}_2 \text{O}_3 \text{相 (400)}]} は、ピックスパイド型構造の In₂O₃相の (400) ピーク強度であり、I_{[\text{GaInO}_3 \text{相 (111)]}} は、β-Ga₂O₃型構造の複合酸化物 β-GaInO₃相 (111) ピーク強度を示す。）
[0074]
酸化物焼結体を、直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように研磨した。加工した酸化物焼結体を、無酸素鋼製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリング用ターゲットとした。

実施例及び比較例のスパッタリング用ターゲットならびに無アルカリガラス基板（コーニングEagleXG）を用いて、表2に記載の基板温度で直流スパッタリングによる成膜を行った。アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置（トキ製）のカソードに、上記スパッタリングターゲットを取り付けた。このときターゲットー基板（ホルダー）間距離を60mmに固定した。2×10⁻⁴Pa以下まで真空
排気後、アルゴンと酸素の混合ガスを各ターゲットのガリウム量ならびに亜鉛量に応じて適当な酸素の比率になるように導入し、ガス圧を0.6 Paに調整した。直流電力300 W (1.64 W/cm²) を印加して直流プラズマを発生させた。10分間のプラスマターニング後、スパッタリングターゲットの上、すなわち静電対向位置に基板を配置して、膜厚50 nmの酸化物薄膜を形成した。得られた酸化物薄膜の組成は、ターゲットとほぼ同じであることが確認された。

成膜された酸化物薄膜に、表2に記載の通り、酸素中、300～500℃において30～60分間の熱処理を施し、X線回折測定によって熱処理後の酸化物薄膜の結晶性を調べた。その結果、実施例及び比較例共に非晶質を維持していた。また、結晶化している酸化物半導体薄膜については、酸化物半導体薄膜を構成する結晶相を同定した。実施例及び比較例酸化物半導体薄膜のホール効果測定を行い、キャリア濃度及びキャリア移動度を求めた。得られた評価結果を、表2にまとめて記載した。
[表2]

<table>
<thead>
<tr>
<th>表2</th>
<th>基板温度（℃）</th>
<th>熱処理温度（℃）</th>
<th>厚さ (μm)</th>
<th>濃度の結晶構造</th>
<th>キャリア濃度（×10¹⁷ cm⁻³）</th>
<th>キャリア移動度（cm²/V·s）</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例1</td>
<td>室温</td>
<td>325</td>
<td>50</td>
<td>非晶質</td>
<td>120</td>
<td>15.1</td>
</tr>
<tr>
<td>比較例2</td>
<td>室温</td>
<td>350</td>
<td>50</td>
<td>非晶質</td>
<td>42</td>
<td>22.5</td>
</tr>
<tr>
<td>実施例1</td>
<td>室温</td>
<td>350</td>
<td>50</td>
<td>非晶質</td>
<td>32</td>
<td>21.3</td>
</tr>
<tr>
<td>実施例2</td>
<td>室温</td>
<td>350</td>
<td>50</td>
<td>非晶質</td>
<td>13</td>
<td>22.2</td>
</tr>
<tr>
<td>実施例3</td>
<td>室温</td>
<td>350</td>
<td>50</td>
<td>非晶質</td>
<td>9.0</td>
<td>20.2</td>
</tr>
<tr>
<td>実施例4</td>
<td>室温</td>
<td>350</td>
<td>50</td>
<td>非晶質</td>
<td>5.3</td>
<td>15.6</td>
</tr>
<tr>
<td>比較例3</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>0.64</td>
<td>9.8</td>
</tr>
<tr>
<td>実施例5</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>20</td>
<td>23.8</td>
</tr>
<tr>
<td>実施例6</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>15</td>
<td>22.6</td>
</tr>
<tr>
<td>実施例7</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>12</td>
<td>20.3</td>
</tr>
<tr>
<td>実施例8</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>2.5</td>
<td>15.6</td>
</tr>
<tr>
<td>実施例9</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>1.9</td>
<td>15.0</td>
</tr>
<tr>
<td>実施例10</td>
<td>室温</td>
<td>500</td>
<td>50</td>
<td>非晶質</td>
<td>0.92</td>
<td>12.2</td>
</tr>
<tr>
<td>実施例11</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>1.0</td>
<td>12.5</td>
</tr>
<tr>
<td>比較例4</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>0.33</td>
<td>7.8</td>
</tr>
<tr>
<td>実施例12</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>1.3</td>
<td>13.4</td>
</tr>
<tr>
<td>実施例13</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>0.86</td>
<td>12</td>
</tr>
<tr>
<td>実施例14</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>0.65</td>
<td>11</td>
</tr>
<tr>
<td>実施例15</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>0.5</td>
<td>10.2</td>
</tr>
<tr>
<td>比較例5</td>
<td>200</td>
<td>450</td>
<td>50</td>
<td>非晶質</td>
<td>0.29</td>
<td>7.5</td>
</tr>
</tbody>
</table>

