
US 20100325643A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0325643 A1

Manzano et al. (43) Pub. Date: Dec. 23, 2010

(54) INTEGRATION OF DISPARATE (60) Provisional application No. 60/745,354, filed on Apr.
APPLICATIONS ON ANETWORK 21, 2006, provisional application No. 60/825,852,

filed on Sep. 15, 2006.
(75) Inventors: Mike R. Manzano, Seattle, WA Publication Classification

(US); Jamie Paulson, Tacoma, WA (51) Int. Cl
(US); Chad Hardin, Lakewood, G06F 9/44 (2006.01)
WA (US); Michael McGrady, G06F 5/16 (2006.01)
Tacoma, WA (US) (52) U.S. Cl. ... 719/317; 709/202

Correspondence Address: (57) ABSTRACT
BLACKLOWE & GRAHAM, PLLC A system is implementable in a network including a plurality
701 FIFTHAVENUE, SUITE 4800 of electronic devices coupled to each other via a communi
SEATTLE, WA 98104 (US) cation medium. The system includes a first mobile agent

object executable on an electronic device of the plurality and
(73) Assignee: TOPIATECHNOLOGY, Tacoma, operable to perform a first operation on a data set. A second

WA (US) mobile agent object is executable on an electronic device of
the plurality and operable to perform a second operation on a
data set. A composition object is operable to enable the first

(21) Appl. No.: 12/872,076 mobile agent object to provide the data set to the second
mobile agent object if the first mobile agent object and second

(22) Filed: Aug. 31, 2010 mobile agent object are executing on the same electronic
device of the plurality. At least one bridging object is operable
to enable the first mobile agent object to provide the data set
to the second mobile agent object if the first mobile agent

(63) Continuation of application No. 1 1/739,085, filed on object and second mobile agent object are executing on dif
Apr. 23, 2007, now Pat. No. 7,805,732. ferent electronic devices of the plurality.

Related U.S. Application Data

2 1 O

PRODUCER CONSUMER
31 O N - N | | -N - 320

39 N. 33G T370 y 340 380 > 35 ^
Outputs XML data in / -- -/ Expects serialized data

cartesian coordinates as 1. - objects in polar coordinates
plain text as binary

Pain text - Binary XM -. Serialized data Cartesan - Poia

US 2010/0325643 A1 Dec. 23, 2010 Sheet 1 of 5 Patent Application Publication

TTT ??T HOIABC]