[0079] 評価

表1の結果より、実施例1〜15では、ガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、亜鉛の含有量がZn/(In+Ga+Zn)原子量比で0.0001以上0.08未満の場合には、ピックスバイト型構造のIn2O3相とβ-Ga2O3型構造のGaInO3相、あるいはピックスバイト型構造のIn2O3相とβ-Ga2O3型構造のGaInO3相とYb2Fe3O7型構造のIn2Ga2ZnO7相によって構成されていた。
また、表2の結果より、インジウム、ガリウム及び亜鉛からなる非晶質の酸化物半導体薄膜であって、ガリウム含有量がGa/（In+Ga）原子数比で0.20以上0.49以下であり、亜鉛含有量がZn/（In+Ga+Zn）原子数比で0.0001以上0.08未満に制御された酸化物半導体薄膜の特性を示した。

実施例の酸化物半導体薄膜は、いずれも非晶質であることがわかる。また、実施例の酸化物半導体薄膜は、キャリア濃度が4.0×10^{11}cm^{-3}未満、及びキャリア移動度が10cm^{2}/V·s以上であり、特にガリウム含有量がGa/（In+Ga）原子数比で0.20以上0.40以下であり、亜鉛含有量がZn/（In+Ga+Zn）原子数比で0.01以上0.05以下の実施例2、3、5〜9の酸化物半導体薄膜は、キャリア濃度が3.0×10^{18}cm^{-3}以下、キャリア移動度が15cm^{2}/V·s以上の優れた特性を示していることがわかる。

また、比較例1は、Zn/（In+Ga+Zn）原子数比で表される亜鉛の含有量は本発明の範囲を満足するが、Ga/（In+Ga）原子数比で表されるガリウム含有量が本発明の下限である0.20を下回り、比較例2は前記ガリウム含有量は本発明の範囲を満足するが、前記亜鉛の含有量が本発明の下限である0.0001を下回る結果、そのキャリア濃度が4.0×10^{18}cm^{-3}以上であることがわかる。また、比較例3〜5の酸化物半導体薄膜は、前記亜鉛含有量が0.08と過剰であるため、そのキャリア移動度が10cm^{2}/V·s未満であることがわかる。
請求の範囲

[請求項1] インジウム、ガリウム及び亜鉛を酸化物として含有し、
前記ガリウムの含有量が Ga / (In + Ga) 原子数比で 0.20 以上に 4 9 以下であり、
前記亜鉛の含有量が Zn / (In + Ga + Zn) 原子数比で 0.0 0 1 以上 0.0 8 未満であることを特徴とする酸化物焼結体。

[請求項2] 前記亜鉛の含有量が Zn / (In + Ga + Zn) 原子数比で 0.0 1 以上 0.0 5 以下である請求項 1 に記載の酸化物焼結体。

[請求項3] 前記ガリウムの含有量が Ga / (In + Ga) 原子数比で 0.15 以上 0.40 以下である請求項 1 又は 2 に記載の酸化物焼結体。

[請求項4] 亜鉛以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、を実質的に含有しない請求項 1 から 3 のいずれかに記載の酸化物焼結体。

[請求項5] ビックスパイト型構造の In₂O₃相と、In₂O₃相以外の生成相が β₋ Ga₂O₃型構造の GaInO₃相、β₋ Ga₂O₃型構造の GaInO₃相と (Ga, In)₂O₃相、β₋ Ga₂O₃型構造の GaInO₃相と Y₂Fe₃O₇型構造の In₂Ga₂ZnO₇相、(Ga, In)₂O₃相と Y₂Fe₃O₇型構造の In₂Ga₂ZnO₇相、及び β₋ Ga₂O₃型構造の GaInO₃相と (Ga, In)₂O₃相と Y₂Fe₃O₇型構造の In₂Ga₂ZnO₇相からなる群より選ばれた生成相によって構成される請求項 1 から 4 のいずれかに記載の酸化物焼結体。

[請求項6] 下記の式 1 で定義される β₋ Ga₂O₃型構造の GaInO₃相の X線回折ピーク強度比が 3%以上 58%以下の範囲である請求項 5 に記載の酸化物焼結体。

\[100 \times 1 \{ \text{GaInO}_3 \text{相 (1 1 1)} \} / (1 \{ \text{In}_2\text{O}_3 \text{相 (4 0 0)} \} + 1 \{ \text{GaInO}_3 \text{相 (1 1 1)} \}) \% \]
（式中、\[\text{In}_2\text{O}_3\text{相 (4 0 0)} \] は、ビックスパイ型構造の
\[\text{In}_2\text{O}_3\text{相 (4 0 0)} \] ピーク強度であり、\[\text{GaInO}_3\text{相 (1 1 1)} \] は、\(\beta _ \text{Ga}_2\text{O}_3 \text{相} \) 構造の複合酸化物 \(\beta _ \text{GaInO}_3 \text{相} \)
(1 1 1) ピーク強度を示す。）

[請求項7] 請求項1から6のいずれかに記載の酸化物焼結体を加工して得られるスパッタリング用ターゲット。

[請求項8] 請求項7に記載のスパッタリング用ターゲットを用いてスパッタリング法によって基板上に形成された後、熱処理された非晶質の酸化物半導体薄膜。

[請求項9] キャリア濃度が4 \(\times \) 10^{18} c m^{-3} 未満、かつキャリア移動度が10 c m^{2}∕V • s以上であることを特徴とする請求項8に記載の酸化物半導体薄膜。

[請求項10] キャリア濃度が3 \(\times \) 10^{18} c m^{-3} 未満であることを特徴とする請求項9に記載の酸化物半導体薄膜。

[請求項11] キャリア移動度が15 c m^{2}∕V • s以上であることを特徴とする請求項9に記載の酸化物半導体薄膜。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C 04B 35/0 0 (2 006 0 1) i, C 23C 1 4 / 3 4 (2 006 0 1) i, C 23C 1 4 / 5 8 (2 006 0 1) i, H 0 1L21 / 3 6 3 (2 006 0 1) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C 04B 35/ 0 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuy o Shinan Koho 1 922-1996 Jitsuy o Shinan Toroku Koho 1 996-2015
Kokai Jitsuy o Shinan Koho 1 971-2015 Toroku Jitsuy o Shinan Koho 1 994-2015

Electronic data base consulted during the international search (name of data base and where practicable, search terms used)
JST Plus (JDream II), JST 7580 (JDream II)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>JP 2014-95144 A (Idemitsu Kosan Co., Ltd.). claims 1, 7, 14: paragraph 0089; examples 1 to 3 (Family: none)</td>
<td>1-4, 7, 8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
2 1 April 2 015 (2 1.04.15)

Date of mailing of the international search report
2 8 April 1 2015 (2 8.04.15)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 1 0 0-8 9 1 5, Japan

Authorized officer
Telephone No.

Form PCT/ASA210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2013-1590 A (Sumitomo Electric Industries, Ltd.), 07 January 2013 (07.01.2013), entire text (Family: none)</td>
<td>1-11</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP2015/053848

A. 発明の属する分野（国際特許分類（IPC））

IntCl. C04B35/00 (2006.01) i, C23C14/34 (2006.01) i, C23C14/58 (2006.01) i, H01L21/363 (2006.01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

IntCl. C04B35/00

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>JP 2014-95 144 A（出光興産株式会社）2014.05.22, 請求項 1 , 7 ,</td>
<td>1-4, 7, 8</td>
</tr>
<tr>
<td>P, A</td>
<td>1 4 , 0 0 8 9 段落、実施例 1 ー 3 （ファミリーなし）</td>
<td>5, 6, 9-11</td>
</tr>
<tr>
<td>A</td>
<td>JP 2011-25223 1 A（出光興産株式会社）2011.12.15, 全文参照 & US</td>
<td>1-1 1</td>
</tr>
<tr>
<td></td>
<td>2012/0068 130 Al & W) 2003/0 14409 Al & EP 2278041 Al</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>WO 2012/15349 1 A（出光興産株式会社）2012.11.15, 全文参照 & JP</td>
<td>1-1 1</td>
</tr>
<tr>
<td></td>
<td>10-20 14-0027240 A & TW 201300345 A</td>
<td></td>
</tr>
</tbody>
</table>

☑ C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリー

X 特に関連のある文献ではなく、一般的技術水準を示すものの
☑ 国際出願 日前の出願または特許であるが、国際出願日後 に公表されたもの
☐ 発明申請後の出願又は特許品目を含む文書又は特許品目発行の日以前の出願または特許品目を含む文書
☐ 口頭による開示、使用、展示等に言及する文献
☑ 国際出願 日前で、かつ 前発明の見直し等として出願の日の後で公表された文献

☑ 国際出願 日又は優先日後に公表された文献であって、発明元の意思決定における誘導の発明の理解のために引用するもの
☐ 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
☐ 特に関連のある文献であって、当該文献と他の文献によって発明の新規性又は進歩性がないと考えられるもの
☐ 同一パテントファミリー文書

国際調査を完了した日
21.04.2015

国際調査報告の発送日
28.04.2015
国際調査報告 国際出願番号 P C T/JP2015/053848

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2013- 1590 A (住友電気工業株式会社) 2013.01.07, 全文参照 (ファミリーなし)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

様式PCT/ISAZ210（第2ページの続き）（2009年7月）