US 2010/0325643 A1 Dec. 23, 2010 Sheet 2 of 5 Patent Application Publication

~~~~ ~~~~ ~~~~~); 

| 

012 

OOZ 

  



US 2010/0325643 A1 Dec. 23, 2010 Sheet 3 of 5 Patent Application Publication 

  



US 2010/0325643 A1 Dec. 23, 2010 Sheet 4 of 5 Patent Application Publication 

>HE OTICIO?Hd 

  

  





US 2010/0325643 A1 

INTEGRATION OF DISPARATE 
APPLICATIONS ON ANETWORK 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/739,085 filed Apr. 23, 2007 and 
entitled “Integration of Disparate Applications on a Network” 
which claims priority to U.S. Provisional Patent Application 
No. 60/745,354 filed Apr. 21, 2006 and U.S. Provisional 
Patent Application No. 60/825,852 filed Sep. 15, 2006, each 
of which is hereby incorporated herein by reference. 

FIELD OF THE INVENTION 

0002 This invention relates generally to computer-imple 
mented processes and, more specifically, to integration of 
applications that do not necessarily share a common inter 
face. 

BACKGROUND OF THE INVENTION 

0003 Because of limited availability of processing 
resources and applications, computer-network users must 
often rely on multiple network devices to accomplish a par 
ticular processing task. For example, data on a first network 
device may be required by a second network device, but in a 
different format and unit of measure. Because the first and 
second devices may lack sufficient processing resources and/ 
or conversion applications, additional network devices may 
be required to complete the task. However, there is no guar 
antee that a network device having the required application 
will have sufficient processing resources, or vice versa. 
0004. Other problems with the prior art not described 
above can also be overcome using the teachings of embodi 
ments of the present invention, as would be readily apparent 
to one of ordinary skill in the art after reading this disclosure. 

SUMMARY OF THE INVENTION 

0005. In an embodiment of the invention, a system is 
implementable in a network including a plurality of elec 
tronic devices coupled to each other via a communication 
medium. The system includes a first mobile agent object 
executable on an electronic device of the plurality and oper 
able to perform a first operation on a data set. A second mobile 
agent object is executable on an electronic device of the 
plurality and operable to perform a second operation on a data 
set. A composition object is operable to enable the first mobile 
agent object to provide the data set to the second mobile agent 
object if the first mobile agent object and second mobile agent 
object are executing on the same electronic device of the 
plurality. At least one bridging object is operable to enable the 
first mobile agent object to provide the data set to the second 
mobile agent object if the first mobile agent object and second 
mobile agent object are executing on different electronic 
devices of the plurality. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 Preferred and alternative embodiments of the 
present invention are described in detail below with reference 
to the following drawings. 
0007 FIG. 1 is a schematic view of an exemplary operat 
ing environment in which an embodiment of the invention can 
be implemented; 

Dec. 23, 2010 

0008 FIG. 2 is a functional block diagram of an exem 
plary operating environment in which an embodiment of the 
invention can be implemented; 
0009 FIG. 3 is a functional block diagram illustrating an 
embodiment of the invention; 
0010 FIG. 4 is a functional block diagram illustrating an 
embodiment of the invention; and 
0011 FIG. 5 is a functional block diagram illustrating 
features of an embodiment of the invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

0012 Embodiments of the invention may be described in 
the general context of computer-executable instructions, such 
as program modules, executed by one or more computers or 
other devices. Generally, program modules include routines, 
programs, objects, components, data structures, etc. that per 
form particular tasks or implement particular abstract data 
types. Typically the functionality of the program modules 
may be combined or distributed as desired in various embodi 
mentS. 

0013 Computing or other electronic devices described 
herein typically include at least some form of computer read 
able media. Computer readable media can be any available 
media that can be accessed by Such computing devices. By 
way of example, and not limitation, computer readable media 
may comprise computer storage media and communication 
media. Computer storage media includes Volatile and non 
volatile, removable and non-removable media implemented 
in any method or technology for storage of information Such 
as computer readable instructions, data structures, program 
modules or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EEPROM, flash memory or 
other memory technology, CD-ROM, digital versatile disks 
(DVD) or other optical storage, magnetic cassettes, magnetic 
tape, magnetic disk storage or other magnetic storage devices, 
or any other medium which can be used to store the desired 
information and which can accessed by computing devices. 
Communication media typically embodies computer read 
able instructions, data structures, program modules or other 
data in a modulated data signal Such as a carrier wave or other 
transport mechanism and includes any information delivery 
media. The term “modulated data signal” means a signal that 
has one or more of its characteristics set or changed in Such a 
manner as to encode information in the signal. By way of 
example, and not limitation, communication media includes 
wired media such as a wired network or direct-wired connec 
tion, and wireless media Such as acoustic, RF, infrared and 
other wireless media. Combinations of the any of the above 
should also be included within the scope of computer read 
able media. 
0014. An embodiment of the invention leverages remote 
programming concepts by utilizing processes called mobile 
agents (sometimes referred to as mobile objects or agent 
objects). Generally speaking, these concepts provide the abil 
ity for an object (the mobile agent object) existing on a first 
("host') computer system to transplant itself to a second 
(“remote host') computer system while preserving its current 
execution state. The operation of a mobile agent object is 
described briefly below. 
0015 The instructions of the mobile agent object, its pre 
served execution state, and other objects owned by the mobile 
agent object are packaged, or “encoded to generate a string 
of data that is configured so that the string of data can be 



US 2010/0325643 A1 

transported by all standard means of communication over a 
computer network. Once transported to the remote host, the 
string of data is decoded to generate a computer process, still 
called the mobile agent object, within the remote host system. 
The decoded mobile agent object includes those objects 
encoded as described above and remains in its preserved 
execution State. The remote host computer system resumes 
execution of the mobile agent object which is now operating 
in the remote host environment. 
0016 While now operating in the new environment, the 
instructions of the mobile agent object are executed by the 
remote host to perform operations of any complexity, includ 
ing defining, creating, and manipulating data objects and 
interacting with other remote host computer objects. 
0017. An embodiment of the invention employs mobile 
objects to integrate disparate applications located on a net 
work. It includes a framework upon which components (e.g., 
mobile-agent and other objects) may be built that handle the 
tasks required to Successfully integrate applications that do 
not necessarily share a common interface and were deployed 
with no knowledge of each other. Exemplary components 
included in Such integrations include ones responsible for 
protocol translation; data-type re-mapping; format, represen 
tation and unit conversion; data routing; and service name 
remapping. 
0.018. As is discussed in further detail below, an embodi 
ment of the invention integrates applications by allowing its 
users to specify and deploy "pipelines' that are composed of 
these components as the mechanism to provide Such integra 
tion. An embodiment of the invention decouples the applica 
tions to be integrated—the integration occurs outside of the 
applications to be integrated. Further, since an embodiment of 
the invention takes care of the details, the applications do not 
need to know of each other's implementation, effectively 
decoupling them from each other. Additionally, an embodi 
ment of the invention provides high reuse of conversion com 
ponents—the components can be deployed and composed on 
remote platforms. As the components may be written to be 
generic, they can be used in more than one integration job. 
0019 FIG. 1 is a block diagram of a distributed-computing 
environment Suitable for practicing embodiments of the 
invention. The distributed-computing environment includes a 
first computer system 100 and a second computer system 150 
that are coupled by a network connection, such as the internet 
125 as shown in FIG.1. The network connection may be any 
other connection, such as a Local Area Network (LAN) for 
example, that is suitable for facilitating communication 
between computer systems. Here, the first 100 and second 
150 computer systems may communicate over the internet 
125 using a standard protocol. Such as, for example, Trans 
mission Control Protocol/Internet Protocol (TCP/IP). Addi 
tionally, there are typically many more computer systems (not 
shown) coupled with the internet 125, all of which may com 
municate with other computers on the network including the 
first and second computers 100 and 150. 
0020. The first computer system 100 includes a CPU 103 
coupled to a bus 101 that facilitates communication between 
the CPU 103 and other components of the computer 100. 
Other components of the computer 100 include a Network 
Interface Component 102 (NIC) and a memory 104. The 
memory may include magnetic or optical disks, Random 
Access memory (RAM), Read-Only memory (ROM), Basic 
Input/Output Systems (BIOS), or any other commonly 
known memory system used in computer architecture. In the 

Dec. 23, 2010 

first computer 100, a mobile-agent runtime environment 110 
and a mobile agent injector program 111 are resident within 
the memory 104. Although shown as separate memory com 
ponents, the mobile-agent runtime environment 110 and a 
mobile agent injector program 111 may reside in a single 
memory component or in any combination of memory com 
ponents that are coupled with the bus 101. The NIC 102 
facilitates communications between the first computer 100 
and other computers, such as the second computer 150, via 
the internet 125. 
0021. The second computer 150 is similar to the first com 
puter 100 and includes a CPU 153, a bus 151, a NIC 152, and 
a memory 154 which includes a mobile-agent runtime envi 
ronment 160. These components are organized and coupled 
as described above with respect the first computer 100. 
0022. The above-described distributed-computing envi 
ronment may host one or more mobile agent objects (not 
shown) that are present in one of the mobile-agent runtime 
environments 110 or 160 of one of the computers 100 or 150. 
The mobile-agent runtime environment 110 and 160 is a 
portion of the memory dedicated to allowing a mobile agent 
object the ability to perform operations that it was pro 
grammed to carry out. 
0023 Mobile agent objects may be instantiated in a 
mobile-agent runtime environment 110 or 160 in several 
ways, two of which are briefly described here. In a first way, 
the mobile agent object is locally created in the first computer 
100 and then locally injected into the mobile-agent runtime 
environment 110 by the mobile agent injector program 111. 
In a second way, the mobile agent object moves from the 
mobile-agent runtime environment 110 of the first computer 
system 100 to the mobile-agent runtime environment 160 of 
the second computer system 150 over the internet 125 by its 
own accord, i.e., according to its programmed instructions. 
0024. Referring now to FIG. 2. embodiments of the 
present invention can be described in the context of an exem 
plary computer network system 200 as illustrated. System 
200 includes electronic user devices 210, 220, 230, 240, such 
as personal computers or workstations, that are linked to each 
other via a communication medium, Such as the Internet 125. 
(0025. Each of the user devices 210, 220, 230, 240 may 
include all or fewer than all of the features associated with the 
computers 100 or 150 illustrated in and discussed with refer 
ence to FIG.1. User devices 210, 220, 230, 240 can be used 
for various purposes including both network- and local-com 
puting processes. 
0026. As alluded to above, an embodiment of the inven 
tion employs executable code in the form of objects, such as, 
for example, mobile agent objects and service objects, to 
optimize the use of resources made available by a network 
system, such as system 200. As such, a user of the system 200 
may design and implement within the system a computational 
"pipeline' including Such objects, each of which is pro 
grammed to perform a particular computational task. Each 
device (e.g., devices 210, 220, 230, 240) executing one or 
more of the objects in order to promote completion of the task 
may be referred to as a “node.” and the pipeline may be 
thought of as one or more of such cooperating nodes. 
0027. For example, the user may wish to retrieve aircraft 
position data collected by device 210 for consumption ulti 
mately by device 240. However, the device 240 may require 
the data to be in Cartesian coordinates and comma-separated 
value format, whereas the data is collected by device 210 in 
polar coordinates and XML format. Moreover, neither of the 



US 2010/0325643 A1 

devices 210, 240 may have processing resources and/or 
executable applications Sufficient to perform the needed con 
versions, whereas the devices 220, 230 may have sufficient 
processing resources. Accordingly, the user may generate an 
instruction set that, when executed by one of the user devices 
or other device accessible to the system 200, functions to 
deploy a set of objects (and/or cause the objects to deploy 
themselves) among specified ones of user devices 210, 220, 
230, and/or 240 to perform the desired data conversion and 
transfer. Such an instruction set may, for example, bean XML 
file constructed using a graphical user interface (not shown). 
Additionally, the pre-deployed objects may reside on any one 
of the user devices 210, 220, 230, 240 or other device acces 
sible to the system 200. 
0028 FIGS. 3-4 depict how components (e.g., mobile or 
service objects) might be composed to provide a specific 
functionality. Referring to FIG.3, illustrated is an example of 
a single network device, such as device 210, on which have 
been deployed mobile objects 330, 340, 350 to perform a 
computational task. A set of one or more mobile objects 
deployed to a particular device may be called a "composi 
tion.” Specifically, a data-producing application 310 execut 
ing on the device 210 outputs data to be utilized by a data 
consuming application320, also executing on the device 210. 
In the illustrated example, the application 310 outputs XML 
data in Cartesian coordinates as plain text. However, the 
application 320 expects serialized data objects in polar coor 
dinates as binary. As such, the user of the system 200 has 
deployed mobile object 330, which converts plain text to 
binary, mobile object 340, which converts XML to serialized 
data, and mobile object 350, which converts Cartesian coor 
dinates to polar coordinates, each of which take their respec 
tive turn in converting the data to its desirable final form. 
0029. In an embodiment, when multiple mobile objects 
are deployed to the same device, they communicate and send 
data to each other using a service object deployed and/or 
located on that device that may be called a composition ser 
vice object (“Composition SO) described in greater detail 
below. As such, in the example illustrated in FIG. 3, a com 
position object 360 has also been deployed to the device 210, 
the service offered by which provides a communication inter 
face 370 between mobile object 330 and mobile object 340, 
and a communication interface 380 between mobile object 
340 and mobile object 350. In an embodiment, one or more 
composition objects (not shown) in addition to the composi 
tion object 360 provide one or more of the communication 
interfaces 370, 380. Additionally, objects, such as adapter 
components 390, 395 may be deployed to the device 210 to 
facilitate communication between respective applications 
and mobile objects. In an embodiment, adapter components 
interface directly with an application using that application's 
API. 

0030 Referring now to FIG. 4, as these mobile object 
components can be deployed to different machines on a net 
work, it may be optionally advantageous to bridge between 
compositions. For example, as shown in FIG. 4, a data-pro 
ducing application 410 may reside on the device 210, while a 
data-consuming application 420 may reside on the device 
220. As a Composition SO may only interface components 
residing on the same device, another mechanism may be 
optionally advantageous to send data between compositions 
on different devices. Such bridging is done by mobile objects, 
called bridging components 460, 470, that know how to talk 
over the network and respective ones of which reside on the 

Dec. 23, 2010 

devices 210, 220. The bridging components 460, 470 are 
operable to form a composition bridge 480. For purposes of 
this disclosure, the bridging components 460, 470 and com 
position bridge 480 collectively may be referred to as a 
“bridging system.” 
0031. To form a composition, components can bind to 
each other so that they can send each other data and control 
messages. A mechanism must exist for this binding to occur. 
The following are some optionally advantageous features of 
Such a mechanism, called a Compositor: 
0032 1. The Compositor can provide a mechanism 
(“Sharing Mechanism') for a component to share data, whose 
size can be up to the maximum sharing size (“Maximum 
Sharing Size), with another component. 
0033 2. The Compositor can provide a mechanism to 
configure the Maximum Sharing Size. 
0034 3. The Compositor's Sharing mechanism can allow 
a number (“Maximum Shared Data Items) of discrete data 
items to be shared. 

0035. 4. The Compositor can provide a mechanism to 
configure the Maximum Shared Data Items. 
0036 5. The Compositor can provide a mechanism for 
components to send messages to another component. 
0037 6. The Compositor can provide a mechanism for 
message replies to be returned to a component that sent a 
message. 
0038 7. The Compositor can delegate compositional 
responsibility to the Bridging System when a component 
requests to share data with a component that is not on the 
same machine. 
0039 8. The Compositor can delegate compositional 
responsibility to the Bridging System when a component 
sends a message to a component that is not on the same 
machine. 
0040. These requirements may be met by a combination of 
the Composition SO and the Component base class. The 
interactions between these two entities that fulfill these 
requirements are described in Component Composition. 
0041 Objects bind to applications using adapter compo 
nents. Adapter components interface directly with an appli 
cation using that application’s API. 
0042. In any pipeline there are typically adapters for pro 
ducer applications, consumer applications, and intermediary 
services/applications. 
0043. As discussed above, components that wish to com 
municate with each other over a network can do so over a 
component bridge. This bridge may be put into place by the 
Bridging System whenevera request is made by a component 
to compose to another component that is remote to it (by 
either attempting to send it data or to send it a message). 
0044 Some features of the Bridging System are: 
0045 1 The Bridging System can provide a mechanism 
(“Sharing Bridge') that transfers data to a remote machine 
when a component on the remote machine accesses data 
through its local Sharing Mechanism that may be actually 
stored on the local machine's Sharing Mechanism. 
0046) 2 The Bridging System can provide a mechanism 
("Message Bridge') that transfers a message to a component 
on a remote machine when a local component sends a mes 
sage addressed to that remote component. 
0047 3 The Bridging System can interface with other 
local components using the Compositor mechanism. 



US 2010/0325643 A1 

0048 4 The Bridging System's Sharing Bridge function 
ality can be encapsulated into one or more mobile objects 
(“Sharing Bridge Component'). 
0049) 5 The Bridging System's Message Bridge function 
ality can be encapsulated into one or more mobile objects 
(“Message Bridge Component'). 
0050. The design intended to meet these optional features 
contains the notion that the functionality required to do data 
and message transfer over the network may be itself imple 
mented as a set of reusable mobile objects (“MOs). 
0051 Pipelines are the mechanisms provided by an 
embodiment of the invention to integrate a pair of applica 
tions that wish to communicate. 
0052 Referring back to FIG. 2, an embodiment of the 
invention uses three controller types for the management of 
pipelines: 
0053 Primary controller 250: Manages a set of pipelines. 
In an alternative embodiment, may reside on one of user 
devices 210, 220, 230, 240. 
0054 Pipeline controller 260: Manages a specific pipe 

line. In an alternative embodiment, may reside on one of user 
devices 210, 220, 230, 240. As indicated by the dashed lines 
in FIG. 2, the primary controller 250 and pipeline controller 
260 may communicate with one another via the Internet 125 
or via alternative communication medium. 
0055 Node Controller 270: Manages a section of a pipe 
line operating on a single network node, the node sometimes 
being referred to as a composition. May reside on one of user 
devices 210, 220, 230, 240, or other device (not shown) 
accessible to the system 200. 
0056 Pipelines may be tracked by an MO serving as the 
primary controller 250, the responsibilities of which may be 
twofold: 
0057) 1... fully manage a set of pipelines. This responsibil 

ity includes pipeline deployment, deconstruction, mainte 
nance, and fault detection. 
0058 2. track applications and the devices they run on that 
may be part (or can be part) of a pipeline. This task mainly 
involves tracking an application's availability. If availability 
changes, the pipeline may be affected in ways that require the 
primary controller 250 to take action. 
0059) Pipelines are complex entities in themselves, and 
can actually be composed of intermediate nodes. These inter 
mediate nodes may be machines that contain objects (taking 
part in object compositions) that do some translation or map 
ping function optionally advantageous to the pipeline's inte 
gration job. These intermediary nodes may be also tracked by 
the primary controller 250. 
0060 A section of pipeline on a specific network node 
(also called a composition) may be controlled by an object 
called a node controller 270. Thus, each pipeline controller 
260 controls a series of node controllers 270 that control the 
objects in a composition. 
0061 Each composition in one of the nodes in a pipeline 
may contain several MOs. These sets of MOs can contain one 
or more members (which can be input/output adapters, appli 
cation adapters, or translators/filters/etc.) and a single routing 
controller (used within the composition for message routing 
between members, as defined in the compositor design). 
0062. The Node Controller 270 can be responsible for two 
primary tasks: 
0063 1. Ensuring that all of the MOs in its composition are 

still operating as expected. 

Dec. 23, 2010 

0064. 2. Directing all of the MOs in its composition to 
migrate to a different node. 
0065. Some features of the Node Controller are: 
0.066 1. The Node Controller can track MOs in its com 
position. 
0067 2. The Node Controller can detect failure of MOs in 

its composition. 
0068. 3. The Node Controller can be capable of directing 
MOs in its composition to move to a different network node. 
0069. 4. The Node Controller can provide a mechanism to 
determine the health of its composition. 
0070) 5. The Node Controller can provide a mechanism to 
direct its composition to move. 
0071 Referring now to FIG. 5, to form a composition, a 
section of a pipeline on a single network node, components 
(which are the MOs in a pipeline) can bind to each so that they 
can send each other data and control messages. The mecha 
nism for this binding to occur may be called the Compositor. 
(0072 Composition Members 
(0073. “Composition Members” is a generic term for MOS 
that are part of a pipeline responsible for the collection, dis 
semination, manipulation, merging, and other associated 
tasks on data being processed by a pipeline. 
0074. Some features for generic Composition Member 
functionality are as follows: 
(0075 1. Composition Members can be able to receive 
messages 
0076 2. Composition Members can be able to send mes 
Sages 
0077 3. Composition Members can be able to place data 
on the Whiteboard 
0078 4. Composition Members can be able to manipulate 
Whiteboard data 
0079 5. Composition Members can be able to remove data 
from the Whiteboard 
0080) 6. Composition Members can provide a mechanism 
to direct their migration 
I0081 7. Composition Members can migrate when 
directed 
I0082 8. Composition Members can provide a mechanism 
to map incoming messages to known message types 
I0083 Composition Members may be MOs that provide 
unique functionality, such as translation, filtering, merging, 
etc., of data. As such, the design for these provides a basic 
interface on which the design of specific Members can be 
based. The basic needed functionality is the need to accept 
incoming messages, map them to expected messages using a 
Message Mapper, and handle the messages accordingly (Such 
as performing a translation and then sending a message to 
another MO). As such, all members may need to provide 
methods for delivery of messages, migration triggering, and 
setting up of the message mapper. 
I0084 Composition Members when told to move can take 
appropriate data for messages they are currently handling 
with them to the destination system. 
I0085. The following may be non-MO-featured public API 
methods, which can make up its interface class: 
I0086) MOID getID() 
I0087. Returns the identifier for this object. Methodiscom 
mon to other MDCI MOS. 
I0088 requestMove(destination) 
I0089 Requests that this MO move. Data for this compo 
sition may be pulled from the whiteboard before migration, 



US 2010/0325643 A1 

which can be replaced upon arrival at the destination node. 
Method is common to other MDCI MOS. 
0090 terminate() 
0091 Requests that this MO terminate. Method is com 
mon to other MDCI MOS. 
0092 handleMessage(message) 
0093. Handles the specified message as appropriate for 

this object. Method is common to other MDCI MOs. 
0094 setMessageMapper(messageMapper) 
0095 Sets the message mapper to the specified mapper. 
0096 MessageMapper getMessageMapper() 
0097. Retrieves the current message mapper. 
0098. Whiteboard 
0099. The Whiteboard may be the data storage and sharing 
mechanism within an MDCI composition. 
0100 Some features for the Whiteboard areas follows: 
0101 1. The Whiteboard can provide a mechanism to store 
data 
0102 2. The Whiteboard can provide a mechanism to 
access stored data 
0103) 3. The Whiteboard can provide a mechanism to 
remove stored data 
0104 4. The Whiteboard can provide a mechanism to 
specify the maximum amount of data it can store 
0105 5. The Whiteboard can store no more than its maxi 
mum amount of data at any time 
0106 6. The Whiteboard can provide a mechanism to 
specify the maximum number of data items it can store 
0107 7. The Whiteboard can store no more than the maxi 
mum number of data items at any time 
0108. The Whiteboard can be implemented as an SO (ser 
Vice object) that can be accessed by objects on the system. 
The main functionality can be the ability to put data on the 
whiteboard, get a reference to whiteboard data, and remove 
data from the whiteboard. 
0109 Data can be stored in an internal hash map that maps 
a data object identifier to its associated data object. The data 
object identifier may be generated when the object is put on 
the whiteboard and returned to the caller for use in referring to 
that object in the future. 
0110 Methods can be provided for specifying the maxi 
mum amount of data and maximum number of data objects, 
though reasonable defaults can be set in a static initializer. 
0111 Concurrency problems for the access of whiteboard 
data can need to be handled by the accessing object in this 
CaSC. 

0112. The basic public API for the Whiteboard may be as 
follows: 
0113 DataObjectIdentifier putData(DataObject) 
0114 Puts a piece of data on the whiteboard and returns a 
locally unique identifier for that object. Throws an exception 
if the specified object is null or if the whiteboard is “full 
(memory or number of objects). 
0115 DataObject getData (DataObjectIdentifier) 
0116 Retrieves a reference to a piece of data on the white 
board that can be modified as needed by the caller, identified 
in the whiteboard by the specified identifier. Any modifica 
tions can synchronize on the object to prevent concurrency 
problems. Throws an exception if the specified identifier is 
null, or if there is no object stored for the given identifier. 
0117. DataObject remove|Data(DataObjectIdentifier) 
0118 Removes the piece of data from the whiteboard 
associated with the specified identifier, and returns the data 

Dec. 23, 2010 

object to the caller. Throws an exception if the specified 
identifier is null, or if there is no object stored for the given 
identifier. 
0119 void setMaximum DataSize(numberOfEytes) 
I0120 Sets the maximum amount of memory the white 
board can use. 
I0121 void setMaximum DataObjects(numberOfCbjects) 
0.122 Sets the maximum number of data objects the white 
board can use. 
(0123 Data Objects 
0.124 DataObjects are the discrete items to data that may 
be stored on the whiteboard. Each data object holds a discrete 
piece of data that can be modified in place as needed. 
(0.125. The features for DataObjects are as follows: 
0.126 1. A Data Object can be capable of containing an 
arbitrary piece of data 
I0127 2. A DataObject can provide a mechanism to set its 
data contents 
I0128. 3. A Data Object can provide a mechanism to 
modify its data contents 
I0129. Data Objects can basically be implemented as a 
container class for a generic JavaObject, which represents its 
data. This allows the possibility of the internal data changing 
Class over the existence of the Data Object, so that as it is 
manipulated by Composition Members it is possible for the 
data to change. 
0.130 Special note may need to be made by developers of 
Composition Members for the handling of DataObjects con 
taining immutable objects such as Strings, ensuring that if 
they may need to re-set the data contents to actually change 
them. 
I0131 The following may be the basic public API for Data 
Objects: 
(0132) setData(Object data) 
0.133 Sets the data contents. Exceptions for null value. 
I0134) Object getData() 
0.135 Returns a reference to the data contents. 
0.136 Composition Routing Controller 
0.137 The Composition Routing Controller encapsulates 
information pertaining to the routing of messages between 
Composition Members. This facilitates the concept of who is 
“next when a Composition Member performs a translation 
and wants to send a message to the next MO in its composi 
tion. 
0.138. Some features for the Composition Routing Con 
troller are as follows: 
0.139 1. The Composition Routing Controller can provide 
a mechanism to specify the routing of Composition Member 
messages 
0140 2. The Composition Routing Controller can provide 
a mechanism to modify the routing of Composition Member 
messages 
0141 3. The Composition Routing Controller can provide 
a mechanism for Composition Members to send messages 
0142. 4. The Composition Routing Controller can forward 
a message sent by a Composition Member to the next Com 
position Member(s) based on the defined routing 
0.143 5. The Composition Routing Controller can provide 
a mechanism to direct its migration 
0144 6. The Composition Routing Controller can migrate 
as directed 
0145 The Composition Routing Controller may bean MO 
that encapsulates the routing logic of messages between 
Composition Members (also MOs). Thus, it has associated 



US 2010/0325643 A1 

with it a single Routing Object that defines that logic. Public 
methods allow the routing logic to be set or retrieved. Another 
public method, used by the messenger, queries for the receiv 
er(s) of a given message based on the logic stored in the 
Routing Object. 
0146 The following are methods inherited from the MO 
base class, and can be part of the implementation of the 
Composition Routing Controller (not part of its interface 
class): 
0147 Created(Object I) 
0148 Called when the MO is created. The parameters in 
the object array may be a Routing Object and a destination 
IP/hostname. 
0149 State is set to CREATED. 
0150. Arrived() 
0151 State is set to ARRIVED. 
0152 Run() 
0153. If state is CREATED, move to destination system. If 
state is ARRIVED, register with Messenger and set state to 
ROUTING. If state is ROUTING, can loop indefinitely 
responding to routing requests from the Messenger until told 
to move or terminate (setting appropriate states at that time). 
If state is “MOVING”, unregisters from the Messenger and 
moves to the destination. If state is TERMINATING, unreg 
isters from the Messenger and exits the run method, which 
can cease MO execution. 
0154 The following are non-MO-required public API 
methods, which can make up its interface class: 
O155 MOID getID() 
0156 Returns the identifier for this object. Methodiscom 
mon to other MDCI MOS. 
0157 requestMove(destination) 
0158 Requests that this MO move. Data for this compo 
sition may be pulled from the whiteboard before migration, 
which can be replaced upon arrival at the destination node. 
Method is common to other MDCI MOS. 
0159) terminate() 
0160 Requests that this MO terminate. Method is com 
mon to other MDCI MOS. 
0161 handleMessage(message) 
0162 Handles the specified message as appropriate for 

this object. Method is common to other MDCI MOs. 
0163 setRoutingLogic(RoutingObject) 
0164. Sets the routing logic to that of the specified Routing 
Object 
0.165 RoutingObject getRoutingLogic() 
0166 Gets the routing logic, or null if none is defined. 
(0167 downstreamMOList getDownstreamIDs(MOID) 
0168 Gets a list of downstream MOs for a specified ID. 
The Composition Routing Controller can retrieve this based 
on the contents of its Routing Object. An exception can be 
thrown if there is no logic for the specified MOID. 
(0169 Messenger 
0170 The Messenger handles MO to MO messaging 
within a composition. This can be implemented as an SO that 
can handle the messaging of all compositions on the system. 
0171 Some features for the Messenger are as follows: 
0172 1. The Messenger can provide a mechanism to post 
a message for a specific MO instance 
0173 2. The Messenger can provide a mechanism for an 
MO to retrieve its messages 
0.174 3. The Messenger can provide a mechanism to post 
a message for routing to a next MO 
0175 4. The Messenger can route messages based on the 
routing logic of the sending MO's Composition Routing Con 
troller 

Dec. 23, 2010 

0176 5. The Messenger can notify the sender of failed 
message delivery 
0177. The Messenger can be implemented primarily as an 
SO to allow use by multiple compositions operating on the 
same network node. As such, since it can be calling methods 
on both the Composition Routing Controller and Composi 
tion Members (which may be all MOs), they can need to 
register with the Messenger when arriving on the system and 
unregister when leaving. Aside from register/unregister 
methods, there can be two primary methods available for use 
by the MOS, one that routes a message based on the routing 
information provided by the Composition Routing Control 
ler, and another that merely delivers a message to a specified 
destination. The first of these can be used by Composition 
Members for all of their messaging, while the latter can be 
used primarily by the Composition Routing Controllers for 
Such tasks as directing members of its composition to 
migrate. 
0178. In order to prevent the crossing of threads between 
mobile object instances, the Messenger can have a separate 
object that it can use to carry out the task of actually sending 
messages to the destination. It can have a delegated "Message 
Sender to which it can post a message and its recipient for 
delivery. The Message Sender can be implemented as a Mes 
saging Thread that can wait for messages and post them as 
they are queued up for delivery by the Messenger. 
(0179 The following presents the basic public API of the 
Messenger: 
0180 register(MO) 
0181 Registers the specified MO as being on the system. 
Stored in a map keyed by the ID of the MO, with the reference 
to the object available for later method calls. Throws an 
exception if the MO is already registered. 
0182 unregister(MOID) 
0183 Unregisters the specified MO from the system. The 
entry for the specified ID may be removed from the stored 
map. Throws an exception if the MO is not registered. 
0.184 deliverMessage(MOID, message) 
0185. Delivers the specified message to the specified MO. 
The instance of the MO may be retrieved from the map based 
on the specified ID, and the message and destination may be 
given to the message sender for delivery. Throws an exception 
if the MOID is unknown. 
0186 routeMessage(ctlrID, message) 
0187. Sends the specified message to the appropriate MO 
based on the routing information in its Composition Routing 
Controller. The instance of the controller MO may be 
retrieved from the map based on the specified ID, and routing 
information may be retrieved from the controller. Routing 
destinations MO instances may be then retrieved from the 
map, and the message sender may be called to deliver the 
message to each of the detination MOs. Throws an exception 
if the controller or destination MOIDs are unknown. 
0188 setMessageSender(messengeSender) 
0189 Sets the object that can actually be sending the mes 
Sages. 
(0190. Message Sender (Messaging Thread) Public API 
(0191). The following presents the public API of the Mes 
sage Sender, which can be implemented as a Messaging 
Thread: 
0.192 sendMessage(recipientInstance, message) 
0193 Sends a message to the specified sender by calling 

its handleMessage() method. (In the case of a thread, this can 
happen indirectly by queueing up the message, which the 
thread can pull off and deliver in its run loop, but from the 
outside the behavior can be equivalent.) 



US 2010/0325643 A1 

0194 Message Mapper 
0.195 The Message Mapper allows a Composition Mem 
ber to have a definition of how an incoming message type can 
be mapped to a possibly-dissimilar known message type. This 
allows for loose coupling of the interfaces exported by mem 
ber MOS. The design paradigm can give each Composition 
Member its own Message Mapper to define its mappings. 
0196. Some features for the Message Mapper are as fol 
lows: 
0197) 1. A Message Mapper can provide a mechanism to 
map an incoming message type to a message type Supported 
by its owner. 
0198 2. A Message Mapper can provide a mechanism to 
define a mapping 
0199 3. A Message Mapper can provide a mechanism to 
change a mapping 
0200. 4. A Message Mapper can provide a mechanism to 
remove a mapping 
0201 5. A Message Mapper can provide a mechanism to 
resolve an incoming message to a Supported message type, 
appropriate to its mapping. 
0202) A Message Mapper may be tied closely to its own 
ing Composition Member in that it maps incoming message 
types to message types expected by the Composition Mem 
ber, and may be able to handle translation of these incoming 
messages. It can store a map in which incoming message type 
may be keyed to a value of the local Supported message type. 
As such, it contains accessors for setting, removing, and 
retrieving a mapping. Also, it provides a method to resolve a 
mapping, so that its Composition Member can give it an 
incoming message, and the Message Mapper can modify the 
message as necessary to make it understandable based on its 
mappings, returning a modified message that can be handled 
by the Composition Member. 
0203 The following presents the basic public API of a 
Message Mapper: 
0204 setMapping(incomingMessageType, Supported 
MessageType) 
0205 Maps an incoming message type to a Supported 
message type. 
0206 removeMapping(incoming MessageType) 
0207 Removes the mapping for the specified incoming 
message type. An exception may be thrown if there is no 
mapping for the specified type. 
0208 SupportedMessageType getMapping(incoming 
MessageType) 
0209 Returns the supported message type mapping for the 
specified incoming message type. An exception may be 
thrown if there is no mapping for the specified type. 
0210 SupportedMessage resolveMapping(incoming 
Message) 
0211 Modifies an incoming message to its associated Sup 
ported message type based on the mappings, and returns a 
message of the Supported type. An exception may be thrown 
if there is no mapping for the incoming message type. 
0212 Routing Object 
0213. The Routing Object allows a Composition Routing 
Controller to have an object that encapsulates its routing 
logic. Each Composition Routing Controller can have its own 
Routing Object that can define this logic. By implementing 
this as an interface, it can be possible to have different types 
of routing logic for different compositions. 
0214. Some features for the Routing Object areas follows: 
0215 1. Routing Objects can provide a mechanism to 
define routing logic for what objects should receive a message 
based on its sender. 

Dec. 23, 2010 

0216 2. Routing Objects can provide a mechanism to add 
to routing logic 
0217 3. Routing Objects can provide a mechanism to 
change portions of routing logic 
0218 4. Routing Objects can provide a mechanism to 
remove portions of routing logic 
0219 5. Routing Objects can provide a mechanism to 
retrieve the receivers for a given sender Design 
0220. The routing object may require away to map IDs of 
Composition Members in a way that defines who is “next 
given a sender. The implementation can be backed up by a 
Map, keyed by sender ID with a value of a list of receiver IDs. 
(This enables message delivery to multiple downstream 
Composition Members if desired.) Public accessors can be 
provided for adding new entries to the map, modifying map 
entries, removing map entries, and retrieving the “next list 
for a given ID. 
0221) The following presents the basic public API of a 
Routing Object: 
0222 setNext(senderID, receiverID) 
0223 Specifies the message routing from one Composi 
tion Member to a single downstream Composition Member. 
This can replace any existing mappings for the specified 
sender ID. 
0224) setNext(senderID, receiverIDList) 
0225 Specifies the message routing from one Composi 
tion Member to a list of downstream Composition Members. 
This can replace any existing mappings for the specified 
sender ID. 
0226 addNext(senderID, receiverID) 
0227. Adds a single downstream Composition Member to 
the routing list of the specified sender Composition Member. 
Canthrow an exception if there is no routing list for the sender 
or if the receiver is already in the routing list. 
0228 addNext(senderID, receiverIDList) 
0229. Adds a list of downstream Composition Members to 
the routing list of the specified sender Composition Member. 
Canthrow an exception if there is no routing list for the sender 
or if any of the receivers are already in the routing list (in 
which case none of the receivers will be added to the list). 
0230 removeNext(senderID, receiverID) 
0231 Removes the specified downstream Composition 
Member from the routing list of the sender. Can throw an 
exception if there is no routing list for the sender or if the 
receiver is not in the routing list. 
0232 removeAllNext(senderID) 
0233 Removes the routing list for the sender completely. 
Can throw an exception if there is no routing list for the 
sender. 
0234 ReceiverIDList getNext(senderID) 
0235 Returns a list of receiver IDs representing the Com 
position Members in the downstream routing list of the speci 
fied sender. Can throw an exception if there is no routing list 
for the sender. 
0236 Each of the processes, systems and/or methods 
described herein is implementable in any suitable hardware, 
software, firmware, or combination thereof. To the extent 
Such processes, systems and methods are implemented in 
computer-executable instructions, an embodiment of the 
invention includes the transfer of Such instructions over a 
medium from one electronic device to at least one other 
electronic device. 
0237 While a preferred embodiment of the invention has 
been illustrated and described, as noted above, many changes 
can be made without departing from the spirit and scope of the 
invention. Instead, the invention should be determined 
entirely by reference to the claims that follow. 



US 2010/0325643 A1 

1. A method of transferring at least one computer program 
product from at least one first computer to a second computer 
having a first object-oriented runtime environment and con 
nected to the at least one first computer through at least one 
communication medium, and to a third computer having a 
second object-oriented runtime environment and connected 
to the at least one first computer through the at least one 
communication medium, the method comprising the steps of 

(a) accessing, on the at least one first computer: 
(1) a first mobile agent object that, when executed in the 

first runtime environment, is operable to perform a 
first operation on a data set, 

(2) a second mobile agent object that, when executed in 
the second runtime environment, is operable to per 
form a second operation on the data set, and 

(3) at least one additional object that, when executed in 
a runtime environment, is operable to enable the first 
runtime environment to provide the data set to the 
second runtime environment; and 

(b) instructing the transfer of the first mobile agent object to 
the second computer, the second mobile agent object to 
the third computer, and the at least one additional object 
from the first computer through the at least one commu 
nication medium. 

2. A computer-readable medium having computer-execut 
able instructions for performing the method of claim 1. 

3. A method of transferring at least one computer program 
product from at least one first computer to at least one second 
computer having an object-oriented runtime environment and 
connected to the at least one first computer through a com 
munication medium, the method comprising the steps of 

(a) accessing, on the at least one first computer: 
(1) a first mobile agent object that, when executed in the 

runtime environment, is operable to perform a first 
operation on a data set, 

(2) a second mobile agent object that, when executed in 
the runtime environment, is operable to perform a 
second operation on the data set, and 

(3) a third object that, when executed in the runtime 
environment, is operable to enable the first mobile 
agent object to provide the data set to the second 
mobile agent object; and 

(b) instructing the transfer of the first mobile agent object, 
second mobile agent object, and third object from the at 
least one first computer to the at least one second com 
puter through the communication medium. 

4. A computer-readable medium having computer-execut 
able instructions for performing the method of claim 3. 

5. A system implementable in a network including a plu 
rality of electronic devices coupled to each other via a com 
munication medium, the system comprising: 

a first mobile agent object executable on an electronic 
device of the plurality and operable to perform a first 
operation on a data set; 

a second mobile agent object executable on an electronic 
device of the plurality and operable to perform a second 
operation on a data set; 

a composition object operable to enable the first mobile 
agent object to provide the data set to the second mobile 
agent object if the first mobile agent object and second 
mobile agent object are executing on the same electronic 
device of the plurality; and 

at least one bridging object operable to enable the first 
mobile agent object to provide the data set to the second 

Dec. 23, 2010 

mobile agent object if the first mobile agent object and 
second mobile agent object are executing on different 
electronic devices of the plurality. 

6. The system of claim 5 wherein the first mobile agent 
object, second mobile agent object, composition object and at 
least one bridging object are, in response to at least one 
instruction, automatically deployable from at least one loca 
tion on the network to the first and second electronic devices. 

7. The method of claim 1 wherein theat least one additional 
object comprises a mobile agent object. 

8. The method of claim 1 wherein instructing the transfer of 
the at least one additional object from the first computer 
through the at least one communication medium comprises: 

instructing the transfer of a first additional object to the 
second computer, and 

instructing the transfer of a second additional object to the 
third computer, wherein the first and second additional 
objects are configured to communication with each 
other over the at least one communication medium. 

9. The method of claim 1 wherein: 

the first mobile agent object receives the data set from a 
data-producing application executing on the second 
computer, and 

the second mobile agent object provides the data set to a 
data-consuming application executing on the third com 
puter. 

10. The method of claim 9, further comprising: 
accessing, on the at least one first computer, a third object 

that, when executed in the first runtime environment, is 
operable to enable the first mobile agent object to receive 
the data set from the data-producing application; and 

instructing the transfer of the third object from the at least 
one first computer to the second computer through the 
communication medium. 

11. The method of claim 10, further comprising: 
accessing, on the at least one first computer, a fourth object 

that, when executed in the second runtime environment, 
is operable to enable the second mobile agent object to 
provide the data set to the data-consuming application; 
and 

instructing the transfer of the fourth object from the at least 
one first computer to the third computer through the 
communication medium. 

12. The method of claim 1 wherein the first operation 
comprises a format change of the data set. 

13. The method of claim 3 wherein: 

the first mobile agent object receives the data set from a 
data-producing application executing on the second 
computer, and 

the second mobile agent object provides the data set to a 
data-consuming application executing on the second 
computer. 

14. The method of claim 13, further comprising: 
accessing, on the at least one first computer, a fourth object 

that, when executed in the runtime environment, is oper 
able to enable the first mobile agent object to receive the 
data set from the data-producing application; and 

instructing the transfer of the fourth object from the at least 
one first computer to the at least one second computer 
through the communication medium. 



US 2010/0325643 A1 

15. The method of claim 13, further comprising: 
accessing, on the at least one first computer, a fourth object 

that, when executed in the runtime environment, is oper 
able to enable the second mobile agent object to provide 
the data set to the data-consuming application; and 

instructing the transfer of the fourth object from the at least 
one first computer to the at least one second computer 
through the communication medium. 

16. The method of claim 3 wherein the first operation 
comprises a format change of the data set. 

17. The method of claim 3 wherein the third object com 
prises a mobile agent object. 

Dec. 23, 2010 

18. The system of claim 5 wherein each of the composition 
object and at least one bridging object comprises a mobile 
agent object. 

19. The system of claim 5 wherein: 
the first mobile agent object receives the data set from a 

data-producing application; and 
the second mobile agent object provides the data set to a 

data-consuming application. 
20. The system of claim 5 wherein the first operation com 

prises a format change of the data set. 
c c c c c 


